
Chapter 2

Proof Reflection in Coq

We formalise natural deduction for first-order logic in the proof assistant Coq,
using De Bruijn indices for variable binding. The main judgement we model
is of the form Γ ` d [:] φ, stating that d is a proof term of formula φ under
hypotheses Γ; it can be viewed as a typing relation by the Curry–Howard–
De Bruijn isomorphism. This relation is proved sound with respect to Coq’s
native logic and is amenable to the manipulation of formulas and of derivations.
As an illustration, we define a reduction relation on proof terms with permutative
conversions and prove the property of subject reduction.

Author: Dimitri Hendriks

2.1 Introduction

We represent intuitionistic predicate logic in Coq [66], an interactive proof con-
struction system that implements the calculus of inductive constructions [69],
which is a type theory that provides inductive definitions. We adopt a two-level
approach [8] in the sense that the native logic of the system is the meta-language
in which we define and reason about our object-language. The object-language
consists of a deep embedding of first-order terms, formulas and derivation terms.
Derivation terms and formulas are related on the meta-level by definition of a
deduction system for hypothetical judgements Γ ` d [:] φ, that encapsulate their
own evidence; d inhabits φ given context Γ. Several binding mechanisms are
handled by De Bruijn indices [19].

The main contribution of our work is that we design an object language
representing first-order logic, which can be used as a ‘tool’ for the manipulation
of formulas and proofs. Moreover, via the so-called reflection operation [18] and
the soundness result, it’s possible to reason about the first-order fragment of
the native logic itself.

The meta-theory of lambda calculi, type and proof systems of various kinds
has already been treated quite extensively with the use of theorem provers, as
shown, for example, in [50, 2, 10, 40, 6, 51, 7].

To our knowledge, this is the first complete (first-order) formalisation of

23

24 CHAPTER 2. PROOF REFLECTION IN COQ

natural deduction for first-order logic using analytic judgements. Although we
realise that our work is just standard first-order logic, and the results proved are
the first basic ones, the strong point is the achievement of a Coq implementation,
a library which can be reused in the future for several purposes, of which we
mention:

- investigating the meta-theory of deduction systems, and

- proving correctness of proof-search algorithms.

Finally, we think that our work might serve as an overview on how to formalise
logical systems in a theorem prover.

The complete development is formalised in Coq and can be retrieved from
[33]; it’s size is 116184 bytes, 4980 lines. The development time is approximately
half a man-year.

For a brief introduction to type theory and the Coq proof assistant, an
explanation of reflection and the two-level approach, and the motivation of our
design choices with respect to variable binding mechanisms and the format of
hypothetical judgements, the reader is referred to the preface.

This chapter is organised as follows. In Section 2.2 we introduce objects rep-
resenting first-order terms, first-order formulas and derivation terms. In Sections
2.3 and 2.4, we define lifting and substitution. In Section 2.5 some basic alge-
braic properties of the defined De Bruijn operations are listed. The inference
rules for hypothetical judgements are presented in Section 2.6. In Section 2.7
we show that the structural rules are admissible. In Section 2.8 we define the
translation from object level formulas to their meta-level counterparts. In Sec-
tion 2.9 we discuss an alternative set-up with a finite number of free variables
instead of infinitely many; and we discuss an inconvenient aspect of substitution
of free variables. Section 2.10 presents thinning and substitution lemmas about
this translation function, necessary for the proof of soundness with respect to
Coq’s logic, given in Section 2.11. In Section 2.12, we specify a function which
infers the type of (correct) proof terms. In Section 2.13 this function is proved
correct with respect to the outlined inference system. As a corollary, derivation
terms have unique types (Section 2.14). Section 2.15 serves as an example of
how the defined machinery can be used to manipulate/transform proof terms;
Prawitz’s proof reduction rules are defined. In Section 2.16 we present sound-
ness of types for the defined proof reduction, the property known as subject
reduction. Finally, we conclude and discuss future work.

2.2 Objects

A logic is usually defined with respect to a signature determining its sorts,
function symbols and predicate symbols. In our formalisation of intuitionistic
predicate logic, we choose to deal with one sort only. We freed ourselves of the
technical care multiple sorts would demand, simply for practical reasons.1

1It is well-known that sorts can be built-in artificially by using unary predicates.

2.2. OBJECTS 25

The sets τ (terms), o (formulas) and π (proof terms), defined in the present
section, depend on the signature—constituted by two arbitrary but fixed lists
of natural numbers, representing function and relation arities. This dependence
remains implicit in the sequel. We motivate this design choice.

A first (set-theoretical) attempt to formalise the dependency of an arbitrary
signature would be to depart from an abstract set of function symbols, say F ,
along with an abstract function, say arity : F → N. Given our aim to gain
full control over the object language, however, this is unsatisfactory in several
respects, of which we mention

- the undecidability of equality of terms, and

- the impossibility to check whether a function symbol occurs in a term.

Admittedly, one can add the necessary axioms. For example, we can assume
the existence of a Boolean predicate eqb : F → F → bool. Of course, we
then have to show consistency, but this doesn’t seem to be problematic. What
matters is the conceptual difference. With the approach chosen here, signatures
are first class citizens and are finite, as opposed to the representation with
F , arity and eqb. Such a representation of functions is what we called in the
introduction a shallow embedding where the interpretation function of object-
level function symbols to meta-level function symbols is the identity. As said
before, the disadvantage of a shallow embedding is the impossibility to exploit
the syntactical structure.2

Instead, we use an index set for function (as well as for relation) symbols.

Definition 2.2.1 Given a set A, lists of type list(A) are defined by 2 and [a|l]
where a : A and l : list(A). Given a list l : list(A), its index set Il is defined by
the equations:

I2 = ∅ I[a|l′] = 1 + Il′

where ∅ is the empty set (i.e., without contructors), 1 the unit set (with sole
inhabitant •) and A + B the disjoint sum of sets A and B, defined inductively
by:

A+B := inl(a) | inr(b)

where a : A and b : B. The application l(i) computes the list element indexed
by i : Il, as defined by the following recursion:

[a|l](inl(•)) = a

[a|l](inr(i)) = l(i)

For the sake of readability we set Il = {0, . . . , |l| − 1}, where |l| denotes the
length of l.

2A philosopher might raise his finger and swap things around: “A shallow embedding
of objects in combination with full control over those objects, leads to well-known classical
complications, such as diagonalisation, paradoxes and worse.”

26 CHAPTER 2. PROOF REFLECTION IN COQ

Definition 2.2.2 (Terms) Assume a list of natural numbers, representing func-
tion arities.

lfun : list(N)

The set τ of syntactic objects representing first-order terms is inductively defined
by:

τ := vn | fi(t1, . . . , tk)

where n : N, i : Ilfun
, k = lfun(i) and t1, . . . , tk : τ . It is to be understood that

lfun(i) computes the arity k of fi (if k = 0, then fi() is a constant).

Definition 2.2.3 (Formulas) We assume a second list of natural numbers,
representing relation arities.

lrel : list(N)

The set of objects o representing predicate logical formulas, is defined by the
following abstract syntax, where j : Ilrel , m = lrel(j) and φ, χ : o.

o := >̇ | ⊥̇ | Rj(t1, . . . , tm) | φ →̇ χ | φ ∧̇ χ | φ ∨̇ χ | ∀̇φ | ∃̇φ

As usual, we write ¬̇φ as shorthand for φ →̇ ⊥̇.

We use the following binding priorities for the connectives: ∀̇ , ∃̇ > ∧̇, ∨̇ > →̇ and
let binary connectives associate to the right. For example, ∃̇φ ∨̇ ∃̇χ →̇ ∃̇ (φ ∨̇ χ)
reads as ((∃̇φ) ∨̇ (∃̇χ)) →̇ ∃̇ (φ ∨̇ χ).

In the sequel, when we write fi(t1, . . . , tk) or Rj(t1, . . . , tm), we implicitly
assume:

i : Ilfun
lfun(i) = k j : Ilrel lrel(j) = m

We now turn to the definition of derivation terms, which can be seen as
linear notations for two-dimensional proof trees.

Definition 2.2.4 (Derivations) The syntactic class π of proof terms is de-
fined by the grammar:

π := >+ | hn | ⊥−(d, φ) | →+(φ, d) | →−(d, e)
| ∧+(d, e) | ∧−l (d) | ∧−r (d) | ∨+

l (φ, d) | ∨+
r (φ, d) | ∨−(d, e, f)

| ∀+(d) | ∀−(t, d) | ∃+(φ, t, d) | ∃−(d, e)

where n : N, d, e, f : π, φ : o and t : τ . Note that the hn are assumption
variables, as will become clear in the sequel.

As an example, we depict the construction ∨−(d, e1, e2) in traditional natural
deduction format:

.... (d)
χ1 ∨ χ2

[χ1].... (e1)
φ

[χ2].... (e2)
φ

φ ∨−

2.3. RECURSIVE PATTERNS 27

Some constructors (⊥−, →+, ∨+
l , ∨+

r and ∃+) carry an argument of type o in
order to have proof terms uniquely determine natural deductions, as will be
shown in the sequel (see Section 2.12). Had we omitted the formula argument
in, for example, →+, a term →+(h0) would be ambiguous in the sense that it
serves as a proof term for φ →̇ φ for any φ : o. Thus, we use explicit Church style
typing. The formula argument in ∃+ is required, because there is no inverse of
substitution, that is, we cannot deduce φ from φ[t] (see Definition 2.6.1).

2.3 Recursive Patterns

Several object (of types o and π) transformations concerning (assumption as well
as term) variables recursively descend in the same way. These recursive patterns
are shared by abstracting from what should happen to terms or assumption
variables.

The operations carry an argument storing the so-called reference depth of
variables, because variables can only be ‘grasped’ (lifted, substituted, etc.) if
we know at what reference depth they reside.

For objects in o, the reference depth increments when a quantifier is passed.

Definition 2.3.1 Given n : N, g : N→ τ → τ and φ : o, define mapo(g, n, φ)
as follows.

mapo(g, n, c) = c for c = >̇, ⊥̇
mapo(g, n,Rj(t1, . . . , tm)) = Rj(g(n, t1), . . . , g(n, tm))

mapo(g, n, φ ◦ χ) = mapo(g, n, φ) ◦ mapo(g, n, χ) for ◦ = →̇, ∧̇, ∨̇
mapo(g, n,Qφ) = Qmapo(g, n+ 1, φ) for Q = ∀̇ , ∃̇

For proof terms, the reference depth of term variables vi increments in the
cases of ∀+, ∃+ (first argument) and ∃− (second argument).

Definition 2.3.2 Given g : N → τ → τ , n : N and d : π, the function
mapv

π(g, n, d) is defined by the following recursive equations.

mapv
π(g, n,>+) = >+

mapv
π(g, n,⊥−(d, φ)) = ⊥−(mapv

π(g, n, d),mapo(g, n, φ))
mapv

π(g, n, hi) = hi

mapv
π(g, n,→+(φ, d)) = →+(mapo(g, n, φ)),mapv

π(g, n, d))
mapv

π(g, n,→−(d, e)) = →−(mapv
π(g, n, d),mapv

π(g, n, e))
mapv

π(g, n,∧+(d, e)) = ∧+(mapv
π(g, n, d),mapv

π(g, n, e))
mapv

π(g, n,∧−l (d)) = ∧−l (mapv
π(g, n, d))

mapv
π(g, n,∧−r (d)) = ∧−r (mapv

π(g, n, d))
mapv

π(g, n,∨+
l (φ, d)) = ∨+

l (mapo(g, n, φ)),mapv
π(g, n, d))

mapv
π(g, n,∨+

r (φ, d)) = ∨+
r (mapo(g, n, φ)),mapv

π(g, n, d))

28 CHAPTER 2. PROOF REFLECTION IN COQ

mapv
π(g, n,∨−(d, e1, e2)) = ∨−(mapv

π(g, n, d),mapv
π(g, n, e1),mapv

π(g, n, e2))
mapv

π(g, n, ∀+(d)) = ∀+(mapv
π(g, n+ 1, d))

mapv
π(g, n, ∀−(t, d)) = ∀−(g(n, t),mapv

π(g, n, d))
mapv

π(g, n, ∃+(φ, t, d)) = ∃+(mapo(g, n+ 1, φ)), g(n, t),mapv
π(g, n, d))

mapv
π(g, n, ∃−(d, e)) = ∃−(mapv

π(g, n, d),mapv
π(g, n+ 1, e))

Note the increment of the reference depth of the formula argument in ∃+. Con-
sider the inference rule corresponding to ∃+ given in Definition 2.6.1. The ar-
gument φ in term ∃+(φ, t, d) has free variable v0 (‘from the outside’), for which
the witnessing t is substituted in the type φ[t] of subterm d. This free variable
should remain free; therefore the reference depth is incremented.

Also, the recursive pattern for proof term transformations concerning as-
sumption variables will be reused several times in the sequel. The reference
depth of assumption variables hi is incremented in the cases of →+ (second
argument), ∨− (second and third argument) and ∃− (second argument); that
is, any time an extra hypothesis is added to the context (the inference rules of
Definition 2.6.1 viewed bottom up).

Definition 2.3.3 Let g : N → N → π, a function that returns a proof term
given two natural numbers (reference depth, resp. index of assumption variable),
n : N, and d : π, then maph

π(g, n, d) is defined by the following recursive equa-
tions.

maph
π(g, n,>+) = >+

maph
π(g, n,⊥−(d, φ)) = ⊥−(maph

π(g, n, d), φ)
maph

π(g, n, hi) = g(n, i)
maph

π(g, n,→+(φ, d)) = →+(φ,maph
π(g, n+ 1, d))

maph
π(g, n,→−(d, e)) = →−(maph

π(g, n, d),maph
π(g, n, e))

maph
π(g, n,∧+(d, e)) = ∧+(maph

π(g, n, d),maph
π(g, n, e))

maph
π(g, n,∧−l (d)) = ∧−l (maph

π(g, n, d))

maph
π(g, n,∧−r (d)) = ∧−r (maph

π(g, n, d))
maph

π(g, n,∨+
l (φ, d)) = ∨+

l (φ,maph
π(g, n, d))

maph
π(g, n,∨+

r (φ, d)) = ∨+
r (φ,maph

π(g, n, d))
maph

π(g, n,∨−(d, e1, e2)) = ∨−(maph
π(g, n, d),maph

π(g, n+ 1, e1),
maph

π(g, n+ 1, e2))
maph

π(g, n, ∀+(d)) = ∀+(maph
π(g, n, d))

maph
π(g, n, ∀−(t, d)) = ∀−(t,maph

π(g, n, d))
maph

π(g, n,∃+(φ, t, d)) = ∃+(φ, t,maph
π(g, n, d))

maph
π(g, n,∃−(d, e)) = ∃−(maph

π(g, n, d),maph
π(g, n+ 1, e))

2.4. LIFTING AND SUBSTITUTION 29

2.4 Lifting and Substitution

The representation of variables by De Bruijn indices requires an extra operation
called lifting.3 Lifting increments the free variables in a formula.

We start with defining the operations of lifting and substitution, using side
conditions. The implementation uses computationally more efficient definitions,
as listed thereafter.

Definition 2.4.1 We define term lifting ↑nt by structural recursion on t : τ ,
where n : N is the reference depth. The first n variables, v0, . . . , vn−1, are
assumed to be bound (this information being imported from functions calling
↑nt) and remain unchanged.

↑nvi =
{
vi if i < n
vi+1 if i ≥ n

↑nfi(t1, . . . , tk) = fi(↑nt1, . . . , ↑ntk)

We write ↑t to denote the lifting of all variables in t, shorthand for ↑0t.

Definition 2.4.2 Substitution of t′ for vn in t, notation t[t′]n, is defined by
recursion on the structure of t. Again, n is the reference depth, present in
order to deal with substitution under binders. Thus, the first n variables should
remain untouched. The term t′ is lifted such that capture by binders is avoided.
Indices greater than n are decremented, because substitution removes the original
variable vn.

vi[t]n =

 vi if i < n
↑n0 t if i = n
vi−1 if i > n

fi(t1, . . . , tk)[t]n = fi(t1[t]n, . . . , tk[t]n)

where ↑mn t is defined by ↑0nt = t and ↑m+1
n t = ↑mn (↑nt). We set t[t′] = t[t′]0.

As mentioned, the side-conditions (if i < n, etc.) in the above definitions
are inefficient. As the unfolding of definitions proceeds, the number of side-
conditions increases exponentially. The implemented lifting and substitution
functions are defined recursively and have no side-conditions ↑nt is encoded as
lift trm(n, t) and t[t′]n is encoded as subst trm(n, t, t′).4

lift(0, i) = i+ 1
lift(n+ 1, 0) = 0

lift(n+ 1, i+ 1) = lift(n, i) + 1

3In the literature on explicit substitutions (e.g., [9]) the operation we call lifting here
consists of two more primitive operations: lifting ⇑ of substitutions and the shift substitution
↑, which increments the indices in a term. Our ↑n actually corresponds to ⇑n(↑).

4We found these definitions in [57], where they are attributed to [2].

30 CHAPTER 2. PROOF REFLECTION IN COQ

lift trm(n, vi) = vlift(n,i)

lift trm(n, fj(t1, . . . , tk)) = fj(lift trm(n, t1), . . . , lift trm(n, tk))

subst(0, 0, t) = t

subst(0, i+ 1, t) = vi

subst(n+ 1, 0, t) = v0

subst(n+ 1, i+ 1, t) = lift trm(0, subst(n, i, t))

subst trm(n, vi, t) = subst(n, i, t)
subst trm(n, fj(t1, . . . , tk), t) = fj(subst trm(n, t1, t),

. . . , subst trm(n, tk, t))

Next we define the lifting and substitution operations on formulas.

Definition 2.4.3 The lifting of φ : o for reference depth n, notation ↑nφ, is
defined as follows.

↑nφ = mapo(λm :N. λt :τ. ↑mt, n, φ)

Let ↑φ abbreviate ↑0φ, the increment of all free variables in φ.

Definition 2.4.4 Substitution of t : τ for vn
5 in φ : o, notation φ[t]n, is defined

as follows.
φ[t]n = mapo(λm :N. λu :τ. u[t]m, n, φ)

For the inference system introduced in the next section, we also need the
lifting and substitution operation on contexts. Contexts are defined by 2 and
Γ;φ, where φ : o and Γ is a context.

Definition 2.4.5 Lifting of all free variables in context Γ, given that the first
n variables are bound, notation ↑nΓ, is defined by:

↑n2 = 2

↑n(Γ;φ) = ↑nΓ; ↑nφ

Substitution of t for vn in Γ, written Γ[t]n, is defined by:

2[t]n = 2

(Γ;φ)[t]n = Γ[t]n;φ[t]n

Again, we write ↑Γ for ↑0Γ and Γ[t] for Γ[t]0.

The type checking function, introduced in Section 2.12, requires the defini-
tion of the inverse of lifting: projection.

5The n + 1-th free variable ‘as seen from the outside’.

2.4. LIFTING AND SUBSTITUTION 31

Definition 2.4.6 We define term projection, ↓nt, as follows.

↓nvi =
{
vi if i ≤ n
vi−1 if i > n

↓nfi(t1, . . . , tk) = fi(↓nt1, . . . , ↓ntk)

Formula projection, ↓nφ, is defined as follows.

↓nφ = mapo(λm :N. λt :τ. ↓mt, n, φ)

Define ↓φ = ↓0φ.

Lemma 2.4.1 For all n : N and φ : o, we have that ↓n↑nφ = φ.

Also needed for Definition 2.12.1 is the ability to check whether a variable occurs
free in a formula.

Definition 2.4.7 vn ∈ FV(φ) is defined as follows.6

vn ∈ FV(Rj(t1, . . . , tm)) if vn ∈ ti for some 1 ≤ i ≤ m
vn ∈ FV(φ ◦ χ) if vn ∈ FV(φ) or vn ∈ FV(χ) for ◦ = →̇, ∧̇, ∨̇
vn ∈ FV(Qφ) if vn+1 ∈ FV(φ) for Q = ∀̇ , ∃̇

with vn ∈ t defined by:

vn ∈ vm if n = m
vn ∈ fi(t1, . . . , tk) if vn ∈ tj for some 1 ≤ j ≤ k

Lemma 2.4.2 For all n : N and φ : o, we have that ↑n↓nφ = φ, if vn 6∈ FV(φ).

Lemma 2.4.3 For all n : N, t : o, we have vn 6∈ FV(↑nt).

Definition 2.4.8 For n : N and d : π, lifting of term variables in proof terms
↑vnd is defined as follows.

↑vnd = mapv
π(λm :N. λt :τ. ↑mt, n, d)

Definition 2.4.9 For n : N, t : τ and d : π, substitution of term variables in
proof terms d[t]nv is defined by

d[t]nv = mapv
π(λm :N. λu :τ. u[t]m, n, d)

Definition 2.4.10 Lifting of assumption variables in proof terms is defined by

↑hnd = maph
π(λm :N. λi :N. hlift(m,i), n, d)

The function lift is defined on page 29. Define ↑hd = ↑h0d.
6We present vn ∈ FV(φ) as an inductive relation; it’s implementation actually is a Boolean

function.

32 CHAPTER 2. PROOF REFLECTION IN COQ

Definition 2.4.11 Substitution of proof terms for assumption variables is de-
fined by

>+[d′]nh = >+

hi[d′]nh =

 hi if i < n
↑n0d′ if i = n
hi−1 if i > n

⊥−(d, φ)[d′]nh = ⊥−(d[d′]nh , φ)
→+(φ, d)[d′]nh = →+(φ, d[d′]n+1

h)
→−(d, e)[d′]nh = →−(d[d′]nh , e[d

′]nh)
∧+(d, e)[d′]nh = ∧+(d[d′]nh , e[d

′]nh)
∧−l (d)[d′]nh = ∧−l (d[d′]nh)
∧−r (d)[d′]nh = ∧−r (d[d′]nh)

∨+
l (φ, d)[d′]nh = ∨+

l (φ, d[d′]nh)
∨+

r (φ, d)[d′]nh = ∨+
r (φ, d[d′]nh)

∨−(d, e1, e2)[d′]nh = ∨−(d[d′]nh , e1[d
′]n+1

h , e2[d′]n+1
h)

∀+(d)[d′]nh = ∀+(d[↑vd′]nh)
∀−(t, d)[d′]nh = ∀−(t, d[d′]nh)

∃+(φ, t, d)[d′]nh = ∃+(φ, t, d[d′]nh)
∃−(d, e)[d′]nh = ∃−(d[d′]nh , e[↑

vd′]n+1
h)

where ↑mn d is defined by ↑0nd = d and ↑m+1
n d = ↑mn (↑hnd). It should be noted

that hi[d′]nh is encoded without side-conditions, in a similar way as vi[t]n (see
Definition 2.4.2). Define d[d′]h = d[d′]0h.

Note that it is not correct to define d[d′]nh by maph
π(λm :N. λi :N. hi[d′]mh , n, d)

7,
because all free variables vi in d′ have to be lifted to avoid capture of the first
free variable by ∀+ or ∃− (second argument).

2.5 Properties of De Bruijn Operations

We present some basic algebraic properties of the operations introduced in Sec-
tion 2.4. Similar properties can be found in [7].8 All five lemmas are proved for
both t : τ as well as for t : o.9 Furthermore t′, t1, t2 : τ and n,m : N.

Lemma 2.5.1 (Permutation of lifting)

↑m(↑nt) = ↑n+1(↑mt) if m ≤ n

7As we did in [32] (though not in the Coq development).
8Where they are attributed to [40].
9Similar properties have been proved for lifting and substitution in proof terms, but these

are not used in the sequel.

2.6. JUDGEMENTS 33

Lemma 2.5.2 (Simplification of substitution)

(↑nt)[t′]n = t

Lemma 2.5.3 (Commutation of lifting and substitution)

↑m(t[t′]n) = (↑mt)[t′]n+1 if m ≤ n

Lemma 2.5.4 (Distribution of lifting over substitution)

↑m+k(t[t′]m) = (↑m+k+1t)[↑kt′]m

Lemma 2.5.5 (Distribution of substitution)

(t[t1]m)[t2]m+k = (t[t2]m+k+1)[t1[t2]k]m

2.6 Judgements

We introduce judgements of the form Γ ` d [:] φ, stating that d is a proof term
of formula φ under hypotheses Γ.10 Alternatively, the object d can be seen as a
λ-term of type φ given variables hi of type Γ(i) for 0 ≤ i < |Γ|.

Definition 2.6.1 The relation (Γ ` d [:] φ) : ∗p is inductively defined by the
following clauses. A context Γ is a list of formulas, where the rightmost ele-
ment has index 0, d, d1, d2, e1, e2 are proof terms, t is a first-order term, and
φ, φ1, φ2, χ are formulas.

Γ;φ ` h0 [:] φ
Γ ` hi [:] χ

Γ;φ ` hi+1 [:] χ

Γ ` >+ [:] >̇
Γ ` d [:] ⊥̇

Γ ` ⊥−(d, φ) [:] φ

Γ;φ ` d [:] χ
Γ ` →+(φ, d) [:] φ →̇ χ

Γ ` d [:] φ →̇ χ Γ ` e [:] φ
Γ ` →−(d, e) [:] χ

Γ ` d1 [:] φ1 Γ ` d2 [:] φ2

Γ ` ∧+(d1, d2) [:] φ1 ∧̇ φ2

Γ ` d [:] φ1 ∧̇ φ2

Γ ` ∧−l (d) [:] φ1

Γ ` d [:] φ1 ∧̇ φ2

Γ ` ∧−r (d) [:] φ2

10We use this notation in order to distinguish ‘[:]’ from ‘:’, which is reserved for the typing
relation of Coq.

34 CHAPTER 2. PROOF REFLECTION IN COQ

Γ ` d [:] φ1

Γ ` ∨+
l (φ2, d) [:] φ1 ∨̇ φ2

Γ ` d [:] φ2

Γ ` ∨+
r (φ1, d) [:] φ1 ∨̇ φ2

Γ ` d [:] φ1 ∨̇ φ2 Γ;φ1 ` e1 [:] χ Γ;φ2 ` e2 [:] χ
Γ ` ∨−(d, e1, e2) [:] χ

↑Γ ` d [:] φ

Γ ` ∀+(d) [:] ∀̇φ
Γ ` d [:] ∀̇φ

Γ ` ∀−(t, d) [:] φ[t]

Γ ` d [:] φ[t]

Γ ` ∃+(φ, t, d) [:] ∃̇φ
Γ ` d [:] ∃̇χ ↑Γ;χ ` e [:] ↑φ

Γ ` ∃−(d, e) [:] φ

In contrast to a formalisation with named variables (see [57]), there is a canonical
choice of a fresh variable in the setting with De Bruijn indices, as, for example,
needed in the rules ∀+ and ∃−. We simply lift all free variables (of Γ in the case
of ∀+, and of Γ and φ in the case of ∃−), so that the first free variable becomes
fresh.

The deduction system above defines the De Bruijn binding mechanism for
assumption variables. Binders of assumption variables are→+, ∨− and ∃−. For
example, in→+(φ,→+(χ,∧+(h1, h0))), h1 refers to the outer→+ and h0 refers
to the inner →+, as illustrated by the corresponding proof tree.

φ;χ ` h1 [:] φ φ;χ ` h0 [:] χ
φ;χ ` ∧+(h1, h0) [:] φ ∧̇ χ

φ ` →+(χ,∧+(h1, h0)) [:] χ →̇ φ ∧̇ χ
` →+(φ,→+(χ,∧+(h1, h0))) [:] φ →̇ χ →̇ φ ∧̇ χ

Note that ∨− and ∃− don’t bind assumption variables in their first argu-
ment, since in the subtrees corresponding to those arguments no assumption is
introduced (travelling bottom-up) into the context. For example, in

→+(φ ∨̇ χ,∨−(h0,∨+
r (χ, h0),∨+

l (φ, h0)))

only the underlined ocurrences of h0 are bound by the constructor ∨−; the other
one (referring to φ ∨̇ χ) is bound by the constructor →+. The corresponding
proof tree is:

φ ∨̇ χ ` h0 [:] φ ∨̇ χ T1 T2
φ ∨̇ χ ` ∨−(h0,∨+

r (χ, h0),∨+
l (φ, h0)) [:] χ ∨̇ φ

` →+(φ ∨̇ χ,∨−(h0,∨+
r (χ, h0),∨+

l (φ, h0))) [:] φ ∨̇ χ →̇ χ ∨̇ φ

2.6. JUDGEMENTS 35

where T1 denotes
φ ∨̇ χ;φ ` h0 [:] φ

φ ∨̇ χ;φ ` ∨+
r (χ, h0) [:] χ ∨̇ φ

and T2 is the analogous tree of φ ∨̇ χ;χ ` ∨+
l (φ, h0) [:] χ ∨̇ φ.

Some constructors also bind term variables. The constructor ∀+ binds the
first free variable in its argument; ∃− binds the first free variable in its second
argument. These variables are called the eigenvariables of ∀+ and ∃−. The
constructor ∃+ binds the first free term variable in its first argument. We give
a final example:

∃̇ ↑1φ →̇ ↑χ;φ ` h1 [:] ∃̇ ↑1φ →̇ ↑χ
∃̇ ↑1φ →̇ ↑χ;φ ` h0 [:] φ

∃̇ ↑1φ →̇ ↑χ;φ ` ∃+(↑1φ, v0, h0) [:] ∃̇ ↑1φ
∃̇ ↑1φ →̇ ↑χ;φ ` →−(h1,∃+(↑1φ, v0, h0)) [:] ↑χ

∃̇ ↑1φ →̇ ↑χ ` →+(φ,→−(h1,∃+(↑1φ, v0, h0))) [:] φ →̇ ↑χ
∃̇φ →̇ χ ` ∀+(→+(φ,→−(h1,∃+(↑1φ, v0, h0)))) [:] ∀̇ (φ →̇ ↑χ)

The application of the ∃+-rule is correct as (↑1φ)[v0] = φ by the following
lemma. The application of ∀+ is correct because ↑(∃̇φ →̇ χ) = ∃̇ ↑1φ →̇ ↑χ, by
definition of lifting. Note that, on the named level, for the formula (∃x.φ →
χ)→ ∀x.(φ→ χ) to be a tautology, the condition x 6∈ FV(χ) is required to avoid
capture by ∀x in χ. This is expressed by ↑χ and can be compared to λx.χ (see
Chapter 3).

Lemma 2.6.1 For n : N, t : τ as well as for t : o, (↑n+1t)[v0]n = t.

Note that, because intuitionistic predicate logic has the structural rules
of weakening, exchange and contraction, the formulation of natural deduction
above is logically equivalent to one that mentions (possibly) different contexts in
rules with more than one premiss. Given the structural rules (shown to be deriv-
able in the meta-theory in Section 2.7), for example, the following formulation
of the rule for →− is admissable, as can be shown by applying the weakening
lemma (Lemma 2.7.2) |Γ′| times. The assumption variables in d have to be
lifted so that they still refer to the same assumptions in Γ as they originally
did. Proof term e can be left unchanged, because there are no other assumption
variables in e than those referring to Γ′.

Γ ` d [:] φ →̇ χ Γ′ ` e [:] φ

Γ,Γ′ ` →−(↑|Γ
′|

0 d, e) [:] χ

In Section 2.11 we show soundness of the deduction relation given in Defi-
nition 2.6.1, with respect to an interpetation function [[]] mapping object-level
formulas to Coq’s native logic.

36 CHAPTER 2. PROOF REFLECTION IN COQ

2.7 Admissible Rules

The following rules are admissible, that is, derivable in the meta-theory. In order
to prove by induction, the statements are loaded appropriately (quantification
over Γ,∆, and so forth).

Lemma 2.7.1 (Lifting of judgement)

Γ ` d [:] φ
↑nΓ ` ↑vnd [:] ↑nφ

Proof. Induction on the proposition Γ ` d [:] φ. The proofs of cases ∀+ and ∃−
require Lemma 2.5.1; cases ∀− and ∃+ require Lemma 2.5.4.

Lemma 2.7.2 (Weakening)

Γ;∆ ` d [:] φ

Γ;χ;∆ ` ↑h|∆|d [:] φ

Proof. By induction on d and inverting the judgement.

Lemma 2.7.3 (Substitution of variables vi in derivation terms)

↑nΓ;∆ ` d [:] φ
Γ;∆[t]n ` d[t]nv [:] φ[t]n

Proof. By induction on d and inversion. Case hi is proved by induction over i
and Lemma 2.5.2. Cases ∀+ and ∃− require lemmas 2.5.3 and 2.5.1. Cases ∀−
and ∃− require Lemma 2.5.5.

Lemma 2.7.4 (Substitution of variables hi in derivation terms)

Γ ` d [:] φ Γ;φ;∆ ` e [:] χ

Γ;∆ ` e[d]|∆|h [:] χ

Proof. By induction on e and inversion. Case hi is proved by induction over i
and Lemma 2.7.2.

Exchange, contraction

The structural rules exchange and contraction are admissible, too.11 First we
need the functions exch and contr. The former swaps the indices n and n + 1,
while the latter decrements all indices greater than n, where n intends to be the
reference depth of assumption variables (n = |∆| in Lemmas 2.7.5 and 2.7.6).

exch(n, i) =

 hn+1 if i = n
hn if i = n+ 1
hi otherwise

contr(n, i) =
{
hi−1 if i > n
hi otherwise

Again, the side conditions in the definitions above are avoided in the formalisa-
tion.

11These lemmas are not needed in the proof of Subject Reduction (Thm. 2.16.2).

2.8. TRANSLATION TO COQ’S NATIVE LOGIC 37

Lemma 2.7.5 (Exchange)

Γ;χ;φ;∆ ` d [:] ψ

Γ;φ;χ;∆ ` maph
π(exch, |∆|, d) [:] ψ

Lemma 2.7.6 (Contraction)

Γ;φ;φ;∆ ` d [:] χ

Γ;φ;∆ ` maph
π(contr, |∆|, d) [:] χ

2.8 Translation to Coq’s Native Logic

We define the translation of object level statements (i.e., the objects defined in
Definition 2.2.3) to meta-level statements (i.e., in the language of the framework
itself). This translation will be referred to as interpretation and depends on a set
A, the domain of discourse and parameters V, F , R for interpreting variables,
function symbols and relation symbols respectively. As will be explained in
Subsection 2.9.1, using N as an index set for variables, requires the domain to
be non-empty; choose a0 as the default value in A.

We introduce the operations of shifting, notation ⇑nV and inserting terms
a : A, notation V[a]n, in variable mappings, that is, λ-terms of type N→ A.

Definition 2.8.1 Given V : N→ A, n : N, we define ⇑nV as follows.

⇑nV = λp :N.V(p+ n)

Definition 2.8.2 Given V : N→ A, n : N and a : A, V[a]n is defined as
follows.

V[a]0(0) = a

V[a]0(m+ 1) = V(m)
V[a]n+1(0) = V(0)

V[a]n+1(m+ 1) = (⇑1V)[a]n(m)

We write V[x] for V[x]0.

Term evaluation is defined as follows.

Definition 2.8.3 Assume an arbitrary domain of discourse A : ∗s and a func-
tion V : N → A to interpret (free) variables. Declare a parameter F , a family
of functions indexed over Ilfun

, used to interpret function symbols.

F : Πi :Ilfun
. Alfun(i) → A

We write Fi for (F i). Given such a family, we define the evaluation function
for terms of type τ .

[[vn]]V = V(n)

[[fi(t1, . . . , tk)]]V = Fi([[t1]]
V
, . . . , [[tk]]V)

38 CHAPTER 2. PROOF REFLECTION IN COQ

Next, we define the canonical interpretation of objects of type o.

Definition 2.8.4 Again, let A : ∗s and V : N → A. Assume a family of
relations indexed over Ilrel .

R : Πj :Ilrel . A
lrel(j) → ∗p

We write Ri for (R i).

[[>̇]]
V

= >

[[⊥̇]]
V

= ⊥
[[Rj(t1, . . . , tm)]]V = Rj([[t1]]

V
, . . . , [[tm]]V)

[[φ ∧̇ χ]]V = [[φ]]V ∧ [[χ]]V

[[φ ∨̇ χ]]V = [[φ]]V ∨ [[χ]]V

[[φ →̇ χ]]V = [[φ]]V → [[χ]]V

[[∀̇φ]]
V

= Πx :A. [[φ]]V[x]

[[∃̇φ]]
V

= ∃x :A. [[φ]]V[x]

Initially (for closed formulas) we set V0 = λn :N. a0, with a0 the chosen default
value in A, and define [[φ]] = [[φ]]V0 .

We use >,⊥,∧,∨,∃ for Coq’s predefined logical connectives. Note that ‘→’
(and ‘Π’) is used for both (dependent) function space as well as for logical impli-
cation (quantification); this overloading witnesses the Curry–Howard–De Bruijn
isomorphism.

We don’t have to worry about name conflicts when inserting a new x :
A to the variable interpretation function V (quantifier cases). Coq’s binding
mechanisms are internally based on De Bruijn indices (with a user-friendly tool
showing named variables on top of it).

Definition 2.8.5 The interpretation of a context is the conjunction of its in-
terpreted elements.

[[2]]V = > [[Γ;φ]]V = [[Γ]]V ∧ [[φ]]V

Remark 2.8.1 We stress the following analogies between the types of v, f , R,
and the types of V, F , R, respectively. First note that:

vn is syntactic sugar for (v n)
fi(t1, . . . , tk) ” ” (f i t1 . . . tk)
Rj(t1, . . . , tm) ” ” (R j t1 . . . tm)

(Recall that k = lfun(i) and m = lrel(j).)

v : N→ τ analogous to V : N→ A

f : Πi :Ilfun
. τk → τ ” ” F : Πi :Ilfun

. Ak → A

R : Πj :Ilrel . τ
m → o ” ” R : Πj :Ilrel . A

m → ∗p

2.9. FREE VARIABLES 39

2.9 Free Variables

2.9.1 Free Variables, Finitely versus Infinitely Many

Note that, differently from type theory where variables have to be declared in
the environment, in our representation we have infinitely many variables (N is
the index set of variables). Therefore, we shall need a default value in order to
have a total evaluation function (see Definition 2.8.3). Alternatively, we could
have chosen to parameterise the sets of terms, formulas, and proof terms over
a natural number n indicating the number of free variables an object is allowed
to contain (enforced by definition via dependent types). Variables would then
be indexed over Nn, defined as follows (think of Nn as {0, . . . , n− 1}).

N0 = ∅ Nn+1 = 1 +Nn

The set τn of first-order terms containing n free variables would then be defined
as follows; let m : Nn and t1, . . . , tk : τn.

τn := vm | fi(t1, . . . , tk)

The constructors ∀̇ and ∃̇ of on then should be typed on+1 → on, as they
bind the first free variable of their argument. The definition of lifting should
be such that, given t : τn, the application ↑mt is typed τn+1 (a fresh variable
vm is introduced) and that m ≤ n is enforced. Given k,m : N, t : τk+m+1

and t′ : τk, t[t′]m should be typed τk+m. Apparently, such an extra parameter
means a considerable complication of matters and we chose to do without it. As
a consequence, to be able to define a V : N → A for the evaluation of objects,
one needs a default value in A.

2.9.2 Free Variables and Substitution

The De Bruijn representation works elegantly for bound variables, there is no
renaming and the structural equality on De Bruijn terms corresponds to the
intented identity of terms. As pointed out in [50], however, there is a slight
inconvenience in the way free variables are treated. The point is that the order
of free variables matters, not their names.

The subtle point about an expression t[t′]n is that the first n variables are
assumed to be bound. Let V : N→ A be such that V(0) = y and V(1) = x (i.e.,
y is introduced later than x), then we can make a substitution that transforms,
for example Rj(x, y) into Rj(x, x), as illustrated below. Note that, for any V ′,
if t is interpreted under V ′, then t[t′] has to be interpreted under ⇑1V ′, because
the original occurrences of v0 in t that pointed to V ′(0) have been removed, and
the other variables have been decremented. We have ⇑1V(0) = V(1) = x and

[[Rj(v1, v0)]]
V = Rj(x, y)

[[Rj(v1, v0)[v0]]]
⇑1V = [[Ri(v0, v0)]]

⇑1V = Rj(x, x)

40 CHAPTER 2. PROOF REFLECTION IN COQ

However, we cannot make a substitution that transforms Rj(x, y) into Rj(y, y).
The reason for this is that x corresponds to v1 and if you want to replace
this, it is assumed that v0 (pointing to y) is bound so that the variables in the
substituent are lifted.

The substitution functions are meant for use only in combination with the
removal of a binder; φ[t] is called to instantiate ∀̇φ with t or to give t as a
witness for ∃̇φ. Another possible (meta-level) binder is the variable mapping V
as exemplified above. We maintain the term “substitution” par abus de langage.

2.10 Thinning and Substitution Lemmas

It is possible to insert free variables to the mapping V of the interpretation func-
tion given in definitions 2.8.3, 2.8.4 and, if the argument is appropriately lifted,
keep the same interpretations. This is called thinning and can be compared
to weakening (see Lemma 2.7.2); the latter is about assumption variables, the
former about term variables. First we define some auxiliary lemmas.

Lemma 2.10.1 For all V,V ′ : N→ A, x, y : A, n,m : N, t : τ and φ : o, we
have:

(V[x]n)[y](m) = (V[y])[x]n+1(m) (permutation of insertion)
⇑n+1(V[x])(m) = ⇑nV(m) (simplification of insertion)

[[↑t]]V = [[t]]⇑1V (lift-shift interchange)

Extensional equality of V and V ′, i.e. Πn.V(n) = V ′(n), implies [[t]]V = [[t]]V
′

and [[φ]]V ↔ [[φ]]V
′
.

Lemma 2.10.2 (Thinning lemma) Let V : N→ A, a : A and n : N. (Anal-
ogous to Lemma 2.7.2).

[[t]]V = [[↑nt]]
V[a]n

[[φ]]V ↔ [[↑nφ]]V[a]n

Similarly we need [[t[t′]]]V = [[t]]V[[[t′]]V]. We need induction loading, no longer
assuming that [[t′]]V is the last added element.

Lemma 2.10.3 (Substitution lemma) (Analogous to Lemma 2.7.4).

[[t[t′]n]]V = [[t]]V[[[t′]]⇑nV]n

[[φ[t′]n]]V ↔ [[φ]]V[[[t′]]⇑nV]n

2.11 Soundness with respect to the Native Logic

We show that the deduction relation defined in Definition 2.6.1 is sound with
respect to Coq’s native logic.

2.11. SOUNDNESS WITH RESPECT TO THE NATIVE LOGIC 41

Theorem 2.11.1 (Soundness) For all contexts Γ, proof terms d, formulas φ,
and variable mappings V we have that:

(Γ ` d [:] φ)→ [[Γ]]V → [[φ]]V

Proof. First the statement is loaded to (Γ ` d [:] φ)→ ΠV :N→ A. [[Γ]]V → [[φ]]V .
Its proof proceeds by induction on the proposition Γ ` d [:] φ. We sketch the
proof for some representative cases.

(Case Γ ` →+(φ1, d) [:] φ1 →̇ φ2) Assume HΓ : [[Γ]]V . We have the induction
hypothesis IHd : [[Γ;φ1]]

V → [[φ2]]
V . Note that [[Γ;φ1]]

V = [[Γ]]V ∧ [[φ1]]
V .

It suffices to prove [[φ1]]
V → [[φ2]]

V . Assume Hφ1 : [[φ1]]
V , then IHd applied

to the pair 〈HΓ,Hφ1〉, is a proof of [[φ2]]
V .

(Case Γ ` ∨−(d, e1, e2) [:] φ) Assume HΓ : [[Γ]]V . The proof obligation is [[φ]]V .
Three induction hypotheses, corresponding to the three premisses of the
∨−-rule are IH d : [[Γ]]V → [[χ1 ∨̇ χ2]]

V and IH ei
: [[Γ;χi]]

V → [[φ]]V (i =
1, 2). We get [[χ1]]

V ∨ [[χ2]]
V from IH d and HΓ.

- Suppose Hχ1 : [[χ1]]
V , then (IH e1 〈HΓ,Hχ1〉) : [[φ]]V .

- Suppose Hχ2 : [[χ2]]
V , then (IH e2 〈HΓ,Hχ2〉) : [[φ]]V .

(Case Γ ` ∀+(d) [:] ∀̇φ) Let HΓ : [[Γ]]V . The induction hypothesis is IHd : ΠV :
N→ A. [[↑Γ]]V → [[φ]]V . We have to prove Πx : A. [[φ]]V[x]. Assume an
arbitrary x : A. From Lemma 2.10.2 and HΓ, it follows that [[↑Γ]]V[x].
Then, IHd for V[x] and the proof of [[↑Γ]]V[x], proves [[φ]]V[x].

(Case Γ ` ∃+(φ, t, d) [:] ∃̇φ) Let HΓ : [[Γ]]V . We have IH d : [[Γ]]V → [[φ[t]]]V . The
proof obligation is ∃x :A. [[φ]]V[x]. Give [[t]]V as witness for this existential
statement, so that our goal becomes [[φ]]V[[[t]]V], which, by Lemma 2.10.3,
is implied by [[φ[t]]]V , which in turn follows directly from IH d and HΓ.

The following remark explains this chapter’s title.

Remark 2.11.1 As with all lemmas and theorems in this thesis, the proof of
Theorem 2.11.1 is a formalised and verified λ-term in Coq:

sound : ΠΓ, d, φ.(Γ ` d [:] φ)→ [[Γ]]→ [[φ]]

Given Hd of type Γ ` d [:] φ and HΓ of type [[Γ]] for some context Γ, proof term
d, and formula φ, define:

M = (sound Γ d φ Hd HΓ)

We say that d reflects the proof M of the first-order proposition [[φ]]:

(Hd : (Γ ` d [:] φ);HΓ : [[Γ]]) `cic M : [[φ]]

where we use `cic to denote derivability in the calculus of inductive constructions.

For correct derivation terms d, the λ-termHd of type Γ ` d [:] φ can be generated
from d, as will be shown in the next two subsections.

42 CHAPTER 2. PROOF REFLECTION IN COQ

2.12 Type Checking Function

Given a context Γ and a proof term d, it is possible to determine whether d
reflects a correct proof and, if it does, to synthesise the type of d. First we
define so-called options.

Definition 2.12.1 The set opt of options is defined inductively as follows.
Let φ : o.

opt := val(φ) | err

Definition 2.12.2 We define the type checking function chk(Γ, d) : opt by re-
cursion on d.

chk(Γ,>+) = val(>̇)
chk(Γ, hi) = val(Γ(i)) if i < |Γ|

chk(Γ,⊥−(d, φ)) = val(φ) if chk(Γ, d) = val(⊥̇)
chk(Γ,→+(φ, d)) = val(φ→̇χ) if chk([Γ;φ], d) = val(χ)

chk(Γ,→−(d, e)) = val(χ) if

 chk(Γ, d) = val(φ→̇χ)
chk(Γ, e) = val(φ′)
φ = φ′

chk(Γ,∨−(d, e1, e2)) = val(φ) if

chk(Γ, d) = val(ψ1∨̇ψ2)
chk([Γ;ψ1], e1) = val(φ)
chk([Γ;ψ2], e2) = val(φ′)
φ′ = φ

chk(Γ,∀+(d)) = val(∀̇φ) if chk(↑Γ, d) = val(φ)
chk(Γ,∀−(t, d)) = val(φ[t]) if chk(Γ, d) = val(∀̇φ)

chk(Γ,∃+(φ, t, d)) = val(∃̇φ) if
{

chk(Γ, d) = val(φ′)
φ′ = φ[t]

chk(Γ,∃−(d, e)) = val(↓φ) if

 chk(Γ, d) = val(∃̇χ)
chk([↑Γ;χ], e) = val(φ)
v0 6∈ FV(φ)

For any recursive call on a subterm, it is checked whether it gives a value or
an error. Thus, unlike other programming languages, errors have to be prop-
agated recursively. The proviso’s are defined by case analysis on the recursive
calls on substructures and by using a Boolean equality relation on formulas. If
these conditions are not satisfied, err is returned. The canonical cases for the
constructors ∧+, ∧−l , ∧−r , ∨+

l , ∨+
r are left out.

2.13 Correctness of Type Checking Function

Type checking is sound and complete with respect to the deduction system of
Definition 2.6.1.

Theorem 2.13.1 (Correctness of chk) For all proof terms d, contexts Γ and
formulas φ, we have that:

chk(Γ, d) = val(φ)↔ Γ ` d [:] φ

2.14. UNIQUE TYPES 43

Proof. (→) By induction on d.

(Case chk(Γ,∃−(d, e)) = val(↓φ)) From this it follows that chk(Γ, d) = val(∃̇χ)
and chk([↑Γ;χ], e) = val(φ). By the induction hypotheses, we obtain Γ `
d [:] ∃̇χ and ↑Γ;χ ` e [:] φ. Because e is a correct term, v0 6∈ FV(φ); by
Lemma 2.4.2 we get φ = ↑↓φ. The proof obligation, then, is fulfilled by
application of the inference rule for ∃−.

Γ ` d [:] ∃̇χ ↑Γ;χ ` e [:] ↑↓φ
Γ ` ∃−(d, e) [:] ↓φ

(←) By induction on Γ ` d [:] φ.

(Case Γ ` ∃−(d, e) [:] φ) We have Γ ` d [:] ∃̇χ and ↑Γ;χ ` e [:] ↑φ. By the
induction hypotheses, we obtain chk(Γ, d) = val(∃̇χ) and chk([↑Γ;χ], e) =
val(↑φ). We have v0 6∈ FV(↑φ) (Lemma 2.4.3) and so chk(Γ,∃−(d, e)) =
val(↓↑φ); finally, ↓↑φ = φ by Lemma 2.4.1.

2.14 Unique Types

Proof terms have unique types.

Corollary 2.14.1 (Uniqueness of Types) For all proof terms d, contexts Γ
and formulas φ and χ, we have that:

(Γ ` d [:] φ)→ (Γ ` d [:] χ)→ φ = χ

Proof. Direct from double application of Theorem 2.13.1.

2.15 Proof Reduction

To illustrate how the defined machinery can be used to manipulate proof objects,
we define Prawitz’s proof reduction rules [61].12 The goal is to remove detours,
as in the following tree.

Γ;φ ` d [:] χ
Γ ` →+(φ, d) [:] φ →̇ χ Γ ` e [:] φ

Γ ` →−(→+(φ, d), e) [:] χ

Instead of first assuming φ to build a proof d of χ, introduce the implication
φ →̇ χ, and then eliminate it immediately by plugging in derivation e, we
can more directly replace the assumption φ in d (represented by the first free
assumption variable) by e.

Γ ` d[e]h [:] χ

12We actually follow [59], pages 85–88.

44 CHAPTER 2. PROOF REFLECTION IN COQ

The removal of such a direct detour is called a proper reduction. There are
seven such rewrite rules, where on the left-hand side an introduction of a cer-
tain connective is immediately followed by an elimination of that connective.
Sometimes, proper redexes are hidden by intermediate ∨− and/or ∃− rules.
Such hidden detours are made direct by a sequence of so-called permutative
conversions. These conversions pull out the ∨− and ∃− rules. After the follow-
ing definition, we give an example of such a permutative conversion. The proof
of Theorem 2.16.1 demonstrates why the various lifting operations are necessary
to keep correct proofs.

Definition 2.15.1 Immediate proof reduction, d 7→ e, is defined by the follow-
ing rewrite rules. The left-hand sides are called immediate (proper, permutative)
redexes and the right-hand sides immediate (proper, permutative) reducts.
Proper reductions.

→−(→+(φ, d), e) 7→ d[e]h (PR→)
∧−l (∧+(d1, d2)) 7→ d1 (PR∧1)
∧−r (∧+(d1, d2)) 7→ d2 (PR∧2)

∨−(∨+
l (φ, d), e1, e2) 7→ e1[d]h (PR∨1)

∨−(∨+
r (φ, d), e1, e2) 7→ e2[d]h (PR∨2)
∀−(t,∀+(d)) 7→ d[t]v (PR∀)

∃−(∃+(φ, t, d), e) 7→ (e[t]v)[d]h (PR∃)

Permutative conversions.

⊥−(∨−(d, e1, e2), φ) 7→ ∨−(d,⊥−(e1, φ),⊥−(e2, φ)) (PC∨⊥)
→−(∨−(d, e1, e2), g) 7→ ∨−(d,→−(e1, ↑hg),→−(e2, ↑hg)) (PC∨→)
∧−l (∨−(d, e1, e2)) 7→ ∨−(d,∧−l (e1),∧−l (e2)) (PC∨∧1)
∧−r (∨−(d, e1, e2)) 7→ ∨−(d,∧−r (e1),∧−r (e2)) (PC∨∧2)

∨−(∨−(d, e1, e2), g, h) 7→ ∨−(d,∨−(e1, ↑h1g, ↑
h
1h),

∨−(e2, ↑h1g, ↑
h
1h)) (PC∨∨)

∀−(t,∨−(d, e1, e2)) 7→ ∨−(d, ∀−(t, e1),∀−(t, e2)) (PC∨∀)
∃−(∨−(d, e1, e2), g) 7→ ∨−(d, ∃−(e1, ↑h1g),∃−(e2, ↑h1g)) (PC∨∃)
⊥−(∃−(d, e), φ) 7→ ∃−(d,⊥−(e, ↑φ)) (PC∃⊥)
→−(∃−(d, e), f) 7→ ∃−(d,→−(e, ↑h(↑vf))) (PC∃→)
∧−l (∃−(d, e)) 7→ ∃−(d,∧−l (e)) (PC∃∧1)
∧−r (∃−(d, e)) 7→ ∃−(d,∧−r (e)) (PC∃∧2)

∨−(∃−(d, e), f, g) 7→ ∃−(d,∨−(e, ↑h1(↑
vf), ↑h1(↑

vg))) (PC∃∨)
∀−(t,∃−(d, e)) 7→ ∃−(d, ∀−(↑t, e)) (PC∃∀)
∃−(∃−(d, e), f) 7→ ∃−(d, ∃−(e, ↑h1(↑

v
1f))) (PC∃∃)

Definition 2.15.2 We define � as the closure of 7→ under the construction
rules of π. In other words, d� d′ holds if d′ can be obtained from d by replacing
a subterm of d by an immediate reduct of it.

As an example, consider the following reduction sequence, consisting of rules
PC∨∃ and PR∃ respectively.

∃−(∨−(d, ∃+(φ, t, e1), e2), g)

2.16. SUBJECT REDUCTION 45

� ∨−(d, ∃−(∃+(φ, t, e1), ↑h1g),∃−(e2, ↑h1g))
� ∨−(d, ((↑h1g)[t]v)[e1]h,∃−(e2, ↑h1g))

Let’s depict the corresponding proof trees, starting with the permutative redex.

Γ ` d [:] ψ1 ∨̇ ψ2

Γ;ψ1 ` e1 [:] φ[t]

Γ;ψ1 ` ∃+(φ, t, e1) [:] ∃̇φ Γ;ψ2 ` e2 [:] ∃̇φ
Γ ` ∨−(d, ∃+(φ, t, e1), e2) [:] ∃̇φ ↑Γ;φ ` g [:] ↑χ

Γ ` ∃−(∨−(d, ∃+(φ, t, e1), e2), g) [:] χ

The previously hidden detour is made direct, as shown in the following tree,
corresponding to the permutative reduct.

Γ ` d [:] ψ1 ∨̇ ψ2 T1 T2
Γ ` ∨−(d, ∃−(∃+(φ, t, e1), ↑h1g),∃−(e2, ↑h1g)) [:] χ

Where T1 denotes

Γ;ψ1 ` ∃+(φ, t, e1) [:] ∃̇φ ↑(Γ;ψ1);φ ` ↑h1g [:] ↑χ
Γ;ψ1 ` ∃−(∃+(φ, t, e1), ↑h1g) [:] χ

and T2 denotes

Γ;ψ2 ` e2 [:] ∃̇φ ↑(Γ;ψ2);φ ` ↑h1g [:] ↑χ
Γ;ψ2 ` ∃−(e2, ↑h1g) [:] χ

Now T1 contains a direct detour, which reduces to T ′1 :

Γ;ψ1 ` ((↑h1g)[t]v)[e1]h [:] χ

The proof tree corresponding to the final term in the reduction sequence then
reads:

Γ ` d [:] ψ1 ∨̇ ψ2 T ′1 T2
Γ ` ∨−(d, ((↑h1g)[t]v)[e1]h,∃−(e2, ↑h1g)) [:] χ

2.16 Subject Reduction

Theorem 2.16.1 (Subject Reduction (7→))

(d 7→ e)→ (Γ ` d [:] φ)→ (Γ ` e [:] φ)

Proof. By induction on the proposition d 7→ e. The so obtained instances of
Γ ` d [:] φ are inverted twice. We show some representative cases.

46 CHAPTER 2. PROOF REFLECTION IN COQ

(PR→) The following tree is built bottom-up with the use of inversion, starting
at the given judgement Γ ` →−(→+(φ, d), e) [:] χ in the root. Inverting
the root gives Γ ` →+(φ, d) [:] φ →̇ χ and Γ ` e [:] φ. Inverting the former
judgement gives Γ;φ ` d [:] χ.

Γ;φ ` d [:] χ
Γ ` →+(φ, d) [:] φ →̇ χ Γ ` e [:] φ

Γ ` →−(→+(φ, d), e) [:] χ

We have to prove: Γ ` d[e]h [:] χ, which follows from Lemma 2.7.4 by
substituting the empty context for ∆:

Γ ` e [:] φ Γ;φ ` d [:] χ
Γ ` d[e]h [:] χ

(PR∀) Assume Γ ` ∀−(t,∀+(d)) [:] φ[t]. Using inversion, we build the following
tree.

↑Γ ` d [:] φ

Γ ` ∀+(d) [:] ∀̇φ
Γ ` ∀−(t,∀+(d)) [:] φ[t]

We have to prove: Γ ` d[t]v [:] φ[t], which follows from Lemma 2.7.3 and
↑Γ ` d [:] φ (take ∆ empty and n = 0).

(PC∨∨) Assume Γ ` ∨−(∨−(d, e1, e2), g, h) [:] φ. The proof obligation is:

Γ ` ∨−(d,∨−(e1, ↑h1g, ↑
h
1h),∨−(e2, ↑h1g, ↑

h
1h)) [:] φ

We use the following abbreviations.

Jd ≡ Γ ` d [:] ψ1 ∨̇ ψ2

Jg ≡ Γ;χ1 ` g [:] φ
Jh ≡ Γ;χ2 ` h [:] φ

Je1 ≡ Γ;ψ1 ` e1 [:] χ1 ∨̇ χ2

Je2 ≡ Γ;ψ2 ` e2 [:] χ1 ∨̇ χ2

After inversion, we come to the following tree.

Jd Je1 Je2

Γ ` ∨−(d, e1, e2) [:] χ1 ∨̇ χ2 Jg Jh

Γ ` ∨−(∨−(d, e1, e2), g, h) [:] φ

The following tree demonstrates how the goal is deduced.

Jd T1 T2
Γ ` ∨−(d,∨−(e1, ↑h1g, ↑

h
1h),∨−(e2, ↑h1g, ↑

h
1h)) [:] φ

where T1 denotes the subtree:

Je1 Γ;ψ1;χ1 ` ↑h1g [:] φ Γ;ψ1;χ2 ` ↑h1h [:] φ

Γ;ψ1 ` ∨−(e1, ↑h1g, ↑
h
1h) [:] φ

2.17. CONCLUSION AND FUTURE RESEARCH 47

and T2 the analogous deduction of Γ;ψ2 ` ∨−(e2, ↑h1g, ↑
h
1h) [:] φ. Now it

becomes clear why all free assumption variables except the first have to
be lifted in, for example, proof term g: ↑h1g. In T1 the extra assumption
ψ1 is added to the context. The leafs Γ;ψ1;χ1 ` ↑h1g [:] φ and Γ;ψ1;χ2 `
↑h1h [:] φ in T1 are implied by the judgements Jg and Jh respectively, via
the weakening lemma (2.7.2).

(PC∃→) Assume Γ ` →−(∃−(d, e), f) [:] χ.

Γ ` d [:] ∃̇ψ ↑Γ;ψ ` e [:] ↑(φ →̇ χ)
Γ ` ∃−(d, e) [:] φ →̇ χ Γ ` f [:] φ

Γ ` →−(∃−(d, e), f) [:] χ

The conversion PC∃→ puts derivation f in the scope of the ∃−. In the
new situation, in order to obtain a correct deduction, f is lifted such that
it no longers contains v0 and h0 (now referring to the new assumption ψ).
We have to prove Γ ` ∃−(d,→−(e, ↑h(↑vf))) [:] χ.

Γ ` d [:] ∃̇ψ
↑Γ;ψ ` e [:] ↑φ →̇ ↑χ ↑Γ;ψ ` ↑h(↑vf) [:] ↑φ

↑Γ;ψ ` →−(e, ↑h(↑vf)) [:] ↑χ
Γ ` ∃−(d,→−(e, ↑h(↑vf))) [:] χ

Note that ↑(φ →̇ χ) = ↑φ →̇ ↑χ. Thus, all we have to show is that
↑Γ;ψ ` ↑h(↑vf) [:] ↑φ follows from Γ ` f [:] φ. By Lemma 2.7.1, we have
that ↑Γ ` ↑vf [:] ↑φ. Then our goal follows from the weakening lemma
(2.7.2).

The following theorem, stating that � preserves types, follows directly from
Theorem 2.16.1. The proof proceeds by structural induction on the proposition
d� e.

Theorem 2.16.2 (Subject Reduction (�))

(d� e)→ (Γ ` d [:] φ)→ (Γ ` e [:] φ)

2.17 Conclusion and Future Research

We described a formalisation of natural deduction for intuitionistic first-order
logic in Coq. This formalisation provides an object language amenable to the
manipulation of formulas and of proof objects, which is the objective of this
study. In the meta-theory we are able to reason about these syntactical objects.
The example of a proof reduction relation demonstrates how proof terms can be
subject to manipulation and to reasoning. Via the soundness (Theorem 2.11.1)
of the deduction system of hypothetical judgements (Definition 2.6.1), we are
also able to lift object level proof terms to actual proof terms inhabiting propo-
sitions of type ∗p. Thus we can reflect upon the first-order fragment of ∗p.

48 CHAPTER 2. PROOF REFLECTION IN COQ

We plan to use the described formalisation for a syntactical proof of con-
servativity of the Axiom of Choice over first-order intuitionistic logic without
equality (see [63] and [30]). Also, proving termination of permutative conver-
sions (along the lines of [42] or [59]) is challenging.

Acknowledgments

The author thanks Marc Bezem, Vincent van Oostrom, Jaco van de Pol and
Freek Wiedijk for their critical remarks on draft versions of this chapter and for
many fruitful discussions.

