
Chapter 3

λ

We make the notion of scope in the λ-calculus explicit. To that end, the syntax
of the λ-calculus is extended with an end-of-scope operator λ, matching the
usual opening of a scope due to λ. Accordingly, β-reduction is extended to the
set of scoped λ-terms by performing minimal scope extrusion before performing
replication as usual. We show confluence of the resulting scoped β-reduction.
Confluence of β-reduction for the ordinary λ-calculus is obtained as a corollary,
by extruding scopes maximally before forgetting them altogether. Only in this
final forgetful step, α-equivalence is needed. All our proofs have been verified in
Coq.

Authors: Dimitri Hendriks and Vincent van Oostrom

3.1 Introduction

Performing a substitution M [x:=N] in the λ-calculus can be decomposed into
two subtasks: replicatingN an appropriate number of times, and renaming inM
in order to prevent unintended capture of variables of N . Indeed, the defining
clauses of Curry’s definition of substitution, see e.g. C.1 Definition of [4],
can be neatly partitioned into those dealing with replication (the variable and
application clauses) and those dealing with renaming (the abstraction clauses).
In this chapter we will focus on trying to understand the latter subtask. We do
so, by extending λ-calculus with an explicit operator representing the (end of
the) scope of a name, while leaving replication implicit.

Abstractions in the λ-calculus can be viewed as being composed of two parts:
one part which is dual to application, and another which causes the opening
of the scope of the bound variable. The scope of the binder λx in λx.M is
(implicitly) assumed to extend to the whole of M . Hence to make the notion
of scope explicit, it suffices to introduce an operator expressing the end of the
scope of λx. This operator is denoted by λ(adbmal). λx.M expresses that
the scope of x is ended ‘above’ M . For instance, in the λ-term λx. λx.x the
underlined occurrence of the variable x is free, since the binding effect of the
λx is undone by the subsequent λx. For another example, only the underlined

49

50 CHAPTER 3. λ

occurrence of x is free in λx.x(λx.x)x; the first and third occurrences of x are
in scope of the λx (see Figure 3.1).

Definition 3.1.1 The set (M,N,P ∈) Λof λ-terms is defined by:

Λ::= V | λx. Λ| λx. Λ| ΛΛ

where (x, y, z ∈)V is a collection of variable(name)s with decidable equality:

Axiom 3.1 (Names with decidable equality) x = y∨x 6= y, for all x, y : V

We stress that Definition 3.1.1 is an inductive one without any reference to α-
equivalence. That is, we do not assume the variable convention (2.1.13 of [4]).
In fact, we don’t need it, since in the process of β-reduction, we will not rename
offending binders to avoid capturing of free variables. Instead, λs will be inserted
in an appropriate way, as will become clear in the sequel.

We adopt the usual notational conventions for the λ-calculus [4] (but not the
variable convention), treating λanalogously to λ. We use the notation λX.M
and λX.M where X is a stack of variables x0, . . . , xn, to denote λx0 · · ·xn.M
resp. λx0 · · ·xn.M .

Remark 3.1.1 One way in which the usefulness of the λ-calculus is shown,
is by deriving confluence of the standard λ-calculus from confluence of the λ-
calculus. One way to do this would be to define standard λ-terms as λ-terms
without occurrences of λ, and then prove some kind of conservativity result. In-
stead, in our Coq implementation λ-terms are defined separately from λ-terms
and we use a canonical embedding from the former to the latter. In this way
we hope to make it clear that it is really the standard λ-calculus we are proving
confluent, and also to take away any suspicion of cheating (e.g. employing no-
tions for λ-terms in the λ-calculus). In order to improve readability, mention
of the function embedding λ-terms into λ-terms will be suppressed.

In order to extend the notions of α-equivalence and β-reduction, we should
first try to make some semantic sense of λs. Thinking of λx and λx as (named)
opening ‘[x’ and closing ‘]x’ brackets,1 it is clear that λ-terms may come in dif-
ferent degrees of balancedness. For instance, scopes could seemingly be crossing
one another as indicated by the boxes in:

P = λx. λy. λx. λy. Q

This would obviously cause semantical problems (try to define substitution).
To overcome this problem we assume a simple minded jump semantics: an oc-
currence of λx.M implicitly ends the scopes of all (non-matching) λs inbetween
that occurrence and its matching λx, just as the occurrence of the variable x in
λx.λy.x can be thought of as implicitly ending the scope of the λy. Hence P is

1But note that brackets (parentheses) usually apply ‘horizontally’ to the textual repre-
sentation of terms, whereas λ and λapply ‘vertically’ to their abstract syntax trees (where
brackets do not even occur).

3.1. INTRODUCTION 51

λ

@

λ

λ

λxλ

@

λ

λ

λ

x

λ

λ

x

x

x

x

x x

x x x

x x

x x

y

x
x

Figure 3.1: λx. λx.x, λx.x(λx.x)x, λx.λx.x, λx.λx. λx.x, λx. λx.λx. λx.x, and
λx.λy.x.

semantically equivalent to λx.λy. λy. λx. λy.Q. Our definitions of α-equivalence
and β-reduction and hence our definition of substitution, as will be presented
below, are meant to reflect this intuitive (operational) semantics.

Apart from such jump terms we identify the useful subclasses of scope-
balanced and balanced terms, both of which are closed under α-equivalence
and β-reduction. Balanced terms can be used to represent nameless λ-terms
using De Bruijn indices, by using only a single name (see the discussion in
the paragraph on related work below). Ordinary λ-terms are not (necessarily)
balanced, however they always are scope-balanced.

Definition 3.1.2 A term is scope-balanced if it is scope-balanced under some
stack X. A term M being scope-balanced under a stack X is denoted by 〈X〉M
and defined by:

〈X〉x
〈xX〉M
〈X〉λx.M

〈X〉M
〈xX〉 λx.M

〈X〉M 〈X〉N
〈X〉MN

Balancedness is defined as scope-balancedness restricting the first clause to

〈xX〉x

Here xX is the result of pushing x on the stack X.

For instance, λx.λy. λx.M is not scope-balanced (λy not closed before λx), λy.x
is scope-balanced but not balanced (λy not closed before x), and λx. λx.M and
λx.x are balanced (if M is in the former case).

It is easy to see that closed λ-terms are scope-balanced under any stack,
hence in particular under the empty stack 2. Scopes in balanced λ-terms can be
neatly visualised as boxes in their abstract syntax tree, as shown in Figure 3.1.2

Vice versa, in the term representation of a box, only its ‘doors’ are kept. That
is, λs and λs are used to demarcate all places where the boundary of the box
is crossed by the abstract syntax tree. In fact, there is a strong similarity
(see Figure 3.1) between balanced terms and the context-free string language of
matching brackets as presented by the grammar:

P ::= ε | [P] | PP
2Scopes in non-balanced terms can be drawn as floorless boxes (λx.λy.x in Figure 3.1).

52 CHAPTER 3. λ

• Scopes can be nested (similar to [P]). In the λ-term λx.λx.x, the oc-
currence of x is implicitly assumed to be bound by the rightmost λx.
Similarly, the scope of the rightmost λx is ended by the λx in λx.λx. λx.x.

• Scopes can be concatenated (similar to PP). In the λ-term λx. λx.λx. λx.x,
the scopes of the two λxs do not have overlap/are not nested, in spite of
the latter being ‘to the right’ of the former.

Indeed, the set of balanced λ-terms can be generated by a so-called context-free
term grammar, where context-free term grammars are the natural generalisation
of context-free string grammars, see e.g. Section 2.5 of [23]. A difference between
matching bracket strings and balanced λ-terms is that, due to the branching
structure of terms, several λ’s may match the same λ as in λx.(λx.x)(λx.x),
with both underlined occurrences of x free.

Related work This chapter is the full version of [34], and is under consid-
eration for publication in the Journal of Functional Programming. Compared
to [34] the results in the present chapter are more general, in particular the
key substitution lemmas. Moreover, we have supplied more formal definitions
and some typical proof ideas. For the complete proof development we refer the
reader to [35].

When application of λx is restricted to variables (and end-of-scopes), it
corresponds to Berkling’s lambda-bar [11], which is in turn seen to be a named
version of the successor operator in De Bruijn’s nameless (more precisely: single
name) calculus [19]. Their calculi do not allow successions of boxes, only nestings
of boxes. This corresponds to the sublanguage of the language of matching
brackets (see above) generated by the grammar: B ::= ε | [B].

Restricting to a single name, i.e. to De Bruijn indices, λx corresponds to the
shift substitution [↑] in the λ-calculus with explicit substitutions λσ of [1], or
the shift operation Shi of [21]. The earliest generalisation of De Bruijn indices
seems to be due to Paterson [56]. The idea is to allow the successor S to appear
on subterms, instead of just on indices; as it is written in [15]:

Substitution on de Bruijn terms transforms arguments as well as func-
tion bodies, thus precluding sharing. Consider the example term from
Section 1, with the variables written in unary notation:

λ.0 (λ.S0 0 (λ.SS0 S0 0))

If this term is applied to the term λ.0 S0, the result is

(λ.0 S0) (λ.(λ.0 SS0) 0 (λ.(λ.0 SSS0) S0 0))

where the three versions of the argument are underlined. There is a gen-
eralisation of de Bruijn notation in which S can be applied to any term,
not just a variable (Paterson, 1991). Its effect is to escape the scope of the
matching λ. With this looser representation of terms, one can avoid trans-
forming arguments while substituting. In the above example, substitution
yields

(λ.0 S0) (λ.S(λ.0 S0) 0 (λ.SS(λ.0 S0) S00))

In effect, we have postponed pushing the S’s down to the variables.

3.1. INTRODUCTION 53

where the ‘example term from Section 1’ is the λ-term λx.x (λy.x y (λz.x y z))
which translates to λ0. (λ.1 0 (λ.2 1 0)) in (their) De Bruijn notation. Applying
the λ-term to a named version, say λx.xy of λ.0 S0, yields (see Subsection 3.4.2)
(λx.xy) (λy.(λy.λx.xy) y (λz.(λz. λy.λx.xy)) y z). So obviously λcorresponds
to the successor S in De Bruijn notation.

Bird and Paterson go on to show that in the balanced (single name) case
the term language of the λ-calculus is context-free by presenting it by means of
the following context-free term grammar:

Term a ::= Var a | App(Term a,Term a) | Abs(Term(Incr(Term a)))
Incr a ::= Zero | Succ a

the idea being that Terms are balanced by generating Incrs, i.e. variables
(Zeros) or end-of-scopes (Succs), at the same time as their matching Abs (ab-
straction).3

When restricting to the balanced case, our boxes correspond closely to boxes
in MELL proof nets for linear logic, see e.g. [46]. In fact, in our optimal imple-
mentation (see Section 3.5) λx disintegrates into a λ (a par in MELL) and (part
of the boundary of) an x-box ((Asperti’s version of) a box in MELL), upon
encountering an application. One can think of these two phases of abstraction
as turning a free variable x into a bound one by closing it off from the outside
world inside an x-box, but providing a handle to x to the outside world again in
the form of the λ. Many proposals for decomposing abstraction into more ele-
mentary notions can be found in the literature, a recent one being [5]. Similarly,
notions of enclosure abound. Analogous to the conflation of the enclosure with
the enclosed as found in (the etymology of) words such as town, garden, park
and paradise, these formalisations may or may not make the boundary explicit,
see e.g. [20, 55, 16] for some recent ones.

In the area of dynamic semantics for natural language, a stack-based seman-
tics for a variant of predicate logic is presented in [37]. Although, the exact
relationship is not clear to us yet, a difference seems to be that in their seman-
tics every variable has its own stack, whereas we have a single stack. However,
also in [11] variables have their own stack.

Implementation All results informally presented here are formalised in Coq.
The source files are available from [35]. The size of the development is 9543 lines
of Coq-code, 259160 bytes; 324 lemmas are proved. The Coq proofs and the λ-
calculus were developed concurrently. The total development time is estimated
one man-year approximately.

Outline The outline of the rest of this chapter is as follows. In Section 3.2 we
define some preliminary notions on abstract rewriting systems. We provide sev-
eral definitions of α-equivalence for λ-terms in Section 3.3, extending classical

3This does not work (directly) for non-balanced terms in the many-variable case.

54 CHAPTER 3. λ

definitions as found in the literature on the λ-calculus, prove them to be decid-
able congruence relations, and show them to be equivalent. Then we present
a definition of β-reduction for λ-terms in Section 3.4, extending the usual def-
inition for the λ-calculus, and prove this notion of reduction to be confluent
without α-equivalence. In both (α and β) cases it is shown how the results on
the λ-calculus entail the corresponding results for the ordinary λ-calculus, e.g.
confluence of β-reduction up to α-equivalence. Applications are presented in
Section 3.5. Finally, in Section 3.6, we conclude, and discuss upon the rela-
tionship of the λ-calculus to explicit substitution calculi having the property of
preservation of normalisation.

Acknowledgments We would like to thank the participants of the TCS sem-
inar at the Vrije Universiteit Amsterdam, PAM and the 7th Dutch Proof Tools
Day both at CWI, Amsterdam, ZIC at the Technische Universiteit Eindhoven,
the CS seminar at the University of Leicester, and the TF lunch seminar at
the Universiteit Utrecht, for feedback. Eduardo Bonelli, Marko van Eekelen,
Joost Engelfriet, Stefan Kahrs, Kees Vermeulen, Albert Visser, and the CADE
referees provided useful comments and pointers to the literature.

3.2 Preliminaries

Definition 3.2.1 We define the n-fold composition →n of a binary relation →
as the smallest relation satisfying the following clauses:

x→0 x
reflexivity

x→ y

x→1 y
embedding

x→n y y →m z

x→n+m z
transitivity

The reflexive–transitive closure x→∗ y of → is defined as ∃n.x→n y. The
equivalence closure ↔∗ of → is defined as ∃n.x↔n y, where ↔n is defined
inductively by the former three clauses (replacing all occurrences →k with ↔k)
plus the following one:

y ↔n x

x↔n y
symmetry

Definition 3.2.2 A binary relation R on a set A has the diamond property,
if for all a, b, c : A, a R b and a R c implies there exists d : A, such that c R d
and b R d. R is confluent if its reflexive–transitive closure R∗ has the diamond
property. We say R has the diamond property up to S if for all a, b, c : A, a R b
and a R c implies there exist d, d′ : A, such that c R d, b R d′, and d S d′. R is
confluent up to S if R∗ has the diamond property up to S.

Note that the ordinary diamond property is equivalent to the diamond property
up to identity.

Definition 3.2.3 We say R transits S if R ⊆ S ⊆ R∗, where R1 ⊆ R2 is
defined by ∀xy.x R1 y ⇒ x R2 y.

3.3. α 55

Lemma 3.2.1 If R has the diamond property, then it is confluent.

Proof. (See, for example, [67].) By induction on the complexity of the diverging
steps, loading it by: converging steps have the same complexity as opposite
diverging steps. Here we express the complexity by the number of R-steps. The
following statement is proved by induction on the diverging steps:

x Rn y ∧ x Rm z ⇒ ∃u.y Rm u ∧ z Rn u

Lemma 3.2.2 If R transits S and S has the diamond property, then R is con-
fluent.

Proof. By monotonicity (if R ⊆ R′, then R∗ ⊆ R′∗), idempotence (R∗∗ = R∗)
of ∗, and the first assumption, we have R∗ ⊆ S∗ ⊆ R∗. We conclude from the
previous lemma and the second assumption.

3.3 α

We present three distinct definitions of α-equivalence for the λ-calculus known
from the literature, in historical order. We then compare these notions, present
our adaptations of each of them to the λ-calculus, and prove them to be equiv-
alent. For this the existence of fresh variables is required:

Axiom 3.2 (Fresh variable) For any given (finite) stack of variables, there
is a variable not among these, i.e. a fresh variable, ∀X.∃x.x 6∈ X.

3.3.1 λα

Church

Our first notion of α-equivalence is the usual one based on Church’s Postulate I
for the λ-calculus [22], which reads (page 355):

If J is true, if L is well-formed, if all the occurrences of the variable x in
L are occurrences as a bound variable, and if the variable y does not occur
in L, then K, the result of substituting Sx

y L| for a particular occurrence of
L in J, is also true.

where SX
Y U| represents the formula which results when we operate on the formula

U by replacing X by Y throughout, where Y may be any symbol or formula but
X must be a single symbol, not a combination of symbols (page 350 of [22]).

Due to Curry, Postulate I is nowadays known as the α-conversion rule. An α-
conversion step is obtained from the α-conversion rule by allowing its application
to any subterm of a term. An α-conversion consists of a sequence of α-conversion
steps. Finally, a term is said to be α-equivalent to another one, if there exists
an α-conversion relating the former to the latter.

56 CHAPTER 3. λ

An advantage of this definition is that it is operational and fine-grained; each
α-conversion step itself is easy to understand since it does only little work. A
disadvantage of this fine-grainedness is that it is at first sight not clear whether
structural properties such as symmetry and decidability of α-conversion hold.
Moreover, it needs the Fresh variable axiom due to the Extra-hand principle: if
both your hands are full, you need a third hand in order to swap their contents.4

Example 3.3.1 The terms λx.λy.xy and λy.λx.yx are α-equivalent. However,
both α-conversion steps replacing x by y and vice versa are forbidden. Hence,
an α-conversion needs to introduce a third, fresh, variable, say z, first:

λx.λy.xy →α λz.λy.zy →α λz.λx.zx→α λy.λx.yx

where we have underlined in each term the variables that are converted in the
subsequent step.

Schroer

In order to prove symmetry and decidability of α-equivalence as defined in the
previous paragraph, one may try to find a strategy for α-conversion such that
the number of α-conversion steps needed in a conversion from s to t is bounded
by, say, the sum of the sizes of s and t. An obvious way to bound the number
of steps is by restricting α-conversion by:

Never rename twice.

However, from Example 3.3.1 we immediately see that this is too strict a re-
striction; the leftmost λ-abstraction needs to be renamed twice. Hence renaming
once is not enough, but, as the example suggests our assumption may be re-
placed by:

Never rename thrice.

Such an idea appears at least as early as Schoer’s PhD thesis, see page 384 of
his [62]:

Scholium 3.44. The proof of Theorem 3.44 below

has as its germ the following procedure to determine of

A,B ε Wocc whether or not A adj B: Let Z1, Z2,... be

singleton expressions of the alphabetically earliest

variables not occurring at all in either of A,B ,

enumerated without repetitions. In each of A,B , change

quantifiers from left to right, replacing the given variables

by the Z’s in order. There will result A’,B’ such that

A adj A’ . B adj B’ , and such that A adj B . ≡ . A’ = B’ .

where adj is his notion of α-equivalence and Theorem 3.44 states decidability.
4There is the well-known way to swap the contents of two registers in situ by perform-

ing three exclusive-or’s (xor); in Java: r1 ^= r2; r2 ^= r1; r1 ^= r2 where op1 ^= op2 is
equivalent to op1 = op1 ^ op2 and ^ is bitwise xor. Here, we will not assume the structure
needed for this, e.g. a Boolean ring on the variables.

3.3. α 57

Example 3.3.2 Applied to Example 3.3.1 Schroer’s procedure yields:

λx.λy.xy →α λz1.λy.z1y →α λz1.λz2.z1z2 ←α λz1.λx.z1x←α λy.λx.yx

Of course, to prove that this is an α-conversion one needs to prove that the last
two backward α-steps are forward α-steps as well; they are.

Symmetry of a definition based on Schroer’s procedure is trivial, decidability and
reflexivity are also not too difficult, but now transitivity is not so simple because
of the choosing of the alphabetically earliest variables not occurring
at all in either of A,B which may differ for A,B and B,C, when proving A
adj C.5 Also note that the procedure is not very parsimonious; it allocates as
many fresh variables as there are λ-abstractions (quantifiers) in a term, where a
single one (one extra hand) would suffice, as noted, e.g., by [27]. This fact may
be seen by proceeding in a top-down fashion, the only interesting case being
abstraction:

(abstraction) Suppose s = λx.s′ and t = λy.t′, such that the variables ‘above’
them have already been made identical. We proceed by first converting
every x in s into z. Next, every y is converted into x and finally, every
z is converted into y, resulting in, say, ŝ. Now ŝ and t have the same
initial binder, and we proceed on the respective subterms. To prove that
this procedure is correct, one uses that y does not occur free in s′ since
otherwise s and t would not be α-equivalent. Symmetrically, x does not
occur free in t′.

Example 3.3.3 α-converting, say, λx1x2x3.x1x2x3 into λx2x3x1.x2x3x1 using
this procedure proceeds as follows. First, we swap, using a fresh variable y, x1

with x2 yielding λx2x1x3.x2x1x3. Hence the first variable has been appropriately
renamed, and we may proceed on the respective subterms. In order to α-convert
λx1x3.x2x1x3 into λx3x1.x2x3x1, we swap, using the same y, x1 and x3 in the
former yielding the latter and we are done (formally one needs to continue with
twice the subterm λx1.x2x3x1, but nothing ‘happens’ anymore.)

Kahrs

Both the problem of showing transitivity and the need for the Fresh variable
axiom can be overcome by making renaming implicit. That is, instead of explic-
itly relating terms by explicitly renaming variables, one may set up an (implicit)
correspondence between their respective variables. For instance, the two terms
in Example 3.3.1 are shown α-equivalent by letting x and y in the first cor-
respond to y and x in the second. However, the correspondence needs more
structure than just a bijection between the sets of variables in both terms.

Example 3.3.4 The terms λx.xλy.y and λx.xλx.x are α-equivalent, but this
cannot be shown by means of a bijection between variables.

5Compared to Church’s α-conversion Schroer’s procedure needs variables to be alphabeti-
cally sorted. Here, we will not assume the structure needed for this (e.g. a well-order) on the
collection of variables.

58 CHAPTER 3. λ

ε ` x = x Γ, x = y ` x = y

v 6= x y 6= z Γ ` v = z

Γ, x = y ` v = z

x, y ∈ Var Γ ` x = y

Γ ` x ≡ y
F ∈ Sym

Γ ` F ≡ F

Γ, x = y ` t ≡ u

Γ ` [x]t ≡ [y]u

Γ ` A ≡ C Γ ` B ≡ D

Γ ` AB ≡ CD

Figure 3.2: Proof rules for α-congruence [43].

To define α-equivalence inductively, one has to set up a correspondence between
stacks of variables. Such an idea appears in Kahrs’ paper [43]; to quote from it:

We also define a notion of α-congruence for our terms. It is the usual one,
but we shall use it in a slightly more general setting, based on proof rules.

Definition 11. Sentences are of the form Γ ` t ≡ u or Γ ` x = y, where
x and y are variables, t and u are terms of the same type and arity, and
Γ is an environment. An environment is a list x1 = y1, · · · , xn = yn

of equations between variables. We write ε for the empty environment
(n = 0). A sentence holds, if it can be derived by the proof rules in
figure 2.

where we present the proof rules of ‘figure 2’ in Figure 3.2. It is to be understood
that two terms A and B are α-equivalent, if ε ` A ≡ B can be derived by the
proof rules in Figure 3.2. One easily proves by induction that α-congruence
defined in this way, has all the desired structural properties, e.g. transitivity
and decidability. But, of course, it is less clear how to decompose α-equivalence
into ‘atomic’ renaming steps.

3.3.2 λα

We show that each of the three definitions of α-equivalence can be straightfor-
wardly extended from λ-terms to λ-terms. In each case, we highlight the key
aspect of our formalisation in Coq. We start with some necessary technicalities.
Apart from the ‘renaming of boxes’ (Definition 3.3.2), these may be skipped by
the experienced reader who is referred to page 61.

We shall need to test whether a variable is fresh with respect to a term.

Definition 3.3.1 The relation x ∈ M , saying whether x occurs in M (free or
bound) is defined by:

x ∈ y, if x = y
x ∈ λy.M , if x = y or x ∈M
x ∈ λy.M , if x = y or x ∈M
x ∈MN , if x ∈M or x ∈ N

We say x is fresh for M if x 6∈M .

3.3. α 59

As usual, α-conversion is defined using a renaming function to identify ex-
pressions that differ only in the names assigned to their bound variables. For
λ-terms this means the renaming of boxes (viz. Figure 3.1). Renaming the

(outer) x-box in λx.M into a y-box, means to replace λx by λy and to re-
place all matching occurrences of variables x and end-of-scopes λx in M by y
and λy respectively. The first argument of renaming (x:=y) is fixed (as usual).
Matching is performed using a stack (the second argument of renaming, ini-
tially empty) to record the binders encountered while descending recursively; it
is pushed upon when passing an abstraction, and popped from when meeting
an end-of-scope:

Definition 3.3.2 Renaming the outer x-box in λx.M into a y-box, λy.M [x:=y],
is defined using M [x:=y] = M [x:=y,2], where M [x:=y, Z] is defined by the fol-
lowing recursive equations:

z[x:=y, Z] = z, if z ∈ Z or z 6= x (1)
z[x:=y, Z] = y, if z 6∈ Z and z = x (2)

(λz.M)[x:=y, Z] = λz.M [x:=y, zZ] (3)
(λz.M)[x:=y,2] = λy.M , if x = z (4)
(λz.M)[x:=y,2] = λz.M , if x 6= z (5)

(λz.M)[x:=y, z′Z] = λz.M [x:=y, Z], if z = z′ (6)
(λz.M)[x:=y, z′Z] = (λz.M)[x:=y, Z], if z 6= z′ (7)
(M1M2)[x:=y, Z] = M1[x:=y, Z]M2[x:=y, Z] (8)

In clause (5) λz implicitly closes the scope of x; therefore, in the result, we can
think of λz as implicitly closing the scope of y.

Example 3.3.5 (x λx.x)(λx.(x λx.x))[x:=y] = (y λy.x)λx.(x λx.y)

In case of ordinary λ-terms the stack Z only grows during renaming, rendering
the variable to be renamed inaccessible once it is abstracted from again:

Lemma 3.3.1 If M is a λ-term, then (λx.M)[x:=y] = λx.M .

Proof. Note that (λx.M)[x:=y] = λx.M [x:=y, x]. One proves by induction on
the λ-term M , that if x occurs in X, then M [x:=y,X] = M .

The following two properties of renaming will be needed in the proof of
commutation of β-reduction and α-equivalence. The first states commutativity
of renaming:

Lemma 3.3.2 M [x:=z,XyY][y:=z′, X] = M [y:=z′, X][x:=z,Xz′Y], if z fresh
for y,M,X and z′ fresh for M,X.

Secondly, renaming x into z, followed by renaming z into z′, amounts to the
same as directly renaming x into z′:

Lemma 3.3.3 M [x:=z,X][z:=z′, X] = M [x:=z′, X], if z 6∈M,X.

When we project β-reductions in the λ-calculus to β-reductions in the λ-calculus
(Section 3.4.4), we need to reason about the set of free variables of a term:

60 CHAPTER 3. λ

Definition 3.3.3 The set of free variables of a term M , FV(M), is defined as
FV(M,2), where FV(M,X) is defined by the following recursive equations.

FV(x,X) = {x} −X (1)
FV(λx.M,X) = FV(M,xX) (2)
FV(λx.M,2) = FV(M,2) (3)

FV(λx.M, x′X) = FV(M,X), if x = x′ (4)
FV(λx.M, x′X) = FV(λx.M,X), if x 6= x′ (5)

FV(MN,X) = FV(M,X) ∪ FV(N,X) (6)

Note that, in clause (5), λx implicitly closes the scope x′, which is therefore
popped from the stack of currently open scopes.

Remark 3.3.1 Note that if M is balanced under X we have FV(M,X) = ∅.
This implies that terms balanced under the empty stack are closed.

In the sequel it will sometimes be useful to forget about the binding structure
of terms. To that end, we map terms to first-order terms by simply forgetting
names (equivalently: mapping all names to a single one):

Definition 3.3.4 First we define a set T of first-order terms:

T ::= � | λT | λT | @TT

The skeleton [M]skel of an λ-term M is such a first-order term defined induc-
tively by:

[x]skel = �
[λx.M]skel = λ[M]skel
[λx.M]skel = λ[M]skel
[M1M2]skel = @[M1]skel[M2]skel

For instance, the proof of Lemma 3.4.20 proceeds by induction over the skeleton
of a term, using the fact that renaming preserves skeletons:

Lemma 3.3.4 [M [x:=y]]skel = [M]skel.

Unary contexts are used to express congruences.

Definition 3.3.5 Unary contexts are typed Λ→ Λand built from

[], C ◦ C ′, λx.[], λx.[],M [], []M

where C,C ′ are unary contexts. We write C[M] to denote the result of filling
the hole in C by term M ; (C ◦ C ′)[M] = C[C ′[M]].

Now that we have defined some technical preliminaries, we are ready to
extend the three notions of α-equivalence given in Subsection 3.3.1 to the λ-
calculus.

3.3. α 61

Church

The notion of α-conversion is extended to the λ-calculus.

Definition 3.3.6 The α-rule is λx.M → λy.M [x:=y] if y 6∈ M . Single-step
α-renaming, →α, is defined as the compatible closure of the α-rule:

(M,N) ∈ α
M →α N

M →α N

λx.M →α λx.N

M →α N

λx.M →α λx.N

M →α M
′

MN →α M
′N

N →α N
′

MN →α MN ′

The relation =c
α, which we define as ↔∗

α, i.e. the equivalence closure of →α, is
called α-conversion.

The clause dealing with λis just a compatibility clause, cf. 3.1.1. Definition
of [4], since at the time one comes across an λ, all the (renaming) work has
already been performed by its matching abstraction. Due to Lemma 3.3.1, our
definitions of α-step and α-conversion coincide with that of [4] in the case of
λ-terms.

Schroer

Our definition of α-equivalence à la Schroer makes use of an auxiliary stack Z
which records the variables chosen thusfar for renaming.

Definition 3.3.7 α-equivalence à la Schroer, M =s
α N , is defined as ∃Z.M =Z

α

N , where M =Z
α N is defined by:

M [x:=z] =Z
α N [y:=z] z 6∈M,N,Z

λx.M =zZ
α λy.N

x =Z
α x

M =Z
α N

λx.M =Z
α λx.N

M =Z
α M ′ N =Z

α N ′

MN =Z
α M ′N ′

Again all the work is performed in the clause for abstraction. Compared to
α-conversion =c

α above, the variable chosen for renaming is now much fresher:
not only must it be fresh for M , but also for N and for the variables Z chosen
thusfar. The clause dealing with λis just a compatibility clause, as above.

Kahrs

Our definition of α-equivalence à la Kahrs reads as follows. It makes use of two
auxiliary stacks (both initially empty), to set up the correspondence between
the variables in M and N mentioned above.

62 CHAPTER 3. λ

Definition 3.3.8 We define M =k
α N , if 〈2〉M =k

α 〈2〉N , where for stacks of
variables X and Y , 〈X〉M =k

α 〈Y 〉N is inductively defined as follows:

〈2〉x =k
α 〈2〉x

〈xX〉x =k
α 〈yY 〉y, if |X| = |Y |

〈x′X〉x =k
α 〈y′Y 〉y, if x′ 6= x, y′ 6= y, and 〈X〉x =k

α 〈Y 〉y
〈X〉λx.M =k

α 〈Y 〉λy.N , if 〈xX〉M =k
α 〈yY 〉N

〈2〉 λx.M =k
α 〈2〉 λx.N , if 〈2〉M =k

α 〈2〉N
〈xX〉 λx.M =k

α 〈yY 〉 λy.N , if 〈X〉M =k
α 〈Y 〉N

〈x′X〉 λx.M =k
α 〈y′Y 〉 λy.N , if x′ 6= x, y′ 6= y and 〈X〉 λx.M =k

α 〈Y 〉 λy.N
〈X〉M1M2 =k

α 〈Y 〉N1N2, if 〈X〉M1 =k
α 〈Y 〉N1 and 〈X〉M2 =k

α 〈Y 〉N2

where |X| denotes the length of stack X.

The variable, abstraction and application clauses in the definition above can
easily be seen to be corresponding to the clauses in Figure 3.2. The end-of-
scope clauses are analogous to the clauses for variables. Unique reading holds
up to α-equivalence:

Lemma 3.3.5 If 〈X〉M =k
α 〈Y 〉N , then

• M and N have the same skeleton: [M]skel = [N]skel.

• X and Y have the same length: |X| = |Y |.

• M and N have the same set of free variables: FV(M,X) = FV(N,Y).

As a consequence we have conservativity of α-equivalence over the λ-calculus
(Lemma 3.3.7). Note that the third end-of-scope clause of Definition 3.3.8 ex-
presses that ending the scope of some variable x automatically ends the scope
of the variables which were bound later than x. By conservativity of =k

α, this
clause can be omitted for scope-balanced terms. For balanced terms we can do
with only four clauses:

〈x〉x =k
α 〈y〉y

〈xX〉 λx.M =k
α 〈yY 〉 λy.N

〈X〉λx.M =k
α 〈Y 〉λy.N , if 〈xX〉M =k

α 〈yY 〉N
〈X〉M1M2 =k

α 〈Y 〉N1N2, if 〈X〉M1 =k
α 〈Y 〉N1 and 〈X〉M2 =k

α 〈Y 〉N2

If 〈X〉M =k
α 〈Y 〉N holds, then the pair of stacks (X,Y) can be seen as an update

on the identity relation (which obviously is a bijection) on variable names, the
result of which is a bijection between the ‘free’ variables of M and N . Indeed,
as stated by the following lemma, inserting the same variable on the bottom
of both stacks is irrelevant. This lemma is needed, e.g., to show that =k

α is a
congruence (abstraction case).

Lemma 3.3.6 〈X〉M =k
α 〈Y 〉N iff 〈Xz〉M =k

α 〈Y z〉N

3.3. α 63

Proof. The proof is by induction on the derivations. The only interesting cases
are the variable and end-of-scope cases, which are similar. So, suppose M = x
and N = y.

(⇐) By induction on stack X, and inversion6 of the instances of 〈Xz〉x =k
α

〈Y z〉y.

– If X = 2, then Y = 2 (by Lemma 3.3.5), and 〈2〉x =k
α 〈2〉y follows,

since either x = z = y or x 6= z 6= y.

– IfX = x′X ′, then Y = y′Y ′ (by Lemma 3.3.5). Inverting 〈x′X ′z〉x =k
α

〈y′Y ′z〉y gives two possibilities. Either x = x′, y = y′ and |X ′z| =
|Y ′z|, then 〈x′X ′〉x =k

α 〈y′Y ′〉y follows by application of the second
clause; or x 6= x′ and y 6= y′, then our goal follows by application of
the third clause of =k

α and the induction hypothesis.

(⇒) – Case 〈2〉x =k
α 〈2〉x. If x = z, then we conclude by application of

the second defining clause of =k
α. If x 6= z, then 〈z〉x =k

α 〈z〉x follows
from the third clause of =k

α and the assumption.

– Case 〈xX〉x =k
α 〈yY 〉y with |X| = |Y |; so |Xz| = |Y z| and 〈xXz〉x =k

α

〈yY z〉y follows from application of the second clause of =k
α.

– Case 〈x′X〉x =k
α 〈y′Y 〉y, where x 6= x′ and y 6= y′; then 〈x′Xz〉x =k

α

〈y′Y z〉y follows from application of the third rule of =k
α and the

induction hypothesis.

Results on α-equivalences

Theorem 3.3.1 All three notions of α-equivalence are equivalent:

=c
α = =s

α = =k
α

Note that to prove that λ-terms which are α-equivalent à la Kahrs are α-
equivalent according to the other two definitions, one essentially uses the Fresh
variable axiom. (It is not needed in the other direction.)

Theorem 3.3.2 α-equivalence is a congruent equivalence relation.

Proof. Taking the inductive definition of Kahrs, the results are all proven by
straightforward inductions on the definition, loading them appropriately with
stacks.

Lemma 3.3.7 α-equivalence preserves λ-terms, scope-balancedness, balanced-
ness, and λ-terms.

6Inverting a statement P (t), where P is an inductive predicate, means to derive for each
possible constructor ci : A1 → · · · → An → P (t) all the necessary conditions A1, . . . , An that
should hold for the instance P (t) to be proved by ci.

64 CHAPTER 3. λ

Preservation of λ-terms implies that also for the ordinary λ-calculus, the three
notions of α-equivalence are equivalent (in the way we have formalised them),
yielding as far as we know the first formal such results, e.g. of transitivity and
decidability (only assuming decidability of equality of names).

Remark 3.3.2 Proving the three definitions of α-equivalence to be equivalent
served mainly as sanity check for our extension of α-equivalence from λ- to
λ-calculus. We do not (cl)aim to have covered all definitions of α-equivalence

in the literature, see e.g. [68], but, based on the above, we strongly believe that
the notion we have captured is the proper one. During proof development, (the
generalisation of) Kahrs’ definition was by far the easiest to work with, because
of it being defined inductively. Note that his definition ‘works’ directly for the
infinitary λ-calculus as well (defined, say, analogously to Chapter 12 of [67]).

3.4 β

We extend β-reduction to λ-terms, and show it to be confluent without renam-
ing. Confluence of β-reduction up to α-equivalence is obtained as a corollary,
by defining suitable projections and liftings of their respective reductions.

3.4.1 λβ

In Chapter 3 of [4], the binary relation →β on Λ is defined as the compatible
closure of the notion of reduction β = {((λx.M)N,M [x:=N])|M,N ∈ Λ}. The
substitution M [x:=N] in the right-hand side of β is the naive one, i.e. up to
α-congruence which is denoted by ≡α. The naive approach is in turn justified by
showing α-congruence to be a congruence for Curry’s definition of substitution:

Let M , N ∈ Λ. Then M [x:=N] is defined inductively as follows (even if
the variable convention is not observed).

M M [x:=N]

x N
y 6≡ x y
M1M2 M1[x:=N]M2[x:=N]
λx.M1 λx.M1

λy.M1, y 6≡ x λz.M1[y:=z][x:=N]
where z ≡ y if x 6∈ FV(M1) or y 6∈ FV(N),
else z is the first variable in the sequence
v0, v1, v2, . . . not in M1 or N .

Our notion of substitution on Λ differs from Curry’s in several ways.7

The first difference is ‘under the hood’. Curry’s definition is not a recursive
one (to Coq) because of its final clause. Instead, we base our recursive definition
on the skeleton [M]skel (Definition 3.3.4).

The second difference is more important and serves to ‘make α-congruence
explicit’. The point is that the last clause in Curry’s definition of substitution

7Apart from that we do not assume variables to be ordered, as mentioned above.

3.4. β 65

is neither perspicuous nor technically convenient. On the one hand, it encodes
several cases at once relying on the ‘coding trick’ thatM [y:=y] equalsM , in case
x 6∈ FV(M1) or y 6∈ FV(N). On the other hand, renaming of bound variables
is not incorporated in a modular way. Our definition addresses both issues by
performing renaming first on λy.M1 in case there is the threat of confusion of
variables. The definition is recursive (to Coq) if one decrees ‘threat of confusion
of variables’ larger than ‘no confusion’.

Definition 3.4.1 Substitution on λ-terms is defined as above, except for the
clauses of λ-abstraction, which are to be replaced by:

λy.M1 λy.M1[x:=N]
if x 6= y and y 6∈ FV(N)

λy.M1 (λz.M1[y:=z])[x:=N]
otherwise, with z such that λy.M1 =α λz.M1[y:=z],
x 6= z, and z 6∈ FV(N).

Despite the apparent differences, this definition is seen (proven) to be more
liberal than Curry’s (it does not need the variables to be linearly ordered).

Remark 3.4.1 The proviso that names are ordered linearly only serves to make
Curry’s definition definite. However, the definiteness assumption doesn’t cause
β-reduction to be definite. That is, different β-reductions possibly result in α-
different normal forms, as in the following example from [36]; abbreviate M =
(λx.(λy.λx.xy)x)y:

M →β (λx.λz.zx)y →β λz.zy
M →β (λy.λx.xy)y →β λx.xy

Thus, the definiteness of Curry’s definition still gives an arbitrary choice. Even
stronger, as no definite α-renaming scheme would cause β-reduction to be def-
inite, we don’t assume definiteness. Of course, for implementation purposes
often a choice function is needed.

3.4.2 λβ

We present the definition of β-reduction and the salient points of its proof of
confluence. Compared to the ordinary λ-calculus, the β-rule must now take
care of an arbitrary number of λs which are ‘inbetween’ the application and the
abstraction. In such cases, the scopes of the λs are extruded in a minimal way so
as to contain the scope of the abstraction, after which β-reduction proceeds as
usual (see Figure 3.3, where it is irrelevant where scopes are in N). In order to
perform all these operations in one go, our notion of substitution as employed
by β-reduction has three arguments, of which the second corresponds to the
usual one.

66 CHAPTER 3. λ

λ

@

λ

@

x

@ @

@

@

@

@

@

@x

x

x

N N

x

x

x

N

x x

N

N

x

Figure 3.3: β-reduction: scope extrusion, rewiring and x-box removal, and repli-
cation.

Definition 3.4.2 The β-rule is (λX.λx.M)N →M [X,x:=N,2]. The relation
→β is the compatible closure of the β-rule:

(M,N) ∈ β
M →β N

M →β N

λx.M →β λx.N

M →β N

λx.M →β λx.N

M →β M
′

MN →β M
′N

N →β N
′

MN →β MN ′

The third argument of substitution, which initially is the empty stack, serves
to determine whether an occurrence of x in M matches with the x to be sub-
stituted for. In particular, during substitution this stack is pushed upon when
encountering an abstraction, and popped from when meeting an end-of-scope:

Definition 3.4.3 Substitution M [X,x:=N,Y] is defined by:

y[X,x:=N,Y] = y, if y ∈ Y (1)
y[X,x:=N,Y] = λY.N , if y 6∈ Y , x = y (2)
y[X,x:=N,Y] = λY. λX.y, if y 6∈ Y , x 6= y (3)

(λy.M)[X,x:=N,Y] = λy.M [X,x:=N, yY] (4)
(λy.M)[X,x:=N, JyY ′] = λy.M [X,x:=N,Y ′], if y 6∈ J (5)

(λy.M)[X,x:=N,Y] = λY. λX.M , if y 6∈ Y , x = y (6)
(λy.M)[X,x:=N,Y] = λY. λX. λy.M , if y 6∈ Y , x 6= y (7)

(M1M2)[X,x:=N,Y] = M1[X,x:=N,Y]M2[X,x:=N,Y] (8)

Capture of free variables in the argument N is avoided by closing all open scopes
Y , as expressed in clause (2). In case λX is to be put, the open scopes Y have
to be closed first (3, 6, 7), as will be explained below. Important clauses are
(6) and (7), which explain the end-of-scope. Basically they say that if we have
reached an end-of-scope, which matches (6) or jumps (7) the variable x to be
subtituted for, then we can just throw the argument N away; this is safe since
we know that x does not occur free in M .

To explain clauses (5, 6, 7), consider an initial call:

(λy.M)[X,x:=N,2]

3.4. β 67

Firstly, note that jumps within the body M remain untouched. To see this,
imagine a recursive call:

(λy.M ′)[X,x:=N, JyY ′]

on a subterm λy.M ′ of M , and suppose y 6∈ J . According to our jump seman-
tics, λy implicitly ends the scopes J ; this implicitness is kept in the resulting
λy.M ′[X,x:=N,Y ′] (clause (5)).

Secondly, in order for minimal scope extrusion of the X (originating from
a β-redex) to be safe, the opened scopes J in (λy.M ′)[X,x:=N, J] have to
be closed explicitly in case y 6∈ J , i.e. in case λy ends the scope of some λy
outside the body M . In that case, jump semantics prescribes that the scope of
the substitution variable x is closed either explicitly (x = y, (6)) or implicitly
(x 6= y, (7)) by λy and we want to put the λX. Now if we do not put the λJ
first, there is the threat that X explicitly closes J , which is unintended. This
point is demonstrated by the following example:

Example 3.4.1 Consider the term P = (λz.λy.(λx. λy.M)N)L and note that
both scopes of the abstractions λx and λy are closed in front of M , as λy implic-
itly closes λx. Therefore both N and L vanish when reducing P , as shown by the
following two reduction paths from P . Substitutions are written out explicitly;
the numbers stacked above ‘=’ refer to the clauses in Definition 3.4.3. Assume
x 6= y. The sequence starting with contraction of the inner redex of P runs as
follows:

P →β (λz.λy.(λy.M)[2, x:=N,2])L
7= (λz.λy. λy.M)L
→β (λy.M)[z, y:=L,2]

6= λz.M

The sequence starting with contraction of the outer redex of P runs as follows:

P →β ((λx. λy.M)N)[z, y:=L,2]
8,4
= (λx.(λy.M)[z, y:=L, x])N [z, y:=L,2] = P ′

6= (λx. λx. λz.M)N [z, y:=L,2]
→β (λx. λz.M)[2, x:=N [z, y:=L,2],2]

6= λz.M

Focus on the underlined substitution in the second sequence:

(λy.M)[z, y:=L, x] = λx. λz.M

and note that it would be wrong to forget that λy implicitly closes the λx in
front, and put (λy.M)[z, y:=L, x]

wrong!
= λz.M . That this is wrong shows up if,

68 CHAPTER 3. λ

by coincidence, x = z. We would then get:

P ′ wrong!
= (λx. λz.M)N [z, y:=L,2]
→β (λz.M)[2, x:=N [z, y:=L,2],2]

6= M(assuming x = z)

and confluence would be broken: λz.M 6= M .

Remark 3.4.2 The defining clauses (5, 6, 7) for (λy.M)[X,x:=N,Y] are ex-
haustive, because if y ∈ Y , then Y = JyY ′ for some J, Y ′ such that y 6∈ J . The
implementation actually uses a nested recursion on Y with an auxiliary stack
J (initially empty) recording the opening scopes in Y that are jumped (and
closed) by λy (thus, the invariant is: y 6∈ J). Define (λy.M)[X,x:=N,Y] =
(λy.M)[X,x:=N,Y](2), where (λy.M)[X,x:=N,Y](J) is defined as follows.

(λy.M)[X,x:=N,2](J) = λJ. λX.M , if x = y (J1)
(λy.M)[X,x:=N,2](J) = λJ. λX. λy.M , if x 6= y (J2)

(λy.M)[X,x:=N, zY](J) = λy.M [X,x:=N,Y], if y = z (J3)
(λy.M)[X,x:=N, zY](J) = (λy.M)[X,x:=N,Y](Jz), if y 6= z (J4)

Note that z is inserted at the bottom of J in clause (J4), to maintain the original
order of scopes. The clauses for λy.M in Definition 3.4.3 are derived from these
J-clauses.

Confluence of λ-calculus

We discuss our formalised proof of confluence of →β . Our proof strategy is the
usual Tait and Martin-Löf proof [4], hence is essentially based on the so-called
substitution lemma on page 27 of [4]:

2.1.16. Substitution Lemma. If x 6≡ y and x 6∈ FV(L), then

M [x:=N][y:=L] ≡ M [y:=L]
h

x:=N [y:=L]
i

which arises when computing the critical pair for the λ-term (λy.(λx.M)N)L.
Interestingly, in our case the substitution lemma splits into three lemmas: the
closed substitution lemmas arise when the scope of y is ended (either explicitly
or implicitly) in front of the λx; the open substitution lemma is the usual one,
enriched with scoping information. We will comment on this below. Otherwise,
the proof is entirely standard, (inductively) introducing multi-steps, proving
that multi-steps have the diamond property and that β-reduction transits multi-
steps.

What is interesting to note is that no α-conversion is needed. One might say
that this is no surprise, since explicitly dealing with end-of-scopes constitutes
a renaming mechanism in itself. Still, it is in our opinion surprising that the
minimal scope-extrusion mechanism works nicely on non-balanced terms (cf. the
discussion of confluence of MELL proof net reduction in [46]).

3.4. β 69

Adapting the substitution lemma to our calculus, we end up simplifying
expressions of the shape (λX.M)[Z, x:=N,Y]. First, to get an understanding
of what is going on, consider the case of scope-balanced terms. Suppose that
λX.M is scope-balanced under Y xW . Then we know, since end-of-scopes X

‘balance’ (a part of) Y xW , that X and Y are overlapping, that is, either:

• Z exceeds Y , X = Y xX ′, then (λX.M)[Z, x:=N,Y] = λY ZX ′.M ; or:

• X is part of Y , Y = XY ′, then (λX.M)[Z, x:=N,Y] = λX.M [Z, x:=N,Y ′].

Jump terms demand extra care and we need a different (more general) notion
of comparison between opening scopes Y and closing scopes X. Consider, once
more, (λX.M)[Z, x:=N,Y]. We distinguish three cases.

1. End-of-scopes X close more scopes than opened by Y , thus X includes the
scope of the substitution variable x, which is closed either

(a) explicitly; or
(b) implicitly.

2. End-of-scopes X close some (possible all) of the open scopes Y .

To formalise this case distinction, we define scope subtraction. Subtraction Y−X
results in a pair of stacks, of which the first is either negative (item 1) or positive
(the complementary case, item 2). The second stack of the pair computed by
Y − X is a stack J used only if the first stack is negative, say −zX ′. In that
case the substitution variable x is either matched (item 1a) or jumped (item 1b)
by z, as will be shown below.

Definition 3.4.4 Define Y −X = Y −2 X, where X −J Y is defined by the
following clauses.

Y −J 2 = (Y, J) (1)
2 −J xX = (−xX, J) (2)
yY −J xX = Y −2 X, if x = y (3)
yY −J xX = Y −Jy xX, if x 6= y (4)

The auxiliary stack J (initially empty) consists of the scopes in Y jumped by
the current top of X. This can be inferred by clause (4), where y is inserted at
the bottom of J , to maintain the original order of scopes. The argument J is
reset to 2 in case the top of X matches the top of Y (clause (3)). It’s easy to
see that if Y −X is positive, then J is the empty stack.

Note that the idea of an auxiliary stack J is similar to the idea in Re-
mark 3.4.2, only in a more general form to cope with λX instead of λy. Indeed,
clauses (5, 6, 7) of Definition 3.4.3 can also be defined using scope-subtraction:

(λy.M)[Z, x:=N,Y] =

 λy.M [Z, x:=N,Y ′], if Y − y = (Y ′,2)
λY. λZ.M , if Y − y = (−y, Y), x = y
λY. λZ. λy.M , if Y − y = (−y, Y), x 6= y

To see the equivalence, note that:

70 CHAPTER 3. λ

• if y ∈ Y , then Y = JyY ′ for some J, Y ′ such that y 6∈ J , and JyY ′ − y =
yY ′ −J y = (Y ′,2);

• if y 6∈ Y , then Y − y = (−y, Y).

If X and Y are overlapping, clause (4) in Definition 3.4.4 never applies
(cf. the case distinction for scope-balanced terms on page 69):

Lemma 3.4.1

Y1Y2 − Y1 = (Y2,2) (Y ≥ X,Y = Y1Y2, X = Y1)
X1 −X1xX2 = (−xX2,2) (Y < X, Y = X1, X = X1xX2)

For arbitrary stacks X,Y , we can decide whether the outcome of subtracting
X from Y is positive or negative:

Lemma 3.4.2 The result Y −X of scope-subtracting X from Y is either

(Y2,2), and then Y = Y1Y2; or
(−zX2, J), and then X = X1zX2.

Proof. By appropriately loaded induction over Y . We refer to our Coq formali-
sation for more details.

Now we are ready to simplify expressions (λX.M)[Z, x:=N,Y] based on the
case distinction mentioned above.

Lemma 3.4.3 If Y −X1zX2 = (−zX2, J) and x = z, then

(λX1zX2.M)[Z, x:=N,Y] = λX1JZ. λX2.M

Lemma 3.4.4 If Y −X1zX2 = (−zX2, J) and x 6= z, then

(λX1zX2.M)[Z, x:=N,Y] = λX1JZzX2.M

Lemma 3.4.5 If Y1Y2 −X = (Y2,2), then

(λX.M)[Z, x:=N,Y1Y2] = λX.M [Z, x:=N,Y2]

Let us now present the substitution lemmas. We use the notation S− to
denote the reversal of a stack S, i.e. if S = x0 . . . xn, then S− = xn . . . x0. In
general, we want to compute the critical pair(s) from:

P = (λZ.λy.λY −.(λX.λx.λW−.M)N)L

Inside-out reduction, P →2
β Pin,out, gives:

Pin,out = λY −.λW−.M [X,x:=N,W][Z, y:=L,WY]

First β-reducing the outer redex, gives:

Pout = λY −.(λX.λx.λW−.M)[Z, y:=L, Y]︸ ︷︷ ︸
Q

N [Z, y:=L, Y]

We distinguish three cases for Pout →β Pout,in:

3.4. β 71

• X = X1zX2, Y −X = (−zX2, J) and y = z, then, by Lemma 3.4.3:

Q = λX1JZX2.λx.λW
−.M ; and we get:

Pout,in = λY −.λW−.M [X1JZX2, x:=N [Z, y:=L, Y],W].

Then, Pin,out = Pout,in by Lemma 3.4.6.

• X = X1zX2, Y −X = (−zX2, J) and y 6= z, then by Lemma 3.4.4:

Q = λX1JZzX2.λx.λW
−.M ; and we get:

Pout,in = λY −.λW−.M [X1JZzX2, x:=N [Z, y:=L, Y],W].

Then, Pin,out = Pout,in by Lemma 3.4.7.

• Y = Y1Y2 and Y −X = (Y2,2); then, by Lemma 3.4.5:

Q = λX.λx.λW−.M [Z, y:=L,WxY2]; and we get:
Pout,in = λY −.λW−.M [Z, y:=L,WxY2][X,x:=N [Z, y:=L, Y1Y2],W].

Then, Pin,out = Pout,in by Lemma 3.4.8.

The closed substitution lemmas arise when the scope of y is ended by some
(possibly implicit) λy in front of the λx, e.g. in (λy.(λy.λx.M)N)L.

Example 3.4.2 As an illustration, we compute the critical pair arising from
P = (λy.(λy.λx.M)N)L. If we start with the inner redex, we get:

P →β (λy.M [y, x:=N,2])L
→β M [y, x:=N,2][2, y:=L,2]

Performing the outer redex first:

P →β ((λy.λx.M)N)[2, y:=L,2]
= (λy.λx.M)[2, y:=L,2]N [2, y:=L,2]
= (λx.M)N [2, y:=L,2]
→β M [2, x:=N [2, y:=L,2],2]

Note that the substitution for y in M has disappeared from the right-hand side,
corresponding to the erasing effect of the λy in front of it. Indeed,

M [y, x:=N,2][2, y:=L,2] = M [2, x:=N [2, y:=L,2],2]

follows from Lemma 3.4.6.

If the scope of the substitution variable y is ended explicitly by some λy in front
of the λx, the following lemma springs up.

Lemma 3.4.6 (Closed substitution lemma (match))

M [X1zX2, x:=N,W][Z, y:=L,WY]
= M [X1JZX2, x:=N [Z, y:=L, Y],W], if Y −X1zX2 = (−zX2, J), y = z

72 CHAPTER 3. λ

Remark 3.4.3 By the previous lemma and Lemma 3.4.1 we obtain:

M [X1yX2, x:=N,W][Z, y:=L,WX1]
= M [X1ZX2, x:=N [Z, y:=L,X1],W]

which is applicable when proving the multi-step substitution lemma for scope-
balanced terms.

If the scope of the substitution variable y is ended implicitly by some λz in front
of the λx, the following lemma springs up.

Lemma 3.4.7 (Closed substitution lemma (jump))

M [X1zX2, x:=N,W][Z, y:=L,WY]
= M [X1JZzX2, x:=N [Z, y:=L, Y],W], if Y −X1zX2 = (−zX2, J), y 6= z

The open substitution lemma arises when the scope of y is not ended by
some end-of-scope in front of the λx. Then we obtain the usual substitution
lemma, appropriately enriched with scoping information.

Lemma 3.4.8 (Open substitution lemma) If Y1Y2 −X = (Y2,2), then

M [X,x:=N,W][Z, y:=L,WY1Y2]
= M [Z, y:=L,WxY2][X,x:=N [Z, y:=L, Y1Y2],W]

Remark 3.4.4 By the previous lemma and Lemma 3.4.1 we obtain:

M [Y1, x:=N,W][Z, y:=L,WY1Y2]
= M [Z, y:=L,WxY2][Y1, x:=N [Z, y:=L, Y1Y2],W]

which is applicable when proving the multi-step substitution lemma for scope-
balanced terms.

We introduce multi-steps that contract all β-redexes in a given term simul-
taneously.

Definition 3.4.5 Multi-steps ◦−→ are defined by:

M1 ◦−→ N1 M2 ◦−→ N2

(λX.λx.M1)M2 ◦−→ N1[X,x:=N2,2]

x ◦−→ x

M1 ◦−→ N1 M2 ◦−→ N2

M1M2 ◦−→ N1N2

M ◦−→ N
λx.M ◦−→ λx.N

M ◦−→ N
λx.M ◦−→ λx.N

3.4. β 73

In a multi-step from M , multiple β-redexes in M may be contracted. In partic-
ular, β-redexes occurring in the parallel branches M1 and M2 of any application
subterm M1M2 of M , may be contracted ‘simultaneously’ (cf. the single ‘paral-
lel’ compatibility clause for application of ◦−→ to the two ‘sequential’ compati-
bility clauses for application of →β of Definition 3.4.2). All β-redexes occurring
nested inside the body M1 or argument M2 of a redex subterm M ′ of M , may
be contracted ‘at the same time’ as M ′ itself. (cf. the ‘nested’ β-redex inference
rule of ◦−→ to the β-redex axiom of →β .) Finally, note that the number of
β-redexes may be zero, i.e. M ◦−→M for any term. As it turns out, it is enough
to assume this for variables only (cf. the clause x ◦−→ x).

Remark 3.4.5 Note that the relation ◦−→ is not transitive. Contraction might
create redexes not yet present in the starting term. e.g. we have I3 ◦−→ I2 ◦−→ I,
but not I3 ◦−→ I.

The reason for the switch from single steps to multi-steps is that the former do
not have the diamond property whereas the latter do. This is because contrac-
tion of a β-redex may replicate other redexes. Hence, for a notion of reduction
extending β to possess the diamond property it must be ‘closed under repli-
cation’. Multi-steps are just the least extension of single steps fitting the bill.
At the technical level, closure under replication corresponds to the so-called
substitution lemma:

Lemma 3.4.9 (Multi-step substitution lemma)

M ◦−→M ′ ∧N ◦−→ N ′ ⇒M [Z, y:=N,Y] ◦−→M ′[Z, y:=N ′, Y]

Proof. By induction on M ◦−→ M ′. In case M = (λX.λx.M1)M2, the proof
obligation is:

(λX.λx.M1)[Z, y:=N,Y]M2[Z, y:=N,Y] ◦−→M ′
1[X,x:=M

′
2,2][Z, y:=N ′, Y]

where M1 ◦−→M ′
1, M2 ◦−→M ′

2 and N ◦−→ N ′. The proof proceeds distinguish-
ing cases in a similar way as on page 70, where we computed the general form of
critical pairs and application of the substitution lemmas 3.4.6, 3.4.7 and 3.4.8.

Lemma 3.4.10 (Multi-step diamond property) Multi-steps satisfy the di-
amond property.

Proof. By induction on the diverging steps. All cases are trivial, except for the
so-called coherence case when the starting term is a redex (λX.λx.M)N , and
at least one step is a β-step.

• If both are β-steps, the result follows from the induction hypothesis, using
the multi-step substitution lemma (Lemma 3.4.9).

• If only one of them is a β-step, then the results are M1[X,x:=N1,2]
and (λX.λx.M2)N2 respectively, for M ◦−→ Mi and N ◦−→ Ni. By the

74 CHAPTER 3. λ

induction hypothesis Mi ◦−→ M ′ and Ni ◦−→ N ′ for some M ′ and N ′.
Hence the result follows since

M1[X,x:=N1,2] ◦−→M ′[X,x:=N ′,2]

by the multi-step substitution lemma (Lemma 3.4.9), and

(λX.λx.M2)N2 ◦−→M ′[X,x:=N ′,2]

by definition of ◦−→.

Lemma 3.4.11 →β transits ◦−→.

Proof. By induction on the definitions of →β and ◦−→, respectively. The ◦−→ ⊆
→∗

β part follows from simulating inside-out developments of ◦−→. For this one
needs congruence of →∗

β : if M →∗
β N , then C[M]→∗

β C[N], which is proved by
induction on unary contexts C.

Theorem 3.4.1 (Confluence of →β) →β is confluent on Λ.

Proof. From Lemmas 3.2.2, 3.4.11 and 3.4.10.

3.4.3 α and β

We prove that α and β commute on scope-balanced terms, which is enough for
present purposes. We are confident that commutation of α and β holds for all λ-
terms, but leave this for future work. In particular, this would require more gen-
eral formulations (using scope subtraction) of the substitution/renaming lemmas
(Lemmas 3.4.16 and 3.4.17).

During the proof development, we experimented with all three α-equivalences
=c

α, =s
α, and =k

α. For the commutation lemma of →β and =α (Lemma 3.4.20),
we took =s

α for =α. We first present some lemmas used in the proof of that
lemma. If we rename the free occurrences of a variable x (and the match-
ing occurrences of λx) in α-equivalent terms M and N , the results are still
α-equivalent:

Lemma 3.4.12 M =Z
α N ⇒M [x:=z, Y] =Z

α N [x:=z, Y] if z fresh for M,N,Z.

Proof. By induction on M =Z
α N , using Lemma 3.3.2 in the abstraction case.

In renaming expressions M [x:=z] it is safe to replace z by a z′ just as fresh:

Lemma 3.4.13 M [x:=z] =Z
α N [y:=z]⇒M [x:=z′] =Z

α N [y:=z′], if z fresh for
M,N and z′ fresh for M,N,Z.

Proof. Let z 6= z′ (the statement trivially holds if z = z′), then z′ 6∈M [x:=z, Y]
and z′ 6∈ N [y:=z, Y]. By the previous lemma we obtain

M [x:=z, Y][z:=z′, Y] =Z
α N [y:=z, Y][z:=z′, Y]

Conclude by rewriting Lemma 3.3.3 twice.
The relation =Z

α depends on the ‘freshness’ of Z and on Z being sufficiently
long only:

3.4. β 75

Lemma 3.4.14 If |Z2| ≥ |Z1|, Z2 fresh for M,N,Z1, and all elements of Z2

are distinct, then: M =Z1
α N ⇒M =Z2

α N .

Proof. By induction over M =Z1
α N and Lemma 3.4.13.

Lemma 3.4.14 solves the difficulty of proving transitivity of =s
α mentioned

on page 57.

Lemma 3.4.15 The relation =s
α is transitive.

Proof. First prove that, for given Z, =Z
α is transitive (*). Then, given M =Z1

α

N =Z2
α P , choose Z3 of length max(|Z1|, |Z2|) fresh for Z1, Z2,M,N, P . Then,

by Lemma 3.4.14 we obtain M =Z3
α N =Z3

α P . Finally M =Z3
α P follows from

(*).
Next, we present the substitution/renaming lemmas:

Lemma 3.4.16 (Open substitution/renaming lemma)

M [X1, y:=N,X0][x:=z,X0X1X2]
= M [x:=z,X0yX2][X1, y:=N [x:=z,X1X2], X0]

if z fresh for y,M,X0.

Lemma 3.4.17 (Closed substitution/renaming lemma)

M [X1xX2, y:=N,X0][x:=z,X0X1]
= M [X1zX2, y:=N [x:=z,X1], X0]

Note that, for balanced terms, as we have that M [x:=y,X] = M [y, x:=y,X],
Lemmas 3.4.16 and 3.4.17 follow from Lemmas 3.4.6 and 3.4.8.

It is safe to rename in β-reductions:

Lemma 3.4.18 If z 6∈M and M is scope-balanced under Y xW , then M →β N
implies M [x:=z, Y]→β N [x:=z, Y].

Proof. Consider the case (λX.λx.M1)M2 →β M1[X,x:=M2,2]. Because of
the assumption 〈Y xW 〉(λX.λy.M1), either X exceeds Y , and then the closed
substitution/renaming lemma applies, or X is part of Y , and then the open
substitution/renaming lemma applies.

If λx.M and λy.M ′ are α-equivalent (so also the outer (x- resp. y-)boxes
have the same shape) and N and N ′ are α-equivalent, then the β-contractum
of (λX.λx.M)N is α-equivalent to the β-contractum of (λX.λy.M ′)N ′:

Lemma 3.4.19

M [x:=z, Y] =Z1
α M ′[y:=z, Y] ∧N =Z2

α N ′

⇒ ∃Z3.M [X,x:=N,Y] =Z3
α M ′[X, y:=N ′, Y]

if Z1 fresh for X,Y, Z2,M,M ′, N,N ′, and z fresh for M,M ′.

76 CHAPTER 3. λ

On scope-balanced terms, β-reduction and α-equivalence commute (Schema
E in Figure 3.4). Here, we take =s

α for =α.

Lemma 3.4.20 If 〈X〉M , M →β N , and M =Z
α M ′, then there exists a term

N ′ and a stack Z ′ such that M ′ →β N
′ and N =Z′

α N ′.

Proof. By induction on the skeleton of M . We show some interesting cases.
Recall that renaming doesn’t alter the skeleton of a term and that scope-
balancedness is closed under =α.

• Case λx.M0 →β λx.N0. By inverting λx.M0 =Z
α M ′, we obtain M ′ =

λy.M ′
0 and Z = zZ0 such thatM0[x:=z] =Z0

α M ′
0[y:=z] for z 6∈M0,M

′
0, Z0.

By Lemma 3.4.18, we have M0[x:=z] →β N0[x:=z]. Then, by the induc-
tion hypothesis, there exist P and Z ′0 such that M ′

0[y:=z] →β P and
N0[x:=z] =Z′

0
α P . We are able prove that, for some N ′

0, P = N ′
0[y:=z]

and M ′
0 →β N ′

0. Choose z′ fresh for N0, N
′
0, Z

′
0 (the Fresh variable ax-

iom (Axiom 3.2) guarantees the existence of z′). From Lemma 3.4.13,
we obtain N0[x:=z′] =Z′

0
α N ′

0[x:=z
′] (→β doesn’t introduce new names,

therefore z 6∈ N0, N
′
0 follows from z 6∈ M0,M

′
0). Then, N ′ = λy.N ′

0 and
Z ′ = z′Z ′0 witness the goal ∃N ′.∃Z ′.λy.M ′

0 →β N
′ ∧ λx.N0 =Z′

α N ′.

• Case M1M2 →β N1M2. So M1 →β N1, M ′ = M ′
1M

′
2, M1 =Z1

α M ′
1,

and M2 =Z1
α M ′

2. By the induction hypothesis, there exist N ′
1 and Z2

such that M ′
1 →β N ′

1 and N1 =Z2
α N ′

1. By Lemma 3.4.14, we obtain
∃Z ′.M ′

1M
′
2 =Z′

α N ′
1M

′
2.

• Case (λX.λx.M1)M2 →β M1[X,x:=M2,2]. DeriveM ′ = (λX.λy.M ′
1)M

′
2,

M1[x:=z] =Z
α M ′

1[y:=z], and M2 =zZ
α M ′

2 with z 6∈M1,M2, Z. Choose Z0

fresh for M1,M2,M
′
1,M

′
2, X, Z and such that |Z0| = |Z| (apply the Fresh

variable axiom (Axiom 3.2) |Z0| times). Then Z0 is provably fresh for
M1[x:=z] andM ′

1[y:=z] as well. By Lemma 3.4.14 we obtainM1[x:=z] =Z0
α

M ′
1[y:=z] Take N ′ = M ′

1[X, y:=M
′
2,2] as witness for the existential state-

ment we are proving. Finally, by Lemma 3.4.19, there exists Z ′ such that
M1[X,x:=M2,2] =Z′

α M ′
1[X, y:=M

′
2,2].

3.4.4 Confluence of λ-calculus

As a corollary we obtain confluence of the ordinary λ-calculus (see Figure 3.4).
The exposition of the proof proceeds in a top-down fashion, forward referring to
lifting and projection lemmas. We use→λβ and→ λβ to distinguish β-reduction
in the λ-calculus from β-reduction in the λ-calculus, respectively.

Theorem 3.4.2 →λβ is confluent up to =α.

Proof.

1. Consider two diverging λβ-reductions M →∗
λβ N and M →∗

λβ P .

3.4. β 77

2. Lift these stepwise to diverging λβ-reductions M →∗
λβ N

′ and M →∗
λβ P

′

(Lemma 3.4.27). (Note that M being a λ-term, it is a scope-balanced
λ-term.)

3. By confluence of λβ-reduction, we can find some λ-term Q′ such that
N ′ →∗

λβ Q
′, P ′ →∗

λβ Q
′ (Theorem 3.4.1).

4. Projecting N ′ →∗
λβ Q

′ and P ′ →∗
λβ Q

′ back to λβ-reduction yields N →∗
λβ

Q1 and P →∗
λβ Q2 (Lemma 3.4.28), for some α-equivalent λ-terms Q1 and

Q2 (Corollary 3.4.1), establishing the desired confluence of λβ up to α-
equivalence.

Remark 3.4.6 As far as we know the only formalised proof of confluence of β-
reduction modulo α, in our setting, i.e. with a single variable space is [68]. How-
ever, their proof technique is entirely different, uniquely renaming all variables,
before performing β-steps, whereas our schema, which works via the λ-calculus,
only performs the necessary updates (in the sense of [25]).

Lifting and Projection of β-reduction

Projection of λ-terms to λ-terms is the composition of first performing an α-
equivalence step followed by a so-called ω-step removing all λs in one go.8 For
instance, no ω-step is possible from λx. λx.x since removing λx would turn the
free variable x into a bound variable in λx.x. Obviously, uniquely renaming
all variables would guarantee that an ω-step could be performed. However, we
rename only if necessary.

Definition 3.4.6 We define M •−→ω N , if 〈2〉M •−→ω N , where 〈X〉M •−→ω

N is defined by the following clauses.

〈X〉x •−→ω x

〈xX〉M •−→ω M
′

〈X〉λx.M •−→ω λx.M
′

〈X〉M1 •−→ω N1 〈X〉M2 •−→ω N2

〈X〉M1M2 •−→ω N1N2

〈X〉M •−→ω M
′ x 6∈ FV(M)

〈xX〉 λx.M •−→ω M
′

Thus, ω-steps are maximal, in the sense that one ω-step removes all λs in
one go. We write 〈X〉M =k

α 〈Y 〉N •−→ω P to abbreviate 〈X〉M =k
α 〈Y 〉N ∧

〈Y 〉N •−→ω P , and, conversely, we write 〈X〉M •−→ω N =k
α 〈Y 〉P to abbreviate

〈X〉M •−→ω N ∧ 〈X〉N =k
α 〈Y 〉P . Note that the source of the •−→ω is, by

definition, forced to be scope-balanced:

〈X〉M •−→ω N ⇒ 〈X〉M

Also note that •−→ω doesn’t alter the set of free variables:

〈XY 〉M •−→ω M
′ ⇒ FV(M,X) = FV(M ′, X)

8ω could be decomposed itself by first pushing λs to the variables, i.e. performing maximal
scope extrusion before omitting λs.

78 CHAPTER 3. λ

∗ ∗

∗ ∗

∗ ∗

∗ ∗

A∗ A∗

C∗ C∗

B

∗
D

A

B

C

D

∗
(projection)

A

∗ ∗

∗

C

is

is

∗

∗

∗

E

E

E

A′ A′

C′ C′

forgetful ω-step (Def. 3.4.6)

α-equivalence (Def. 3.3.8)

λβ-step (Def. 3.4.2)

lifting up to α of λβ to λβ (Lem. 3.4.27)

confluence of λβ up to α

lifting λβ to λβ (Lem. 3.4.24)

projecting λβ to λβ (Lem. 3.4.26)

projection up to α of λβ to λβ (Lem. 3.4.28)

confluence of λβ (Thm. 3.4.1)

commutation of α and λβ (Lem. 3.4.20)

λβ-step (Def. on page 65)

projection preserves α-equivalence (Cor. 3.4.1)

Figure 3.4: Confluence of λ-calculus implies confluence of λ-calculus.

3.4. β 79

Example 3.4.3 If we first rename the bound xs in λx. λx.x, by some x′ 6= x,
then it is safe to forget the λx′: 〈x〉λx. λx.x =k

α 〈x〉λx′. λx′.x •−→ω λx
′.x.

Example 3.4.4 It is incorrect to forget end-of-scopes in the jump calculus, as
witnessed by the λ-term λx.λy. λx.y. The variable y is free in this term since
λx implicitly closes the scope of y. However, forgetting this end-of-scope would

yield the λ-term λx.λy.y where y is bound. The easiest way to proceed seems to
be to insert as many λs as are needed to make the λ-term scope-balanced:

scb(x,X) = x

scb(λx.M,X) = λx.scb(M,xX)
scb(λx.M,2) = scb(M,2)

scb(λx.M, yX) = λx.scb(M,X) if x = y

scb(λx.M, yX) = λy.scb(λx.M,X) if x 6= y

scb(M1M2, X) = scb(M1, X)scb(M2, X)

Indeed, for all terms M and stacks X, scb(M,X) is scope-balanced under X.
Applied to the example, we first obtain scb(λx.λy. λx.y,2) = λx.λy. λy. λx.y.
Now we see that in order to omit the λy, we have to rename it first, say to z
yielding λx.λz. λz. λx.y. Forgetting end-of-scopes now yields the (correct) λ-term
λx.λz.y.

Remark 3.4.7 In λβ-reduction renamings are performed, as soon as there is a
confusion threat. However, such a threat may turn out to be innocuous, as in:

(λy.λx.(λz.I)yx)x→ λx′.(λz.I)xx′ → λx′.Ix′

The renaming is caused by the substitution for the variable x which is erased
later anyway. On the other hand, no renaming takes place during λβ-reduction:

(λy.λx.(λz.I)yx)x→ λx.(λz.I)(λx.x)x→ λx.Ix

Observe that despite the final term of this λβ-reduction being an ordinary λ-
term, α-conversion is needed to project it (see Lemma 3.4.28).

The relation •−→ω preserves α-equivalence:

Lemma 3.4.21 N •−→ω 〈X〉M =k
α 〈X ′〉M ′ •−→ω N

′ implies 〈X〉N =k
α 〈X ′〉N ′.

Proof. By induction on the proposition 〈X〉M =k
α 〈X ′〉M ′. We show the case

〈xX〉 λx.M =k
α 〈yX ′〉 λy.M ′. Then, 〈X〉M •−→ω N , x 6∈ FV(M), 〈X ′〉M ′ •−→ω

N ′, and y 6∈ FV(M ′). Inversion gives 〈X〉M =k
α 〈X ′〉M ′. By the induction

hypothesis we have 〈X〉N =k
α 〈X ′〉N ′, which, by the following lemma, implies

the goal, 〈xX〉N =k
α 〈yX ′〉N ′, because N,N ′ are free of λs.

Corollary 3.4.1 Schema D in Figure 3.4, stating that Q′ =α Q′
1 •−→ω Q1

and Q′ =α Q′
2 •−→ω Q2 imply Q1 =α Q2, now easily follows: first show that

Q′
1 =α Q′

2 (by symmetry and transitivity of =α) and then apply the previous
lemma.

80 CHAPTER 3. λ

Lemma 3.4.22 If M is a λ-term, that is, M contains no λs, and x 6∈ FV(M),
then

〈xX〉M =k
α 〈yY 〉N implies 〈X〉M =k

α 〈Y 〉N and y 6∈ FV(N)

Conversely, if x 6∈ FV(M) and y 6∈ FV(N), then

〈X〉M =k
α 〈Y 〉N implies 〈xX〉M =k

α 〈yY 〉N

Given a sequence of •−→ω-steps and α-steps, the •−→ω-steps can always be post-
poned until the α-steps are performed:

Lemma 3.4.23 〈X〉M •−→ω P =k
α 〈Y 〉N ⇒ ∃Q.〈X〉M =k

α 〈Y 〉Q •−→ω N .

Proof. By induction on the definition of •−→ω. Consider case 〈xX〉 λx.M •−→ω

P =k
α 〈yY 〉N . Then x 6∈ FV(M) and 〈X〉M •−→ω P . Because •−→ω doesn’t

change the set of free variables, we have that x 6∈ FV(P). By Lemma 3.4.22,
we get 〈X〉P =k

α 〈Y 〉N and y 6∈ FV(N). By the induction hypothesis, we
have Q such that 〈M〉X =k

α 〈Y 〉Q •−→ω N . y 6∈ FV(Q) follows and we obtain
〈xX〉 λx.M =k

α 〈yY 〉 λy.Q •−→ω N .
Both projection and lifting of reductions are performed stepwise. That is, a

single λβ-step lifts to a single λβ-step and vice versa (not to reduction sequences,
as in calculi with explicit substitutions). Lifting of →λβ to → λβ (Schema A′ in
Figure 3.4) is stated as follows.

Lemma 3.4.24 If M →λβ N and 〈X〉M ′ •−→ω M , then there are N1, N2 such
that:

〈X〉N1 =k
α 〈X〉N2 •−→ω N and M ′ → λβ N1

Proof. As an illustration, consider the case M = (λx.M1)M2, and M ′ = L1L2.
We have 〈X〉L1 •−→ω λx.M1 and 〈X〉L2 •−→ω M2. By inversion, we obtain
L1 = λX1.λx.L

′
1, X = X1X2, X1 ∩ FV(λx.L′1) = ∅ and 〈xX2〉L′1 •−→ω M1. The

proof obligation is

∃N1, N2.〈X〉N1 =k
α 〈X〉N2 •−→ω M1[x:=M2] ∧ (λX1.λx.L

′
1)L2 → λβ N1

Take N1 = L′1[X1, x:=L2,2]. The following lemma (Lemma 3.4.25) guarantees
the existence of an λ-term P such that

〈X〉L′1[X1, x:=L2,2] =k
α 〈X〉P [X1, x:=L2,2] •−→ω M1[x:=M2]

The witnessing N2 = P [X1, x:=L2,2] solves our goal.
The following lemma states projection of λ-substitution to λ-substitution.

Lemma 3.4.25

〈xZ〉M1 •−→ω M

∧ 〈XZ〉N ′ •−→ω N

∧ X ∩ FV(λx.M1) = ∅
⇒ ∃P : Λ.〈XZ〉M1[X,x:=N ′,2] =k

α 〈XZ〉P [X,x:=N ′,2] •−→ω M [x:=N]

3.5. APPLICATIONS 81

Proof. The difficult part was to find the right induction loading:

〈Y1xZ〉M1 =k
α 〈Y2xZ〉M2 •−→ω M

∧ 〈XZ〉N ′ •−→ω N

∧ X ∩ FV(M1, xY1) = ∅
∧ Y2 ∩ ({x} ∪ FV(N ′)) = ∅
⇒ ∃P : Λ.〈Y1XZ〉M1[X,x:=N ′, Y1] =k

α 〈Y2XZ〉P [X,x:=N ′, Y2]
•−→ω M [x:=N]

Once appropriately loaded, the proof is a straightforward induction over M1,
the only interesting lemma used being Lemma 3.4.23.

Projecting → λβ to →λβ (Schema C ′ in Figure 3.4) is stated as follows.

Lemma 3.4.26 If M → λβ N and 〈X〉M •−→ω M
′, then there are N1, N2 such

that:
〈X〉N =k

α 〈X〉N1 •−→ω N2 and M ′ →λβ N2

Proof. The β-rule case calls Lemma 3.4.25 again.
Lifting of λβ-reduction sequences to λβ-reduction sequences (Schema A∗ in

Figure 3.4) is stated by the following lemma.

Lemma 3.4.27

M1 →∗
λβ M2 ∧ P1 =k

α Q1 •−→ω M1

⇒ ∃P2, Q2 : Λ.P2 =k
α Q2 •−→ω M2 ∧ P1 →∗

λβ P2

Proof. By Lemmas 3.4.24 and 3.4.20 single λβ-steps can be lifted to single λβ-
steps (Schema A in Figure 3.4). The result for sequences follows by reflexively,
transitively closing the single step case.

Projection of λβ-reduction sequences to λβ-reduction sequences (Schema C∗

in Figure 3.4) is stated by the following lemma.

Lemma 3.4.28

P1 →∗
λβ P2 ∧ P1 =k

α Q1 •−→ω M1

⇒ ∃M2 :Λ.∃Q2 : Λ.P2 =k
α Q2 •−→ω M2 ∧M1 →∗

λβ M2

Proof. By Lemmas 3.4.26 and 3.4.20 single λβ-steps can be lifted to single λβ-
steps (Schema C in Figure 3.4). The result for sequences follows by reflexively,
transitively closing the single step case.

3.5 Applications

We think that the λ-calculus provides an intuitive understanding of scoping in
the λ-calculus. We claim it can provide solutions to problems which are known
to be hard for the λ-calculus.

82 CHAPTER 3. λ

Expressing free variable conditions In the λ-calculus one often has use
for free variable conditions. Not only are these necessary to express e.g. the
η-rule:

λx.Mx→M , if x 6∈ FV(M),

but knowing that x does not occur in the free variables of M would also speed
up reduction of the β-redex (λx.M)N ; in that case one may simply erase N .
Rather than reifying the negative concept of a variable not occurring free in a
subterm, cf. e.g. [28], our λ-operator makes the positive concept of the ending
of the scope of a variable explicit. Using it, the free-variable condition of the
η-rule can be expressed in the object language as:

λx.(λx.M)x→M ,

and the β-redex becomes (λx. λx.M)N , which indeed executes more efficiently.
In [25] some statistical evidence is presented that this is a frequently occurring
situation, i.e. that it is worthwhile to retain scoping information when evaluating
ordinary λ-terms.

In the next section we present some further evidence to the usefulness of the
λ-calculus.

3.6 Conclusion and Discussion

The reification of scopes provides a fundamental understanding of scoping mech-
anisms of named9 terms. Our results can be summarised as follows.

• Confluence of the λ-calculus without α-conversion.

• Scope information is retained, possibly speeding up β-reduction.

• Free variable conditions are expressable in the object language.

• Unintended capture of free variables in the substituens by binders in the
substitution body is avoided, not by renaming the binders, but by prefixing
the substituens by λs ending the scope of those binders. Because the λs are
not pushed to the variables (we don’t perform maximal scope extrusion,
that is), the transformation of arguments during substitution is avoided;
thus, they can still be subject to sharing.

• α-conversion is a decidable congruent equivalence.

Restricting to a single name, the λ-calculus corresponds to the λ-calculus for-
malised using a generalisation of De Bruijn indices, with the shift substitution
[↑] (cf. λ) as explicit term constructor (see the paragraph on related work in
Section 3.1).

9Names are more pleasant for human beings (e.g. for debugging purposes), and we want
our pen-and-paper proofs to be formalisable in a direct way. Moreover, to be user-friendly,
implementations must use names, either internally or just for parsing and printing.

3.6. CONCLUSION AND DISCUSSION 83

By lifting β-reduction of the λ-calculus to β-reduction of the λ-calculus, and
projecting back, we can analyse more precisely renamings performed ‘on the
fly’ by β-reduction in the λ-calculus. Confluence (up to α) of the λ-calculus is
obtained as a derived result.

We conclude this chapter by discussing two potential applications of the λ-
calculus we are currently investigating. In fact, it were these two applications
which have led us to the discovery of the calculus.

Explicit substitution calculi The first part of this work arose from trying to
understand Chapter 4 of [17] on perpetuality in David and Guillaume’s calculus
with explicit substitutions λws, in a named setting, cf. [26], and in an atomic
way. David and Guillaume introduce the λw-calculus as:

We avoid the counter-example to the PSN property of the λse-calculus by
adding to the usual syntax a new constructor that we call a label and which
represents an updating information. The term t with label k (denoted by
〈k〉t) corresponds to the term t where all free indices have been increased
by k (i.e. φk

0(t) in λse).

In the terms we are finally interested in, two successive labels are not
allowed. We first define preterms without this restriction.

Definition 3.1. We define the set of λw-preterms by the following gram-
mar:

t ::= n | λt | (t t) | 〈k〉t with n, k ∈ N

Observing that labels can be seen as repetitions of successors should make the
relationship to the λ-calculus clear.10 In [26] a named version of λw is presented
having sets of names as labels. Our approach is more elementary as their labels
are added only after α-conversion (not in their abstract syntax, but in their
calculus), so they cannot get confluence of β-reduction without it.

Application: Preservation of Strong Normalisation The λws calculus
was introduced as a calculus having, among other desirable properties, the
preservation of strong normalisation (PSN) property. From [25] we understand
that λws arose in a seemingly ad hoc way from barring counterexamples to PSN
for existing calculi with explicit substitutions. We think the λ-calculus offers an
easy insight as to why the calculus works as follows.

The problem with PSN arises when one tries to orient, as a reduction rule,
the critical pair arising from (an explicit version of) the substitution lemma.
(see page 68). The problem with orienting the ensuing critical pair from right
to left is that the resulting rule is non-left-linear (L occurs twice in its left-
hand side), causing non-confluence, which is undesirable. However, orienting
the critical pair from left to right is also problematic since the resulting rule is
non-terminating, just by itself, since the left-hand side can be embedded into

10The relationship is not entirely trivial since in their λw calculus, David and Guilaume
make use of commutativity and associativity of addition of natural numbers, whereas we are
only allowed to manipulate stacks of names. However, one may reformulate their rules such
that commutativity and associativity are not needed.

84 CHAPTER 3. λ

the right-hand side. (Note that this orientation corresponds to transforming
from inside-out to outside-in (standard) order of contraction of the β-redexes.)

The key insight is that in the λ-calculus, we can recognise the fact that we
are already in outside-in order: consider the substitution lemma above oriented
from left to right and enriched with end-of-scope information (but for the mo-
ment forgetting the first component of λ-substitutions which are empty in this
example):

M [x:=N,2][y:=L,2]→M [y:=L, x][x:=N [y:=L,2],2]

Now we recognise that the two underlined xs in the right-hand side match with
one another, hence that these substitutions are already in standard order. For-
bidding further applications of the rule in such situations, should break the
infinite reduction and regain PSN (roughly speaking the maximal length of a
reduction can be bounded by the length of a standard reduction, in the spirit
of [44]). Applying this idea to the closed and open substitution lemmas (Lem-
mas 3.4.6 and 3.4.8) should give rise to named versions of the following two λws

rules, see e.g. page 65 of [17]:

M [k/N, l][[i/P, j]] →lc1 M [k/N [[i− k/P, j]], j + l − 1] k ≤ i < k + l
M [k/N, l][[i/P, j]] →lc2 M [[i− l + 1/P, j]][k/N [[i− k/P, j]], l] k + l ≤ i

which should yield a named version of λws having PSN.

Localising scope extrusion The second part of this work arose from trying
to understand Coppola’s PhD thesis [24] on the (complexity of) an optimal
implementation of the λ-calculus. The idea is to view the boxes featuring in
that work as our boxes, i.e. as representing scoping information, and to view
their optimal implementation as a local implementation of our (minimal) scope
extrusion.

Application: optimal reduction Lamping provided in [47] the first imple-
mentation of the λ-calculus which was optimal in the sense of Lévy [48]. His
implementation was based on a translation of λ-terms to graphs having nodes
(fan-in and fan-out) for both explicit sharing and unsharing. In order for sharing
and unsharing nodes to match up properly (the ‘oracle’), he had to introduce
two further types of nodes, the control nodes (square bracket and croissant).
These control nodes had an ad hoc justification and their definitive understand-
ing was considered to be the main open problem of this technique according to
Chapter 9 of [3].

We claim that the oracle can be understood to arise from making β-reduction
in the λ-calculus local in the sense of [45]. That is scope extrusion and x-box
removal as in Figure 3.3 are to be made local (replication is dealt with by the
sharing nodes). A way in which this can be implemented is shown on the left
in Figure 3.5. In fact, a key insight (cf. the second step of Figure 3.5) is that
x-box removal is superfluous as long as scopes can always be moved out of
the way (of a β-redex). We have a working optimal implementation of the λ-
calculus based on rules achieving just that, such as the zheh-rule in Figure 3.5 for

3.6. CONCLUSION AND DISCUSSION 85

@

@

@

λ λ

@

@

@

@

@
zhehx x x

N N

xxx

x x

xx

N

Figure 3.5: Left: β-reduction: local scope extrusion and rewiring. Right: scope
fusion.

fusing two adjacent scopes. The implementation performs well on the examples
in [3], without the need for either their safe nodes or heuristics (we have only
one control node). E.g. computing their most complex example, (f ten) in
Figure 9.23 of [3], takes us roughly 5 times as many interactions (compared to
BOHM 1.1).11

11The difference might be explainable by that we do not employ compound nodes.

86 CHAPTER 3. λ

