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Correspondence between the pressure expressions and van der Waals
theory for a curved surface
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We investigate the apparent contradiction between the pressure expressions, or ‘‘mechanical
expressions,’’ and the van der Waals squared-gradient expressions for the curvature coefficients
k/R0 , k, and k̄. We show that, in the context of the mean-field theory discussed, both types of
expression are indeed equivalent, with the differences only being caused by the thermodynamic
conditions used to vary the curvature. ©2000 American Institute of Physics.
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I. INTRODUCTION

The introduction of the Helfrich expression for the cu
vature free energy1 has led to an important advancement
the theoretical understanding of complex interfaces.2,3 In
terms of two elasticity or rigidity constants,k and k̄, as well
as the radius of spontaneous curvatureR0 , the Helfrich free
energy has been used to describe the shape, fluctuations
free energy of membranes, vesicles, microemulsions, etc2 It
has the following form:

FH5E dAFs2
2k

R0
J1

k

2
J21 k̄KG , ~1.1!

where s is the surface tension of theplanar surface,J
51/R111/R2 is the total curvature,K51/(R1R2) is the
Gaussian curvature, andR1 andR2 are the principal radii of
curvature at a certain point on the surfaceA.

The Helfrich expression is, however, phenomenologi
in nature: no information is provided on thevalue of the
parameterss, k/R0 , k, and k̄ and a lot of theoretical work
has therefore been devoted to the determination of these
rameters in the context of a more microscopic theory.4–8 We
should mention that Eq.~1.1! can be viewed in two, equiva
lent, ways. In the approach by Romero-Rochı´n, Varea and
Robledo,7 Eq. ~1.1! is the expression for anarbitrarily
shaped surface with curvature dependent coefficientss,
k/R0 , k, andk̄. In the approach considered here, Eq.~1.1! is
viewed as an expansion in curvature with the coefficientss,
k/R0 , k, and k̄ curvatureindependent.

Inspection of the form of the Helfrich free energy in E
~1.1! shows that the theoretical determination ofk/R0 , k,
and k̄ requires the variation of the free energy withcurva-

a!Electronic mail: e.blokhuis@chem.Leidenuniv.nl
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ture. The coefficients are then related to the first and sec
derivatives of the free energy with respect to the curvatu
The way one varies the curvature depends very much on
system at hand. In the following we discuss three types
interfaces; those made of surfactant monolayers or bilay
the solid–liquid interface, and the liquid–vapor interface.

We first discuss the case in which the surface is mad
surfactant~or lipid! bilayers or monolayers. This is the sy
tem for which Helfrich originally wrote down his free en
ergy, i.e., for the interface between two immiscible flui
where the specific molecules at the interface~e.g., the sur-
factant or lipid molecules! are the ones responsible for th
strength of the rigidity constants. In this case one m
change, for instance, the amount (Gsurf) or chemical potential
(msurf) of the component that is predominantly adsorbed
the interface in order to vary the curvature. In fact, Porte a
Ligoure9 investigated the influence of either changing t
chemical potential or the composition on the value of t
rigidity constants for these systems.

The result of changing only the properties of the surfa
tant molecules at the interface is that the thermodyna
state of the bulk regions away from the surface isunaffected.
For such a system Helfrich supplied formulas for the cal
lation of the curvature coefficients. Using ‘‘mechanical’’ a
guments he derived expressions fork/R0 and k̄ in terms of
moments of the transverse pressure profile,4 P0(z), of the
planar surface, analogous to Buff’s10 ‘‘mechanical’’ expres-
sion for the surface tension,s, as the zeroth moment of th
transverse pressure profile@see Eq.~1.2! below#. He added,
however, that the expression fork/R0 is only valid for a
tensionlessinterface (s50) and the expression fork̄ is only
valid for a tensionless, symmetric interface (s50, k/R0

50). Later, Szleifer and coworkers5 extended the analysis o
Helfrich, in the context of mean-field theory, to go beyo
the mechanical arguments by Helfrich and showed that H
3 © 2000 American Institute of Physics
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frich’s expressions are correct also whensÞ0 and k/R0

Þ0. Furthermore, Szleifer and coworkers provided an
pression for the rigidity constantk. The expressions by
Helfrich4 and Szleiferet al.5 read

s52E
2`

`

dzP0~z!,
2k

R0
5E

2`

`

dz zP0~z!,

~1.2!

k̄52E
2`

`

dz z2 P0~z!, k52
1

2 E2`

`

dz zPs,1~z!,

wherez is the coordinate normal to the interface. Since th
expressions are derived using arguments beyond the
chanical arguments by Helfrich, we will refer to these e
pressions as thepressure expressions11 ~rather than the
‘‘mechanical expressions’’!. The expression fork features
Ps,1(z), the first order coefficient of the lateral pressure p
file of a spherical interface,Ps(r ;R), in an expansion in
1/R, the reciprocal radius,

Ps~r ;R!5P0~z!1
1

R
Ps,1~z!1¯ , ~1.3!

where the radial distancer[R1z. Ps,1 is the leading order
change in the lateral pressure profile due to bending of
interface. Here it is expressed in terms of the lateral pres
profile of thesphericalinterface, but we should keep in min
that we could equally well have expressed it in terms of
lateral pressure profile of acylindrical interface replacing
Ps,1 by 2 Pc,1 , or in general replacePs,1 by 2(]P/]J). In
the following the subscripts refers to the spherical surfac
and the subscriptc to the cylindrical surface. The additiona
number tos and c ~e.g.,s,1! refers to the coefficient in an
expansion in 1/R to that order.

A second class of systems, for which the Helfrich fr
energy has been used, are those in contact with a s
curved wall. Several authors12–15have calculated the electro
static contribution to the curvature coefficients using dou
layer theory for a charged solid wall,16 while recently Clem-
ent and Joanny17 calculated the curvature energy associa
with polymer adsorption onto a curved substrate. In th
systems the curvature of the interface is varied simply
changing the radius of the solid wall. As in the case d
scribed above, the thermodynamic state of the system a
from the surface isunaffectedby the variation of the curva
ture of the interface. The result is that the curvature coe
cients can be calculated using the pressure expressions i
~1.2! with the only difference that the integration overz runs
from the hard wall~at z50! to infinity.

A third route to the calculation of the curvature coef
cients has used van der Waals’ squared-gradient expres
for the surface free energy8,18,19 of a simple liquid–vapor
interface,

F@r#5E drW@mu¹W r~rW !u21 f ~r!2Dmr~rW !#, ~1.4!

wherem is the usual coefficient of the squared-gradient te
f (r) is the free energy density for a fluid constrained to ha
uniform densityr, andDm is the chemical potential differ
ence between the chemical potential of the curved sur
and that of the planar surface (Dm5m2mcoex). Using the
Downloaded 16 Apr 2004 to 131.211.152.81. Redistribution subject to AI
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above expression for the free energy, Gompper a
Zschocke8 and Blokhuis and Bedeaux19 derived the follow-
ing formulas for the curvature coefficients:

s52mE
2`

`

dz@r08#2,

2k

R0
522mE

2`

`

dz z@r08#2

1
1

2
Dms,1E

2`

`

dz@r02r0,bulk#,

~1.5!

k̄52mE
2`

`

dz z2@r08#2

1~4 Dmc,22Dms,2!E
2`

`

dz@r02r0,bulk#,

k52mE
2`

`

dzr08rs,12
1

4
Dms,1E

2`

`

dz@rs,12rs,1,bulk#

2Dms,1E
2`

`

dzz@r02r0,bulk#

22 Dmc,2E
2`

`

dz@r02r0,bulk#.

In the above formulas isr05r0(z) the density profile of the
planar interface andrs,1(z) the first order correction to the
density profile of the spherical interface in an expansion
1/R. The subscript ‘‘bulk’’ refers to the bulk value extrapo
lated to the surface atz50 so that for exampler0,bulk

5r0,l u(2z)1r0,v u(z).
Comparing the expressions in Eqs.~1.2! and ~1.5! it is

not obvious that the pressure expressions and the expres
derived from van der Waals theory are in agreement. Yet
validity of both expressions seems well established. The
der Waals expressions in Eq.~1.5! were derived indepen
dently by Gompper and Zschocke8 and by Blokhuis and
Bedeaux.19 Furthermore the result fork/R0 agrees with an
earlier expression by Fisher and Wortis.18 Also, these expres-
sions can be derived from the virial expressions for the c
vature coefficients6 by making a mean-field approximation t
the pair density.19,20

On the other hand, it is well established by vario
authors12–15 that the expressions for the electrostatic con
bution to the curvature coefficients in double layer theo
calculated directly via the free energy are the same as w
the pressure expressions are used. This was shown by
terhalter and Helfrich12 using the Debye–Hu¨ckel theory, by
Lekkerkerker13 and by Mitchell and Ninham14 using
Poisson–Boltzmann theory in excess salt, and by Fogd
Daicic, and coworkers15 using Poisson–Boltzmann theor
with an arbitrary amount of added salt. Our object in th
article is to establish in more detail the correspondence
tween the expressions in Eqs.~1.2! and ~1.5!. It will be
shown that, keeping the thermodynamic conditions un
which the surface is bend in mind, that Eqs.~1.2! and ~1.5!
are indeed equivalent.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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When we compare Eqs.~1.2! and~1.5! some similarities
are apparent. Suppose that we setDms5Dmc50 so that
Dms,15Dmc,150 and Dms,25Dmc,250, and, furthermore,
identify P0(z) as P0(z)522m(r08)

2, then already we see
that the pressure expressions fors, k/R0 , and k̄ reduce ex-
actly to the squared-gradient expressions. The corres
dence between the two expressions fork is less clear but
still, this is very encouraging and we now first wond
whether we can understand why there is no contribut
from the change in chemical potential in the pressure exp
sions. In order to do this we first need to consider the th
modynamic circumstances.

II. THERMODYNAMIC CONDITIONS

In the van der Waals squared-gradient theory as use
Gompper and Zschocke,8 Fisher and Wortis,18 and Blokhuis
and Bedeaux,19 a spherical~cylindrical! drop of liquid is con-
sidered surrounded by a vapor phase. The two phases ar
in coexistence when the radiusR,`, and the distance to
two-phase coexistence is determined by the chemical po
tial differenceDms[ms2mcoex ~or Dmc for the cylindrical
interface!. The droplet radius is determined byDms and
when we consider the variation of the free energy with
radius wereally are considering the variation of the fre
energy with the chemical potential. The Laplace equat
enables us to relate directly the expansion coefficients of
chemical potential (Dms,1 ,Dms,2 ,...) to theradius. In order
to show this a bit more explicitly, we need to consider t
Laplace equation for a spherical and cylindrical interface

Dp5
2s

R
2

4k

R0

1

R2 , spherical interface,

Dp5
s

R
2

k

2

1

R3 , cylindrical interface,
~2.1!

which are both derived from the generalized Laplace eq
tion,

Dp5sJ2
4k

R0
K2

k

2
J312kJK2kDsJ. ~2.2!

In this equationDp[pl2pv is the pressure difference be
tween the liquid inside the droplet~cylinder! and the vapor
outside, andDs is the surface Laplacian which is importa
when the curvature varies from point to point on the surfa
For the spherical and cylindrical interface we consider in t
analysis, the curvature is constant along the surface so
DsJ50.

Since the pressure difference is directly related to
chemical potential, one can show that19

Dms,152 Dmc,1 5
2s

Dr0
,

Dms,252
s

~Dr0!2 Drs,12
4k

R0

1

Dr0
, ~2.3!

Dmc,252
1

4

s

~Dr0!2 Drs,1 ,
Downloaded 16 Apr 2004 to 131.211.152.81. Redistribution subject to AI
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with Dr5r l2rv the density difference between the liqu
and the vapor phase.

To summarize, in the derivation of the van der Waa
expressions the radiusR is varied by varying the chemica
potential. The variation of the chemical potential leads to
presence of additional terms in the squared-gradient exp
sions in Eq.~1.5! with the explicit value of the coefficients o
these terms given in Eq.~2.3!.

Next, we now consider the thermodynamic conditio
that are used in the calculation of the curvature coefficie
of a fluid in contact with a hard wall. Here the situation
somewhat simpler. A rigid sphere~colloidal particle! is con-
sidered with a certainfixed radius R. The variation of the
radius does notinfluence the thermodynamic state of th
fluid outside with fixed densityr l and pressurepl . Terms
connected with the expansion of the chemical potential in
radius are therefore not present so that as a consequenc

Dms,15Dmc,150,
~2.4!

Dms,25Dmc,250.

To show the correspondence between the van der Waals
pressions and pressure expressions in more detail, we c
late the curvature coefficients with the only assumption t
the free energy density is some function of the densityr(rW)
and the gradient of the density¹W r(rW) ~to keep the calcula-
tion as general as possible!. This is done under the condito
that the chemical potential is varied to vary the curvatu
~Sec. III! and under the condition that the chemical poten
is constant~Sec. IV!.

III. VARIABLE CHEMICAL POTENTIAL

The surface free energy is written in the following ge
eral way:

F@r#5E drW@2P~r,¹W r!2Dm r~rW !#, ~3.1!

where it is supposed that the free energy in the bulk regio
subtracted so that the above free energy is anexcessfree
energy. FurthermoreP(r,¹W r) is the ~grand! free energy
density and is some function ofr(rW) and¹W r(rW). In van der
Waals’ squared-gradient theory, for instance, it has the
lowing form @cf. Eq. ~1.4!#:

P~r,¹W r!52mu¹W r~rW !u22 f ~r!1mcoexr~rW !, ~3.2!

but we leave it unspecified in the remainder of this secti
Several authors7,8,19 have included besides a square
gradient term a squared Laplacian term to the above
energy. The inclusion of such a term in Eq.~3.1! leads to the
presence of additional terms in the Euler–Lagrange eq
tions below with the consequence that the identification
Eqs. ~3.8! and ~3.10! below needs to be modified. In th
following it should therefore be realized that the conclusio
drawn only apply to mean-field theories whose free energ
of the form of Eq.~3.1!.20,21

The Euler–Lagrange equation to the surface free ene
in Eq. ~3.1! reads
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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]

]r
P~r,¹W r!5¹W •

]

]¹W r
P~r,¹W r!2Dm. ~3.3!

In the following, we expand the surface free energy arou
the planar interface and compare the results with the sur
free energy expression by Helfrich@Eq. ~1.1!# which for a
spherical and cylindrical geometry read

Fs

A
5s2

4k

R0

1

R
1~2k1 k̄!

1

R2 ,

~3.4!
Fc

A
5s2

2k

R0

1

R
1

k

2

1

R2 .

Expanding the surface free energy for the spherical and
lindrical interface to second order in 1/R gives

Fs

A
5E

2`

`

dzS 11
z

RD 2F2P02
1

R
P1 rs,12

1

R
P2 rs,18

2
1

R2 P1 rs,22
1

R2 P2 rs,28 2
1

2R2 P11rs,1
2

2
1

R2 P12rs,1rs,18 2
1

2R2 P22~rs,18 !22
1

R
Dms,1 r0

2
1

R2 Dms,1 rs,12
1

R2 Dms,2 r02B.T.G ,
~3.5!

Fc

A
5E

2`

`

dzS 11
z

RD F2P02
1

R
P1 rc,12

1

R
P2 rc,18

2
1

R2 P1 rc,22
1

R2 P2 rc,28 2
1

2R2 P11rc,1
2

2
1

R2 P12rc,1rc,18 2
1

2R2 P22~rc,18 !22
1

R
Dmc,1 r0

2
1

R2 Dmc,1 rc,12
1

R2 Dmc,2 r02B.T.G ,
where the subscripts 1 and 2 toP refer to a differentiation
with respect to the first or second argument evaluated at
planar interface, e.g.,P1[ (]/]r0) P(r0 ,r08). P0 is simply
defined asP0[P(r0 ,r08). The abbreviation B.T. stands fo
the boundary termsat z56` which are to be subtracted.

The Euler–Lagrange equation~3.3! is expanded in the
curvature for the spherical and cylindrical interface. To fi
order the following equations result:

P15
]

]z
P2 ,

P1rs,12P2rs,18 52P21
]

]z
~P12rs,12P22rs,18 !2Dms,1 ,

~3.6!

P1rc,12P2 rc,18 5P21
]

]z
~P12rc,12P22rc,18 !2Dmc,1 .

The first equation determines the profiler0(z) of the planar
Downloaded 16 Apr 2004 to 131.211.152.81. Redistribution subject to AI
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interface while the latter two determine the profilesrs,1(z)
and rc,1(z). One immediately notices that sinceDms,1

52 Dmc,1 one has thatrs,1(z)52rc,1(z).
Inserting the above expressions forP1 into the surface

free energy and integrating by parts gives, after some a
bra, the following results for the surface free energy of t
sphere and the cylinder:

Fs

A
5E

2`

`

dz@2P0#

1
1

R E
2`

`

dz@22z P02Dms,1 ~r02r0,bulk!#

1
1

R2 E
2`

`

dzF2z2P01P2rs,122 Dms,1z ~r02r0,bulk!

2
1

2
Dms,1~rs,12rs,1,bulk!2Dms,2 ~r02r0,bulk!G ,

~3.7!
Fc

A
5E

2`

`

dz@2P0#

1
1

R E
2`

`

dz@2z P02Dmc,1 ~r02r0,bulk!#

1
1

R2 E
2`

`

dzF 1
2 P2 rc,12Dmc,1z~r02r0,bulk!

2
1

2
Dmc,1 ~rc,12rc,1,bulk!2Dmc,2 ~r02r0,bulk!G .

Comparing Eqs.~3.7! and ~3.4! allows us to identify the
curvature coefficients as

s52E
2`

`

dzP0 ,

2k

R0
5E

2`

`

dzFz P01
1

2
Dms,1 ~r02r0,bulk!G ,

~3.8!

k̄5E
2`

`

dz@2z2P01~4 Dmc,22Dms,2! ~r02r0,bulk!#,

k5E
2`

`

dzF1

2
P2 rs,12Dms,1 z ~r02r0,bulk!

2
1

4
Dms,1 ~rs,12rs,1,bulk!22 Dmc,2 ~r02r0,bulk!G ,

where we have used thatDms,152 Dmc,1 and rs,152rc,1 .
As a final step we rewrite the expression fork somewhat by
using that

E
2`

`

dz zPs,15E
2`

`

dz@zPs,1 rs,11zP2 rs,18 #

5E
2`

`

dz@2P2 rs,1#, ~3.9!

so that
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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k5E
2`

`

dzF2
z

2
Ps,12Dms,1 z~r02r0,bulk!

2
1

4
Dms,1 ~rs,12rs,1,bulk!22 Dmc,2 ~r02r0,bulk!G .

~3.10!

We have thus derived in Eqs.~3.8! and ~3.10! the pressure
expressions for the curvature coefficients in the case tha
chemical potential is varied to change the curvature of
interface. The pressureP was identified as the~grand! free
energy density defined by Eq.~3.1!. One may verify that
these pressure expressions areequivalent to the van der
Waals squared-gradient expressions in Eq.~1.5! when one
inserts the explicit expressions forP0 andPs,1 ,

P052m ~r08!22 f ~r0!1mcoexr0522m ~r08!2,
~3.11!

Ps,1522m r08rs,18 2 f 8~r0!rs,11mcoexrs,1

522m r08rs,18 22m r09rs,1 ,

derived using the form forP(r,¹W r) in Eq. ~3.2!.
An important issue that we have not addressed thus fa

the fact that a certain arbitrariness exists in locating the e
position of the dividing surface and therefore in the ex
value of the radiusR.22 The consequences hereof for th
curvature coefficients can be read off from the expression
Eq. ~3.8! which are derived without specifying the locatio
of the dividing surface. One finds that the surface tension
the planar interfaces does not depend on the location of th
dividing surface. Also, the spontaneous curvaturek/R0 is
independentof the location of the dividing surface. This ca
be checked by shifting the dividing surface over a dista
D. The first contribution tok/R0 is then changed by an
amounts D, while the second contribution changes by
amount21/2(Dr0) D. Use of Eq.~2.3! then yields that the
net change ink/R0 of shifting the dividing surface is zero
The rigidity constants, however,do depend on the location o
the dividing surface, and when numerical values are supp
for k and k̄ this can be done only after a certain choice
the location of the dividing surface has been made. For
stance, in the derivation of the pressure equations for mo
layers and bilayers by Szleiferet al.,5 the location of the
dividing surface was chosen to be the ‘‘surface of inext
sion’’ or ‘‘neutral surface.’’ This is the surface whose area
unchanged during the variation of the curvature. We refe
Ref. 5 for a more elaborate discussion of this point~see also
Ref. 3!. For the evaluation of the curvature coefficients in t
van der Waals theory for a liquid–vapor droplet, the dividi
surface was located at Gibb’s equimolar surface.19 In the
next section we investigate the case of a fluid in contact w
a hard spherical~cylindrical! wall. In that case the dividing
surface is chosen at the hard wall.

It is noteworthy that Eqs.~3.8! and~3.10! reduceexactly
to the pressure expressions in Eq.~1.2! when one sets
Dms,15Dmc,150 andDms,25Dmc,250. Therefore, we nex
look in more detail into the situation where the chemic
potential is kept constant.
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IV. CONSTANT CHEMICAL POTENTIAL

We now investigate the situation in which the chemic
potential is fixed (Dm50) and the radius of curvature i
varied independent of the thermodynamic state. There
we consider the surface free energy of a fluid in contact w
a hard spherical~cylindrical! wall with fixed radiusR,

F@r#52E drW@P~r,¹W r! #1AFw~rw!, ~4.1!

whereFw(rw) is the interaction of the fluid with the wall a
z50 and is assumed to depend only on the density at
wall, rw. The form of the above free energy is quite gene
and in the Appendix we give two examples where the f
energy indeed has this form.

The Euler–Lagrange equation to the surface free ene
in Eq. ~4.1! reads

]

]r
P~r,¹W r!5¹W •

]

]¹W r
P~r,¹W r!, ~4.2!

with the boundary condition at the wall,

]

]rw
Fw~rw!5n̂•

]

]¹W rw
P~rw,¹W rw!. ~4.3!

In this expressionn̂ is the unit vector in the direction norma
to the interface. Expanding the surface free energy for
spherical and cylindrical interface to second order in 1R
now gives

Fs

A
5E

0

`

dzS 11
z

RD 2F2P02
1

R
P1 rs,12

1

R
P2 rs,18

2
1

R2 P1 rs,22
1

R2 P2 rs,28 2
1

2R2 P11rs,1
2

2
1

R2 P12rs,1rs,18 2
1

2R2 P22~rs,18 !22B.T.G ,
1Fw,01

1

R
Fw,08 rs,1

w 1
1

R2 Fw,08 rs,2
w 1

1

2R2 Fw,09 ~rs,1
w !2,

~4.4!
Fc

A
5E

0

`

dzS 11
z

RD F2P02
1

R
P1 rc,12

1

R
P2 rc,18

2
1

R2 P1 rc,22
1

R2 P2 rc,28 2
1

2R2 P11rc,1
2

2
1

R2 P12rc,1rc,18 2
1

2R2 P22~rc,18 !22B.T.G
1Fw,01

1

R
Fw,08 rc,1

w 1
1

R2 Fw,08 rc,2
w 1

1

2R2 Fw,09 ~rc,1
w !2,

where we have definedFw,0[Fw(r0
w). The Euler–Lagrange

equation~4.2! is expanded to first order in the curvature f
the spherical and cylindrical interface,
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P15
]

]z
P2 ,

P1 rs,12P2 rs,18 52P21
]

]z
~P12rs,12P22rs,18 !, ~4.5!

P1rc,12P2 rc,18 5P21
]

]z
~P12rc,12P22rc,18 !,

and so is the boundary condition in Eq.~4.3!,

2P2
w5Fw,08 ,

P12
w rs,1

w 2P22
w ~rs,1

w !85Fw,09 rs,1
w , ~4.6!

P12
w rc,1

w 2P22
w ~rc,1

w !85Fw,09 rc,1
w .

Again it is noted thatrs,1(z)52rc,1(z). Using Eqs.~4.5! and
~4.6!, the surface free energy of the sphere and cylinder
now be written as

Fs

A
5E

0

`

dz@2P0#1Fw,01
1

R E
0

`

dz@22z P0#

1
1

R2 E
0

`

dz@2z2P01P2rs,1#,

~4.7!
Fc

A
5E

0

`

dz@2P0#1Fw,01
1

R E
0

`

dz@2z P0#

1
1

R2 E
0

`

dzF1

2
P2rc,1G ,

so that one may identify the curvature coefficients as

s52E
0

`

dz@P0#1Fw,0 ,
2k

R0
5E

0

`

dz@zP0#,

~4.8!

k̄5E
0

`

dz@2z2P0#, k5E
0

`

dzF1

2
P2 rs,1G .

Notice that all the terms involving the interaction with su
strate,Fw , have dropped out of the expressions fork/R0 , k,
andk̄. As a final step we, again, rewrite the expression fok
somewhat by using that

E
0

`

dz zPs,15E
0

`

dz@zP1 rs,11zP2 rs,18 #

5E
0

`

dz@2P2 rs,1#, ~4.9!

so that

k5E
0

`

dzF2
z

2
Ps,1G . ~4.10!

Apart from the presence ofFw,0 in the expression for the
surface tension and the fact that the integration runs froz
50 instead ofz52`, the expressions in Eqs.~4.8! and
~4.10! are exactly equalto the pressure expressions in E
~1.2!. Starting with the general expression for the surfa
Downloaded 16 Apr 2004 to 131.211.152.81. Redistribution subject to AI
n
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e

free energy in Eq.~4.1! we have thus rederived all the pre
sure expressions for the system in which the chemical po
tial is fixed.

V. SUMMARY

We have investigated the apparent contradiction betw
the pressure expressions and van der Waals expression
the curvature coefficientsk/R0 , k, and k̄. In the context of
the mean-field theory expressed by the similar Eqs.~3.1! and
~4.1!, we showed that the origin of the difference betwe
the two types of expression lies solely in the thermodynam
conditions used to vary the curvature. As we have seen,
appropriate thermodynamic conditions depend very much
the system at hand. To study, for instance, the nucleatio
liquid droplets, the curvature depends on the thermodyna
distance to coexistence (Dm5m2mcoex) via the Laplace
equation, and the analysis in Sec. III is the appropriate o
while for the description of the electric double layer of
colloidal particle with fixed radius or the description of th
adsorption of a polymer onto a curved wall, the analysis
Sec. IV is more suited. The latter analysis is also clos
related to the investigation of microemulsion systems a
systems containing membrane bilayers. In these cases
may, for instance, change the chemical potential of the co
ponent that is predominantly adsorbed at the interface~e.g.,
the surfactant or lipid molecules! in order to change the cur
vature. As in the case of a system in contact with a curv
wall, the thermodynamic state of the system away from
surface23,24 is unaffected.

With these two thermodynamic conditions, expressio
for the curvature coefficients were derived. In Sec. III t
curvature was varied by varying the chemical potent
while in Sec. IV the chemical potential is kept constant a
the curvature is varied by varying the radius of the spher
or cylindrical substrate that is in contact with the system. T
resulting expressions from the former analysis were sho
to reduce to those obtained in van der Waals theory, w
the results from the latter analysis were shown to be equa
the pressure expressions identifying the lateral pressure
file as the excess~grand! free energy density.
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APPENDIX: EXAMPLES OF THE FREE ENERGY
AS GIVEN IN EQ. „4…

We now discuss two recent examples from the literat
in which the surface free energy has the form of Eq.~4.1!. In
the first example, the adsorption of polymers onto a curv
surface is considered, while in the second example the e
tric double layer theory is discussed.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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1. Polymer adsorption

In the recent description of polymer adsorption onto
curved substrate by Clement and Joanny,17 the surface free
energy is a functional ofc, which is related to the loca
monomer concentrationc by c25c. It has the following
form:

F@c#5E drWF u¹W c~r !u21
1

2
n~c22cb

2!2G2A
1

d
~cw!2, ~A1!

where d is the extrapolation length which measures t
strength with which polymers are adsorbed at the wall,n is
the excluded volume parameter, andcb

25cb , the local
monomer concentration in the bulk. Lengths are scaled w
a/A6, with a the monomer size, and energies bykBT, with
kB Boltzmann’s constant andT the absolute temperature.

When Eq.~A1! is compared to Eq.~4.1! we can identify
P andFw as

P~c,¹W c!52u¹W c~r !u22 1
2 n~c22cb

2!2,

~A2!

Fw~cw!52
1

d
~cw!2.

The Euler–Lagrange equation, Eq.~4.2!, and boundary con-
dition, Eq. ~4.3!, now read as

Dc5n c~c22cb
2!,

~A.3!

n̂•¹W cw52
1

d
cw.

With the identification in Eq.~A2! and after solving the
Euler–Lagrange equation in Eq.~A3!, one is then able to
calculate the curvature coefficients using the expression
Eqs.~4.8! and ~4.10!.

2. Electrostatic double layer

The electrostatic contribution to the free energy of t
double layer immersed in a 1–1 electrolyte has the follow
form:13,25

Fel5E drWH 2
1

2
e0e r u¹W c~rW !u2

22nelkBT FcoshS ec

kBTD21G J 1As cw, ~A4!

wheree r is the dielectric of the aqueous medium,e0 is the
permittivity of vacuum,nel is the electrolyte number density
e is the elementary charge, ands ~not to be confused with
the surface tension! is the surface charge density.

The electrical free energy above is written in terms
the electrostatic potentialc(rW), which is to be determined by
solving thePoisson–Boltzmannequation,

DC5k2 sinh~C!, ~A5!

where the dimensionless potentialC[ ec/kBT and inverse
Debye lengthk[(2e2nel /e0e rkBT)1/2 have been introduced
The requirement of constant surface charge density lead
the following boundary condition to the Poisson–Boltzma
equation:
Downloaded 16 Apr 2004 to 131.211.152.81. Redistribution subject to AI
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in

g

f

to

n̂•¹W Cw522pk, ~A6!

wherep[ 2pQs/ke, with Q[ e2/4pe0e rkBT the Bjerrum
length.

In this case, the differential equation determining t
profile of the order parameter, the Poisson–Boltzmann eq
tion, is derived from electrostatics~the Poisson equation!
rather than from the minimization of the free energy in E
~A4!. In fact, in the derivation of the electrical free energy
Eq. ~A4! one has already made use of the Poisso
Boltzmann equation.25 However, the Poisson–Boltzman
equation, Eq.~A4!, and boundary condition, Eq.~A5!, both
do result from the Euler–Lagrange equation treatingFel as if
it were a functional ofc; Fel5Fel@c#. The result is that if we
now identify

P~c,¹W c!5
1

2
e0e r u¹W c~rW !u212 nelkBT FcoshS ec

kBTD21G ,
~A7!

Fw~cw!5s cw,

we can again calculate the curvature coefficients using
expressions in Eqs.~4.8! and~4.10! as noted by Winterhalte
and Helfrich,12 Lekkerkerker,13 and by Fogden, Daicic, and
coworkers.15
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