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Predicting the gas–liquid critical point from the second virial coefficient
G. A. Vliegenthart and H. N. W. Lekkerkerkera)

Van ’t Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute, Utrecht University,
Padualaan 8, 3584 CH Utrecht, The Netherlands
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We show that whereas the critical point is very sensitive to the range of interaction, the second virial
coefficient has a fairly constant value at the critical temperature. This enables us to predict the
critical temperature with fair accuracy. We discuss the connection between the second virial
coefficient as a predictor for the critical temperature and the second virial coefficient as predictor in
crystal growth as was proposed by George and Wilson@A. George and W. W. Wilson, Acta
Crystallogr., Sec. D: Biol. Crystallogr.50, 361 ~1994!#. © 2000 American Institute of Physics.
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I. INTRODUCTION

In recent years, it has become clear that below a crit
range of the attractive interaction the gas–liquid transition
a given substance becomes metastable with respect to
fluid–solid transition.1–10 This was first realized and treate
theoretically in connection with phase transitions in mix
suspensions of colloidal particles and nonadsorbing poly
molecules by Gast, Hall, and Russel.11 In such colloid–
polymer mixtures, the range and the depth of the attrac
interaction can be adjusted by the size and concentratio
the added polymer molecules.12–14 Experiments on mode
colloid–polymer mixtures have provided conclusive e
dence that the topology of the phase diagram is indeed
termined by the ratio of the radius of gyration of the polym
molecules to the radius of the colloidal particles.15–19 For
sufficiently large values of this ratio (>0.25! Ilett et al.18

observe a three-phase coexistence region of colloidal
colloidal liquid, and colloidal crystal phases bordered
three two-phase regions, colloidal-gas1 colloidal liquid,
colloidal-liquid 1 colloidal-crystal, colloidal-gas1colloidal
crystal, whereas for small values of this ratio (<0.25! the
addition of the polymer only expands the colloidal fluid
colloidal crystal region of the phase diagram of the pu
colloidal system, as predicted by Lekkerkerkeret al.20

Following the work on colloid–polymer mixtures, it wa
subsequently recognized that sufficiently short-ranged att
tions could also lead to gas–liquid metastability in molecu
systems. An example of such a molecular system that
emerged in recent years is the C60 molecule. Hagenet al.21

mapped out the phase diagram of C60 using computer simu-
lations in which the C60 molecules are represented b
spheres interacting via the Girifalco potential.22 They con-
cluded that C60 has no stable liquid phase. Chenget al.,23

also starting from the Girifalco potential, used an integr
equation approach combined with molecular dynamics sim
lations to establish the phase diagram of C60. They predicted
that the liquid phase is stable in a narrow range of temp
tures and densities. Subsequent theoretical work has not

a!Electronic mail: h.n.w.lekkerkerker@chem.uu.nl
5360021-9606/2000/112(12)/5364/6/$17.00
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nitely settled this point.8,9,24,25 Also, this issue has not ye
been experimentally resolved.26 Altogether, these results
suggest that C60 is a borderline case which may or may n
have a liquid phase.

The example of C60 inspired several systematic attemp
both theoretical and numerical to establish the relation
tween the range of the attractive part of the intermolecu
potential and the stability of the liquid phase.1–9 These cal-
culations confirmed that below a critical range of the attr
tion the liquid state becomes metastable.

For solutions of globular proteins, it has been known
more than 20 years that a liquid–liquid phase separation
curs below the fluid–solid transition, i.e., this liquid–liqu
phase separation is metastable.27–36 In the last few years, it
was realized that a possible explanation for the occurrenc
this metastable liquid–liquid phase separation is again
fact that the range of attraction is small compared to the s
of the protein molecule.37–43

The metastable gas–liquid or liquid–liquid phase se
ration appears to have a considerable effect on the cryst
zation behavior. This was first observed empirically in t
case of colloid–polymer mixtures.44–46 The connection with
the presence of a metastable colloidal gas–colloidal liq
transition was made by Poonet al.,47 and treated theoreti
cally by Evans, Poon, and Cates.48 In the last two years,
experiments,35,36 numerical calculations,49 and theoretical
considerations50 have been reported which show that t
presence of a metastable liquid–liquid phase separation d
tically changes the crystallization pathway in solutions
globular proteins. Furthermore, a relation is emerging
tween the second virial coefficient as a predictor for prot
crystallization51,52 and the solubility of proteins in aqueou
solution.43,53 These developments led us to investigate
relation between the appearance of the gas–liquid ph
separation as marked by the critical temperature and the
ond virial coefficient. Using simulation results for a varie
of potentials with a varying range of attraction, we esta
lished that whereas the critical temperature drops consi
ably upon narrowing the range of attraction, the second vi
coefficient at the critical temperature remains practica
constant. This allows us to predict the critical temperat
4 © 2000 American Institute of Physics
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for any ‘‘simple’’ isotropic potential, i.e., consisting of
steep repulsion at short distances and an attraction for la
distances. Furthermore, we discuss the connection betw
the second virial coefficient as a predictor for the critic
temperature and the second virial coefficient as predicto
crystal growth as was proposed by George and Wilson.51,52

II. LOCATION OF THE CRITICAL POINT FOR
DIFFERENT POTENTIALS WITH A VARIABLE RANGE
OF ATTRACTION

Using different simulation techniques, notably the Gib
ensemble Monte Carlo method,54 in recent years the gas
liquid part of the phase diagram of a number of potenti
with different range of attraction has been determined. T
model systems under consideration here are the square
fluid, hard-core Yukawa fluid and the Lennard-Jonesn
2n fluid. These potentials are all isotropic. In the Se
II A–II C, we discuss the above-mentioned model potenti
~for various ranges! and give their critical temperature an
the second virial coefficient at the critical temperatu
B2(Tc).

At a given temperature, the second virial coefficient

B2~T!52pE
0

`S 12expS 2
V~r !

kBT D D r 2 dr, ~1!

whereV(r ) is the pair potential,kB the Boltzmann constant
andT the absolute temperature, is a measure for the rela
importance of attractive interactions. A positiveB2(T) indi-
cates repulsions to be dominant, whereas a negativeB2(T)
indicates that attractions are important. In the following,B2

is expressed in unitsv05(p/6) s3, the volume of the par-
ticles. The diameters is in all cases taken to be the distan
at which the potential crosses zero.

A. Square well

The square well potential is a well-studied model syst
in liquid state physics.55 Although the model is simple, i
contains both a repulsive and an attractive part in the po
tial which is necessary~and sufficient! to exhibit a gas–
liquid phase transition. The square well potential is given

V~r !5H ` if r ,s,

2e if s<r ,ls,

0 if r>ls.

~2!

Here,l is a measure for the range of the potential ande is
the depth of the potential. Larger values ofl correspond to
wider potential wells. In Table I the critical constants

TABLE I. Computer simulation results forTc , rc , and calculated values
for B2 at Tc for the square well model. The simulation results were tak
from Ref. 56.

l kBTc /e rcs
3 B2(Tc)/v0

2.0 2.764 0.225 28.21
1.75 1.811 0.284 28.85
1.5 1.219 0.299 28.85
1.375 0.974 0.355 27.46
1.25 0.764 0.37 26.30
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determined from simulations56 and the corresponding value
of B2(Tc) as calculated by us are given for a number
square well potentials with different ranges.

B. Hard-core Yukawa

The hard-core Yukawa potential is characterized by
hard-sphere core and an exponential attraction

V~r !5H ` if r ,s,

2e
eks(12r /s)

r /s
if r>s.

~3!

The range of attraction is tuned by the parameterk, which
has the dimension of reciprocal length. For largerks the
potential becomes more narrow. In Table II the critical co
stants for differentks, following from simulations,2,57 and
the correspondingB2(Tc) as calculated by us are given.

C. Lennard-Jones 2 nÀn

The Lennard-Jones potentials

V~r !54eF S s

r D 2n

2S s

r D nG , ~4!

constitute another widely studied family of interaction pote
tials. Here,s is the position at which the potential cross
zero ande the depth of the potential. With increasingn, this
potential becomes more steeply repulsive and more narro
attractive. In Table III the critical points of the gas–liqu
transition as determined by computer simulation10 and the
corresponding values ofB2(Tc) are listed for a number o
these potentials. From the data presented above it app
that B2(Tc) lies in a fairly narrow range around26.3v0.
This leads us to think that wheneverB2 is about26 v0, the
fluid must be close to its critical temperature.

D. Illustrative examples

Let us now apply the criterionB2(Tc)526 v0 to two
well-studied models which have a potential formed by
steep repulsion at short distances and an attraction for lo
distances but with a different functional form when com
pared to the potentials discussed above.

The first case concerns the Girifalco potential for C60,22

which was already mentioned in Sec. I. Here, the pair pot
tial between two C60 molecules is constructed by summin
all the carbon–carbon interactions between the two m
ecules assuming that these interact through a Lennard-J
potential. This results in the following pair potential:

TABLE II. Simulation results forTc , rc and calculated values ofB2 at Tc

for the hard-core Yukawa model. The simulation results ofks51.8, 3.0,
and 4.0 were taken from Ref. 57 and those forks53.9 and 7.0 from Ref. 2.

ks kBTc /e rcs
3 B2(Tc)/v0

1.8 1.17 0.313 26.23
3.0 0.715 0.375 26.12
4.0 0.576 0.377 25.90
3.9 0.55 0.370 26.94
7.0 0.412 0.500 25.45
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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V~r !52aF 1

s~s21!3
1

1

s~s11!3
2

2

s4G
1bF 1

s~s21!9
1

1

s~s11!9
2

2

s10G . ~5!

Here,s5r /2a, with a50.355 nm anda andb are interac-
tion constants which are 7.494310221 J and 1.360310223 J,
respectively. The potential has a minimume5244.43
310221 J at r /2a51.415, is zero atr /2a51.35, and be-
comes infinite forr /2a51. The critical temperature obtaine
from simulations iskBTc /e50.558.21 The B2526v0 crite-
rion predictskBTc /e50.596, differing 7% from the simula
tion value.

Our second example concerns the potential used by
Wolde and Frenkel49 in their study of the nucleation path
ways in protein solutions

V~r !5
4e

a2 F 1

F S r

2aD 2

21G6 2a
1

F S r

2aD 2

21G3G . ~6!

This potential can be considered as a generalized Lenn
Jones model and has a minimume521 at r /2a
5A(2/a)1/311, is zero atr /2a5A(1/a)1/311, and diverges
for r /2a51. The parametera tunes the attractive range an
by increasinga the potential becomes more narrow. F
a550, the critical temperature was determined from simu
tions to bekBTc /e50.418.49 The prediction from theB2

526 v0 criterion giveskBTc /e50.412, differing 1%.
The above examples give us confidence that for syst

interacting through simple continuous potentials, theB2

526 v0 criterion is a good predictor for the critical tem
perature.

The constancy ofB2(Tc) should perhaps not come as
surprise when considering the two classical limiting cases
the interaction range which are described by the van
Waals model58 ~long-ranged attractions! and the Baxter
model59 ~very short ranged attractions!. In the van der Waals
model, the equation of state consists of a hard-sphere re
sive part which can be described by the scaled particle e
tion of state60 plus a mean field contribution due to long
ranged attractive interactions. This results in the followi
equation of state:

P5kBT
r~11f1f2!

~12f!3
2ar2. ~7!

TABLE III. The critical point andB2 at the critical point for the Lennard-
Jones 2n2n model for various values ofn ~Ref. 11!.

n kBTc /e rcs
3 B2(Tc)/v0

6 1.316 0.304 26.19
7 0.997 0.317 26.43
8 0.831 0.326 26.45
9 0.730 0.354 26.36

12 0.560 0.378 26.36
18 0.425 0.420 26.41
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Here,r is the number density andf5r v0 the volume frac-
tion in the system. If we calculate the critical point from th
equation of state, we findkBTc /(a/s3)50.18 andB2(Tc)
526.66v0.

The short-range attraction limit given by the Baxter p
tential

V~r !

kBT
5 lim

l→1H ` if r ,s,

lnS 12t~l21!s

ls D if s<r ,ls,

0 if r>ls.

~8!

is essentially a square well model in the simultaneous li
l→1 ande→2` while keepingB2 finite.

B25
p

6
s3F42

1

t G . ~9!

The pair correlation function for this model potential can
solved analytically within the Percus–Yevick approximatio
However, since the Percus–Yevick equation is not exact,
resulting equation of state depends on whether it is ca
lated from the compressibility equation or via the intern
energy. The critical values of the Baxtert parameter and
B2(tc) are given by tc50.0976 andB2(tc)526.20v0

~compressibility equation! and tc50.1185 and B2(tc)
524.33v0 ~energy equation!.61 So indeed, theB2 values at
the critical point for both the van der Waals equation and
Baxter potential lie in the same range as the results obta
for the model potentials discussed in the Secs. II A–II D.

A second attempt to ‘‘understand’’ the constancy
B2(Tc) was made by calculating the critical point using
virial expansion up to fourth order for the Lennard-Jon
2n2n potentials. Such calculations were already carried
more than 30 years ago by Barker and Monaghan62 for the
Lennard-Jones 12–6 potential. The results of those calc
tions, kBTc /e51.300 andrcs

350.294, compare well with
the simulation datakBTc /e51.316 andrcs

350.301.63 In-
spired by Barker’s work we have calculated the critical po
for several Lennard-Jones 2n2n potentials. From the result
listed in Table IV, using a virial expansion of the pressure
to B4, we note that this simple treatment reproduces qu
well the critical temperatures and hence the constancy of
second virial coefficient. However, the critical density is n
well reproduced and even shows the wrong trend.

TABLE IV. The critical point calculated using a virial expansion up toB4.
The virial coefficients are given in the appropriate powers of the eigen
umev0 of the particles.

n kBTc /e rcs
3 B2(Tc)/v0 B3(Tc)/v0

2 B4(Tc)/v0
3

6 1.300 0.268 26.34 9.41 20.3
7 0.980 0.252 26.66 9.93 26.7
8 0.810 0.243 26.83 9.77 31.5
9 0.705 0.239 26.91 9.77 34.4

12 0.548 0.241 26.79 8.93 35.1
18 0.426 0.259 26.31 7.64 29.2
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



e
o-

5367J. Chem. Phys., Vol. 112, No. 12, 22 March 2000 The gas–liquid critical point
FIG. 1. Phase diagrams for th
Lennard-Jones 12–6 and 36–18 p
tentials in thers3-kBT/e ~A! and ~B!
and thers3-B2 ~C! and ~D! represen-
tation.
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III. THE SECOND VIRIAL COEFFICIENT AS
PREDICTOR IN PROTEIN CRYSTAL GROWTH

George and Wilson51,52 observed that for protein solu
tions which are suitable for crystal growth, the osmotic s
ond virial coefficientB2 falls in a narrow range, the so-calle
crystallization slot. It is therefore interesting to plot pha
diagrams in theB2-density representation and compare th
to the usual temperature density representation. In Fig. 1
Downloaded 16 Apr 2004 to 131.211.152.81. Redistribution subject to AI
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is done for the Lennard-Jones 12–6~long-ranged attraction!
and 36–18~short-ranged attraction! potentials.

In the temperature-density plane, the appearance of
~metastable! gas–liquid transition is quite sensitive to th
interaction range, whereas in theB2-density plane the~meta-
stable! gas–liquid boundary is bounded byB2.2 6v0.
While simple liquids typically have a phase diagram given
the type in Fig. 1~A!, it has been argued that the phase d
FIG. 2. Schematic phase diagrams indicating the regions of optimum crystallization.~A! Optimum crystallization around the critical point.~B! Optimum
crystallization below the critical point.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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gram given in Fig. 1~B! applies to protein solutions.37,49Fur-
thermore, it has been proposed that in the case of a m
stable gas–liquid region in the phase diagram, cry
nucleation will occur via a two-step process.49,53 The first
step is the formation of small regions~droplets! with a high
protein concentration. These regions can be either crit
concentration fluctuations49 or droplets associated with th
metastable liquid–liquid phase separation.53 The second step
in the nucleation process is the formation of small crystals
the regions of high protein concentration. In Fig. 2 we sc
matically indicate the corresponding conditions for optimu
protein crystallization.

In Fig. 2~A!, we consider the case in which the enhan
ment of protein crystal nucleation is driven by critical co
centration fluctuations, whereas in Fig. 1~B!, the crystal
nucleation process starts with the formation of protein-r
droplets below the metastable critical point

If we now make the bold assumption that the~meta-
stable! liquid–liquid demixing critical point in solutions o
globular proteins is also located at conditions where the
motic second virial coefficient is26 v0, we can connect the
optimum crystallization conditions collected by George a
Wilson51,52 to a region in the phase diagram. The optimu
crystallization conditions indicated in Fig. 2~A! then corre-
spond to conditionsB2 /v0.26 while the conditions in Fig.
2~B! are related toB2 /v0,26. In order to make the link
between our phase diagrams andB2 data of George and
Wilson,51,52 we have converted their data, which are e
pressed in the usual units mol cm3 g22 units, tov0 units used
in our approach. This can be done by the simple relation43

B2

v0
5B28dM, ~10!

where B28 is the second virial coefficient in unit
mol cm3 g22, d is the average mass density of the prote
and M their molar mass. Using the mass densityd
51.36 g/cm3 and the molecular weights given by Haas a

TABLE V. The second virial coefficient for a number of proteins, da
taken from Ref. 43.

Protein Mass~kD! B2 (1024mol cm3 g22) B2 /v0

BSA 65 22.1 218.6
Canavalin 141 20.8 215.3
Concanavalin A 102 22.5 234.7
Concanavalin A 102 21.9 226.4
a-chymotrypsin 25 28.4 228.6
a-lactalbumin 14 27.3 213.9
b-lactoglobulin A 36 22.4 211.8
b-lactoglobulin A 36 26.2 230.4
b-lactoglobulin B 36 22.8 213.7
b-lactoglobulin B 36 26.2 230.4
Lysozyme 14 22.8 25.3
Ovostatin 720 27.1 2695
Ovalbumin 43 26.1 235.7
Pepsin 36 27.8 238.2
Pepsin 36 22.8 213.7
Pepsin 36 20.8 23.9
Ribonuclease A 14 24.1 27.8
STMV 1500 21.8 2367
Thaumatin 22 23.0 29.0
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Drenth,43 we obtain the results presented in Table V. Fro
Table V we note that apart from two exceptionally lar
negative values ofB2 /v0 for STMV and ovastatin, the sec
ond virial coefficients vary between24 v0 and240v0. The
valuesB2 /v0, which are on average smaller than26 indicate
that the optimum crystallization conditions vary from arou
the critical point to below the critical point.
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