
Preface

The ultimate arbiter of correctness is formalisability. It is a widespread view
amongst mathematicians that correct proofs can be written out completely for-
mally. This means that, after ‘unfolding’ the layers of abbreviations and con-
ventions on which the presentation of a mathematical proof usually depends,
the validity of every inference step should be completely perspicuous by a pre-
sentation of this step in an appropriate formal language. When descending from
the informal heat to the formal cold,1 we can rely less on intuition and more
on formal rules. Once we have convinced ourselves that those rules are sound,
we are ready to believe that the derivations they accept are correct. Formalis-
ing reduces the reliability of a proof to the reliability of the means of verifying
it ([60]).

Formalising is more than just filling-in the details, it is a creative and chal-
lenging job. It forces one to make decisions that informal presentations often
leave unspecified. The search for formal definitions that, on the one hand, con-
vincingly represent the concepts involved and, on the other hand, are convenient
for formal proof, often elucidates the informal presentation.

Checking conformity to formal rules is something computers are good at and
with their arrival the old dream of formalising mathematics has become feasible,
at least in principle. Even though a proof may be large, a small verification
program can check each inference step locally. Besides such proof checkers, there
are systems that support (interactive) proof development. A proof assistant
consists of both, it checks and supports. Theorem proving using a proof assistant
is the interactive construction of explicit proof objects, which can be verified
independently.

I will exploit the proof assistant Coq as a tool for the development of logic
and metamathematics. Three aspects are thematic:

- Incorporating the logical technique of resolution to support reasoning in
type-theoretical systems.

- Using reflection to enable manipulation of proof objects.

- A complete formalisation of new meta-theory.

1A refreshing trip!

i

ii

My PhD research started five years ago. First I continued the work initiated
in my master’s thesis [31] on incorporating resolution based theorem proving in
Coq. The research that led to an implementation of a tool which enables the
use of Bliksem in Coq, is joint work with Marc Bezem and Hans de Nivelle. The
results are presented in Chapter 1, a copy of our article [14] (though slightly
modified to fit in the present thesis), which in turn is a modified and extended
version of our conference paper [13]. We describe techniques to integrate resolu-
tion logic in type theory. Refutation proofs obtained by resolution are translated
into λ-terms, using reflection and an encoding of resolution proofs in minimal
logic. Thereby we obtain a verification procedure for resolution proofs, and,
more importantly, we add the power of resolution theorem provers to interac-
tive proof construction systems based on type theory. We introduce a novel
representation of clauses in minimal logic such that the λ-representation of res-
olution steps is linear in the size of the premisses. A clausification algorithm,
equipped with a correctness proof, is encoded in Coq.

After this project was finished, we learned from Gilles Dowek that Skolem
function symbols can be eliminated from refutation proofs.2 This follows from
the conservativity of the Axiom of Choice over first-order classical logic, see [63]
and [30]. In order to deal with proof transformations, I formalised predicate
logic with explicit proof terms; the results are described in Chapter 2, which
is a modified and extended version of [32]. Natural deduction for first-order
logic is formalised in the proof assistant Coq, using De Bruijn indices ([19]) for
variable binding. The main judgement is of the form Γ ` d [:] φ, stating that d
is a proof term of formula φ under hypotheses Γ; it can be viewed as a typing
relation by the Curry–Howard–De Bruijn isomorphism. This relation is proved
sound with respect to Coq’s native logic and is amenable to the manipulation of
both formulas and derivations. As an illustration, I define a reduction relation
on proof terms with permutative conversions and prove the property of subject
reduction.

I spent quite some time on the problem of implementing a ‘deskolemiser’,
but did not manage to reach that goal. The invitation of Vincent van Oost-
rom to collaborate on new research concerning explicit scoping mechanisms in
the λ-calculus, came as a welcome alternative. I decided to put the project of
deskolemising aside, and spent the remaining time of my PhD scholarship on
what we baptised the λ-calculus. Chapter 3 has been submitted for publication
in the Journal of Functional Programming, and is the full version of the confer-
ence paper [34]. Central to this chapter is the reification of the notion of scope
in the λ-calculus. To this end we extend the syntax of the λ-calculus with an
end-of-scope operator λ. The idea is that an λx ends the scope of the matching
λx above it (in the term tree). Accordingly, β-reduction is extended to the set
of scoped λ-terms by performing minimal scope extrusion before performing
replication as usual. We show confluence of the resulting scoped β-reduction.
Confluence of β-reduction for the ordinary λ-calculus is obtained as a corollary,

2As a result, proofs obtained via the proposed method of refutation, clausification and
resolution, would no longer depend on (instances of) the Axiom of Choice.

iii

by extruding scopes maximally before forgetting them altogether. Only in this
final forgetful step, α-equivalence is needed. All our proofs have been verified
in Coq.

In the following sections we briefly introduce type theory and the system
Coq, explain the idea of reflection, and motivate the design choices made in the
first two chapters with respect to variable binding mechanisms and the format
of hypothetical judgements.

Type Theory and Coq Type theory offers a powerful formalism for for-
malising mathematics and, in particular, for formalising meta-theory of calculi
and deduction systems. Definitions, reasoning and computation are captured
in an integrated way. The level of detail is such that the well-formedness of
definitions and the correctness of derivations can be verified automatically. In a
type-theoretical system, formalised mathematical statements are represented by
types, and their proofs are represented by λ-terms. This strong correspondence
between proofs and typed λ-terms is referred to as the Curry–Howard–De Bruijn
isomorphism. The relation between a proof and the statement it verifies, can
be viewed as the membership of an object in a set. The problem whether a is
a proof of statement A reduces to checking whether the term a has type A. A
constructive proof is, in effect, a program annotated with additional information
(types), which is used for verification (type checking).

The logical framework of the proof assistant Coq ([66]) is the calculus of
inductive constructions ([69]). Useful are the common proof techniques of struc-
tural induction, pattern matching and primitive recursion. The user is allowed
to extend the type theory with inductive types. Dually, the reduction rules can
be extended in a flexible way. An inductive type provides a principle of struc-
tural induction (inhabited by a λ-term automatically generated by the system).
Functions whose domain is an inductive type, can be defined using case analysis
over the possible constructors of the object and recursion.

The basic sorts in Coq are ∗p and ∗s. An object M of type ∗p is a logical
proposition and objects of type M are proofs of M . Objects of type ∗s are usual
sets such as the set of natural numbers or lists. The typing relation is expressed
by t : T , to be interpreted as ‘t belongs to set T ’ when T : ∗s, and as ‘t is a proof
of proposition T ’ when T : ∗p. The primitive type constructor is the constructor
of the product type Πx :T.U and is called dependent if x occurs in U ; if not, we
write T → U . The product type is used for logical quantification (implication)
as well as for function spaces. This overloading witnesses the Curry–Howard–
De Bruijn isomorphism. Scopes of Πs and λs extend to the right as far as
brackets allow (→ associates to the right). Furthermore, well-typed application
is denoted by (M N) and associates to the left.

In Coq, connectives are defined as inductive types, the constructors being the
proof formators. For example, conjunctionA ∧B is defined as the inductive type
inhabited by pairs 〈a, b〉, where a : A and b : B. The corresponding induction
principle is inhabited by ∧ind, a λ-term generated by the system:

∧ind : ΠA,B, P :∗p. (A→ B → P)→ A ∧B → P

iv

which can be used to eliminate the ∧. For instance, a proof of A ∧B → B ∧A
can be constructed as follows:

(∧ind A B (B ∧A) (λa :A. λb :B. 〈b, a〉))

Two-level Approach, Reflection In Chapters 1 and 2 we choose for a deep
embedding in adopting a two-level approach for the treatment of arbitrary first-
order languages. The idea is to represent first-order formulas as objects in an
inductive set o : ∗s, accompanied by an interpretation function [[]] that maps
these objects into ∗p. The next paragraphs explain why we distinguish a higher
(meta-, logical) level ∗p and a lower (object-, computational) level o.

The universe ∗p includes higher-order propositions; in fact it encompasses
full impredicative type theory. As such, it is too large for our purposes. More-
over, Coq supplies only limited computational power on ∗p; every connective
is defined as the inductive set of proofs of propositions with that connective in
the head. We need a way to grasp first-order formulas (Chapters 1 and 2) and
natural deduction proofs (Chapter 2), so that they can be subject to syntactical
manipulation. Moreover, we want the ability to reason about such objects, and
prove logical properties about them.

A natural choice, then, is to define formulas and proof terms as inductive
objects, equipped with the powerful computational device of higher-order prim-
itive recursion.

Object-level formulas (type o) are related to the meta-level by means of an
interpretation function [[]] : o→ ∗p. Given a suitable signature, any first-order
proposition φ : ∗p will have a formal counterpart p : o such that φ is convertible
with [[p]], the interpretation of p. Thus, the first-order fragment of ∗p can be
identified as the collection of interpretations of objects in o.

In Chapter 1, reflection is used for the proof construction of first-order for-
mulas in ∗p in the following way. Let ϕ : ∗p be a first-order formula. Then there
is some ϕ̇ : o such that [[ϕ̇]] is convertible with ϕ. Moreover, suppose we have
proved:

Tsound : Πp :o. [[(T p)]]→ [[p]]

for some function T : o → o, typically a transformation to clausal form. Then,
to prove ϕ it suffices to prove [[(T ϕ̇)]]. Matters are presented schematically in
Figure 1.1 on page 4. We will discuss a concrete function T , for which we have
proved the above. For this T , proofs of [[(T ϕ̇)]] will be generated automatically.

In Chapter 2, proof terms are defined as syntactical objects in an inductive
set. There, the main judgement is of the form Γ ` d [:] φ; it is of type ∗p.
The structure of the proof of Γ ` d [:] φ is similar to the structure of d, as will
be pointed out in the sequel. Furthermore, we prove that if Γ ` d [:] φ, then
[[Γ]]→ [[φ]], in other words we construct a λ-term M of the following type:

M : (Γ ` d [:] φ)→ [[Γ]]→ [[φ]]

One could say that an object d reflects the λ-term (M Hd HΓ) : [[φ]], where
Hd : (Γ ` d [:] φ) and HΓ : [[Γ]].

v

Deep versus shallow embeddings One of the design choices to be made
is whether to use a deep or shallow embedding of the objects we need. When
syntax and meaning of a language are described separately, the language is said
to be deeply embedded. Sometimes it is more economic to use a shallow em-
bedding, where representation and denotation of objects are identified (in other
words: the interpretation function is the identity function). The disadvantage
of a shallow embedding is that the syntactic structure cannot be exploited. In
Chapter 1, first-order formulas are deeply embedded, whilst a shallow embed-
ding is used for first-order terms. In combination with the use of higher-order
abstract syntax to represent quantifiers (see the paragraph on variable binding
below), this gives rise to several difficulties. For example, it’s not possible to
prove syntactical correctness of the described formula transformation in a for-
mal way. In Chapter 2, we choose for a deep embedding of terms, formulas, and
derivation terms, giving us full control over the defined constructs.

Variable Binding Several ways exist for representing binding operators (e.g.
quantification over first-order terms, binding of assumption variables), of which
we mention formalising binding with the use of named variables, higher-order
abstract syntax and De Bruijn indices.

In informal practice, the so-called variable convention plays a crucial role;
expressions that differ only in the names assigned to their bound variables are
to be identified; ∀x. φ(x) is said to be α-equivalent to ∀y. φ(y). In mathematical
contexts bound variables are chosen different from free variables. In the process
of substitution this means the (often silent) renaming of bound variables.

Using names (e.g., natural numbers) to encode the link between a binder and
the variable it binds, is technically hard work. On top of the ‘natural’ definition
of formulas one needs to define explicitly α-equality. As pointed out in [57], the
(unavoidable) use of side-conditions in the definition of substitution is problem-
atic when it comes to computation. As the unfolding of definitions proceeds,
the number of side-conditions increases exponentially. Another difficulty is that
there is no canonical choice of a fresh variable, necessary, for example for satis-
fying the eigenvariable condition in the inference rule for introducing a universal
quantifier. Moreover, for many applications one needs a way to distinguish free
and bound variables.

The advantage of representing binders by the use of higher-order abstract
syntax is that several binding mechanisms are handled by λ-abstraction. This is
the approach taken in Chapter 1. Identification of α-convertible formulas now
comes for free. Substitution on the object level is supported by β-reduction
in the meta-language. One problem of this representation3 is that it generates
a class of terms that contains too much. In Chapter 1, first-order terms are
shallowly embedded, the domain of discourse A, being a parameter set. Object-
level quantifiers are ∃̇ , ∀̇ mapping propositional functions of type A → o to

3A related problem is the conflict between higher-order abstract syntax and inductive
definitions. A constructor of type (o → o) → o cannot be accepted in an inductive definition,
because of the negative (leftmost) occurrence of o. This problem is absent in the case of
representing a first-order language.

vi

propositions of type o. If we instantiate A with an inductive set, it is possible
to construct anomalous objects (that no longer fit in the intended language)
by making use of a case construct, e.g., ∀̇ (λx :A.Case x of . . .). Several pos-
sibilities have been explored to overcome this problem (apart from rejecting
higher-order abstract syntax altogether), but many of them seem to harm the
‘directness’ of induction principles.

In Chapter 2, variable bindings are formalised by the use of De Bruijn indices.
The major advantage is that inductive definitions can be used in a direct way.
The freely generated (structural) equality of inductively defined objects is the
natural equality satisfying α-convertibility. Instead of static scoping as in named
calculi, De Bruijn indexing provides a dynamic counting scheme. The involved
algorithms are of a computational nature. Surely, there’s more work for the
programmer, but that’s no reason not to do it.4 The idea is to get rid of names
altogether and replace a variable occurrence by a pointer to the corresponding
binder. A variable is represented by a natural number which indicates the
number of binders between the variable and its binder. In Chapter 2, we have
constructors ∀̇ , ∃̇ of type o→ o; the operational semantics prescribes that, e.g.,
∀̇ ∃̇φ(v1, v0) reads as ∀x. ∃y. φ(x, y).5

Analytic versus Synthetic Judgements Another design choice to be made,
for the purpose of Chapter 2, is whether to localise derivations themselves. In the
terminology of Martin-Löf, this is the distinction between analytic and synthetic
judgements. Synthetic judgements are of the form Γ ` φ as opposed to analytic
judgements Γ ` d : φ, which carry their own evidence d. Objects d can be seen
as λ-terms and formulas φ as classifying those λ-terms. Given our objective of
building a ‘tool’ for manipulation of first-order proofs, the choice for analytic
judgements is obvious. The advantage of analytic judgements is that we get
more control over proofs and that such judgements are decidable, as will be
shown in the sequel. We are able to perform computational proofs of lemmas
about judgements, because instead of induction over a logical hypothesis Γ ` φ,
we can use structural recursion on a proof object. It has to be noted that, in
the case of synthetic judgements, it’s possible to view the constructors of ` as
constituting a λ-calculus. But those constructors have Γ and φ as arguments,
which make them less practical to reason about or to manipulate.

4On the contrary, Coq is the best game in town; it’s fun!
5De Bruijn counts from 1, we start counting from 0, consistently with the definition of N.

