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Short-Time Correlations in Liquids: Molecular-Dynamics Simulation of Hard Spheroids
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The velocity and angular velocity autocorrelation functions obtained by molecular-dynamics simula-
tions of liquids composed of hard spheroids indicate the existence of damped oscillations with periods as
long as 40 times the mean time between molecular collisions. In addition, little correlation is found be-
tween successive collisions. This suggests that the damped oscillations are not due to semicoherent

molecular librations in cells.

PACS numbers: 82.20.Wt, 66.20.+d

In high-density molecular liquids the crowded mole-
cules carry out rapid, ratt/ling motions, both translational
and rotational, within a cage. One would like to under-
stand the structure and behavior of the cage as well as
that of the rattling molecule within the cage. If the
cages had rigid walls, the dynamical properties of
trapped molecules would be described entirely by local
modes, i.e., modes with wavelengths no longer than the
dimensions of the cages, or equivalently of the molecules;
these motions might truly be called “rattling motions.”
But in reality the walls of the cages are mobile, with
characteristic correlation times similar to those of the
trapped molecules,’ and because of this, the dynamical
behavior of individual molecules may be coupled to
longer-wavelength modes. It is, in fact, well known that
both the velocity and angular velocity autocorrelation
functions (VACF and AVACEF, respectively) have long-
time tails which arise because of coupling of the molecu-
lar motions to collective modes.?™* Our concern here is
not with such long-time tails but with dynamical behav-
ior at intermediate times. In particular, it is known from
molecular-dynamic (MD) simulations® and from far-
infrared absorption® (the so-called Poley absorption)
that in dense fluids both the VACF and the AVACEF re-
verse sign within a few picoseconds; this sign reversal is
often taken as evidence of coherent or correlated rattling
within a cage, and in the rotational case is associated
with torsional librations.” Reference 7 contains a sum-
mary of many such models. The present study suggests
that for molecular liquids the sign reversal in these
molecular correlation functions may, in fact, be dom-
inantly determined by the dynamical behavior of the sur-
rounding solvent, i.e., by modes with wavelengths consid-
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erably longer than molecular dimensions.

We have carried out molecular-dynamics simulations
on 125 hard prolate spheroids with a 2:1 axial ratio and
uniform mass distribution at a density 0.8 times the
close-packed density p.. (This density is close to the
freezing density, while for hard spheres the freezing den-
sity is only 0.65p..) Whereas hard spheres serve as a
model for atomic liquids, hard ellipsoids can serve as a
model for molecular liquids. The ellipsoids are treated
as linear rotors, and the dynamics are solved collision by
collision; further details are given elsewhere.®® Al-
though such a system lacks some of the interactions
found in real liquids, it has many dynamical properties
which are similar to those of real liquids. A useful
feature, which we exploit, of liquids composed of hard
particles is the unambiguous specification of an inter-
molecular collision and, consequently, the clear specifi-
cation of times between collisions and of a mean free in-
tercollision time t.. By examining reduced times, ¢/ 7.,
we can get insight into the rattling motions within a
cage; in Fig. 1 we see that if the time dependence of the
VACF and AVACEF are interpreted as evidence of heavi-
ly damped oscillatory (or rather, elastic bouncing) be-
havior, the period is about 407, rather than the approxi-
mately 27, one would expect if it arose as the result of
semicoherent oscillations within a cage, 7. being the time
to “cross” the cage. Of course, the relevant time may
actually be the mean time for velocity sign reversal.
From Fig. 2 we see that it takes two to three collisions on
average to reverse the sign of the velocity, but that the
mean time for velocity sign reversal is still only about 7
the time needed for the VACF and the AVACEF to reach
their minima. This is one of our primary results, and it
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FIG. 1. (v(0)-v(:))/(v(0)-v(0)) and (@(0) - @(1))/{@(0)
@(0)), where o is the angular velocity.

leads us towards the suggestion that the apparent
damped-oscillator behavior observed in the VACF and
AVACEF has little to do with the rapid rattling motion
within a cage; the period of oscillation corresponds to
too many collisions for it to be connected with the
bouncing off cage walls. For hard spheres the re-
sults'%'2 are less dramatic, but from the work of Alder
and co-workers '*!! one finds that the time for the VACF
to reach its minimum is still of order 9z.. Preliminary
results suggest that for hard spheres in a frozen-high-
density liquid environment, a situation in which only rat-
tling within cages is relevant, the minimum in the VACF
occurs at only 37, to 47.. (Keep in mind that at low
densities there is no negative dip in the VACF although
there certainly is a mean velocity-sign-reversal time.)

We must still check whether the rattling motion could
be appreciably correlated over the many collision times
required for the VACF and AVACEF to reach their mini-
ma. To do so we first examined the distribution of col-
lision-initiated-free-flight times, i.e., the times between
collisions, and from these we determined the mean time
7.. This distribution is very nearly random (Poisson).
Of course, even if the rattling motion for a given mole-
cule in its cage were quite coherent and oscillatory, the
distribution of collision-initiated-free-flight times could
appear to be quite random because the distribution of lo-
cal environments, and hence of different cages with
different oscillatory frequencies, could be quite broad.
To check this we examined the distribution of scaled
collision-initiated-free-flight times t.e; such times are
obtained by recording the time for a collision-initiated-
free-flight event for a given particle and dividing the
time for each successive collision-initiated-free-flight
event for that particle by the time of the first one. This
is done repeatedly for each particle, and because an in-
tercollision time for each particle (in its particular cage)
is divided by its own preceding intercollision time, the
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FIG. 2. Distribution of collision-initiated-velocity-reversal
times [times which elapse between changes in sign in v, (r)].
Times to first, second, and third collisions after a collision. The
dotted line represents calculations for completely randomizing
collisions.

effect of a broad distribution of different cages (inhomo-
geneity) should be minimized. The distribution of such
scaled collision-initiated-free-passage times depicted in
Fig. 3 indicates very little correlation between the times
elapsed between successive collisions. From Fig. 2 we
see that the distribution of collision-initiated-velocity-re-
versal times is also nearly random (Poisson). Our second
main result is that the apparent Markovian character of
the distribution of intercollision and velocity-reversal
times supports the hypothesis that the short-time rat-
tling motion within a given cage is highly incoherent and
not likely to exhibit oscillatory behavior. This con-
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FIG. 3. Distribution of scaled collision-initiated-free-flight
times for first free-flight time following the free-flight time
used for scaling. The solid line is the simulation result; the dot-
ted line is the calculation for completely randomizing col-
lisions. Perfect oscillatory behavior would lead to a § function
at time fscale =1.
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clusion is compatible with that of Vesely and Evans'’
who found little correlation between recollisions of a pair
of tagged particles in a hard-sphere system.

The VACEF, (v(0)-v(z)), where v is the velocity and ()
indicates an ensemble average, is an average which
weights high velocities more than low ones; this suggests
that the dynamical behavior of (v(0)-v(z)) could be less
revealing than expected. To check the effect of such
weighting, we examined two other velocity correlation
functions which involve rather different averages: (v(0)
-¥(¢)) and (sgnlv,(0)]lsgnlv,(£)]), where V(1) =v(¢)/
[v(z)| and sgnlv, ()] is the sign of v, (z) with v, being
the x component of v. In Fig. 4 we see that the different
averaging accounts for only slight differences in the
functional form of the correlation functions. Although it
may be a consequence of our choice of moment of iner-
tia, the VACF and the AVACF seem to have very simi-
lar time dependences. It is also interesting to note that
the time required for one of our ellipsoids to diffuse a
distance comparable with its effective hydrodynamic ra-
dius is about 1807., a time long compared to that re-
quired for the correlation functions to reach their mini-
ma. We estimate the sound traversal time in our simula-
tion box to be about 607,.

If it is not associated with coherent molecular oscilla-
tions in a cage, to what, then, do we attribute the ap-
parently heavily damped oscillatory behavior of the
VACF and AVACF? Because of their long periods we
associate the oscillations with phenomena whose wave-
lengths appreciably exceed the dimensions of the local
cage. A number of theories have been proposed to de-
scribe the negative lobe of the VACF: that of Zwanzig
and Bixon,'* which is a generalized hydrodynamic
theory, and those of Cukier and Mahaffey,!® of Kirkpa-
trick and Nieuwoudt,'® and of Kumar and Evans'’
which are kinetic theories which encompass coupling to
density and momentum modes. Evans'® has also utilized
such a kinetic theory to describe the negative lobe in the
AVACF.

We now offer tentative interpretations for the relative-
ly long time elapsed before the VACF and the AVACF
reverse sign. In a mode-coupling picture, the relevant
modes are composed of bilinear products of conserved
variables. These product modes may have oscillations
and dispersion relations similar to those of sound modes,
and the high-frequency waves may give rise to the sign
reversal in the VACF. In the absence of viscoelastic
effects, the oscillation frequencies and decay rates are of
order ¢/A and mn/pr?, respectively'® (where 1 is the
coeflicient of longitudinal viscosity, p is the mass density,
A is the wavelength, and c is the sound speed); this indi-
cates that phonons are overdamped for wavelengths less
than nn/cp. Thus if the single-particle motions are cou-
pled to a continuum of such modes of all wavelengths,
modes with wavelengths less than 7n/cp correspond to
dissipative behavior, while those of longer wavelength
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FIG. 4. Three different velocity autocorrelation functions:
—, (v(0)-v())/(v(0)-v(0)); ---, (¥(0)-v(#)); and
(sgnlv«(0)1sgnle, (DD).

)

may be oscillatory. For ¢=10" cms ™', p=1 gem 3,

and n=10 2 P, the minimum wavelength at which oscil-
latory behavior is observed is about 3 nm, a length far
greater than the diameter of a cage around a small mole-
cule. This qualitative picture could account for the ob-
served damped oscillatory behavior in the VACF: The
short-wavelength modes (which correspond to rattling
within a cage) could be purely dissipative with no sign of
oscillatory behavior, and, though the long-wavelength
modes oscillate, interference between oscillations at dif-
ferent wavelengths could dampen the oscillatory effect
on the autocorrelation functions. What one then ob-
serves in the autocorrelation functions at intermediate
times is the expected damped oscillation with wavelength
about mn/cp. If this estimate is meaningful, the critical
wavelength is larger than the simulation box used, in
which case our quantitative results are in doubt; howev-
er, the argument that the MD simulation indicates the
presence of correlated lengths larger than the cage size
should still hold.

A possible physical model which can rationalize the
phenomena discussed above is the following. We note
that the velocity of a molecule rattling in a cage rapidly
averages out, not to zero but to the drift velocity of the
cage as a whole. In turn, the cage composed of nearest
neighbors rattles rather more slowly within a larger cage
composed of its nearest neighbors, and its velocity aver-
ages out somewhat more slowly to the drift velocity of
the larger, encompassing cage. There is a continuous
hierarchy of such cages (which might be associated with
density and velocity fluctuations), and for cages above
some size, oscillations might be discernible, and these os-
cillations could establish the drift velocity of the en-
trapped molecules. To date no quantitative test of this
suggested model has been given.

It could be that though the quantitative character of
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our results hold for hard ellipsoids, they might not hold
for liquids composed of molecules interacting through
realistic intermolecular potentials. In some cases it has
been found that for more realistic intermolecular poten-
tials the oscillations in the correlation functions are less
damped than for our spheroids, and an additional oscilla-
tion can sometimes be observed.®> For these more realis-
tic potentials one does not have an unambiguous way of
specifying intermolecular collisions and so one cannot
scale times to the mean intercollision time; however, for
these more realistic potentials it would be of interest to
scale the times to the mean collision-initiated-velocity-
reversal time.

Calculations for different asphericities, densities, and
moments of inertia will be reported elsewhere; however,
preliminary results indicate that the start of the negative
lobe in the VACEF for hard ellipsoids moves out to longer
scaled times as the density is lowered, disappearing com-
pletely at densities of about 0.4, and that the start of the
negative lobe moves out with increasing asphericity. Ad-
ditional insight into the relative importance of intracage
and extracage effects can perhaps be obtained by study-
ing systems in which all but one particle are frozen.
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