
Chapter 1

Automated Proof
Construction in Type
Theory using Resolution

We provide techniques to integrate resolution logic with equality in type theory.
The results may be rendered as follows.

• A clausification procedure in type theory, equipped with a correctness
proof, all encoded using higher-order primitive recursion.

• A novel representation of clauses in minimal logic such that the λ-represen-
tation of resolution steps is linear in the size of the premisses.

• A translation of resolution proofs into lambda terms, yielding a verification
procedure for those proofs.

• The power of resolution theorem provers becomes available in interactive
proof construction systems based on type theory.

Authors: Marc Bezem, Dimitri Hendriks and Hans de Nivelle

1.1 Introduction

Type theory (= typed lambda calculus, with dependent products as most rele-
vant feature) offers a powerful formalism for formalising mathematics. Strong
points are: the logical foundation, the fact that proofs are first-class citizens and
the generality which naturally facilitates extensions, such as inductive types.
Type theory captures definitions, reasoning and computation at various levels
in an integrated way. In a type-theoretical system, formalised mathematical
statements are represented by types, and their proofs are represented by λ-
terms. The problem whether a is a proof of statement A reduces to checking
whether the term a has type A. Computation is based on a simple notion of
rewriting. The level of detail is such that the well-formedness of definitions and
the correctness of derivations can automatically be verified.

1

2 CHAPTER 1. AUTOMATED PROOF CONSTRUCTION

However, there are also weak points. It is exactly the appraised expressiv-
ity and the level of detail that makes automation at the same time necessary
and difficult. Automated deduction appears to be mostly successful in weak
systems, such as propositional logic and predicate logic, systems that practi-
cally fall short of formalising a larger body of mathematics. Apart from the
problem of the expressivity of these systems, only a minor part of the theo-
rems that can be expressed can actually be proved automatically. Therefore it
is necessary to combine automated theorem proving with interactive theorem
proving. Recently a number of proposals in this direction have been made. In
[18] a two-level approach (called reflection) is used to develop in Coq a certi-
fied decision procedure for equations in abelian rings. In the same vein, [53]
certifies ELAN traces in Coq. In [49] Otter is combined with the Boyer-Moore
theorem prover. (A verified program rechecks proofs generated by Otter.) In
[41] Gandalf is linked to HOL. (The translation generates scripts to be run by
the HOL-system.) In [64], proofs are translated into Martin-Löf’s type theory,
for the Horn clause fragment of first-order logic. In the Omega system [38, 29]
various theorem provers have been linked to a natural deduction proof checker.
The purpose there is to automatically generate proofs from so called proof plans.
Our approach is different in that we generate complete proof objects for both
the clausification and the refutation part.

Resolution theorem provers, such as Bliksem [54], are powerful, but have the
drawback that they work with normal forms of formulas, so-called clausal forms.
Clauses are (universally closed) disjunctions of literals, and a literal is either an
atom or a negated atom. The clausal form of a formula is essentially its Skolem-
conjunctive normal form, which need not be exactly logically equivalent to the
original formula. This makes resolution proofs hard to read and understand, and
makes interactive navigation of the theorem prover through the search space
very difficult. Moreover, optimised implementations of proof procedures are
error-prone. It has occurred that systems that took part in the yearly theorem
prover competition CASC had to withdraw afterwards, due to the fact that the
system turned out unsound. In 1999 the system that otherwise would have won
the MIX category was withdrawn, see [65].

In type theory, the proof generation capabilities suffer from the small granu-
larity of the inference steps and the corresponding astronomic size of the search
space. Typically, one hyperresolution step requires a few dozens of inference
steps in type theory. In order to make the formalisation of a large body of
mathematics feasible, the level of automation of interactive proof construction
systems such as Coq [66], based on type theory, has to be improved.

We propose the following proof procedure. Identify a non-trivial step in a
Coq session that amounts to a first-order tautology. Export this tautology to
Bliksem, and delegate the proof search to the Bliksem inference engine. Convert
the resolution proof to type theoretic format and import the result back in Coq.
We stress the fact that the above procedure is as secure as Coq. Hypothetical
errors (e.g. the clausification procedure not producing clauses, possible errors
in the resolution theorem prover or the erroneous formulation of the lambda
terms corresponding to its proofs) are intercepted because the resulting proofs

1.2. A TWO-LEVEL APPROACH 3

are type-checked by Coq. The security could be made independent of Coq by
using another type-checker.

Most of the necessary meta-theory is already known. The negation nor-
mal form transformation can be axiomatised by classical logic. The prenex
and conjunctive normal form transformations require that the domain is non-
empty. Skolemisation can be axiomatised by so-called Skolem axioms, which
can be viewed as specific instances of the Axiom of Choice. Higher-order logic
is particularly suited for this axiomatisation: we get logical equivalence mod-
ulo classical logic plus the Axiom of Choice, instead of awkward invariants as
equiconsistency or equisatisfiability in the first-order case.

Following the proof of the conservativity of the Axiom of Choice over first-
order logic (without equality), see e.g. [63] (elaborated in [30]) and [58], Skolem
functions and –axioms could be eliminated from resolution proofs, which would
allow us to obtain directly a proof of the original formula, but currently we still
make use of the Axiom of Choice.

This chapter is organised as follows. In Section 1.2 we set out a two-level ap-
proach and define a deep embedding to represent first-order logic.1 Section 1.3
describes a uniform clausification procedure. We explain how resolution proofs
are translated into λ-terms in Sections 1.4 and 1.5. Finally, the outlined con-
structions are demonstrated in Section 1.6.

1.2 A Two-level Approach

We choose for a deep embedding in adopting a two-level approach for the treat-
ment of arbitrary first-order languages. The idea is to represent first-order
formulas as objects in an inductive set o : ∗s, accompanied by an interpretation
function [[]] that maps these objects into ∗p.2 The next paragraphs explain why
we distinguish a higher (meta-, logical) level ∗p and a lower (object-, computa-
tional) level o.

The universe ∗p includes higher-order propositions; in fact it encompasses
full impredicative type theory. As such, it is too large for our purposes. Given a
suitable signature, any first-order formula ϕ : ∗p will have a formal counterpart
p : o such that ϕ equals [[p]], the interpretation of p. Thus the first-order fragment
of ∗p can be identified as a collection of interpretations of objects in o.

Secondly, Coq supplies only limited computational power on ∗p, whereas o,
as every inductive set, is equipped with the powerful computational device of
higher-order primitive recursion. This enables the syntactical manipulation of
object-level propositions.

Reflection is used for the proof construction of first-order formulas in ∗p in
the following way. Let ϕ : ∗p be a first-order formula. Then there is some ϕ̇ : o
such that [[ϕ̇]] is convertible with ϕ.3 Moreover, suppose we have proved:

Tsound : Πp :o. [[(T p)]]→ [[p]]
1Cf. the discussion on deep vs. shallow embeddings in the preface.
2Both o as well as [[]] depend on a fixed but arbitrary signature.
3The mapping ˙ is a syntax-based translation outside Coq.

4 CHAPTER 1. AUTOMATED PROOF CONSTRUCTION

Bliksem

��··
··
··
··
··
··

(Tsound ϕ̇ d) : ϕ

˙

��

·············

d :
||

[[(T ϕ̇)]]

YY············
meta-level ∗p

ϕ̇
T

//

[[]]

XX

(T ϕ̇)

[[]]

OO

object-level o

Coq

Figure 1.1: Schematic overview of the general procedure. Arrows correspond to
application in Coq, dotted arrows are not performed by Coq. The term [[(T ϕ̇)]]
is computed by Coq and exported to Bliksem. Bliksem is to return a proof term
d, which is imported back in Coq. Then (Tsound ϕ̇ d) is a proof of [[ϕ̇]], and hence
of ϕ.

for some function T : o → o, typically a transformation to clausal form. Then,
to prove ϕ it suffices to prove [[(T ϕ̇)]]. Matters are presented schematically in
Figure 1.1. In Section 1.3 we discuss a concrete function T , for which we have
proved the above. For this T , proofs of [[(T ϕ̇)]] will be generated automatically,
as will be described in Sections 1.4 and 1.5.

Object-level Propositions and the Reflection Operation

In Coq, we have constructed a general framework to represent first-order lan-
guages with multiple sorts. Bliksem is one-sorted, so we describe the setup for
one-sorted signatures only.

The set o (formulas) defined in the present section depends on the signature,
constituted by an arbitrary but fixed list of natural numbers, representing rela-
tion arities. This dependence remains implicit in the sequel. We start by giving
some preliminary definitions.

Definition 1.2.1 Given a set A, lists of type (list A) are defined by 2 and [a|l],
where a : A and l : (list A). Given a list l : (list A), its index set is defined by

1.2. A TWO-LEVEL APPROACH 5

Il = {0, . . . , |l| − 1}, where we write |l| to denote the length of l.4 Furthermore,
we write l(i) for the element indexed by i ∈ Il. The cartesian product An of n
copies of a set A is defined by:

A0 = 1 An+1 = A×An

where 1 is the unit set with sole inhabitant •.

Note that the product A × B is the set of pairs (a, b) with a : A and b : B.
We shall use the following notational conventions regarding lists and tuples.
Let a, a1, a2, . . . , an : A. The sugared version of a list [a1|[a2| · · · |[an|2] · · ·]] is
[a1, a2, . . . , an]. Similarly, tuples (a1, (a2, . . . , (an, •) . . .)) of type An are written
(a1, a2, . . . , an); also, we simply use a instead of (a, •) of type A1.

Next, we define object-level propositions.

Definition 1.2.2 Assume a domain of discourse A : ∗s and let lrel be a list of
natural numbers representing arities. The set o of objects representing proposi-
tions is inductively defined as follows, where p, q : o, p′ : A→ o, x1, . . . , xk : A,
i : Ilrel , and lrel(i) = k.

o := Ri(x1, . . . , xk) | ¬̇p | p →̇ q | p ∧̇ q | p ∨̇ q | (∀̇ p′) | (∃̇ p′)

Note that R : Πi : Ilrel . A
lrel(i) → o, we write Ri instead of (R i). We use the

dot-notation ˙ to distinguish the object-level constructors from Coq’s predefined
connectives. The constructors ∀̇, ∃̇ are typed (A → o) → o; they map proposi-
tional functions of type A→ o to propositions of type o. This representation has
the advantage that binding and predication are handled by λ-abstraction and
λ-application. On the object-level, existential quantification of x in p (of type o,
possibly containing occurrences of x) is written as (∃̇ (λx :A. p)). Although this
representation suffices for our purposes, it causes some well-known difficulties.
See [52, Sections 8.3, 9.2] and the preface for a further discussion.

For our purposes, a shallow embedding of function symbols is sufficient. We
have not defined an inductive set term representing the first-order terms in A like
we have defined o representing the first-order fragment of ∗p. Instead, ‘meta-
level’ terms of type A are taken as arguments of object-level predicates. Due
to this shallow embedding, we cannot check whether variables have occurrences
in a given term. Because of that, e.g., distributing universal quantifiers over
conjuncts can yield dummy abstractions. These problems could be overcome
by using De Bruijn indices (see [19]) for a deep embedding of terms in Coq,
cf. Chapter 2.

Definition 1.2.3 The interpretation function [[]] is a canonical homomorphism
recursively defined as follows. Assume a family of relations indexed over Ilrel .

R : Πi :Ilrel . A
lrel(i) → ∗p

4For a more formal definition (i.e. closer to the actual Coq implementation) of list indices,
the reader is referred to Chapter 2, Definition 2.2.1.

6 CHAPTER 1. AUTOMATED PROOF CONSTRUCTION

We write Ri for (R i).

[[Ri(t1, . . . , tk)]] = Ri(t1, . . . , tk)
[[¬̇p]] = ¬[[p]]

[[p →̇ q]] = [[p]]→ [[q]]
[[p ∧̇ q]] = [[p]] ∧ [[q]]
[[p ∨̇ q]] = [[p]] ∨ [[q]]
[[(∀̇ p′)]] = Πx :A. [[(p′ x)]]
[[(∃̇ p′)]] = ∃x :A. [[(p′ x)]]

We use ∧,∨,∃ for Coq’s predefined logical connectives. Note that ‘→’ (and
‘Π’) is used for both (dependent) function space as well as for logical implica-
tion (quantification); this overloading witnesses the Curry–Howard–De Bruijn
isomorphism.

We do not have to worry about name conflicts when introducing a new x : A
for interpretation of formulas whose head constructor is a quantifier. Coq’s
binding mechanisms are internally based on De Bruijn indices (with a user-
friendly tool showing named variables on top of it). In the above definitions of
o, its constructors and of [[]], the dependency on the signature (constituted by
A, lrel and R) has been suppressed.

1.3 Clausification and Correctness

We describe the transformation to clausal form (see Section 1.4), which is re-
alised on both levels. On the object-level, we define an algorithm mcf : o→ o
that converts object-level propositions into their clausal form. On the meta-
level, clausification is realised by a term mcfsound, which (given the axiom of
excluded middle and the axiom of choice) transforms a proof of [[(mcf p)]] into
a proof of [[p]].

The algorithm mcf consists of the subsequent application of the following
functions: nnf, pnf, cnf, sklm, duqc, impf standing for transformations to nega-
tion, prenex and conjunctive normal form, Skolemisation, distribution of uni-
versal quantifiers over conjuncts and transformation to implicational form, re-
spectively. As an illustration, we describe the functions nnf and sklm.

1.3.1 Negation Normal Form

Concerning negation normal form, a recursive call like:

(nnf ¬̇(p ∧̇ q)) = (nnf ¬̇p) ∨̇ (nnf ¬̇q)

is not primitive recursive, since ¬̇p and ¬̇q are not subformulas of ¬̇(p ∧̇ q). Such
a call requires general recursion. Coq’s computational mechanism is higher-order
primitive recursion, which is weaker than general recursion but ensures universal
termination.

1.3. CLAUSIFICATION AND CORRECTNESS 7

Definition 1.3.1 The function nnf : o → pol → o makes use of the so-called
polarity (⊕ or) of an input formula.

(nnf Ri(t1, . . . , tk) ⊕) = Ri(t1, . . . , tk)
(nnf Ri(t1, . . . , tk)) = ¬̇Ri(t1, . . . , tk)

(nnf ¬̇p ⊕) = (nnf p)
(nnf ¬̇p) = (nnf p ⊕)

(nnf p1 →̇ p2 ⊕) = (nnf p1) ∨̇ (nnf p2 ⊕)
(nnf p1 →̇ p2) = (nnf p1 ⊕) ∧̇ (nnf p2)
(nnf p1 ∧̇ p2 ⊕) = (nnf p1 ⊕) ∧̇ (nnf p2 ⊕)
(nnf p1 ∧̇ p2) = (nnf p1) ∨̇ (nnf p2)
(nnf p1 ∨̇ p2 ⊕) = (nnf p1 ⊕) ∨̇ (nnf p2 ⊕)
(nnf p1 ∨̇ p2) = (nnf p1) ∧̇ (nnf p2)
(nnf (∀̇ p′) ⊕) = (∀̇ (λx :A. (nnf (p′ x) ⊕)))
(nnf (∀̇ p′)) = (∃̇ (λx :A. (nnf (p′ x))))
(nnf (∃̇ p′) ⊕) = (∃̇ (λx :A. (nnf (p′ x) ⊕)))
(nnf (∃̇ p′)) = (∀̇ (λx :A. (nnf (p′ x))))

In order to prove soundness of nnf we need the principle of excluded middle
PEM, which we define in such a way that it affects the first-order fragment only
(like o, PEM depends on the signature):

Definition 1.3.2

PEM := Πp :o. [[p]] ∨ ¬[[p]]

Lemma 1.3.1 Assume PEM, then we have for all p : o:

[[p]]↔ [[(nnf p ⊕)]]
¬[[p]]↔ [[(nnf p)]]

1.3.2 Skolemisation

Skolemisation of a formula means the removal of all existential quantifiers and
the replacement of the variables that were bound by the removed existential
quantifiers by new terms, that is, Skolem functions applied to the universally
quantified variables whose quantifier had the existential quantifier in its scope.
Instead of quantifying each of the Skolem functions, we introduce an index type
S, which may be viewed as a type for families of Skolem functions:

Definition 1.3.3

S := N→ N→ Πn :N. An → A

8 CHAPTER 1. AUTOMATED PROOF CONSTRUCTION

A Skolem function, then, is a term (f i j n) : An → A with f : S and i, j, n : N.
Here, i and j are indices that distinguish the family members. If the output of
nnf yields a conjunction, the remaining clausification steps are performed sep-
arately on the conjuncts. (This yields a significant speed-up in performance.)
Index i denotes the position of the conjunct, j denotes the number of the re-
placed existentially quantified variable in that conjunct.

Definition 1.3.4 The function sklm is defined as follows.

(sklm f i j n t (∀̇ p′)) = (∀̇ (λx :A. (sklm f i j n+ 1 (t, x) (p′ x))))
(sklm f i j n t (∃̇ p′)) = (sklm f i j + 1 n t (p′ (f i j n t)))

(sklm f i j n t p) = p, if p is neither (∀̇ p′) nor (∃̇ p′)

Here and below (t, x) denotes the tuple typed An+1 obtained by appending x
to t. If the input formula is of the form (∀̇ p′), then the quantified variable
is added at the end of the so far constructed tuple t of universally quantified
variables. In case the input formula matches (∃̇ p′) with p′ : A → o the term
(f i j n t) is substituted for the existentially quantified variable (the ‘hole’ in p′)
and index j is incremented. This substitution comes for free and is performed
on the meta-level by β-reducing (p′ (f i j n t)). The third case exhausts the five
remaining cases. As we enforce input formulas of sklm to be in prenex normal
form (via the definition of mcf), nothing remains to be done.

Lemma 1.3.2 For all i : N and p : o we have:

A→ ACS → [[p]]→ ∃f :S. [[(sklm f i 0 0 • p)]]

In the above lemma, A→ · · · expresses the condition that A is non-empty, and
below a : A denotes a canonical inhabitant. ACS is a specific formulation of the
Axiom of Choice, which allows us to form Skolem functions. Like PEM, ACS
implicitly depends on the signature, that is, on A, lrel and R.

Definition 1.3.5

ACS := Πα :A→ S → o.
(Πx :A.∃f :S. [[(α x f)]])
→ ∃F :A→ S.Πx :A. [[(α x (F x))]]

Note that ACS indeed follows from the more general:

AC := ΠA,B :∗s.
ΠP :A→ B → ∗p.
(Πx :A.∃y :B. (P x y))
→ ∃f :A→ B.Πx :A. (P x (f x))

Let us inspect a crucial step in the proof of this lemma, which proceeds by
induction on p : o. Consider the case that p is of the form (∀̇ p′). Our induction
hypothesis is:

Πx :A. [[(p′ x)]]→ ∃f :S. [[(sklm f i 0 0 • (p′ x))]]

1.3. CLAUSIFICATION AND CORRECTNESS 9

Assume Πx :A. [[(p′ x)]]. Then we have:

Πx :A.∃f :S. [[(sklm f i 0 0 • (p′ x))]]

By application of ACS we get:

Πx :A. [[(sklm (F x) i 0 0 • (p′ x))]]

for some function F : A→ S. Our goal is:

∃g :S.Πx :A. [[(sklm g i 0 1 x (p′ x))]]

The witnessing g is given by:

(g i j 0 •) = a

(g i j n+ 1 (x, t)) = (F x i j n t)

Now
[[(sklm g i 0 1 x (p′ x))]]

follows from
[[(sklm (F x) i 0 0 • (p′ x))]]

via Lemma 1.3.3, as for any n : N, g behaves like (F x) on any tail t : An.

Lemma 1.3.3 For all i, jf , jg, nf , ng : N, tf : Anf , tg : Ang , p : o, we have: if
for all m,n : N, t : An

(f i jf +m nf + n (tf , t)) = (g i jg +m ng + n (tg, t))

then
[[(sklm f i jf nf tf p)]]→ [[(sklm g i jg ng tg p)]]

Here tuples (tf , t) : Anf +n and (tg, t) : Ang+n are the result of appending t to tf
and tg, respectively.

1.3.3 Composing the Modules

Reconsider Figure 1.1 and substitute mcf for T . Given a suitable signature,
from any first-order formula ϕ : ∗p, we can compute the clausal form [[(mcf ϕ̇)]].

Theorem 1.3.1 There exists a proof term mcfsound which validates clausifica-
tion on the meta-level. More precisely:

mcfsound : PEM→ ACS → A→ Πp :o. [[(mcf p)]]→ [[p]]

The term [[(mcf ϕ̇)]] computes a format C1 → · · · → Cn → ⊥. Here C1, . . . , Cn :
∗p are universally closed clauses that will be exported to Bliksem, which con-
structs the proof term d representing a resolution refutation of these clauses
(see Sections 1.4 and 1.5). Finally, d is type-checked in Coq. Section 1.6 demon-
strates the outlined constructions.

The complete Coq-script generating the correctness proof of the clausification
algorithm comprises ± 65 pages. It is available at [12].

10 CHAPTER 1. AUTOMATED PROOF CONSTRUCTION

1.4 Minimal Resolution Logic

There exist many representations of clauses and corresponding formulations of
resolution rules. The traditional form of a clause is a disjunction of literals, that
is, of atoms and negated atoms. Another form which is often used is that of a
sequent, that is, the implication of a disjunction of atoms by a conjunction of
atoms.

Here we propose yet another representation of clauses, as far as we know not
used before. There are three main considerations.

- A structural requirement is that the representation of clauses is closed
under the operations involved, such as instantiation and resolution.

- The Curry–Howard–De Bruijn correspondence is most direct between min-
imal logic (→,∀) and a typed lambda calculus with product types (with
→ as a special, non-dependent, case of Π). Conjunction and disjunction
in the logic require either extra type-forming primitives and extra terms
to inhabit these, or impredicative encodings.

- The λ-representation of resolution steps should preferably be linear in the
size of the premisses.

These considerations have led us to represent a clause like:

L1 ∨ · · · ∨ Lp

by the following classically equivalent implication in minimal logic:

L1 → · · · → Lp → ⊥

Here Li is the complement of Li in the classical sense (i.e. double negations
are removed). If C is the disjunctive form of a clause, then we denote its
implicational form by [C]. As usual, these expressions are implicitly or explicitly
universally closed.

A resolution refutation of given clauses C1, . . . , Cn proves their inconsistency,
and can be taken as a proof of the following implication in minimal logic:

C1 → · · · → Cn → ⊥

Here and below, ‘minimal’ refers to minimal logic, as we use no particular prop-
erties of ⊥. In particular, ‘minimal clause’ refers to the representation in min-
imal logic, and not to any other kind of minimality. We are now ready for the
definition of the syntax of minimal resolution logic.

Definition 1.4.1 Let ∀~x. φ denote the universal closure of φ. Let Atom be
the set of atomic propositions. We define the sets Literal, Clause and MCF of,
respectively, literals, clauses and minimal clausal forms by the following abstract
syntax:

Literal ::= Atom | Atom→ ⊥
Clause ::= ⊥ | Literal→ Clause
MCF ::= ⊥ | (∀~x.Clause)→ MCF

1.4. MINIMAL RESOLUTION LOGIC 11

Next we elaborate the familiar inference rules for factoring, permuting and
weakening clauses, as well as the binary resolution rule.

Factoring, Permutation, Weakening

Let C and D be clauses, such that C subsumes D propositionally, that is, any
literal in C also occurs in D. Let A1, . . . , Ap, B1, . . . , Bq be literals (p, q ≥ 0)
and write

[C] = A1 → · · · → Ap → ⊥

and
[D] = B1 → · · · → Bq → ⊥

assuming that for every 1 ≤ i ≤ p there is 1 ≤ j ≤ q such that Ai = Bj .
A proof of [C]→ [D] is the following λ-term:

λc : [C]. λb1 :B1 . . . λbq :Bq. (c π1 . . . πp)

with πi = bj , where j is such that Bj = Ai.

Binary Resolution

In the traditional form of the binary resolution rule for disjunctive clauses we
have premisses C1 and C2, containing one or more occurrences of a literal L
and of L, respectively. The conclusion of the rule, the resolvent, is then a clause
D consisting of all literals of C1 different from L joined with all literals of C2

different from L. This rule is completely symmetric with respect to C1 and C2.
For clauses in implicational form there is a slight asymmetry in the formu-

lation of binary resolution. Let A1, . . . , Ap, B1 . . . , Bq be literals (p, q ≥ 0) and
write

[C1] = A1 → · · · → Ap → ⊥,

with one or more occurrences of the negated atom A→ ⊥ among the Ai and

[C2] = B1 → · · · → Bq → ⊥,

with one or more occurrences of the atom A among the Bj . Write the resolvent
D as

[D] = D1 → · · · → Dr → ⊥

consisting of all literals of C1 different from A→ ⊥ joined with all literals of C2

different from A. A proof of [C1]→ [C2]→ [D] is the following λ-term:

λc1 : [C1]. λc2 : [C2]. λd1 :D1 . . . λdr :Dr. (c1 π1 . . . πp)

For 1 ≤ i ≤ p, πi is defined as follows. If Ai 6= (A→ ⊥), then πi = dk, where k
is such that Dk = Ai. If Ai = A→ ⊥, then we put

πi = λa :A. (c2 π′1 . . . π′q),

12 CHAPTER 1. AUTOMATED PROOF CONSTRUCTION

with π′j (1 ≤ j ≤ q) defined as follows. If Bj 6= A, then π′j = dk, where k is such
that Dk = Bj . If Bj = A, then π′j = a. It is easily verified that πi : (A→ ⊥) in
this case.

If (A → ⊥) occurs more than once among the Ai, then (c1 π1 . . . πp)
need not be linear. This can be avoided by factoring timely. Even without
factoring, a linear proof term is possible: by taking the following β-expansion
of (c1 π1 . . . πp) (with a′ replacing copies of proofs of (A→ ⊥)):

(λa′ :A→ ⊥. (c1 π1 . . . a′ . . . a′ . . . πp))(λa :A. (c2 π′1 . . . π′q))

This remark applies to the rules in the next subsections as well.

Paramodulation

Paramodulation combines equational reasoning with resolution. For equational
reasoning we use the inductive equality of Coq. In order to simplify matters,
we assume a fixed domain of discourse A, and denote equality of s1, s2 ∈ A by
s1 ≈ s2.

Coq supplies us with the following terms:

eqrefl : ∀s :A. (s ≈ s)
eqsubst : ∀s :A.∀P :A→ ∗p. (P s)→ ∀t :A. (s ≈ t)→ (P t)
eqsym : ∀s1, s2 :A. (s1 ≈ s2)→ (s2 ≈ s1)

As an example we define eqsym from eqsubst, eqrefl:

λs1, s2 :A. λh : (s1 ≈ s2). (eqsubst s1 (λs :A. (s ≈ s1)) (eqrefl s1) s2 h)

Paramodulation for disjunctive clauses is the rule with premiss C1 containing
the equality literal t1 ≈ t2 and premiss C2 containing literal L[t1]. The conclu-
sion is then a clause D containing all literals of C1 different from t1 ≈ t2, joined
with C2 with L[t2] instead of L[t1].

Let A1, . . . , Ap, B1 . . . , Bq be literals (p, q ≥ 0) and write

[C1] = A1 → · · · → Ap → ⊥,

with one or more occurrences of the equality atom t1 ≈ t2 → ⊥ among the Ai,
and

[C2] = B1 → · · · → Bq → ⊥,

with one or more occurrences of the literal L[t1] among the Bj . Write the
conclusion D as

[D] = D1 → · · · → Dr → ⊥

and let l be such that Dl = L[t2]. A proof of [C1]→ [C2]→ [D] can be obtained
as follows:

λc1 : [C1]. λc2 : [C2]. λd1 :D1 . . . λdr :Dr. (c1 π1 . . . πp)

1.4. MINIMAL RESOLUTION LOGIC 13

If Ai 6= (t1 ≈ t2 → ⊥), then πi = dk, where k is such that Dk = Ai. If
Ai = (t1 ≈ t2 → ⊥), then we want again that πi : Ai and therefore put

πi = λe : (t1 ≈ t2). (c2 π′1 . . . π′q).

If Bj 6= L[t1], then π′j = dk, where k is such that Dk = Bj . If Bj = L[t1], then
we also want that π′j : Bj and put (with dl : Dl = L[t2])

π′j = (eqsubst t2 (λs :A.L[s]) dl t1 (eqsym t1 t2 e))

The term π′j has type L[t1] in the context e : (t1 ≈ t2). The term π′j contains
an occurrence of eqsym because of the fact that the equality t1 ≈ t2 comes in
the wrong direction for proving L[t1] from L[t2]. With this definition of π′j , the
term πi has indeed type Ai = (t1 ≈ t2 → ⊥).

As an alternative, it is possible to expand the proof of eqsym in the proof of
the paramodulation step.

Equality Factoring

Equality factoring for disjunctive clauses is the rule with premiss C containing
equality literals t1 ≈ t2 and t1 ≈ t3, and conclusion D which is identical to C
but for the replacement of t1 ≈ t3 by t2 6≈ t3. The soundness of this rule relies
on t2 ≈ t3 ∨ t2 6≈ t3.

Let A1, . . . , Ap, B1 . . . , Bq be literals (p, q ≥ 0) and write

[C] = A1 → · · · → Ap → ⊥,

with equality literals t1 ≈ t2 → ⊥ and t1 ≈ t3 → ⊥ among the Ai. Write the
conclusion D as

[D] = B1 → · · · → Bq → ⊥

with Bj′ = (t1 ≈ t2 → ⊥) and Bj′′ = (t2 ≈ t3). We get a proof of [C] → [D]
from

λc : [C]. λb1 :B1 . . . λbq :Bq. (c π1 . . . πp).

If Ai 6= (t1 ≈ t3 → ⊥), then πi = bj , where j is such that Bj = Ai. For
Ai = (t1 ≈ t3 → ⊥), we put

πi = (eqsubst t2 (λs :A. (t1 ≈ s→ ⊥)) bj′ t3 bj′′).

The type of πi is indeed t1 ≈ t3 → ⊥.
Note that the equality factoring rule is constructive in the implicational

translation, whereas its disjunctive counterpart relies on the decidability of ≈.
This phenomenon is well-known from the double negation translation.

14 CHAPTER 1. AUTOMATED PROOF CONSTRUCTION

Positive and Negative Equality Swapping

The positive equality swapping rule for disjunctive clauses simply swaps an atom
t1 ≈ t2 into t2 ≈ t1, whereas the negative rule swaps the negated atom. Both
versions are obviously sound, given the symmetry of ≈.

We give the translation for the positive case first and will then sketch the
simpler negative case. Let C be the premiss and D the conclusion and write

[C] = A1 → · · · → Ap → ⊥,

with some of the Ai equal to t1 ≈ t2 → ⊥, and

[D] = B1 → · · · → Bq → ⊥.

Let j′ be such that Bj′ = (t2 ≈ t1 → ⊥). The following term is a proof of
[C]→ [D].

λc : [C]. λb1 :B1 . . . λbq :Bq. (c π1 . . . πp)

If Ai 6= (t1 ≈ t2 → ⊥), then πi = bj , where j is such that Bj = Ai. Otherwise

πi = λe : (t1 ≈ t2). (bj′ (eqsym t1 t2 e))

such that also πi : (t1 ≈ t2 → ⊥) = Ai.
In the negative case the literals t1 ≈ t2 in question are not negated, and we

change the above definition of πi into

πi = (eqsym t2 t1 bj′).

In this case we have bj′ : (t2 ≈ t1) so that πi : (t1 ≈ t2) = Ai also in the negative
case.

Equality Reflexivity Rule

The equality reflexivity rule simply cancels a negative equality literal of the form
t 6≈ t in a disjunctive clause. We write once more the premiss

[C] = A1 → · · · → Ap → ⊥,

with some of the Ai equal to t ≈ t, and the conclusion

[D] = B1 → · · · → Bq → ⊥.

The following term is a proof of [C]→ [D]:

λc : [C]. λb1 :B1 . . . λbq :Bq. (c π1 . . . πp).

If Ai 6= (t ≈ t), then πi = bj , where j is such that Bj = Ai. Otherwise
πi = (eqrefl t).

1.5. LIFTING TO PREDICATE LOGIC 15

1.5 Lifting to Predicate Logic

Until now we have only considered inference rules without quantifications. In
this section we explain how to lift the resolution rule to predicate logic. Lifting
the other rules is very similar.

Recall that we must assume that the domain is not empty. Proof terms
below may contain a variable a : A as free variable. By abstraction λa :A we
will close all proof terms. This extra step is necessary since ∀a :A.⊥ does not
imply ⊥ when the domain A is empty. This is to be compared to 2⊥ being true
in a blind world in modal logic.

Consider the following clauses

C1 = ∀x1, . . . , xp :A. [A1 ∨R1]

and
C2 = ∀y1, . . . , yq :A. [¬A2 ∨R2]

and their resolvent

R = ∀z1, . . . , zr :A. [R1θ1 ∨R2θ2]

Here θ1 and θ2 are substitutions such that A1θ1 = A2θ2 and z1, . . . , zr are
all variables that actually occur in the resolvent, that is, in R1θ1 ∨ R2θ2 after
application of θ1, θ2. It may be the case that xiθ1 and/or yjθ2 contain other
variables than z1, . . . , zr; these are understood to be replaced by the variable
a : A (see above). It that case θ1, θ2 may not represent a most general unifier.
For soundness this is no problem at all, but even completeness is not at stake
since the resolvent is not affected. The reason for this subtlety is that the proof
terms involved must not contain undeclared variables.

Using the methods of the previous sections we can produce a proof π that
has the type

[A1 ∨R1]θ1 → [¬A2 ∨R2]θ2 → [R1θ1 ∨R2θ2].

A proof of C1 → C2 → R is obtained as follows:

λc1 :C1. λc2 :C2. λz1 . . . zr :A.
(π (c1 (x1θ1) . . . (xpθ1)) (c2 (y1θ2) . . . (yqθ2)))

We finish this section by showing how to assemble a λ-term for an entire res-
olution refutation from the proof terms justifying the individual steps. Consider
a Hilbert-style resolution derivation

C1, . . . , Cm, Cm+1, . . . , Cn

with premisses c1 : C1, . . . , cm : Cm. Starting from n and going downward, we
will define by recursion for every m ≤ k ≤ n a term πk such that

πk[cm+1, . . . , ck] : Cn

16 CHAPTER 1. AUTOMATED PROOF CONSTRUCTION

in the context extended with cm+1 : Cm+1, . . . , ck : Ck. For k = n we can
simply take πn = cn. Now assume πk+1 has been constructed for some k ≥ m.
The proof πk is more difficult than πk+1 since πk cannot use the assumption
ck+1 : Ck+1. However, Ck+1 is a resolvent, say of Ci and Cj for some i, j ≤ k.
Let d be the proof of Ci → Cj → Ck+1. Now define

πk[cm+1, . . . , ck] = (λx :Ck+1.πk+1[cm+1, . . . , ck, x])(d ci cj) : Cn

The downward recursion yields a proof πm : Cn which is linear in the size of the
original Hilbert-style resolution derivation. Observe that a forward recursion
from m to n would yield the normal form of πm, which could be exponential.

1.6 Examples

1.6.1 A small example

Let P be a property of natural numbers such that P holds for n if and only if P
does not hold for any number greater than n. Does this sound paradoxical? It is
contradictory. We have P (n) if and only if ¬P (n+1),¬P (n+2),¬P (n+3), . . .,
which implies ¬P (n+ 2),¬P (n+ 3), . . ., so P (n+ 1). It follows that ¬P (n) for
all n. However, ¬P (0) implies P (n) for some n, contradiction.

A closer analysis of this argument shows that the essence is not arithmetical,
but relies on the fact that < is transitive and serial. The argument is also valid in
a finite cyclic structure, say 0 < 1 < 2 < 2. This qualifies for a small refutation
problem, which we formalise in Coq.

Let us adopt N as the domain of discourse. We declare a unary relation P
and a binary relation <.

P : N→ ∗p
< : N×N→ ∗p

Let lrel = [1, 2] be the corresponding list of arities. The relations are packaged
by R of type Πi : [0, 1].Nlrel(i) → ∗p. We write Ri for (R i); note Ilrel = [0, 1].

R0 = P R1 = <

We write Ṗ for R0 and infix <̇ for R1 respectively.
Let us construct the formal propositions trans and serial, stating that <̇ is

serial and transitive. ∀̇x. φ is syntactic sugar for (∀̇ (λx :N. φ)), likewise for ∃̇.

trans = ∀̇x, y, z. (x <̇ y ∧̇ y <̇ z) →̇ x <̇ z

serial = ∀̇x. ∃̇y. x <̇ y

We define foo.

foo = ∀̇x. (Ṗ x) ↔̇ (∀̇y. x <̇ y →̇ ¬̇(Ṗ y))

1.6. EXAMPLES 17

Furthermore, we define taut on the object-level, representing the example
informally stated at the beginning of this section. (If the latter is denoted by
ϕ, then taut = ϕ̇.)

taut = (trans ∧̇ serial) →̇ ¬̇foo

Interpreting taut, that is βδι-normalising [[taut]], results in ‘taut without dots’.
We declare pem : PEM, ac : ACS and use 0 to witness the non-emptiness

of N. We reduce the goal [[taut]] using the result of Section 1.3, to the goal
[[(mcf taut)]]. If we prove this latter goal, say by a term d, then

(mcfsound pem ac 0 taut d) : [[taut]]

We compute the minimal clausal form (Definition 1.4.1) of taut by normalising
the goal [[(mcf taut)]].

[[(mcf taut)]] =βδι

(Πx, y, z :N. x < y → y < z → (x < z → ⊥)→ ⊥)
→ (Πx :N. (x < (f 1 0 1 x)→ ⊥)→ ⊥)
→ (Πx :N. (x < (f 2 0 1 x)→ ⊥)→ ((P x)→ ⊥)→ ⊥)
→ (Πx :N. ((P (f 2 0 1 x))→ ⊥)→ ((P x)→ ⊥)→ ⊥)
→ (Πx, y :N. (P x)→ x < y → (P y)→ ⊥)
→ ⊥

This is the minimal clausal form of the original goal. We refrained from exhibit-
ing its proof d. All files can be found in [12].

1.6.2 A medium scale example: Newman’s Lemma

A medium scale example is provided by the automation of Huet’s [39] proof
of Newman’s Lemma (NL), a well known result in rewriting theory stating
that a rewriting relation is confluent whenever it is both locally confluent and
terminating. For a precise analysis we have to introduce some notions from
rewriting theory.

Definition 1.6.1 Let → be a binary relation on a set S and let →→ be the
reflexive-transitive closure of →.

1. We say that x is confluent if, for all x1, x2 ∈ S, x →→ x1 and x →→ x2

implies that x1 →→ y and x2 →→ y for some y ∈ S. In other words, any two
diverging reductions starting from x can always be brought together. We
say that → is confluent if every x ∈ S is confluent.

2. We say that x is locally confluent if, for all x1, x2, x → x1 and x → x2

implies that x1 →→ y and x2 →→ y for some y ∈ S. Here the ‘locality’ lies
in the fact that only diverging one-step reductions can be brought together.
We say that → is locally confluent if every x ∈ S is locally confluent.

3. We say that → is terminating if there is no infinite sequence x0 → x1 →
x2 → · · · in S.

18 CHAPTER 1. AUTOMATED PROOF CONSTRUCTION

NL provides an interesting test case for several reasons. First, it consists of a
mix of first-order and higher-order aspects. The higher-order aspects are the
transitive closure and the termination. This makes the identification of the first-
order combinatorial core of the proof non-trivial. Second, the proof of Newman’s
Lemma is not completely trivial, as experienced by everybody seeing it for the
first time. It will turn out to be a reasoning step that is just on the edge of what
can be achieved by current theorem provers. As such the successful automation
is very sensitive to the exact formalisation of the problem, the settings of the
theorem prover and the machine on which one runs the proof. We admit that
this is in some sense a disadvantage for an example. However, the aim of this
example is to explore the borders of what is possible, and not to show-off how
great the method is. It is to be expected that, with faster machines and better
strategies for proof search, the automatic solution of problems of the size of NL
will soon become routine. Moreover, the inductive approach to termination and
the speed-up obtained by removing superfluous symmetries have a generality
that goes beyond NL.

The classical proof of NL is by contradiction. Assume there is an x which
is not confluent, that is, there exist x1, x2 ∈ S such that x →→ x1 and x →→ x2

and no y ∈ S exists such that x1 →→ y and x2 →→ y. Since → is terminating, we
may assume without loss of generality that x is an →-maximal5 non-confluent
element. If not, there would be a non-confluent x′ with x → x′, and if that
x′ is not →-maximal, then there would be a non-confluent x′′ with x′ → x′′

and so on, leading to a sequence contradicting the termination of →. This part
is difficult to explain, it actually uses the Axiom of Dependent Choice (DC).
From the fact that x1 and x2 have no common reduct, it follows that we do not
have x = x1 or x = x2, so there must exist intermediate points i1, i2 such that
x → i1 →→ x1 and x → i2 →→ x2. To x and these intermediate points we can
apply local confluence to obtain a common reduct of the intermediate points.
By the maximality of x we can then complete the diagram in Figure 1.2 below.
This is a contradiction and hence NL has been proved.

The formalisation of the classical argument requires higher-order logic (to
express transitive closure) and three-sorted first-order logic: one sort for the set
S, one for the natural numbers and one for infinite sequences of elements of S.
An important improvement is obtained by taking the constructive reformulation
of NL as point of departure. In this formulation the infinite sequences such
as used in the definition of termination and in DC are avoided by using an
inductively defined predicate called accessibility.

Definition 1.6.2 Let → be a binary relation on a set S. The unary predicate
Acc→ is inductively defined as follows: if Acc→(y) for all y ∈ S such that x→ y,
then Acc→(x). By Acc→(S) we express that Acc→(x) for all x ∈ S.

In other words, all →-maximal elements are accessible, as well as all elements
whose successors are all →-maximal, and so on. An infinite sequence x0 →

5If the transitive closure of → is viewed as a greater than ordering, then it would be natural
to speak of →-minimal instead.

1.6. EXAMPLES 19

x //

��

i1 // //

����

x1

����
i2 // //

����

· // //

local confluence

·

����
x2 // // ·

Figure 1.2: Diagram chase for confluence

x1 → x2 → · · · consists of elements that are not accessible. The reason is that
they can be left out without violating the defining rule for Acc. In fact one can
prove by classical logic and DC that→ is terminating if and only if all elements
of S are accessible, that is, if Acc→(S).

The advantages of using Acc→(S) instead of the traditional formulation of
termination are three-fold.

• DC is not needed anymore in the proof of NL.

• The sorts for the natural numbers and for infinite sequences become ob-
solete.

• We can reason by induction on Acc→(x), the induction step being first-
order.

These reasons above should motivate the following reformulation of NL: if
Acc→(S), then confluence of → follows from local confluence.

We could have added a fourth advantage to the three advantages above,
namely that the proof of NL in the formulation with the accessibility predicate
can be done constructively. This would require resolution to be used bottom-
up, in a forward reasoning style. We have not been able to generate a proof in
this way. Instead, we had to appeal to classical logic by using resolution as a
refutation procedure. The constructive proof is not more complicated than the
classical one, it is actually shorter, but the relevant point here is that the search
space for finding the proof in a bottom-up way appears to be larger than that
for finding a proof in a more top-down, goal-oriented, way. We consider the
situation in which there is a constructive proof, but for ill-understood reasons
of efficiency only a classical proof can be found, as unsatisfactory.

We will sketch the constructive argument. By induction one proves that
every accessible x is confluent. By Acc→(S) we then obtain confluence. The in-
duction step we have to prove is that confluence is preserved under the inductive
definition of Acc→. In other words, we have to prove that x is confluent if the

20 CHAPTER 1. AUTOMATED PROOF CONSTRUCTION

induction hypothesis (IH) holds, that is, every y such that x → y is confluent.
Assume IH and let x1, x2 ∈ S such that x →→ x1 and x →→ x2. If x = x1 or
x = x2 then x2 or x1 is a common reduct of x1, x2. Otherwise, actually ap-
pealing to the inductive definition of the reflexive–transitive closure, there exist
intermediate points as in the classical proof above. Now a common reduct can
be obtained in exactly the same way as in the classical proof, with IH replacing
the →-maximality of x. This proves the induction step.

The above proof of the induction step is completely first-order, provided that
we replace the appeal to the inductive definition of →→ by some first-order sen-
tences that trivially follow from the inductive definition of →→ and are sufficient
for the proof.

= is reflexive and symmetric
→→ includes = and → and is transitive
→→ is included in the union of = and →·→→
→ is locally confluent

⇒ confluence
is Acc→-inductive

Here the conclusion that confluence is Acc→-inductive means that for all x ∈ S
confluence of x follows from confluence of all y such that x→ y. Note that we
do not need transitivity of =. Moreover, →·→→ is the composition of→ and→→.

We have formalised in Coq the proof of NL based on the above first-order
tautology, with the intention to delegate the proof of the latter to a resolution
theorem prover in the style of Section 1.6. The automatic clausification in Coq
was a matter of seconds and resulted in 14 clauses. Both Otter and Bliksem were
slow to refute the 14 clauses (without any tuning at least half an hour). The best
results have been obtained with ordered hyperresolution in combination with
unit-resulting resolution. The proof found by Otter is quite close to a ‘human’
proof by contradiction and the diagram chase in Figure 1.3. Bliksem managed
to refute the corresponding set of clauses and to generate a proof object in the
form of a lambda term. Although this lambda term has a considerable size (100
KByte), it could be type checked by Coq without any problem and included in
a complete proof of NL in Coq. All files can be found in [12].

An obvious difficulty for proof search is the symmetry of the formulation
of NL. Inspection of the proof shows that it is possible to distinguish between
‘horizontal’ and ‘vertical’ steps in the formulation of both confluence and local
confluence. This leads to an asymmetrical version of Newman’s Lemma (aNL),
which can be proved by the same proof with all the steps properly labelled as
either ‘horizontal’ or ‘vertical’. NL can easily be recovered from aNL by remov-
ing the distinction. The advantage of the asymmetrical over the symmetrical
formulation is that the search space for the proof is considerably reduced. For
example, in the symmetrical case any step x → y leads to useless common
reducts of y and y, which are avoided in the asymmetrical case. The asymmet-
rical analogues of confluence and local confluence are known in the literature as
commutativity and weak commutativity, respectively.

Definition 1.6.3 Let→h and→v be binary relations on a set S, with reflexive-
transitive closures →→h and →→v, respectively.

1.6. EXAMPLES 21

1. We say that x is commutative if, for all x1, x2 ∈ S, x→→h x1 and x→→v x2

implies that x1 →→v y and x2 →→h y for some y ∈ S. We say that →h and
→v commute if every x ∈ S is commutative.

2. We say that x is weakly commutative if, for all x1, x2 ∈ S, x→h x1 and
x→v x2 implies that x1 →→v y and x2 →→h y for some y ∈ S. We say that
→h and →v commute weakly if every x ∈ S is weakly commutative.

The precise statement of aNL is that →h and →v commute if they commute
weakly, provided Acc→hv

(S). Here →hv is the union of →h and →v. A glance
at Figure 1.3 tells us that we need the induction hypothesis both for i1 with
x→h i1 and for i2 with x→v i2.

x
h //

v

��

i1
h // //

v

����

x1

v

����
i2

h // //

v

����

· h // //

weak commutativity

·

v

����
x2

h // // ·

Figure 1.3: Diagram chase for commutativity

The proof of aNL follows the pattern of the proof of NL, but is based on the
following first-order tautology:

= is reflexive and symmetric
→→h includes = and →h and is transitive
→→v includes = and →v and is transitive
→→h is included in the union of = and →h·→→h

→→v is included in the union of = and →v·→→v

→h and →v are weakly commutative

⇒ commutativity is

Acc→hv
-inductive

Here the conclusion means that for all x ∈ S commutativity of x follows from
commutativity of all y such that x→h y or x→v y.

We formalised in Coq the proof of aNL based on the above first-order tau-
tology. Proof search in the asymmetrical case is about two orders of magnitude
faster than in the symmetrical case. Again all files can be found in [12].

Summarising, the method can be put to work on medium scale examples.
However, it is obvious that some human intelligence has been spent on stylising
the proof before it could be automated. The techniques for proof search should
be improved before the method can be scaled up any further.

22 CHAPTER 1. AUTOMATED PROOF CONSTRUCTION

