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Introduction

High frequency ventilation is a relatively new technique to ventilate 

patients. Based on experimental evidence it was postulated that high 

frequency ventilation compared with conventional mechanical ventilation 

would result in a more favorable clinical outcome. In this thesis the clinical 

evidence for this supposition is examined. 

Mechanical ventilation and lung injury 

One of the main treatment principles in medicine is ‘primum non nocere’. 

Mechanical ventilation is a basic and commonly applied life supporting 

modality in neonatal, pediatric and adult intensive care. Mechanical 

ventilation is not a treatment in the sense that application of mechanical 

ventilation will cure pulmonary disease, but has to be regarded as a bridge 

to recovery. A prime requisite to initiate mechanical ventilation should be 

that the underlying cause of respiratory insufficiency is curable. The 

purposes of mechanical ventilation, supplying oxygen and removing 

carbon dioxide, have to be combined with prevention of side effects. The 

growing recognition that mechanical ventilation in itself can be an 

independent cause of pulmonary disease puts the principle of primere non 

nocere at an even more prominent level 1;2.

One of the most important deleterious side effects of mechanical 

ventilation has been designated as Ventilator Induced Lung Injury (VILI) 

3;4. VILI is a concept that has been extensively investigated in experimental 

studies 3. It represents a complex disorder that is caused by a number of 

factors. The main explanatory mechanisms consist of barotrauma or more 

importantly volutrauma, atelectotrauma and biotrauma (Figure 1) 3;5-7.
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Historically, attention was focused on clinically apparent barotrauma, 

represented by air leak syndromes 8. Webb et al. were the first to 

demonstrate experimental evidence that high airway pressures alone could 

lead to increased capillary permeability, non-hydrostatic pulmonary edema 

and tissue damage in rats subjected to positive pressure ventilation 9.

Subsequent studies showed that ventilation with large tidal volumes had 

more impact on the occurrence of VILI than high airway pressure on itself 

10-12. Therefore, it has been advocated to replace the term ‘barotrauma’ by 

‘volutrauma’ 6. The basic premise is that high tidal volumes (volutrauma) 

cause overdistension of the lungs which is associated with increased 

capillary permeability, pulmonary edema and histological damage 11;13-16.

Another putative mechanism causing VILI is the concept of 

‘atelectotrauma’ 3. In the same study by Webb et al., that showed VILI as a 

result of high airway pressures, a protective effect was found of positive 

end expiratory pressure (PEEP) as compared with zero end expiratory 

pressure 9. Atelectotrauma is thought to be caused by repetitive opening 

and closing of alveoli resulting in shear stress and mechanical damage, 

especially in diseased parts of the lungs 17-19. Overdistension of compliant 

alveoli in the healthy parts of the lungs can cause additional damage 

(volutrauma) 20. Finally, prolonged injurious ventilation results in 

microscopic abnormalities with inflammatory infiltrates that are 

indistinguishable from Acute Respiratory Distress Syndrome (ARDS) in 

humans 21;22. Experimental studies showed a distinctive effect of 

ventilatory strategies on cytokine concentrations in lung lavage of isolated 

unperfused rat lungs 23. The more harmful ventilatory strategies were 

associated with major increases in cytokine concentrations. The term 

biotrauma has been coined to describe potentially injurious local and 

systemic inflammatory response to physical stress 24;25. Putting it all 

together, the sequence of events resulting in VILI can be described as 

depicted in Figure 1.  
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Figure 1 

Pathogenesis of Ventilator Induced Lung Injury. During mechanical ventilation lung 

tissue may be damaged by several mechanisms, classified as volutrauma, barotrauma, 

atelectotrauma and biotrauma. There is a reinforcing interaction between the different 

mechanisms leading to a number of viscious circles. See text for further explanation. 

Volutrauma on the one side and atelectotrauma on the other side result in 

surfactant inactivation, pulmonary edema and tissue damage. Pulmonary 

edema fluid inhibits surfactant activity 26. Moreover, alveolar distension 

and repetitive opening and closing of alveoli causes inflammation, further 

aggravating pulmonary edema and tissue damage. Thus, a number of 

vicious circles ensue. 

The possibility that mechanical ventilation can actually worsen acute lung 

disease is now widely accepted 7. The clinical counterpart of VILI has been 

described as Ventilator Associated Lung Injury (VALI) 27;28. VALI has 

been implicated in the causation of Acute Lung Injury (ALI) and 

subsequently ARDS 29. ALI and ARDS are both clinical entities that are 

diagnosed exclusively by definition 30. ALI has been defined as acute onset 

of bilateral infiltrates on chest radiograph and a ratio of partial pressure of 

arterial oxygen (PaO2) divided by fraction of inspired oxygen (FiO2) of 
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less than 300 without evidence of left ventricular heart failure. ARDS uses 

the same definition except that PaO2/FiO2 fraction has to be less than 200. 

Mortality in ARDS is high and in two recent studies was estimated to be 

0.46 in adults and 0.22 in children 31;32. The exact causative mechanism 

through which VALI contributes to mortality is not known. It has been 

postulated that in conjunction to and aggravated by VALI, multiple organ 

failure can develop with ultimately death 33. It is thought that this is caused 

by immunologic active products of lung damage that spill over to the 

systemic circulation resulting in a systemic inflammatory reactive 

syndrome with subsequent organ damage 34;35. However, the importance of 

an independent role of VALI in multiple organ failure and death by 

immunological mediators has been debated 36;37.

Lung protective ventilation strategies 

As there is abundant experimental and clinical evidence that mechanical 

ventilation can cause lung damage, avoidance of VALI must be of prime 

concern while ventilating patients. Obviously, volutrauma can be 

prevented by use of low tidal volumes. However, this could be in 

disagreement with the objective to prevent atelectasis 38. Studies showed 

that ventilation at very low lung volumes with low level of PEEP caused a 

significant decrease in lung compliance and progression of lung injury 9;17.

The combined effort of limiting tidal volumes with recruitment of lung 

alveoli and preventing alveoli to collapse has been designated as the open 

lung concept 39. The rationale behind this approach can be described 

graphically by the pressure volume curve (Figure 2). The pressure volume 

curve during mechanical ventilation follows a specific pattern 40-42. During 

the inflation phase pressure builds up while lung volume only increases 

slightly. At a specific point the relative volume gain, in response to 

pressure, increases and follows a more or less linear a more horizontal 
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Inflation and deflation pressure-volume curve (PV Curve). These curves were calculated 

by the equation V = a + b / (1 + e-(P-c)/d) (40). V = Lung volume (ml). P = Airway 

pressure (cmH2O). The lower and upper corner pressures (Pcl, Pcu) are defined by the 

intersect of the tangent at the steepest part of the curve with the tangent of the more 

horizontal parts of the curve. The part between the lower and upper corner pressure could 

be regarded as a safe window between atelectasis and overdistension. 

course. The expiration limb of the curve follows a different route. 

Considerable less pressure is needed to maintain a certain amount of lung 

volume compared with the inspiration limb of the pressure volume curve. 

This increase in compliance is caused by recruitment of alveoli and is 
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called ‘pulmonary hysteresis’ 43. The upper and lower corner pressures are 

defined as the points were the slopes of the curves change abruptly 42. It is 

generally thought that the lower corner pressure signifies the point of the 

critical opening pressure of alveoli and that the upper corner pressure is 

related to start of overdistension 44. Therefore, protective ventilation 

strategies should theoretically be dictated by these corner pressures that are 

specific for individual patients. The zone between these corner pressures 

has been designated as safe window 45. However, this model has been 

differentiated and modified in the fact that the inflation characteristics of 

the PV curve have been shown not to be simply related to successive 

alveolar recruitment and overdistension 40. Between the lower and upper 

corner point, a substantial number of alveoli may still not be recruited, 

while, at the same time, already recruited alveoli develop overexpansion. 

Therefore, the safe window may not be an exactly definable range.  

Lung protection with conventional mechanical 

ventilation

Normal lungs are less susceptible to VALI while gas exchange can be 

easily achieved within physiological airway pressure and tidal volume 

limits 46. In diseased lungs, mechanical ventilation is confronted with a 

number of problems: 

- Gas exchange is disturbed. 

- Compliance is decreased. 

- Disease activity in the lungs is heterogeneously distributed. 

To achieve a lung protective ventilation strategy, limiting tidal volumes on 

the one hand and applying sufficient PEEP on the other hand have to be 

combined with maintaining adequate gas exchange. Limiting tidal volumes 
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will inevitably result in hypercapnia and respiratory acidosis. How much 

hypercapnia is acceptable is not clear 47. However, accepting a certain 

amount of hypercapnia has been associated with better outcome 48. Another 

change in pulmonary disease is loss of compliance. This is displayed by 

the downward displacement of the pressure volume curve. Loss of 

recruitable lung segments due to lower compliance results in a smaller lung 

available for ventilation, the so called ‘baby lung’ 49. This further limits 

tidal volumes. Experimental studies showed an exponential increase in 

VILI when harmful ventilation strategies were combined with prior lung 

injury compared with prior lung injury alone or injurious ventilation 

strategies alone 23. The heterogeneous nature of clinical lung disease 

further aggravates atelectasis of diseased parts of the lung and 

overdistension of healthy parts of the lung 50-52. Yet, a sufficient level of 

positive end-expiratory pressure has to be maintained to keep the lung 

open. It can be hypothesized that at a certain point tidal volumes delivered 

by conventional ventilation superimposed on a level of PEEP sufficient to 

keep the lung open will fail to stay in the safe window on the pressure 

volume curve. A specific type of ventilator combining very small tidal 

volumes with a continuous distending airway pressure is the high 

frequency ventilator. 

Lung protection with high frequency ventilation 

High frequency ventilation is a collection of ventilation modes that 

combines very small tidal volumes at high frequency with a high 

continuously distending airway pressure. Examples of techniques are high 

frequency oscillatory ventilation, high frequency jet ventilation, and high 

frequency flow interruption ventilation. The most commonly used device is 

the high frequency oscillatory ventilator (HFOV) (Figure 3). Like the other 

modalities, HFOV employs respiratory frequencies that are significantly 
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Figure 3 

Schematic view of the high frequency oscillatory ventilator. Mean airway pressure is 

regulated by controlling the inflation of the balloon valve (2) in the expiratory limb of the 

circuit. As inflation pressure inside the balloon increases, the outflow of gas is restricted, 

providing mean airway pressure. Superimposed on this mean airway pressure are tidal 

volumes delivered by electronically driven membrane displacements (3). This Figure was 

kindly provided by Elmer J. van Vught. 

 (180-2000 breaths/min) higher and tidal volumes that are markedly lower 

(1-5 ml/kg) than conventional mechanical ventilation (CMV) 53;54. The first 

application of HFOV can be traced back to Lunkenheimer et al. 55.The

major difference between HFOV and other forms of high frequency 

ventilation is the active expiratory phase. A membrane causes oscillating 

movements of air with a frequency typically ranging from 5 – 10 Hz. 

These small movements, tidal volumes, are superimposed on a 

continuously distending pressure. As the movement of air progresses 

through the respiratory system and airways, the amplitude of airway 

movement is attenuated to very small tidal volumes at the alveolar level 56-

58. Gas exchange is probably achieved by a complicated diffusion and 
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convection process rather than by delivery of tidal volumes 59. Early 

HFOV devices were only suitable for ventilating infants and small 

children, because of their limited power. At the present time HFOV 

devices are marketed that can be used to ventilate adults as well. HFOV 

has been extensively tested in animals with different models of lung 

disease. Invariably, these tests showed a reduction in lung damage as 

compared with CMV. This has been demonstrated both at a physiological 

level as by histopathological examination of ventilated lungs in animal 

models (Figure 4) 60-68. However, evidence in humans is less unequivocal. 

The majority of trials have been performed in premature neonates with 

respiratory distress syndrome 69. Recently two trials have been conducted 

in adult patients with acute respiratory distress syndrome 70;71.

Analysis of clinical evidence of HFV compared with 

CMV 

This thesis can be divided into two main sections. The first part of the 

thesis relates to the evidence comparing high frequency ventilation with 

CMV in premature neonates with IRDS. In the second part of this thesis, 

evidence comparing HFOV with CMV in adults with ARDS is assessed. In 

four out of five studies in this thesis meta-analytic techniques were used to 

provide answers to the research questions that were raised. Meta-analysis 

can be used to pool results from randomized trials to obtain more precise 

estimates 72. Three different forms of meta-analysis were used to 

summarize the evidence of clinical trials. First, cumulative meta-analysis 

was performed to determine the progression of evidence over time 73;74.

This enabled us to identify specific sources of heterogeneity between 

studies. Secondly, meta-regression analysis was used to calculate 

quantitative effects of important determinants on the relative treatment 

effect of high frequency ventilation compared with CMV. Furthermore, 
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24 hours HFOV 

24 hours CMV 

Figure 4 

Figure used with permission from Meredith et al. (66). Histological specimens are shown 

from lungs of premature baboons with hyaline membrane disease ventilated 24 hours 

with positive pressure ventilation versus HFOV.   

meta-regression analysis was used to identify determinants of mortality in 

HFOV treated adult patients with ARDS. Finally, sequential meta-analysis 

was applied with trials as unit of analysis to determine the number of trials 

needed to be conducted to establish the effect of high frequency ventilation 

on pulmonary outcome 75;76.
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Outline of this thesis 

Studies in premature neonates

The studies presented in this thesis were initiated to answer the following 

general question: Is high frequency ventilation better than CMV? The 

majority of clinical trials have been performed in premature neonates with 

IRDS due to limitations posed by available high frequency ventilators at 

that time. Therefore, the following research questions were formulated: 

1. Does elective use of high frequency ventilation in premature neonates 

with IRDS result in better clinical outcome than conventional mechanical 

ventilation?  

In Chapter 2 trials were stratified by different high frequency ventilators 

and by different ventilatory strategies. In addition, a cumulative meta-

analysis was performed within relevant strata, which allowed for 

examination of development of available evidence over time and 

assessment of sources of remaining heterogeneity 

2. What factors determine the relative treatment effect of high frequency 

ventilation compared with CMV? 

A meta-regression analysis was conducted in Chapter 3 to obtain unbiased 

estimates of the effects of possible covariates that explained heterogeneity 

between trials that investigated the elective use of high frequency 

ventilation compared with CMV in premature neonates with IRDS. 

3. Is there enough evidence to establish whether or not high frequency 

ventilation confers clinical benefit over CMV, or do more clinical trials 

need to  be performed? 
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Chapter 4 presents a sequential meta-analysis to determine whether or not 

and at what point in time additional trials comparing high frequency 

ventilation with CMV, still contributed to available evidence. 

Studies in adult patients 

Published randomized trials in adults were limited to one study. The 

remainder of clinical studies comprised observational studies. All research 

in adult patients presented in this thesis was performed in patients with 

ARDS. An additional multi-center randomized trial was analyzed and a 

meta-analysis of observational research was conducted to answer the 

following questions: 

4. Is high frequency oscillatory ventilation as safe and effective as 

conventional mechanical ventilation in adults with ARDS? 

Chapter 5 shows the results of a multi-center randomized trial that 

compared early treatment with HFOV of ARDS in adult patients with the 

use of conventional ventilation. 

5. What factors determine mortality in adult patients with ARDS treated 

with HFOV? 

In Chapter 6 a meta-analysis of observational research was conducted. 

Determinants of mortality in HFOV treated ARDS patients were identified 

using meta-regression analysis.  
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