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The formulation of the classical barrier-crossing problem is reviewed in the context of numer-
ical simulations, with the focus on barrier crossing problems where the reaction coordinate
depends in a non-trivial way on the Cartesian coordinates of many particles. Often it is
convenient to measure the barrier height using constrained dynamics. Such a calculation
requires a knowledge of the Jacobian for the coordinate transformation between Cartesian
and generalized ( r̀eaction’ ) coordinates, and it is shown that the calculation of this Jacobian
can be simpli® ed. The conventional expression for the crossing rate is found to become
computationally ine� cient when the barrier crossing is di� usive. An alternative formulation
of the barrier-crossing rate is given that leads to much better statistical accuracy in the
computed crossing rates.

1. Introduction

Activated processes play an important role in many
di� erent areas of (chemical) physics (for a review, see
[1, 2]). During the last twenty years, much progress has
been made in deriving for the rate of activated processes
statistical mechanical expressions that are convenient to
use in numerical simulations (examples are ion associa-
tion reactions [3], di� usion in solids [4], or crystal
nucleation from the melt [5]). Although much of this
work is well known, the focus is usually on relatively
simple reactive crossings. The aim of the present paper
is to discuss some of the technical problems connected
with the numerical implementation of the conventional
expressions for rate processes in the case of complex
(many-body) reaction coordinates and di� usive barrier
crossings. To this end, we provide ® rst a coherent
description of the theory of activated processes in classi-
cal many-body systems, in the context of numerical
simulations. In this review we borrow heavily from the
ideas of Bennett [4], Chandler [6] and Ciccotti et al. [3].
However, our presentation of the theoretical framework
is somewhat di� erent and contains some aspects that, to
the best of our knowledge, are new. Subsequently, we
continue to discuss how the existing techniques can be
modi® ed to deal more e� ciently with the di� usive bar-
rier crossing problems.

Two concepts play a crucial role in the theory of
activated processes: the ® rst is the reaction coordinate
q that connects the initial and ® nal states of the system,
and the second is the barrier that separates them. The
existence of a reaction coordinate means that we can
characterize the macroscopic state of the system by a

single quantity q that will be in general a function of
the con® guration of the whole system, i.e.,
q = q(r1, . . . , rN). For activated processes, there is a
region between the initial and ® nal values of the reaction
coordinate where a system in equilibrium is unlikely to
be found. We loosely de® ne this region as the `barrier’
separating the initial and ® nal states. In the simplest
case, this barrier would be a region of high potential
energy, but in general the barrier will correspond to a
region of high free energy.

The Bennett± Chandler theory of rate processes is dis-
tinct from the more phenomenological theory of
Kramers [7]. The Kramers theory considers a proto-
typical activated process, namely the di� usion of a par-
ticle over a one-dimensional external potential energy
barrier. The in¯ uence of the remaining degrees of
freedom is then accounted for by an e� ective friction
coe� cient. In principle, there is no reason to expect
such a description to be valid in general activated pro-
cesses, especially when the reaction coordinate is a
global one. Moreover, even if we assume the Kramers
picture to be valid, determining the expression for the
f̀riction coe� cient’ in q space is non-trivial.

Before we proceed, let us brie¯ y review why special
simulation techniques are required to compute the rate
of activated processes. Since the spontaneous crossing of
a high barrier is a rare event, the probability of obser-
ving such a transition may be negligibly small, even
during a very long run. As a consequence, it is not
feasible to measure the barrier-crossing rate with good
statistical accuracy in a conventional simulation. The
solution to this problem [4, 6, 8] is to generate only
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those trajectories in phase space that are likely to cross
the barrier and use the information gathered in these
simulations to compute the rate of spontaneous barrier
crossing. The most common approach is to consider
only trajectories that cross the top of the barrier.
However, there is a considerable degree of freedom in
the selection of the initial constraint. Clearly, the com-
puted crossing rate should not depend on the sampling
scheme that we use.

2. Response function

Let us consider a system of N particles having f
degrees of freedom. The set of generalized coordinates
describing the con® guration of the system will be
denoted by q º {q1, . . . ,qf }, and a point in the asso-
ciated phase space by x º {q,p}. The system can be in
two macroscopic states, A and B, and we assume that
the coordinate q1 can be considered as a reaction coor-
dinate, i.e., a coordinate whose value characterizes the
macroscopic state of the system. The Landau free energy
as a function of q1 has the form shown in ® gure 1, and
we denote the position of the maximum of the barrier by
q1*. q1A is the minimum of the free energy corresponding
to the macroscopic state A and q1B is that corresponding
to state B. To quantify the state of the system, we de® ne
characteristic functions nA and nB that measure whether
the system is in state A (B). Usually, nA and nB are
de® ned as follows:

nA = µ(q1* - q1), (1)
nB = µ(q1 - q1*), (2)

where µ is the Heaviside step function. Of course,

nA + nB = 1. (3)
Moreover,

n2
A = nA, (4)

nAnB = 0. (5)
However, for what follows the important thing is that
equations (4) and (5) hold on average, i.e. k n2

A l < k nA l ,
and k nAnB l < 0. Hence, at a later stage, we are free to
choose other characteristic functions for nA and nB, as
long as they di� er from the de® nitions above only in
regions of con® guration space that contribute negligibly
to equilibrium averages. In particular, we are free to
choose other functional forms for nA and nB at the top
of the barrier.

The time evolution of the distribution function q (x, t)
is given by the Liouville operator, , ,

¶ q (x, t)
¶ t

= - , q (x, t), (6)
or

q (x, t) = e- t,
q (x,0). (7)

For an arbitrary function g(x, t) it is

g(x, t) = et , g(x,0). (8)
Averages with q (x, t) can be written as

k g(t) l = ò dx g(x) q (x, t) = ò dx g(x, t) q (x,0), (9)

and for the particular case of the equilibrium distribu-
tion;

k gl eq = ò dx g(x) q eq(x). (10)

The probability of ® nding the system in state A at time t
will be given by

PA (t) = k nA(t) l = ò dx nA q (x, t)

= ò dx µ(q1* - q1) q (x, t). (11)

We are interested in studying the response function
u (t) de® ned as

u (t) =
D PA(t)
D PA (0) , (12)

where D PA (t) is the derivation of PA(t) from its
equilibrium value,

D PA(t) = PA(t) - PA,eq = k D nA(t) l , (13)
with

D nA = nA - k nA l eq. (14)

The function u (t) gives the approach to equilibrium of
the probability of ® nding the system in state A, subject
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Figure 1. Potential barrier for a typical activated process. In
particular, this corresponds to the case discussed in sec-
tion 9 where the reaction coordinate is the x coordinate of
a particle in a Lennard-Jones ¯ uid. The barrier is given by
a harmonic potential U = U0 - 0.5w2q2

1 with U0 = 10kBT
and w = 2.2.



to an initial condition that remains to be speci® ed. To
study the behaviour of D PA (t) it is convenient to take
the Laplace transform in equation (6)

z^q (x,z) - q (x,0) = - , ^q (x,z), (15)
^q (x,z) = (z + , )- 1

q (x,0). (16)
Substitution of this result in the expression of D PA(t)
leads to

D P̂A (z) = ò dx D nA ^q (x, z)

= ò dx D nA(z + , )- 1
q (x,0). (17)

Let us assume now an initial condition of the form

q (x,0) = q eq(x) c (q1), (18)
where c is a generic non-negative function dependent
only on the reaction coordinate q1. Normalization of
q (x,0) implies

ò dx q eq(x) c (q1) = 1. (19)

Introducing equation (18) into (17),

D P̂A(z) = ò dx D nA (z + , )- 1
q eq(x) c (q1)

= ò dx q eq(x) D nA (z + , )- 1 c (q1). (20)

Therefore,

^u (z) =
D P̂A(z)
D PA (0) =

k D nA (z + , )- 1 c (q1) l eq

k D nA c l eq
, (21)

and taking inverse Laplace transform we obtain

u (t) =
k D nAe- t , c (q1) l eq

k D nA c l eq
. (22)

Using the properties of the Liouville operator this can
be written as

u (t) =
k D nAet , c (q1) l eq

k D nA c l eq
=

k D nA(0) D c (t) l eq

k D nA D c l eq
. (23)

3. Exponential relaxation

Let us suppose now that, after the initial transitory
period, u (t) decays exponentially, i.e.,

u (t) = e- (t /¿) . (24)
At this stage, the exponential character of the relaxation
function is a hypothesis that remains to be veri® ed in
every speci® c case. In fact, there are examples where this
assumption is not justi® ed [9]. In each particular pro-

blem, we will have to ® nd our whether an exponential
law is or is not valid for describing the relaxation of the
system. The time ¿ characterizes the transition of the
system from state A to state B and, for activated pro-
cesses with a high barrier, we can expect it to be very
large.

The relaxation time ¿ often is expressed in terms of
the Laplace transform of the relaxation function at
z = 0:

^u (z = 0) = ò
¥

0
dt u (t) º ¿. (25)

Using equation (21) we obtain

¿ = lim
z ® 0

k D nA (z + , )- 1 c l eq

k D nA D c l eq
. (26)

We are interested in deriving a microscopic expression
for the relaxation time. Di� erentiating the exponential
relaxation function yields

du

dt
= - 1

¿
e- (t /¿) . (27)

On the other hand, from equation (23) we obtain

du

dt
=

k D nAet , , D c l eq

k D nA D c l eq
. (28)

From the de® nition of the Liouville operator it follows
that

, D c = - {( , D c }=
¶ (
¶ p1

¶ D c
¶ q1

= Çq1 c Â (q1), (29)

where ( is the Hamiltonian of the system and the
brackets (braces) denote Poisson brackets. We then
obtain

du

dt
=

k D nA Çq1(t) c Â [q1(t)]l eq

k D nA D c l eq
= - k Çq1 c Â (q1)nA(t) l eq

k D nA D c l eq
, (30)

where we have used the properties of the Liouville
operator and we have also taken into account that the
equilibrium average of Çq1 c Â (q1) is zero, as it is an odd
function of the momenta.

By equating expressions (30) and (27) one obtains

1
¿

e- (t /¿) =
k Çq1 c Â (q1)nA (t) l eq

k D nA D c l eq
. (31)

This equation shows that the relaxation of the system
cannot be exponential at t = 0 because although the
LHS of the previous expression is equal to - 1 /¿ at
t = 0, the RHS is zero, as it is the equilibrium average
of an odd function of the momenta. Therefore, the expo-
nential law can never be valid at exactly t = 0. Let us
now suppose that we are in a time region where t ! ¿.
In that case, e- t /¿ < 1 and
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¿
- 1 =

k Çq1 c Â (q1)nA (t) l eq

k D nA D c l eq
. (32)

This equation has been obtained under the hypothesis
that the relaxation is exponential and it is restricted to
times t ! ¿. In the case of activated processes, we can
expect ¿ to be very large, and it seems reasonable to
assume that there is a time window where this condition
holds. In fact, in chemical kinetics, it is usually assumed
that ® rst-order reactions satisfy this requirement
(appendix A). The characteristic relaxation time is
related to the rate constant kAB through

¿
- 1 =

kAB

k nB l eq
, (33)

where kAB is the macroscopic transition rate from state
A to state B. Comparison of equations (32) and (33)
leads to a microscopic expression for kAB:

M(t) º
k nB l eq

k D nA D c l eq
k Çq1 c Â (q1)nA (t) l eq

= kAB. (34)

We note that although kAB is a time independent quan-
tity, the time correlation function M(t) appearing in the
® rst line does depend explicitly on time. Therefore,
equation (34) is valid only if and when M(t) reaches a
plateau value, after an initial transitory period. The
assumption that the phenomenological rate equation is
valid implies that the relaxation function is exponential
and should remain very close to one, during the initial
transitory regime.

To proceed, a speci® c form for the function c (q1) is
needed. The most common choice is [6]

c (q1) = a nA . (35)
a is a constant that is determined by the normalization
condition:

ò dx q eq(x) a nA = 1,

a =
1

k nA l eq
. (36)

Substitution of equation (35) in (34) gives

kAB =
k Çq1nÂBnB(t) l eq

k nA l eq
º M(t), (37)

where we have used

k D nA D nA l eq = k nA l eq k nB l eq, (38)

and nA (t) = 1 - nB(t). Again, equation (37) is valid only
if M(t) reaches a plateau. In the remainder of this
section, and in sections IV± VII, we consider the speci® c

case that the characteristic function is the Heaviside
function. We then have

kAB =
k Çq1 d (q1 - q1*)µ(q1(t) - q1*) l eq

k nA l eq
º M(t). (39)

We can now quantify the condition for this plateau to
exist. Taking the time derivative of equation (39) we
obtain

dkAB

dt
=

k Çq1 d (q1 - q1*) Çq1(t) d (q1(t) - q1*) l eq

k nA l eq
. (40)

In the plateau region, dkAB /dt should be negligible.
Therefore, if a trajectory re-crosses the barrier at time
t its velocity should be uncorrelated to the velocity at
time t = 0.

An alternative expression for kAB is

kAB =
k Çq1 d (q1 - q1*)nA (- t)nB(t) l eq

k nA l eq
. (41)

The equivalence of this expression to equation (37) can
be shown by using nA(- t) = 1 - nB(- t), and taking into
account that, due to the properties of the Liouville
operator, k Çq1 d (q1 - q1*)nB(- t)nB(t) l eq = 0. Equation
(41) shows that only those con® gurations that are in
state A at time - t and in state B at time t contribute
to the transition rate.

Equations (39) and (41) have a form that is similar to
that proposed by Miller [10] for the rate of a chemical
reaction:

kAB ~ k Çq1 d (q1 - q1*)R(q,p) l eq, (42)

where R(q,p) is an (unspeci® ed) function that measures
the r̀eactivity’ of the trajectory that passes through a
given point (q,p) in phase space; R(q,p) is one if the
trajectory is reactive and zero otherwise. Clearly, as
long as the labelling r̀eactive’ or `non-reactive’ is unam-
biguous, R( p,q) is conserved along the trajectory. The
problem with R is that its de® nition depends on the
time-window within which we assume that the barrier
crossing should take place. If we compare the expression
for the rate given in equation (41) with equation (42) we
see that a possible de® nition of R( p,q) would be

R = nA (- t)nB(t). (43)
In this de® nition of R, a trajectory is considered to be
reactive if the system was in state A at time - t and is in
state B at time t. Clearly, this labelling of trajectories is
valid only for times tÂ such that - t < tÂ < t.

Equation (39) is meaningful only if the computed rate
constant does not depend on the precise location of the
dividing surface q1*, provided that q1* is in the barrier
region. In appendix B we show the conditions under
which kAB can be expected to be independent of q1*.
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4. Transition rate

Let us next consider the behaviour of equation (39) in
the limit t ® 0+ . In that case we ® nd that

lim
t® 0+

M(t) =
k Çq1 d (q1 - q1*)µ( Çq1) l eq

k nA l eq
.

In this limit, the rate constant approaches the value
predicted by transition state theory (TST) [11]:

k d (q1 - q1*)| Çq1|l eq

2k nA l eq
= kTST

AB . (44)

The di� erence between the TST expression for the rate
and equation (39) is due to re-crossings at the top of the
barrier. If the re-crossing is signi® cant, some trajectories
that were initially going from A to B will end up on the
A side at time t (giving no contribution to kAB) and
some that were initially going from B to A will end up
on the B side (giving a negative contribution to kAB).
As a result, kAB will be smaller than it was at t = 0+ .
It is convenient to de® ne a transmission coe� cient
· (0 < · < 1) that accounts for the corrections to the
TST prediction for the crossing rate:

· º
kAB

kTST
AB

. (45)

Having considered the limiting behaviour of M(t) for
long (t ! ¿) and short (t ® 0+ ) times, let us ® nally
look at the behaviour of M(t) for t = 0. Somewhat
surprisingly,

M(0) = 0 /= lim
t ® 0+

M(t).

The reason why M(0) vanishes is that M(0) is the equi-
librium average of an odd function of the momenta:

M(0) ~ k Çq1 d (q1 - q1*)nB(0) l eq = 0. (46)

This discontinuous behaviour of M(t) at t = 0 is due to
the choice of the Heaviside function as the characteristic
function, and must be taken into account if we wish to
express kAB as the integral of a ¯ ux autocorrelation
function. For t ! ¿, we can write,

kAB = kTST
AB + ò

t

0+
dtÂ

dM(tÂ )
dtÂ

. (47)

As kTST
AB is always an upper bound to the true rate

constant, the integral appearing in the previous expres-
sion is always negative.

5. Constrained dynamics and restricted ensembles

In many applications of practical interest, the reaction
coordinate is a complicated function of the con® gura-
tional coordinates of the system, and a closed equation
for its time evolution is not known. Let us therefore
consider how equation (39) can be used in molecular
dynamics (MD) simulations to compute the transition
rate between two macroscopic states A and B that are
separated by a high (free) energy barrier. Of course, we
assume that we are dealing with a situation where equa-
tion (39) applies. In particular, we assume that the
relaxation of the population of the macroscopic states
is e� ectively exponential.

If we try to compute the RHS of equation (39) directly
by standard MD simulation we face a serious di� culty,
since at equilibrium the system remains most of the
time in the vicinity of the free energy minima, and
con® gurations corresponding to the top of the barrier
are seldom reached. Since these are precisely the initial
states for trajectories giving a non-vanishing contribu-
tion to the RHS of equation (39), it follows that very
long computer simulations will be needed in order to
obtain good statistics. In fact, the same applies if one
uses equation (23) to measure the relaxation function
u (t). The system has a very small probability of crossing
from one macroscopic state to the other during a typical
MD run.

One way of dealing with this problem is to use the
constrained dynamics method [8]. The basic idea is to
consider trajectories in con® guration space corre-
sponding to the dynamics of the system under a given
constraint, and using the constrained averages to obtain
information about the unconstrained equilibrium
averages. In our case, the constraint will be that we ® x
the reaction coordinate at the value corresponding to
the top of the free energy barrier, i.e., q1 = q1*. Of
course this restricts the number of con® gurations
allowed for the system. In the remainder of this section
we review brie¯ y the relation between averages com-
puted in the constrained and unconstrained systems.
We will assume for convenience that there is only one
reaction coordinate and that it is the only quantity
constrained in the dynamics (for the more general
case, see [8]).

Let us consider a system of N particles of mass mi

whose con® guration can be described by a set of gener-
alized coordinates q º {qa ; a = 1, . . . ,3N}. The set is
chosen such that it includes the reaction coordinate q1.
All the generalized coordinates are assumed to be func-
tions of only the positions of the particles. The
Hamiltonian of the system is given by the sum of the
kinetic and potential energies, K and U, respectively:

( = K + U. (48)
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Using the de® nition of the generalized momenta,

pa =
¶ L
¶ Çqa

, (49)

where L = K - U is the Lagrangian of the system, the
kinetic energy can be expressed in the form [12]

K º
1
2 å

K

i= 1

mi Çr2
i =

1
2 å

3N

a = 1 å
3N

b = 1

( [ - 1) a b pa pb =
1
2

p+ G- 1p.

(50)
Here, we have introduced the generalized mass matrix

[ a b = å
N

i= 1

mi
¶ ri

¶ qa
´ ¶ ri

¶ qb

. (51)

Clearly, [ is a symmetric matrix. The canonical equi-
librium distribution of the system at temperature T is

q (q,p) =
e- b ( (q,p)

ò dq dp e- b ( (q,p) , (52)

with b = (kBT )- 1, and kB the Boltzmann constant.
Integration over the generalized momenta yields the
con® gurational distribution,

q (q) = ò dp q (q,p) =
|[ (q)|1 /2 e- b U(q)

ò dq|[ (q)|1/2 e- b U(q)
(53)

where we have used

ò dp exp (- 1
2 b p+ ´ [ - 1. p) =

2p

b( ) 3N /2

|[ |1/2. (54)

Suppose now that the system evolves with time under the
constraint that the generalized coordinate q1 is ® xed at a
value q1*. Let us denote the set of all generalized coordi-
nates except q1, by qs , and similarly for the momenta.
The equilibrium distribution of the ensemble generated
under the constraint q1 = q* (and Çq1 = 0) is

q c(qs,ps; q1*) =
exp [- b ( s(qs,ps; q1*)]

ò dqs dps exp [- b ( s(qs,ps; q1*)], (55)

i.e., the canonical distribution associated with the
c̀onstrained’ Hamiltonian

( s(qs,ps; q1*) = Ks( ps) + U(q1*,qs), (56)
with

Ks( ps) = 1
2 p+

s ( - 1
s ps. (57)

The matrix [ s(qs; q1*) is the appropriate inverse mass
tensor, analogous to [ de® ned by equation (51), but
restricted to the set qs . It depends parametrically on
q1*. It follows from equation (55) that the con® gura-
tional probability distribution in the subspace de® ned
by q1 = q1* as given by the restricted ensemble is

q c(qs; q1*) =
|[ s(qs; q1*)|1 /2 e- b U(q*

1,qs)

ò dqs|[ s(qs; q1*)|1/2 e- b U(q*
1,qs)

. (58)

Next, we must relate the above distribution to the prob-
ability density of ® nding the system in con® guration
(q1*,qs) of the unconstrained system. This probability
density is given by equation (53):

q (q1*,qs) =
|[ (q1*,qs)|1/2 e- b U(q*

1,qs)

ò dq|[ (q)|1/2 e- b U(q) . (59)

Comparison of equations (58) and (59) yields

q (q1*,qs) = C(q1*) |[ (q1*,qs)|
|[ s(qs; q1*)|( ) 1 /2

q c(qs; q1*), (60)

where we have introduced

C(q1*) = ò dqs|[ s(qs; q1*)|1 /2 e- b U(q*
1,qs)

ò dq|[ (q)|1/2 e- b U(q) , (61)

which does not depend on qs. As is discussed in detail in
[8] (for a brief derivation, see appendix C),

|[ s(qs; q1*)|
[ (q1*,qs)| = |H|, (62)

with H de® ned as

H = å
N

i= 1
m- 1

i
¶ q1

¶ ri
´ ¶ q1

¶ ri
. (63)

So, we ® nally obtained

q (q1*,qs) = C(q1*)|H|1/2
q c(qs; q1*). (64)

The above equation implies that we can obtain averages
of con® gurational quantities in the unrestricted
ensemble from averages computed in the restricted
one, except for the constant C(q1*). More explicitly, for
an arbitrary function A(q) it is

k A(q) d (q1 - q1*) l = C(q1*) k |H|- 1 /2A(q) l c. (65)
Here and in the following, the subindex c when placed
after pointed brackets denotes averages under the con-
straint q1 = q1*. As a consequence of equation (65),
ratios of averages in the restricted ensemble can be
translated directly into ratios of averages in the unre-
stricted situation through

k A(q) d (q1 - q1*) l
k B(q) d (q1 - q1*) l = k |H|- 1/2A(q) l c

k |H|- 1/2B(q) l c

. (66)

Up to this point we have limited ourselves to con® gura-
tional properties A(q), i.e., to properties depending
only on the coordinates of the system. What happens
if A also depends on the momenta? The relationship
given by equation (60) holds only for the con® gurational
part of the distribution function. The equilibrium
momenta distributions generated by the constrained
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and unconstrained dynamics are di� erent and there is
not simply a proportionality relation between the two of
them. But this is not a serious di� culty since at equili-
brium the unconstrained momenta are distributed
according to the Maxwell± Boltzmann law. Therefore,
a practical way of proceeding is to write from equation
(60)

q (q1*,qs,p1,ps) º q (q1*,qs)F( p)

= C(q1*)|H|- 1/2
q c(qs,q1*)F( p). (67)

The above expression shows clearly that equation (66)
also can be applied to compute the equilibrium average
of a general function A(q,p), provided we use con-
strained dynamics to generate the con® gurational distri-
bution, but unconstrained dynamics to follow the
subsequent time evolution of A.

Before closing this section, we emphasize that equa-
tion (67) shows how constrained dynamics can be used
to compute static equilibrium properties of the con-
strained system. The same equation can be used also
to study the time evolution of the system, subject to
the condition that the system at t = 0 satis® es the con-
straint. However, in that case the constrained dynamics
are used only to generate the initial conditions, and the
full (unconstrained± constrained) dynamics should be
used to study the subsequent time evolution.

6. Transition rate

The relation between restricted and unrestricted
averages can be used to facilitate the computation of
the rate of activated processes with a high free energy
barrier. Equation (39) can be rewritten as

kAB = P0(q1*)R(t), (68)
where

P0(q1*) = k d (q1 - q1*) l
k µ(q1* - q1) l

(69)

and

R(t) = k Çq1 d (q1 - q1*)µ[q1(t) - q1*]l
k d (q1 - q1*l . (70)

P0 is the equilibrium probability density of ® nding the
system at the top of the barrier divided by the equilib-
rium probability of ® nding it in the reactant side. R(t) is
the averaged ¯ ux at the top of the barrier multiplied by
the probability that the system ends up on the product
side at time t. R(t) can be measured directly by using
constrained dynamics, as it is the ratio of averages
involving delta functions of the reaction coordinate.
Application of equation (66) yields

R(t) = k |H|- 1/2 Çq1µ[q1(t) - q1*)]l c

k |H|- 1 /2 l c

. (71)

Unfortunately, P0 cannot be computed directly using
constrained dynamics. It can, however, be cast in a
form that can be computed using constrained dynamics.
But, before showing stress, we stress that P0 is a time-
independent equilibrium quantity. It can therefore be
computed also using Monte Carlo (umbrella) sampling
[13]. Let us consider the equilibrium probability density
q (qÂ1) of ® nding the system with a given value qÂ1 of the
reaction coordinate, i.e.,

q (qÂ1) = k d (q1 - qÂ1) l = ò dq d (q1 - qÂ1) q (q). (72)

Obviously,

P0(q1*) =
q (q1*)

ò q*
1

- ¥ dqÂ1 q (qÂ1)
. (73)

We di� erentiate ln q (q), using equation (53):

¶
¶ qÂ1

ln q (qÂ1) =
1

ò dqs|[ (qÂ1,qs)|1 /2 e- b U(q Â1,qs)
¶

¶ qÂ1

´ ò dqs|[ (qÂ1,qs)|1/2 e- b U(q Â1,qs) . (74)

It is easy to verify that the above expression is equiva-
lent to

¶
¶ qÂ1

ln q (qÂ1) = k F(qÂ1,qs) d (q1 - qÂ1) l
k d (q1 - qÂ1) l

, (75)

where we have de® ned

F(q1,qs) =
¶ ln |[ (q1,qs)|1/2

¶ q1
- b

¶ U(q1,qs)
¶ q1

. (76)

The RHS of equation (75) can be expressed as a ratio of
constrained averages through equation (66),

¶
¶ qÂ1

ln q (qÂ1) = k |H(qÂ1,qs)|- 1/2F(qÂ1,qs) l c Â
k |H(qÂ1,qs)|- 1 /2 l c Â

. (77)

Here, the subscript c Â denotes averaging in an ensemble
subject to the constraint q1 = qÂ1. In order to obtain
q (q1*) we must integrate equation (77), starting from
some reference value of qÂ1 and up to q1*. A convenient
choice is qÂ1 = q1A , i.e., the position of the minimum of
the free energy corresponding to state A. The value of
q (q1A ) can be obtained from a direct equilibrium simu-
lation. Then, we arrive at

ln
q (q1*)
q (q1A ) = ò

q*
1

q1A

dqÂ1
k |H(qÂ1,qs)|- 1/2F(qÂ1,qs) l c Â

k |H(qÂ1,qs)|- 1 /2 l c Â

. (78)

In the expression for F(q1,qs), equation (76), the deter-
minant |[ | can be replaced by the Jacobian |J| of the
transformation from the Cartesian coordinates ri to the
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generalized ones qa . In e� ect, from the de® nition of [ ,
equation (51), it follows that

|(J- 1)+ [ J- 1 = Õ
N

i= 1
m3

i , (79)

which implies

|[ |1/2 = |J| Õ
N

i= 1

m3/2
i (80)

and

¶ ln |[ |1/2

¶ q1
=

¶ ln |J|
¶ q1

. (81)

Then we can rewrite equation (76) as

F(q1,qs) =
¶ ln |J(q1,qs)|

¶ q1
- b

¶ U(q1,qs)
¶ q1

, (82)

which is the form which appears in the literature [8].
In practical applications of the scheme described

above, the choice of the reaction coordinate q1 asso-
ciated with the reaction order parameter is dictated by
the physics of the problem. However, there is consider-
able freedom in the choice of the complementary set of
generalized coordinates qs. Of course, the ® nal result
for the transition rate does not depend on this choice,
but the calculations simplify if an appropriate set of
generalized coordinates is considered. To the best of
our knowledge, this fact has not been exploited su� -
ciently. Below, we show how a judicious choice of gen-
eralized coordinates leads to a signi® cant simpli® cation
of the calculations. Such a simpli® cation becomes par-
ticularly important when q1 is a global parameter
depending on the position of all the particles in the
system. In this case, it is convenient to choose the
complementary set in such a way that the generalized
coordinates are orthogonal:

Ñ qa ´ Ñ qb = d a b (83)

and
Ñ q1 ´ Ñ qa = 0, (84)

for a , b > 1. Here, we have introduced the gradient

Ñ º
¶

¶ r1
, . . . , ¶

¶ rN( ) . (85)

In appendix D we show that equations (83) and (84)
imply

|J| = |Ñ q1|- 1 (86)

and

¶ f
¶ q1

=
1

|Ñ q1|2
Ñ f ´ Ñ q1, (87)

where f is an arbitrary function of the positions of the
particles. Using these relations, equation (82) becomes

F(q1,qs) = -
( Ñ |Ñ q1|) ´ Ñ q1

|Ñ q1|3
- b

Ñ U ´ Ñ q1

|Ñ q1|2
. (88)

The ® rst term on the RHS vanishes when q1 is a linear
function of the Cartesian coordinates and then the only
contribution comes from the gradient of the potential
energy. On the other hand, if q1 is a complicated non-
linear function of the positions of the particles, the con-
tribution of this term may be quite signi® cant. The
important fact is that equation (88) allows the evalua-
tion of F and, therefore, of the transition rate in a direct
way from the expression of the reaction coordinate q1,
without any need for further specifying the complemen-
tary set of generalized coordinates. An application of
the method has been reported recently for the case of
nucleation of a simple ¯ uid [14], where the reaction
coordinate is a complex, nonlinear function of the full
con® guration of the system.

7. Drawbacks

In the previous sections we reviewed the derivation of
the standard statistical mechanics expression for the rate
of activated processes that is amenable to numerical
simulation (equation (39)). However, in numerical simu-
lation it is important to distinguish between expressions
that are correct in principle, and those that are correct
and computationally e� cient. So the question we wish
to address is whether equation (39) for the rate constant
is optimal from a computational point of view. The
question is important because equation (39) has been
the starting point for most molecular dynamics simula-
tions of activated processes. However, as we will show
below, equation (39) is most useful when it is least
needed, i.e., when re-crossing is not important and the
transition state theory prediction for the rate is reason-
ably accurate.

Let us ® rst consider a simple example to illustrate the
problem: a square barrier of height U and width x that
separates two macroscopic states, A and B. When the
system is in equilibrium, the two states have the same
probability q eq . We assume that the motion in the bar-
rier region is di� usive. In that case, the time evolution of
the system is governed by the Kramers equation [7],

¶ xq (q1, t)
¶ t

=
¶

¶ q1
[D b U Â (q1) q (q1, t)]+ D

¶ 2
q (q1, t)
¶ q2

1
,
(89)

where D is the di� usion constant of the system. This
equation follows from the continuity equation

¶ q (q1, t)
¶ t

= - ¶
¶ q1

J(q1, t), (90)

932 M. J. Ruiz-Montero et al.



for J(q1, t), the probability ¯ ux, and the constitutive
equation

J(q1, t) = - D b U Â (q1) q (q1, t) +
¶ q (q1, t)

¶ q1[ ]. (91)

From equation (89) it follows that, if the system is in a
steady state, the probability distribution at the top of the
barrier (where U Â = 0) is a linear function of the reac-
tion coordinate q1,

q
st(q1) = aq1 + b if 0 < q1 < x , (92)

and the ¯ ux of probability is constant,

J st = - aD. (93)
The constants a and b have to be determined from the
boundary conditions. Let us suppose now that initially
we increase the probability of state A from its equi-
librium value by an amount e q eq /2, and decrease the
probability of state B by the same amount. If the barrier
is high enough, the ¯ ux will be very small and the prob-
abilities of states A and B will not change. Alternatively,
we can think that the system is in contact with a reser-
voir and the probabilities of states A and B do not
change in time. In this case, the stationary probability
distribution at the top of the barrier is

q
st(q1) = e- b U

q eq[1 - ( q1 - x

2) e

x ], (94)

and the ¯ ux is
J st = - D

e q eq

x
e- b U . (95)

As expected, the ¯ ux decreases exponentially with the
barrier height. It should be stressed that, if the prob-
ability at the top of the barrier does not have the form
given by equation (94), the ¯ ux has not reached its sta-
tionary value.

Let us come back now to our expression for the rate.
Using the properties of the Liouville operator equation
(39) can be rewritten as

kAB º M(t) =
k µ[q1* - q1(0)]Çq1(t) d (1q1(t) - q1*) l eq

k nA l eq
.

(96)
Apart from a constant factor, M(t) is the ¯ ux through
the transition state q1* (that we choose, somewhat arbi-
trarily, to be in the middle of the barrier, i.e., q1* = x /2),
due to a step function probability pro® le at t = 0. As
this step function di� ers from the linear pro® le that
corresponds to the steady state, the subsequent ¯ ux
will depend on time. We are interested in the plateau
value of M(t) after the initial transitory regime. The
usual assumption is that this transitory regime extends
over typical `molecular’ time scales. However, in the
present case it is easy to show that the approach of

M(t) to its plateau value can be quite slow. For times
t ! x

2 /D we can combine equations (89) and (91) to
yield

¶ J(q1*, t)
¶ t

< D
¶ 2J(q1*, t)

¶ q2
1

. (97)

We then ® nd that J(q1*, t) decays as 1/t1/2 for times
t ! x

2 /D. This means that the approach to the sta-
tionary state is rather slow. Moreover, in the case of
di� usive barrier crossings, the transmission coe� cient
· is typically quite small. But, as we will show, such
small values of · cannot be measured accurately using
equation (39).

The expression for the transition coe� cient is

· =
2

k | Çq1|l eq
k Çq1(0)nB(t) l c. (98)

In a computer simulation, we put the system initially at
q1* and let it evolve. We then compute nB(t) for times
that are long enough for equation (39) to have reached a
plateau value. We repeat this procedure for n indepen-
dent trajectories, and then estimate · as

·est =
2

nk | Çq1|l eq å
n

i= 1
[Çq1(0)nB(t)]i . (99)

The statistical error in ·est is given by

s 2
· = k (·est - k ·)2 l . (100)

Taking into account that the trajectories are uncorre-
lated and assuming that Çq1 and nB are Gaussian vari-
ables [15] we obtain

s 2
· =

4

nk | Çq1|l 2
eq

k Çq2
1 l k n2

B l +
1
n

·
2. (101)

If the transmission coe� cient is very small, the second
contribution in the previous expression is negligible, and

s 2
· ~

4
nk | Çq1|l 2

eq
k Çq2

1 l k n2
B l . (102)

Moreover,

4 k Çq2
1 l

k | Çq1|l 2
eq

~ 1. (103)

Hence,

s 2
· ~

1
n , (104)

and the relative error is

s ·

·
~

1
·Ï n

. (105)

This shows that even for a transmission coe� cient of 0.1
we would need to follow about 104 trajectories in order
to get a 10% accuracy.

Di� usive barrier crossing 933



The obvious question is whether we can do better.
The main problem with equation (39) is that we prepare
the system in a state that is not close to the steady state
situation. In the steady state, the probability pro® le at
the top of the barrier is a linear function of the reaction
coordinate, and the ¯ ux is very small. Hence, if we set up
a perturbation that has the desired shape, rather than a
step function, we would eliminate the problem of the
slow di� usive approach to the steady state crossing
rate. We will use, therefore, equation (34) for the rate,
and, instead of choosing a step function for the generic
function c (q1), we assume that c outside the barrier
region behaves like a step function, while inside the
barrier region it has the same q1 dependence as the
steady-state concentration pro® le:

c (q1) = a f (q1), (106)
with

f (q1) =

1 if q1 < 0,
1 - q1

x
if 0 < q1 < x ,

0 if q1 > x .

ìï
íïî

(107)

As the initial perturbation is a linear function of q1 at
the top of the barrier, the system is immediately pre-
pared in the steady state. The constant a is ® xed by
the normalization condition

a < 1
k nA l eq

, (108)

where we have used the fact that f (q1) di� ers from a
step function only in the barrier region, which contri-
butes negligibly to the integral. For the same reason, we
can write

k D c D nA l eq < k nB l eq. (109)

Introducing these last two results in equation (34), we
obtain

kAB =
1

k nA l eq
k Çq1 f Â (q1)nA(t) l eq. (110)

Using the expression for f (q1),

k Çq1 f Â (q1)nA(t) l eq = - 1
x

k Çq1µ(q1)µ( x - q1)nA (t) l eq.

(111)
As the average k Çq1 f Â (q1)nA(0) l eq vanishes, we need con-
sider only the change in nA during time t:

nA (t) - nA(0) = ò
t

0
dtÂ

dnA (tÂ )
dt Â

= - ò
t

0
dtÂ Çq1(tÂ ) d (q1(tÂ ) - q1*). (112)

Hence,

k Çq1 f Â (q1)nA (t) l eq =
1
x ò

t

0
dtÂ k Çq1µ(q1)µ( x - q1)

´ Çq1(tÂ ) d (q1(tÂ ) - q1*) l eq

=
1
x ò

t

0
dtÂ k Çq1 d (q1 - q1*) Çq1(tÂ )

´ µ(q1(tÂ ))µ( x - q1(tÂ )) l eq. (113)
The integrand is the velocity autocorrelation function of
a system that is initially at q1* (at the middle of the
barrier), multiplied by the probability that it has not
left the top of the barrier at time tÂ . As the velocity of
the system becomes uncorrelated with the initial one
after a few collisions (i.e., on a truly `molecular’ time
scale), we can expect the velocity autocorrelation func-
tion to have decayed to zero before the system leaves the
top of the barrier. Then,

k Çq1 f Â (q1)nA (t) l eq =
1
x ò

t

0
dtÂ k Çq1(0) Çq1(tÂ ) l q*

1 k d (q1 - q1*) l eq.

(114)
But if the velocity autocorrelation function decays to
zero in a time less than t we can replace the upper
limit of the previous integral by in® nity. Making use
of the Green± Kubo relation

D(q1*) = ò
¥

0
dtÂ k Çq1(0) Çq1(tÂ ) l q*

1
, (115)

where we have used the notation D(q1*) to indicate that
D will, in general, depend on q1:

k Çq1 f Â (q1)nA(t) l eq =
D
x

k d (q1 - q1*) l eq, (116)
and the rate is

kAB =
D
x

P0(q1*), (117)

which is indeed the correct answer. However, this result
is not particularly interesting if it does not yield a higher
statistical accuracy of the crossing rate. Now our esti-
mate for · is

·est =
2

x k | Çq1|l n å
n

i= 1 ò
t

0
dtÂ ( Çq1(0) Çq1(tÂ ))i, (118)

where we must remember that in all of the n trajectories
considered the system is initially at the top of the bar-
rier. Following essentially the same reasoning that led to
equation (101) we now obtain

k ( D ·est)2 l =
4

x 2 k | Çq1|l 2n ò
t

0
dtÂ ò

t

0
dtÂ Â k Çq1(0) Çq1(tÂ ) Çq1(0){

´ Çq1(tÂ Â ) l q*
1 ò

t

0
dtÂ k Çq1(0) Çq1(tÂ ) l q*

1[ ]
2} . (119)
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If we assume, as before, that Çq1 is a Gaussian variable,

k ( D ·est)2 l =
4

x 2 k | Çq1|l 2n

´ k Çq2
1 l t ò

t

0
dtÂ k Çq1(0) Çq1(tÂ ) l q*

1
+ D2[ ], (120)

k ( D ·est)2 l ~
4

x 2 k | Çq1|l 2n
k Çq2

1 l Dt, (121)

where we have used the fact that the second factor in
equation (120) is ·

2 /n, which is negligible in the
di� usive regime, where · is small. Using equation
(103) again,

k ( D ·est)2 l ~
Dt
x 2n

. (122)

The relative error in the computation of the transmis-
sion coe� cient is now

k ( D ·est)2 l 1 /2

·
~

1
·n1 /2

(Dt)1 /2

x
. (123)

We have increased the statistical accuracy by a factor
(Dt)1 /2 / x . As t is the time that characterizes the decay
of the velocity correlation function, (Dt)1 /2 ~ ¸mf ,¸mf

being the mean free path. Hence, (Dt)1/2 /x ~ ¸mf / x
which, for barrier widths not of molecular sizes, is
very small. Therefore, by a more convenient choice of
the characteristic functions de® ning reactant and prod-
ucts we have increased the statistical accuracy consider-
ably. In fact, it is clear from equation (117) that
· ~ ¸mf / x , and the overall e� ect is

k ( D ·est)2 l 1/2

·
~

1
n1 /2 . (124)

We have improved the statistical accuracy by a factor/·.
Clearly, for di� usive barrier crossing problems, there is
much to be gained by using a smoother function than
the µ function to measure the properties of the barrier
crossing problem.

8. General case

Let us consider again the general barrier crossing
problem: a system that can be in two states A and B
separated by a free energy barrier F(q1). To construct an
e� cient numerical scheme, we will again assume that the
time evolution of the system is described reasonably well
by the Kramers equation:

¶ q (q1, t)
¶ t

= - ¶ J(q1, t)
¶ q1

, (125)

where J(q1, t) is the probability ¯ ux

J(q1, t) = - Dq b F Â (q1) q (q1, t) +
¶ q (q1, t)

¶ q1[ ]
= - Dq e- b F(q1) ¶

¶ q1
[e b F(q1) q (q1, t)]. (126)

Dq is the di� usive coe� cient in q1 space. Equation (125)
can be written in terms of the operator $ as

¶ q (q1, t)
¶ t

= Dq
¶

¶ q1
e- b F(q1) ¶

¶ q1
(e b F(q1) q (q1, t))[ ]

º $ q (q1, t). (127)

The general solution of the above equation is a linear
superposition of the eigenfunctions of $ that satis® es
[18]

$ u n(q1) = - ¸n u n(q1) for n = 0,1,2, . . . . (128)
¸0 = 0, and, obviously, u 0(q1) is the equilibrium distri-
bution associated with the reaction coordinate. The
eigenfunctions u n satisfy the orthogonality condition

ò dq1 u
- 1
0 (q1) u n(q1) u m (q1) = d n,m, (129)

and the completeness relation,

å n
=

u n(q1) u n(qÂ1)
u 0(q1)

= d (q1 - qÂ1). (130)

We are interested in the response function of the system
after a generic initial perturbation c (q1),

u (t) =
k D nA (0) D c (t) l eq

k D nA D c l eq
. (131)

Expansion of the correlation function in eigenfunctions
yields

u (t) = ån > 1

cn e- ¸nt, (132)

and

cn =
1

k D nA D c l eq ò dq1 D nA u n(q1)[ ]
´ ò dq1 D c (q1) u n(q1)[ ]. (133)

In some speci® c cases the eigenfunctions and eigenvalues
of the operator $ have been worked out [17, 18].
However, for the present purpose, we do not need to
know the full solution. What is important is that, for a
su� ciently high barrier, the mode u 1 decays much more
slowly than all higher modes. If we can construct the
initial perturbation to be proportional to u 1, we would
suppress the initial transitory behaviour (all cn would be
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zero except c1), and from the very beginning the system
would be in the steady state.

The probability pro® le that corresponds to u 1 is con-
stant in region A. In region B it is also constant, but
opposite in sign. Only in the barrier region does u 1 vary
rapidly. Let us compute the probability pro® le of the
system when it is in the steady state. If we write the
initial perturbation as

q (q1) = q eq(q1)[1 + e (q1)], (134)

(which means that c = 1 + e (q1)) we can compute the q1

dependence of e (q1) when the system is in the steady
state. In that state, the probability ¯ ux is constant,
independent of q1. From equation (126),

J st = - Dq e- b F(q1) ¶ e (q1)
¶ q1

,

and

e (q1) - e A = - J st

Dq ò
q1

q1A

dqÂ1 e b F(q Â1) . (135)

To eliminate J st from this expression, we impose an
absorbing boundary condition at q1B( e (q1B) = 0),
leading to

e (qq) = e A 1 - ò q1
q1A

dqÂ1 e b F(qÂ1)

ò q1B
q1A

dqÂ1 e b F(qÂ1)[ ]. (136)

If the barrier is high, the value of the integral appearing
in the previous equation will be dominated by the max-
imum of the free energy if the barrier region is inside the
integration interval. Therefore, if q1 is in the A region,
the numerator in equation (136) will be much smaller
than the denominator, and e (q1) / e A < 1. On the other
hand, if q1 is in the B region, the numerator and denomi-
nator of equation (136) will be approximately equal, and
e (q1) /e A < 0. Hence, e (q1) / e A behaves much like nA ,
except in the barrier region, where it varies rapidly.

In order to improve the e� ciency of the numerical
calculation of kAB we must achieve two things. First
of all, we need to suppress, as far as possible, the tran-
sient behaviour in the computed rate constant. This is
achieved by preparing an initial perturbation that
closely resembles the slowest eigenmode u 1. Second,
we need to suppress the statistical noise in kAB by
improving the µ representation of nA . This is achieved
by measuring the progress of the reaction by a function
that is proportional to u 1. In fact, selecting such a char-
acteristic function will also contribute to the suppression
of the transient behaviour in kAB.

One of the problems with equation (136) is that
usually we do not know exactly the free energy of the
system as a function of the order parameter. This
problem can be avoided because, in practice, we need

to approximate only F(q1). In what follows, we denote
our estimate of F(q1) by Fest(q1), and we shall assume
that e (q1) in equation (136) is derived from this Fest(q1).
Once we have chosen the form of e (q1) to prepare the
system in a stationary state, we can use it to compute the
transition rate kAB using equation (34):

kAB =
1

e A k nA l eq
k Çq1 e Â (q1)nA (t) l eq, (137)

where we have also taken into account that e (q1) / e A is
approximately equal to nA except in the barrier region,
that contributes negligibly to equilibrium averages.
From equation (136)

e Â (q1) = - e A
e b Fest(q1)

ò q1B
q1A

dqÂ1 e b Fest (qÂ1)
. (138)

Let us de® ne p(q1) as

p(q1) =
e b Fest(q1)

ò q1B
q1A

dqÂ1 e b Fest(q Â1)
. (139)

Then, equation (137) can be rewritten as

kAB =
k Çq1p(q1)nB(t) l eq

k p(q1) l eq

k p(q1) l eq

k nA l eq
. (140)

The ® rst factor in this equation can be understood as a
biased average, i.e., the average of Çq1nB(t) with the
initial distribution q eq p(q1). If we denote this biased
average by k . . . l p, the ® nal result we obtain for the tran-
sition rate is

kAB = k Çq1nB(t) l p
k p(q1) l eq

k nA l eq
. (141)

This equation has a very similar form to the usual
expression, equation (39), for the rate, but now the
constraining term is not a d function, but a function
that has the width of the barrier. We recall that, in
practice, we approximate F(q1) by Fest(q1). But this is
not really important: any reasonable guess for p(q1) will
do, and is bound to lead to a more rapid convergence
that the d function, as the perturbation that follows
from it will be closer to the stationary state than the
step function.

Still, equation (141) is not the best starting point for a
numerical simulation. The biasing in equation (141) is
such that it will compensate approximately the e� ect of
the free energy barrier. Hence, the starting points for
the trajectories of the simulation will be distributed
almost uniformly over the entire range of q1. In fact,
we should expect that only trajectories starting in the
barrier region yield relevant information. In order to
see this we now use a characteristic function nA that is
the same as the initial perturbation, i.e., nA = e (q1) /e A .
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When measuring the progress of the reaction we need to
compute the change of nA in an interval t. It now follows
from equation (138) that

nA (t) - nA(0) = - c ò
t

0
dtÂ exp[b Fest(q1(tÂ ))]Çq1(tÂ ),

(142)
where we have denoted the normalization factor of
equation (138) by c. Equation (142) shows clearly that
only the barrier region, where exp ( b Fest(q1)) is large,
contributes appreciably to the crossing rate. It is there-
fore convenient to write nA(t) - nA(0) as

nA(t) - nA (0) = - exp[b Fest(q1(0))]
´ ò

t

0
dtÂ exp[b (Fest(q1(tÂ )) - Fest(q1(0)))]

´ Çq1(tÂ ). (143)
Rather than biasing our sampling with p(q1) de® ned
in equation (139), we now de® ne another weighting
function w(q1) as

w(q1) =
e2b Fest(q1)

ò q1B
q1A

dqÂ1 e2 b Fest(qÂ1)
. (144)

In exactly the same way as before, we now obtain the
following expression for kAB

kAB =
ò q1B
q1A

dqÂ1 e2b Fest(q Â1)

[ò q1B
q1A

dqÂ1 e b Fest(q Â1)]2 ò
t

0
dtÂ

´ k Çq1 exp[b (Fest(q1(tÂ )) - Fest(q1(0)))]Çq1(tÂ ) l w

´ k w(q1) l eq

k nA l eq
. (145)

Note that with w as a biasing function, the sampling
is indeed limited to the barrier region, so all the trajec-
tories considered will contribute appreciably to the rate.
In fact, the shape of the resulting distribution is propor-
tional to exp ( b [2Fest(q1) - F(q1)]) < exp ( b F(q1)). If
the velocity Çq decays rapidly, then the factor
exp[b (Fest(q1(tÂ )) - Fest(q1(0)))] will remain close to
one.

We stress, once again, that accurate knowledge of
F(q1), although useful when it is available, is not essen-
tial. Any reasonable approximation for F(q1) will,
when inserted in equation (145), lead to improved sta-
tistical accuracy in our estimate of the transmission
coe� cient ·.

We should point out that several authors have con-
sidered the problem of di� usive barrier crossings from
another perspective. Straub and Berne [19] devised a
time-saving scheme to compute di� usive barrier-
crossing rates, based on the assumption that the

dynamics of the trajectories before and after crossing
the transition state are uncorrelated. Using this assump-
tion, Straub and Berne then derive an expression for the
transmission coe� cient in terms of only those trajec-
tories that remain on the product side for su� ciently
long times. Therefore, only those trajectories are rele-
vant and the simulation can be carried out with an
absorbing boundary at the top of the barrier.
Although this scheme is indeed cheaper than the original
Bennett± Chandler method, it still su� ers from transient
e� ects. Moreover, as pointed out by Straub et al. [20]
and by Gertner et al. [21]the approximations underlying
this scheme may fail, even in the high friction limit.
Borkovec and Talkner [22] addressed the problem of
suppressing the transients in the computation of rate
constants in the context of Markovian jump processes
where Çq1 is ill de® ned. In our language, the approach of
[22] is equivalent to preparing the system in a steady
state. However, the characteristic function to measure
the progress of the reaction is still the step function. As a
consequence, the technique of [22] does not result in
noise reduction. However, it should be emphasized
that noise reduction was not the aim of [22].

9. Discussion

At this stage, the reader may well wonder why we do
not simply use the Kramers equation to compute the
transition rate. The point is that we use the Kramers
picture only to arrive at a reasonable estimate for the
function e (q1). However, the validity of the rate expres-
sion that we derive does not assume that the Kramers
equation is valid. In particular, the coordinate q1 may
depend in a nonlinear fashion on the Cartesian coordi-
nates, in which case the simple di� usion equation will
not hold. Moreover, the di� usion constant D may
depend on q1 (if it is at all meaningful to de® ne a local
di� usion constant). Anyway, even if the barrier crossing
is di� usive it may be described poorly by a Fokker±
Planck equation. For instance, hydrodynamics e� ects
that are not accounted for in the Fokker± Planck equa-
tion may be important for barrier crossing in solutions.

In summary, when computing rate constants of acti-
vated processes that exhibit appreciable recrossing, it is
convenient to use an initial perturbation and character-
istic functions that resemble the steady state concentra-
tion pro® les. This is shown in ® gure 2, where we compare
two di� erent calculations of the barrier crossing rate for
a labelled particle in a Lennard-Jones ¯ uid. Only the
labelled particle experiences an external potential
shown in ® gure 1. The dashed curve corresponds to the
case when we use the conventional µ function perturba-
tion and characteristic function. In this calculation, the
system is initially constrained at the top of the barrier,
and is then released. The numerical calculation of kAB
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shows two problems: it has a strong transient e� ect and
the statistical noise in the plateau value is large. In fact,
the magnitude of the statistical noise cannot be estimated
simply by looking at the ¯ uctuations in kAB(t) as a func-
tion of time, because di� erent points in this curve are
strongly correlated. Rather, one should estimate the
error by comparing the results obtained from a number
of independent trajectory calculations [23]. The dashed
curve in ® gure 2 shows the result for · obtained using an
initial perturbation that is close to the steady state pro® le
for a purely di� usive barrier crossing process. We stress
again that we do not assume that the Kramers picture is
actually the correct description, only that it is a reason-
able initial guess. Now we see that the transient e� ect in ·

is strongly suppressed. However, the statistical noise
(due to the fact that we measure the progress of the
reaction with a µ characteristic function) is still large.
This can be seen in ® gure 3, where the continuous
curve represents the same calculation of kAB(t) as in
® gure 2 together with the estimated error in the plateau
value. We ® nd · = 0.118 6 4.5 ´ 10- 2. The curve
labelled by ® lled circles in the same ® gure shows the
e� ect of using both the optimized initial perturbation
and the appropriate characteristic function. This form
is computationally more convenient as it leads to
strong suppression of the transient behaviour and
appreciable reduction in statistical noise. As expected,
the estimate of · (· = 9.1 ´ 10- 2 6 1.7 ´ 10- 2) is, to
within statistical accuracy, the same as before.
However, in the present case, the noise in · is reduced

by a factor of 3 (which is equivalent to almost a factor of
10 in computer time).

We stress that the example that we show here is by
no means the best case as the barrier is rather narrow
(around 2s ). For broader barriers, the computational
gain would be much larger.
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Appendix A

Phenomenological rate equation
Let us suppose that the behaviour of PA (t) and PB(t),

the probabilities of ® nding the system in states A and B,
is governed by the phenomenological equation

dPA(t)
dt

= - kABPA (t) + kBAPB(t), (A 1)

dPB(t)
dt

= kABPA (t) - kBAPB(t), (A 2)
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Figure 2. Two di� erent calculations of the transition rate for
the example discussed in the text. The dashed line corre-
sponds to a µ shaped initial perturbation. The continuous
line corresponds to an initial perturbation close to the
steady state. The characteristic functions were µ functions
in both cases.

Figure 3. Comparison of two computations of the transition
rate and its statistical noise when the system is prepared
close to the steady state. The solid line corresponds to a µ

characteristic function, and the line with circles to an
optimized one.



where kAB and kBA are constants. Of course, these equa-
tions verify the conservation condition

d
dt

(PA (t) + PB(t)) = 0. (A 3)

The equilibrium distribution has to be a stationary
solution of the equation. Therefore,

dPeq
A

dt
= - kABPeq

A + kBAPeq
B = 0, (A 4)

which implies
kAB

kBA
=

Peq
B

Peq
A

. (A 5)

Since PA(t) + PB(t) = 1, we ® nd for D PA (t) =
PA(t) - Peq

A that

dD PA

dt
= - (kAB + kBA) D PA (t). (A 6)

It follows directly that the relaxation of the system is
exponential:

D PA (t) = D PA(0)e- t /¿, (A 7)
with

¿- 1 = kAB + kBA = kAB 1 +
kBA

kAB( )
= kAB 1 +

Peq
A

Peq
B( )

¿- 1 =
kAB

Peq
B

(A 8)

This is equation (33) in the main text.

Appendix B

Independence of KAB of location of barrier
We wish to investigate the dependence of the transi-

tion rate given by equation (39) on the choice of the
transition state q1*. It is a well known result [6] that
the TST expression for the rate does depend on the
choice of q1*. Equation (39) for the rate is:

kAB =
k Çq1 d (q1 - q1*)µ[q1(t) - q1*]l eq

k µ(q1* - q1) l eq
. (B 1)

First of all, it is clear that the RHS of equation (B 1)
cannot be independent of q1* for all times. For instance,
we know that the limit of this equation for t ® 0+ is the
TST prediction for the rate, and it depends on time.
However, we are interested only in times such that the
plateau of the previous expression has been established.

Let us consider the denominator of equation (B 1). It
is the equilibrium probability of ® nding the system in
state A. It is clear that, if we choose q1* in the barrier
region, where the probability of ® nding the system is
very small, a small shift in its value will hardly a� ect

the equilibrium probability of state A. Hence, we can
consider the denominator of equation (B1) to be inde-
pendent on q1* as long as it is located in the barrier
region. The next step is to study the dependence of the
numerator:

k Çq1 d (q1 - q1*)µ[q1(t)- q1*) l eq

= k , µ(q1 - q1*) et ,
µ(q1 - q1*) l eq .

Di� erentiating with respect to q1* and using time-
reversal symmetry, we obtain

¶
¶ q1*

k Çq1 d (q1 - q1*)µ[q1(t) - q1*) l eq

= ,
¶ µ(q1 - q1*)

¶ q1*
et ,

µ(q1 - q1*)á ñ eq

+ , µ(q1 - q1*)et , ¶ µ(q1 - q1*)
¶ q1*á ñ eq

= - ¶ µ(q1 - q1*)
¶ q1*

et , , µ(q1 - q1*)á ñ eq

- ¶ µ(q1 - q1*)
¶ q1*

et , , µ(q1 - q1*)á ñ eq

= 2k d (q1 - q1*) Çq1(t) d (q1(t) - q1*) l eq. (B2)

This is the velocity of the system at time t, multiplied by
the probability that it is at the top of the barrier at time t
and also was at the top of the barrier at time t = 0.
There is no symmetry reason why this correlation func-
tion should vanish. In fact, for su� ciently short times it
is clear that it is di� erent from zero. For these times, the
derivative of kAB with respect to q1* is non-zero, and the
rate depends on the choice of q1*. On the other hand, for
times long enough for this correlation function to have
decayed, the transition rate will be independent of the
precise choice of the transition state, as long as it is
chosen in the barrier region.

Appendix C

Relation between ( and [
The inverse of the matrix [ de® ned in equation (51) is

given by

( [ )- 1
a b = å

N

i= 1
m- 1

i
¶ qa

¶ ri
´ ¶ qb

¶ ri
, (C 1)

as can be veri® ed by using

å
3N

a = 1

¶ ri

¶ qa

¶ qa

¶ rj
= d ij I, (C 2)
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where I is the 3 ´ 3 unit tensor. Let us write the matrices
[ and [ - 1 in block form as

[ =
[ 11 [ 1s

[ s1 [ s( ) , [ - 1 =
H
Bs1

B1s

Bs( ) , (C 3)

where

H = ( [ )- 1
11 = å

N

i= 1
m- 1

i
¶ q1

¶ ri
´
¶ q1

¶ ri
. (C 4)

We also de® ne a matrix X by

X =
1
0

[ 1s

[ s( ) . (C 5)

By construction this matrix has the same determinant
as [ s,

|X | = |[ s|. (C 6)
The relation [ - 1 [ = I implies

H [ 1s + B1s [ s = 0,
Bs1 [ 1s + Bs [ s = Is, (C 7)

and use of this leads to

[ - 1X =
H
Bs1

0
Is( ) , (C 8)

and therefore
|[ - 1X| = H. (C 9)

It then follows that

|[ [ - 1X | = |[ | |[ - 1X |[ ||H |, (C 10)
and also that

|[ [ - 1X | = |X | = |[ s|. (C 11)
Comparison of equations (C 10) and (C11) leads to
equation (62) in the main text.

Appendix D

Simplifying Jacobians
In order to make the notation in this appendix more

transparent we rename the Cartesian coordinates as

{r1, r2, . . . , rN} º {ra ; a = 1, . . . ,3N}. (D 1)
The matrix associated to the transformation from
Cartesian to generalized coordinates is

Ja b =
¶ ra

¶ qb
, (D 2)

and its inverse is

(J- 1) a b =
¶ qa

¶ rb

. (D 3)

Denoting the transpose of J by J+ , we introduce a
matrix Q de® ned as

Q a b º [J- 1(J- 1)+]a b = å g

¶ qa

¶ rg

¶ qb

¶ rg

= Ñ qa ´ Ñ qb = |Ñ qa |2 d a ,b . (D4)
In the last transformation we employed equations (83)
and (84) from the main text. Note that Q is a diagonal
matrix with all the diagonal elements equal to unity
except the ® rst one. Therefore, (Q- 1) a b = |Ñ qa |- 2

d a b .
This will be used below. Moreover,

|J- 1(J- 1)+ | = |J |- 2 = |Ñ q1|2 (D5)
and

|J | = |Ñ q1|- 1. (D6)
Let us now consider an arbitrary function of the posi-
tion of the particles f (r1, r2, . . . , rN). The derivative of
this function with respect to the reaction coordinate,
keeping all the other generalized coordinates constant,
is given by

¶ f
¶ q1

= å
3N

a = 1

¶ f
¶ ra

¶ ra

¶ q1
. (D7)

In order to get an expression for Ja 1 º ¶ ra / ¶ q1 let us
consider

J = (J- 1)+ Q- 1, (D8)
i.e.,

Ja b = å
3N

g = 1

¶ qg

¶ ra
(Q- 1) g b =

1

|Ñ qb |2
¶ qb

¶ ra
. (D9)

Using this result in equation (D7) we ® nally obtain

¶ f
¶ q1

=
1

|Ñ q1|2 å
3N

a = 1

¶ f
¶ ra

¶ q1

¶ ra
=

Ñ f ´ Ñ q1

|Ñ q1|2
, (D 10)

which is equation (87).
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