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We report simulations of a two-dimensional ballistic Lorentz gas on a lattice.

A moment-

propagation technique allows direct measurements of the velocity correlation function and its mo-
ments with low relative errors for all times. We observe the predicted ¢ ~2 algebraic tails in the
velocity correlation function at all studied scatterer densities, unlike what has been reported for
continuous systems. In the square lattice a fast [(—1)‘] oscillation is observed, consistent with
the existence of staggered density modes. For the second-rank tensor correlation function we find
an extremely slow approach to the expected ¢ ~* tail.

The discovery by computer simulation' of algebraic

corrections to the velocity autocorrelation function
(VACF) of fluid particles signaled the breakdown of the
molecular-chaos assumption and is the starting point of
modern kinetic theory. Following the seminal work' of
Alder and Wainwright, kinetic and mode-coupling the-
ories? have been developed that do reproduce a number of
these algebraic long-time tails essentially quantitatively.
In particular, the hydrodynamic long-time tail now seems
well understood.> However, significant discrepancies
remain for the Lorentz gas,* a model where a single par-
ticle collides with randomly distributed fixed scatterers.
For the Lorentz gas, kinetic theory predicts that the
VACF (v(0)-v(¢)) decays as t ~“@/?~! for a d-dimen-
sional system.’ However, the best simulations to date®
show an algebraic exponent which in two dimensions
varies from —2 to —1.5 as the scatterer density is in-
creased.

There are at least two possible causes for this discrepan-
cy. One is that the simulations may not have probed the
truly asymptotic behavior of the VACF, but rather the
intermediate-time behavior. There are, in fact, theoretical
predictions’ that the decay of the VACF at intermediate
times is apparently algebraic, but with a nonuniversal ex-
ponent. Usually the Lorentz-gas VACF has only one neg-
ative minimum at short times, but oscillatory behavior
and even multiple zero crossings have been observed in
certain cases.®

An alternative explanation has been suggested in analo-
gy with a phenomenon observed in the study of random
walks on a lattice with randomly excluded bonds.® In the
latter model a crossover to one-dimensional behavior is
seen near the percolation point. This reflects a constraint
of the available physical space. The value of the high-
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density exponent observed by Alder and Alley® in their
study of the “atomic” Lorentz model—with circular
scatterers in continuous space— is consistent with this ex-
planation.

In this Rapid Communication we report a numerical
study of two-dimensional (2D) Lorentz models in a lat-
tice. Neither of the causes for disagreement between
theory and simulation explained in the previous para-
graphs is present in these models. We use an accurate,
efficient method for the direct calculation of the correla-
tion function of moments of the single-particle velocity.
This allows us to perform measurements for up to 900
mean free times at the higher densities, in a model with-
out excluded volume. Only the VACF (v(0)-v(z))
and the second-rank tensor correlation function
(TCF) (2[v(0)- v(£)12—1) will be considered here.

The main results are as follows: In the square lattice,
odd-even oscillations of the VACF are observed, with
stronger amplitude at higher scatterer concentrations (c).
Both the odd and the even time asymptotes behave as ¢ ~2.
In the better-behaved triangular-lattice models the strong
oscillations are absent and a 7 ~2 tail is observed at all
studied densities 0.2 <¢=<0.9. For these densities, the
onset of long-time algebraic tails for the VACF occurs be-
tween 24 and 60 mean free times. Figure 2 shows that the
approach to this asymptote is by no means monotonic.
For the TCF, onset times seem to be even longer, on the
order of hundreds of mean free times.

In the model studied here, a particle (or, equivalently, a
collection of noninteracting particles), moves at integer
time steps from a node in one of the regular space-filling
lattices to one of the nearest-neighbor nodes. The particle
will move along a straight line until it encounters a
scatterer (placed randomly at the nodes with probability
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¢). During a scattering event in the square-lattice models,
the velocity of the particle is either unchanged (probabili-
ty a), reversed (probability B), or rotated over % z/2
(probability y), with a+B8+2y=1. Similar rules can be
defined in the triangular lattice.

This family of models has been studied theoretically in
considerable detail. In particular, a study of the diffusion
coefficient is reported in Refs. 10-12, while predictions for
the VACEF are given in Ref. 13. Two properties of the
model are relevant here: (i) there is no ‘“excluded
volume,” i.e., the particle is not excluded from sites occu-
pied by scatterers. There are, therefore, no physical con-
straints to the particle’s phase space, not even beyond the
percolation density of scatterers. (ii) The square lattice
can be decomposed into two staggered sublattices, those
for which the sum of the x and y coordinates is even and
odd, respectively. The particles in this model must go
from one sublattice to the other at consecutive time steps.
Therefore (— 1)’ times the difference of particles between
sublattices is a global invariant.'>!* We shall refer to this
invariant as the staggered density. Note that this quantity
does not exist in the 2D triangular lattice.

While preliminary measurements of the VACF for the
square-lattice model'> showed deviations from the
Boltzmann-level theory for y= 5, recent developments of
the moment-propagation (MP) technique? now allow very
precise measurements of long-time tails in lattice systems
with stochastic collisions.

The technique consists of propagating not individual
particles but moments of the single-particle distribution
function on a lattice with (randomly) placed scatterers. It
is similar in spirit to earlier techniques that have been
used to compute the time evolution of the single-particle
distribution function itself (see Ref. 16). However, by
focusing on the time evolution of one (or a few) moments
of the single-particle distribution function rather than on
that of the complete distribution function, a big gain is
made in the statistical accuracy with which the moments
of interest can be computed. The MP method has been
applied to two- and three-dimensional lattice-gas cellular
automata? and hopping transport on lattices'” is described
in detail in the paper by van der Hoef and Frenkel.> The
main advantage is that it takes an average over all trajec-
tories consistent with the model and the scatterer
configuration, and the relative error remains more or less
constant for all times with little increase in computation.
This allows for very accuraie measurement of the iong-
time tails at all but the lowest (¢ <0.2) densities of
scatterers.'® The simulations reported in this Rapid Com-
munication were performed on lattices of 256x256 sites
(and, in some cases, 512% 512 sites). In all cases, correla-
tions were only computed for times short enough that the
probability to diffuse over a distance comparable to the
linear system size is negligible.

Below we present typical results. Figure 1 is a measure-
ment of the VACF for the square-lattice Lorentz model
with isotropic rules, a=f=y =1+ at ¢ =0.9. Results for
other (anisotropic) scattering rules are similar, and will be
presented elsewhere.!® The lower curve provides an esti-
mate of the statistical error in our simulations. Notice the
strong oscillations in the VACF for long times. In fact, if
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FIG. 1. VACEF vs time in the square lattice, isotropic scatter-
ing, c=0.9. Note the strong oscillations with different asymp-
totes. The lower curve indicates error bars.

we make separate fits for the odd and even values of the
VACEF to a power series in 1/t, we find that the coefficient
of the leading (1/¢2) term may differ by as much as a fac-
tor of 10. This observation suggests that for the square-
lattice ballistic Lorentz gas there is no unique long-time
asymptote of the VACF. So far the oscillations, caused
by the staggered density mode described above, have not
been incorporated in the theory for these models. This
model, then, seems inappropriate for comparison with
theory, and we will focus on triangular-lattice results in-
stead.
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FIG. 2. VACF vs time in the triangular lattice, isotropic
scattering, ¢ =0.2. Note the peaks (zero crossings). Algebraic
tails set in after 300 time steps (60 mean free times).
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TABLE 1. Amplitude A4 and effective exponent a of the ve-
locity autocorrelation function of a ballistic Lorentz model on a
two-dimensional triangular lattice. The estimated error in the
exponent @ is shown in parentheses. These coefficients were
obtained by fitting the simulation data over a time range
Lonset <1 <1000. The numbers shown in parentheses in the last
column are the onset times #onset €xpressed in mean free times.

c A a tonset (/tmean free)
0.2 —0.463 2.09(0.22) 300 (60)
04 —=0.178 2.05(0.05) 90 (36)
0.6 —0.091 2.03(0.03) 50 (30)
0.8 —0.038 2.02(0.03) 30 (24)
0.9 —=0.018 2.00(0.02) 30 (27)

Figure 2 is a measurement of the VACF for the
triangular-lattice Lorentz model, also with isotropic
scattering rules. The density of scatterers is ¢ =0.2. Note
that the long-time oscillations are not present in this case.
Also notice the multiple peaks in the logarithm of the
VACF: There are zero crossings at t =15, 80, and 95, be-
fore the VACF becomes finally negative. The onset of the
long-time algebraic tail happens at around ¢ =300, i.e., 60
mean free times. Table I contains a summary of ampli-
tudes, exponents, and onset times for an At ~ ¢ fit of the
VACEF for all studied densities. The fits apply to the re-
gime between the onset of long-time tails and ¢ =1000.
The fact that there appear to be small systematic devia-
tions from ¢ 2 at the lower scatterer densities indicates
that the approach to an asymptotic ¢ ~2 regime, without
any higher-order terms, will be even slower than indicated
in Table L.

Finally, Fig. 3 shows a plot of ¢ 3 times the tensor corre-
lation function versus time for ¢ =0.9 in the triangular lat-
tice. The figure shows that the expected ¢ ~3 asymptote '?
is approached extremely slowly. In other words, it ap-
pears that the amplitudes of higher order (+ ~*) terms in
the TCF are large compared with those of the ¢ ~ terms.

In this Rapid Communication we have demonstrated
that the VACF of a two-dimensional ballistic-lattice
Lorentz model exhibits ¢ 2 tails over a wide range of den-
sities, in qualitative agreement with theory. This should
be contrasted with the behavior of ‘“atomic” Lorentz
gases® where the effective exponent of the algebraic tail
has been measured to be between —1.5 and —2. At the
present we cannot tell whether the crucial difference be-
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FIG. 3. Stress correlation function multiplied by 3 vs time,
triangular lattice, ¢ =0.9 with isotropic scattering. Notice the
very slow approach to a ¢ ~3 asymptote.

tween our simulations and those on continuous systems is
the appreciable difference in the length of the simulations,
or the absence of excluded volume effects in the lattice-gas
model. We plan to resolve this question by performing
simulations on a ballistic Lorentz model with excluded
volume effects.

In addition, we have shown that the presence of con-
served staggered density modes in the square-lattice
Lorentz gas models is directly reflected in the presence of
strong odd-even oscillations in the VACF.

A final remark is that the intermediate-time behavior is
surprisingly rich. It would be interesting to know whether
similar intermediate-time behavior is exhibited by con-
tinuous Lorentz models. Unfortunately, the existing
simulations of the latter models® do not extend to long
enough times to settle this point.

We thank M. H. Ernst for useful discussions and the
Dutch Nationaal Fonds Supercomputers for supercom-
puter time. P.M.B. thanks NASA and Science and En-
gineering Research Council for support. The work of the
FOM Institute is part of the scientific program of the
Stichting voor Fundamenteel Onderzoek der Materie
(FOM) and is supported by the Netherlands Organization
for Scientific Research.

*Permanent address: Department of Theoretical Physics, 1 Ke-
ble Road, Oxford OX1 3NP, United Kingdom.

IT. E. Wainwright, B. J. Alder, and D. M. Gass, Phys. Rev. A 4,
233 (1971).

2Y. Pomeau, Phys. Lett. 27A, 601 (1968); J. R. Dorfman and E.
G. D. Cohen, Phys. Rev. Lett. 25, 1257 (1970); M. H. Ernst,
E. H. Hauge, and J. M. J. van Leeuwen, ibid. 25, 1254
(1970).

3D. Frenkel and M. H. Ernst, Phys. Rev. Lett. 63, 2165 (1989);
M. A. van der Hoef and D. Frenkel, Phys. Rev. A 41, 4277
(1990).

4H. A. Lorentz, Proc. R. Acad. Sci. Amsterdam 7, 438 (1905);
7, 585 (1905); 7, 684 (1905); P. Ehrenfest and T. Ehrenfest,
The Conceptual Foundations to the Statistical Approach in
Mechanics (Cornell Univ. Press, Ithaca, 1959).

SM. H. Ernst and A. Weyland, Phys. Lett. 34A, 39 (1971).



RAPID COMMUNICATIONS

2466 P.-M. BINDER AND D. FRENKEL 42

6C. Bruin, Physica (Utrecht) 72, 261 (1974); B.J. Alder and W.
E. Alley, J. Stat. Phys. 19, 341 (1978); J. C. Lewis and J. A.
Tjon, Phys. Lett. 66A, 349 (1978).

TW. Gotze, E. Leutheusser, and S. Yip, Phys. Rev. A 23, 2634
(1981); A. Masters and T. Keyes, ibid. 26, 2129 (1982).

8J. Machta and R. Zwanzig, Phys. Rev. Lett. 50, 1959 (1983).

9M. H. Ernst, G. A. van Velzen, and J. W. Dufty, Physica 147A,
268 (1987).

10p_ M. Binder, Complex Syst. 1, 559 (1987).

1IM. H. Ernst and P. M. Binder, J. Stat. Phys. 51, 981 (1988);
M. H. Ernst, G. A. van Velzen, and P. M. Binder, Phys. Rev.
A 39, 4327 (1989); M. H. Ernst and G. A. van Velzen, J.
Phys. A 22, 4611 (1989).

12p_ M. Binder and M. H. Ernst, Physica A 164, 91 (1990).

I3M. H. Ernst and G. A. van Velzen, J. Stat. Phys. §7, 455
(1989).

14G. Zanetti, Phys. Rev. A 40, 1539 (1989); D. d’Humiéres, Y.
Qian, and P. Lallemand, in Discrete Kinetic Theory, Lattice
Gas Dynamics and Foundations of Hydrodynamics, edited by
R. Monaco (Singapore, World Scientific, 1989); M. H. Ernst,

in Liquids, Freezing and the Glass Transition, edited by D.
Levesque et al. (Elsevier, Amsterdam, 1990).

I15p. M. Binder, in Lattice Gas Methods for Partial Differential
Equations, edited by G. D. Doolen etal. (Addison-Wesley,
Reading, MA, 1989), p. 471.

16J. W. Sanders, Th. W. Ruijgrok, and J. J. Ten Bosch, J. Math.
Phys. 12, 534 (1971); S. Havlin, M. Dishon, J. E. Kiefer, and
G. H. Weiss, Phys. Rev. Lett. 53, 407 (1984).

17D, Frenkel, in Cellular Automata and the Modeling of Com-
plex Physical Systems, edited by P. Manneville etal.
(Springer, Berlin, 1989), p. 161.

18p_ Scheunders and J. Naudts [Phys. Rev. A 41, 3415 (1990)],
use a similar technique to reconstruct the VACF from two
moments of the distribution of times spent by the particle be-
tween collisions. Their measurements are consistent with a
t "2 tail for the studied density range in the isotropic square-
lattice model. However, their analysis does not allow them to
observe either the fast oscillations or the entire intermediate-
time behavior.

19D, Frenkel and P. M. Binder (unpublished).



