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Dislocation Unbinding in Dense Two-Dimensional Crystals
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Two-dimensional solids of particles with short-range attraction exhibit a solid-solid critical point. We
report computer simulations that show that, near this point, the crystal becomes unstable to dislocation
unbinding. Since the concentration of free dislocations is very small the resulting phase should be

a stable hexatic phase.

As the range of the attraction grows, the hexatic pocket expands and moves

towards the melting curve. Such hexatic phases near a solid-solid critical point should be experimentally

observable in confined colloidal suspensions.

PACS numbers: 64.70.Kb, 61.20.Ja, 64.60.Cn

The debate about the nature of the melting transition in
(quasi-) two-dimensional systems dates back to the seminal
work of Landau and Peierls, who showed that there is
no long-range positional order in two-dimensional crystals
(see, e.g., [1]). In the early seventies, Kosterlitz and
Thouless suggested that melting in two dimensions might
proceed via a continuous dislocation-unbinding transition
[2]. Subsequently, Halperin and Nelson [3] argued that
the phase that results after dislocation unbinding is not
an isotropic liquid, as it still has quasi-long-range bond-
orientational order. A second (disclination-unbinding)
transition is required to go from this bond-ordered phase,
termed ‘“hexatic” in Ref. [3], to the isotropic fluid. In
the hexatic phase there is a rapid (exponential) decay of
translational correlations but only a slow (algebraic) decay
of correlations of the local crystal axis. The continuous
dislocation-unbinding transition can only occur when the
dimensionless combination of elastic constants K equals
167:
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The quantities A and w are the Lamé elastic constants,
rendered dimensionless through multiplication by af/ksT,
where q( is the lattice spacing. Young [4] has shown
that, close to the melting transition, the elastic constant K
has a universal scaling behavior K ~ (039 It should
be noted that the Kosterlitz-Thouless-Halperin-Nelson-
Young (KTHNY) theory only predicts the point at which
the solid becomes unstable to a spontaneous generation of
free dislocations. The theory does not exclude the possibil-
ity that a first-order melting transition to the isotropic fluid
phase intercedes at a point where the solid is still stable
with respect to dislocation unbinding (i.e., for K > 167r).
Unfortunately, in most simulation studies, the point where
K reaches the value 167 is depressingly close to the point
where first-order melting seems to take place. In fact, ex-
tensive simulation studies of a variety of two-dimensional
model systems have thus far failed to provide compelling
evidence for the KTHNY melting scenario and some even
come close to proving the opposite [5-7].
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An alternative possibility is that two-dimensional solids
melt by a spontaneous proliferation of grain boundaries.
Fisher, Halperin, and Morf [8] showed that the grain-
boundary melting should only be expected if E., the
core energy of dislocations, is not large compared to
kgT. A more quantitative prediction was subsequently
made by Chui [9], who argued that grain boundary
proliferation is the preferred melting mechanism if E. is
less than 2.84kgT. Simulation of a defect Hamiltonian by
Saito [10] confirmed this picture: for E, below 2.84kpT,
there is a first-order transition caused by a nucleation of
grain-boundary loops; when E, exceeds 2.84kgT, melting
takes place via a continuous transition of the Kosterlitz-
Thouless type. It appears, then, that the defect core
energy is the vital predictor of the melting mechanism.
In the systems simulated to date, there has been no
opportunity to systematically vary the defect core energy,
and therefore no opportunity to explore the region of
parameter space where the KTHNY theory should be
valid (for a review, see, e.g., [5,6]).

In this Letter we present unambiguous numerical
evidence for the existence of a Kosterlitz-Thouless
dislocation-unbinding transition in a two-dimensional
system with short-range attractive interactions. Contrary
to expectation, we find regions of hexatic phase far from
the melting line. The hexatic regions form due to the
presence of a nearby critical point that terminates a line
of first-order isostructural solid-solid coexistence. Such
a solid-solid critical point in a two-dimensional crystal
was recently demonstrated by one of us [11]. In fact, the
simulations in [11] showed that, both in two and in three
dimensions, solids with sufficiently short-range attractive
potentials can exist in a “high-” and a “low-" density
solid phase. These phases have the same structure and
are separated by a line of first-order phase transitions that
terminate in a critical point. Figure 1 shows the generic
form of the high-density phase diagram of a system
with short-range attractive forces that undergoes an
isostructural solid-solid transition. The precise shape of
the phase diagram depends on the width of the attractive
well. For three-dimensional systems, such solid-solid
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FIG. 1. The generic phase diagram for the isostructural
solid-solid transition in the (p,7T) plane. Low-density solid S;
coexists with a higher density solid S;;, separated by a critical
point (@). The triple point (O) marks the point of S;, S;;, and
liquid L coexistence. Regions of two-phase coexistence are
shaded grey.

transitions have subsequently been analyzed theoretically
by several authors [12,13]. However, as we argue below,
the situation in two dimensions is more subtle because
the solid-solid critical point will “induce” a hexatic phase.
The reason why this should be so can be understood by
considering the equation for K [see Eq. (1)]. In two
dimensions the bulk modulus equals B = A + u (we use
the symbol B for the bulk modulus to avoid confusion
with the Kosterlitz-Thouless elastic constant K). Well
away from the critical point B is relatively large. Close
to the critical point, where B vanishes,
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can be made arbitrarily small. Note that the shear
modulus w« is not strongly affected by a solid-solid
critical point. Hence, there will be a finite region around
the critical point where K < 167 and the solid will,
necessarily, become unstable with respect to dislocation
unbinding.

In the computer simulations discussed below, we have
considered the phase behavior of a simple system with
short-range attractive forces, viz., the square-well model.
The pair potential in this model is given by

o, 0=r<o,
v(ir)y=4 —€, o=r<o+396, 3)
0, r=oc + 4,

where the particle diameter is o, the well depth e,
and the well width &. Henceforth we measure all
temperatures in units of €/kp and set the particle diameter
to one. The simulations of Ref. [11] showed that solid-
solid coexistence is possible if the width & of the
square well is less than ~7 of the particle diameter.
For longer-range attraction the triple-point temperature
becomes greater than the critical-point temperature, and
the low density solid disappears. For decreasing & the
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solid-solid critical point moves to higher densities, while
the ratio of the triple-point temperature to the critical
temperature decreases. In the limit 6 — O, the critical
density approaches the density of regular close packing.
In order to map out the regions in the phase diagram
that are unstable to dislocation unbinding, we performed
extensive molecular dynamics (MD) simulations of the
two-dimensional square-well system in the vicinity of
the solid-solid critical point. As our primary aim was
to compute the elastic constants, most simulations were
performed on a relatively small system of 224 particles
in a box of size ratio 14 :8y/3. Periodic boundary
conditions were applied and constant temperature was
maintained. Two well widths were chosen, § = 0.03
and 0.06. The pressure tensor P was measured as a
function of the reduced density p and temperature 7
on a grid surrounding the critical point. The reduced
density is defined by p = No?/A, where A is the system
area. Densities were varied in increments of 0.0025,
temperatures in units of 0.01. The bulk modulus was
determined by fitting the pressure P = P(p,T) to a
convenient analytic form [14] and using the relation B =
p P /dp. Sheared-box simulations were used to measure
p for a similar (though coarser) grid of points in the
(p,T) plane. Densities were varied in increments of
0.005, temperatures in units of 0.01. The pressure tensor
measured at a finite value of strain is related to the first-
order isothermal elastic constants C;;" at zero strain by

[15]
CV=-@/m0+e)'Pa+), @

where & is the matrix of deformations and & denotes
its transpose. The Lamé coefficient u = C,y, is then
obtained by a linear fit of Cg.) Vs &4y, the applied shear
strain. Care was taken to ensure that no shear flow
occurred during the simulations and that the shear applied
was sufficiently small to ensure a linear response of the
off-diagonal stress tensor elements to the applied shear
strain. The shear strain applied in any simulation was
never more than 0.5%. In practice it is more important
to obtain an accurate estimate of the bulk modulus in
the critical region, as far from the melting line the shear
modulus remains high, and increases monotonically with
density. Each simulation consisted, after equilibration, of
~30000 collisions per particle. Having obtained B and
wm as a function of density and temperature, it is a simple
matter to obtain K and delineate the regions of the phase
diagram where dislocation unbinding should occur [see
Eq (1)]. The critical temperature and density were found
tobe T, = 0.885, p. = 1.010 and 7, = 0.895, p. = 1.046
for the two studied well widths 6 = 0.03 and 6 = 0.06,
respectively.

For such small systems at high density the defect
density in our simulations was always effectively zero.
This greatly facilitated the numerical calculations as the
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simulations could be relatively short, since there was no
need to equilibrate defect structures. Even for a system of
16 184 particles with § = 0.06, simulations showed that,
at the critical point, the density of unbound dislocations
is negligible. The low concentration of defects is, in
fact, the prime feature that makes the present model
a suitable candidate for exhibiting a true dislocation-
unbinding transition, as it indicates the dislocation core
energy must be very large. In fact by decreasing 6 and
moving the solid-solid transition to higher densities the
core energy E. can be made arbitrarily large.

As there are, in practice, no defects in the system stud-
ied by simulation, the elastic constants that we measure
are the “bare” or “unrenormalized” elastic constants of the
Kosterlitz-Thouless theory. However, these represent an
upper bound to the true, renormalized elastic constants of
the infinite system. First, increasing the system size will
reduce the elastic constants measured for the 224 particle
system; longer wavelength phonons will “soften” the sys-
tem. This effect can easily be observed by measuring the
pressure along an isotherm of a system of twice the lin-
ear extent of the 224 particle system. Second, and more
importantly, the presence of defects always renormalizes
K downwards. This is particularly obvious in that part of
the phase diagram where we find K to be less than 167r.
In an infinite system, such values of K are renormalized
to zero. Hence, the range of stability of the hexatic phase
will be larger than follows from the present simulations.

Figure 2 shows the phase diagram for § = 0.03. The
phase diagram for this well width has been reproduced
from the data of [11]. Our data have been scaled so
that the critical points occur at the same density and
temperature. The region of solid unstable to dislocation
unbinding has been shaded black, and is localized to
the region immediately surrounding the critical point.
Figure 3 shows the phase diagram for 6 = 0.06. Here

FIG. 2. The phase diagram for the 2D square-well system
with & = 0.03. The region of unstable solid around the
solid-solid critical point—the hexatic region—is shaded black.
Regions of two-phase coexistence are shaded grey. The
density and temperature are expressed in units o2 and €/kg,
respectively. At this high density, the critical point is far from
the melting line confining the hexatic region to a small area
around the critical point.
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FIG. 3. The phase diagram for the 2D square-well system
with 8 = 0.06. The region of unstable solid around the
solid-solid critical point—the hexatic region—is shaded black.
Regions of two-phase coexistence are shaded grey. Units as in
Fig. 2. At this value of & the critical temperature is close to the
triple-point temperature, causing the hexatic region to extend as
far as the melting line.

the critical point is much closer to the melting line, and
the triple point temperature is much closer to the critical
temperature. The lower critical density for & = 0.06
causes the bulk modulus to be a much more slowly
increasing function of density than is the case for 6 =
0.03. The system is softer and the region of unstable
solid extends over a much larger region around the critical
point. The effect of the approaching melting line can
clearly be seen. To the left of the critical point, the
bulk modulus is approximately constant when compared
to the rapid decrease of the shear modulus with decreasing
density. This lowers K towards unstable values as the
melting curve is approached. It would be premature
to conclude that the hexatic in this region melts via a
disclination unbinding mechanism, as it is quite possible
that the hexatic phase undergoes a first-order transition to
the isotropic fluid.

In summary, we have shown that a 2D solid of particles
with short-range attraction can be unstable to dislocation
unbinding in a region that is clearly thermodynamically
stable with respect to the isotropic fluid. We stress that
our results should not be particularly sensitive to the form
of the potential: Any sufficiently short-range potential is
expected to induce a solid-solid transition [11,12], and
hence a finite region of hexatic phase in the neighborhood
of the critical point. The hexatic phase is formed due to
density fluctuations occurring in the neighborhood of the
solid-solid critical point, rather than long wavelength shear
modes induced by the presence of the liquid-solid melting
line. The regions of hexatic phase increase in extent as the
range of the potential is increased, and sufficiently close to
the 6 value where the low-density solid phase becomes
unstable, hexatic regions can extend as far as the melting
line. The high density of the hexatic regions investigated
results in a very low defect density. This prevents direct
observation of the power-law decay of bond orientational
correlation functions in the present simulations.
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However, the phase behavior described in this
Letter should be experimentally observable in quasi-
two-dimensional systems, such as colloids between
glass plates. Such experimental systems should be large
enough to reveal the algebraic decay of bond-orientational
order. There are several ways to make colloids interact
through an effective potential that has a deep and nar-
row attractive minimum, for instance, by adding small,
nonadsorbing polymers. It should be noted that, even if
the attractive well is too wide to induce a critical point
in the solid phase, the vicinity of a critical point in the
metastable solid should enhance the tendency towards
dislocation unbinding in the stable solid. In this context,
it is interesting to note that recent evidence suggests that,
also in confined charge-stabilized colloids, the secondary
minimum in the potential may be narrow and deep [16].
It is tempting to speculate that this short-range attraction
between charge-stabilized colloids facilitated the for-
mation of a hexatic phase in the quasi-two-dimensional
system of polystyrene spheres studied by Murray and van
Winkle (for a review, see [17]).
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