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We investigate the apparent contradiction between the pressure expressions, or “mechanical
expressions,” and the van der Waals squared-gradient expressions for the curvature coefficients
k/IRy, k, andk. We show that, in the context of the mean-field theory discussed, both types of
expression are indeed equivalent, with the differences only being caused by the thermodynamic
conditions used to vary the curvature. ZD00 American Institute of Physics.
[S0021-960600)50713-2

I. INTRODUCTION ture. The coefficients are then related to the first and second
derivatives of the free energy with respect to the curvature.
, .~ The way one varies the curvature depends very much on the
vature free enerdyhas led to an important advancement in system at hand. In the following we discuss three types of
the theoretical understanding of complex interfatésn interfaces; those made of surfactant monolayers or bilayers,
terms of two elasticity or rigidity constants,andk, as well  the solid—liquid interface, and the liquid—vapor interface.

as the radius of spontaneous curvatBge the Helfrich free We first discuss the case in which the surface is made of
energy has been used to describe the shape, fluctuations, aqigfactant(or lipid) bilayers or monolayers. This is the sys-
free energy of membranes, vesicles, microemulsions; tc. tem for which Helfrich originally wrote down his free en-

The introduction of the Helfrich expression for the cur-

has the following form: ergy, i.e., for the interface between two immiscible fluids
ok Kk B where the specific molecules at the interfdeq., the sur-
FH:J dA| o— —J+ =J%+kK|, (1.1 factant or lipid moleculesare the ones responsible for the
Ro 2 strength of the rigidity constants. In this case one may

where o is the surface tension of thplanar surface,J ~ change, for instance, the amoutity(,) or chemical potential
—1/R,+1IR, is the total curvatureK=1/(R,R,) is the (msurp Of the component that is predominantly adsorbed at

Gaussian curvature, ary andR, are the principal radii of the interface in order to vary the curvature. In fact, Porte and
curvature at a certa}n point on the surfake Ligoure® investigated the influence of either changing the

The Helfrich expression is, however, phenomenologicthemical potential or the composition on the value of the

in nature: no information is provided on thalue of the rigidity constants for thgse systems. .
parameterss, k/R,, k andk and a lot of theoretical work The result of changing only the properties of the surfac-

has therefore been devoted to the determination of these p'gnt molecules at the interface is that the thermodynamic

. . . _ State of the bulk regions away from the surfacerisffected
rameters in the context of a more microscopic théofjwe For such a system Helfrich supplied formulas for the calcu-
should mention that Eq1.1) can be viewed in two, equiva- Y PP

lent, ways. In the approach by Romero-Rathvarea and lation of the curvature coefficients. Using “mechanical” ar-
RokJ’Iedo7, Eq. (1.2) is the expression for ararbitrarily guments he derived expressions kR, andk in terms of
shaped surface with curvature dependent coefficients moments of the transverse pressure prdfiléy(2), of the

kIRy, k, andk. In the approach considered here, Eql) is ~ Planar surface, analogous to Buffs'mechanical” expres-

. NN . .. sion for the surface tensiom, as the zeroth moment of the
viewed as an expansion in curvature with the coefficients
— ) transverse pressure profilsee Eq.(1.2) below]. He added,
k/Rg, k, andk curvatureindependent

) ) ) however, that the expression f&/R, is only valid for a
Inspection of the form of the Helfrich free energy in Eq. tensionlesdnterface = 0) and the expression faris onl
(1.1 shows that the theoretical determination kdRR,, K, P y

- ) e ) valid for a tensionless symmetricinterface =0, kIR,
andk requires the variation of the free energy witbrva-  _ () | ater, Szleifer and coworkérextended the analysis of

Helfrich, in the context of mean-field theory, to go beyond
dElectronic mail: e.blokhuis@chem.Leidenuniv.nl the mechanical arguments by Helfrich and showed that Hel-
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frich’s expressions are correct also whe 0 and k/R, above expression for the free energy, Gompper and
#0. Furthermore, Szleifer and coworkers provided an exZschocké& and Blokhuis and Bedeatiderived the follow-
pression for the rigidity constarit. The expressions by ing formulas for the curvature coefficients:
Helfrich® and Szleiferet al® read )
e 2k (= 0=2mf d7pol?,
oz—j xdzHO(z), R—Ozf xdz zlly(2), -

(= 1 (= (1.2 2—kz—sz dz 4p}2
k:—f _dzZTlg(2), k=- EJ _dz7ll(2), Ro —
wherez is the coordinate normal to the interface. Since these + }AMS 1] dZ po—po buil
expressions are derived using arguments beyond the me- 2 T e '
chanical arguments by Helfrich, we will refer to these ex- . (1.5
pressions as th@ressure expressions (rather than the IZZmJ dz Z[p(1?

“mechanical expressiong” The expression fok features

I154(2), the first order coefficient of the lateral pressure pro- "

file of a spherical interfacell4(r;R), in an expansion in +(4 AMc,z—AMs,z)J dZ po— popuil:
1/R, the reciprocal radius, -

1 o0 , 1 ©
1,1 iR) = Tlg(2) + 211, 2) 4+ 13 k- dzphpa zAme | ddpupasal
where the radial distanae=R+ z. Il is the leading order %
change in the lateral pressure profile due to bending of the —A,us,lj_ dzZ po—popuil

interface. Here it is expressed in terms of the lateral pressure
profile of thesphericalinterface, but we should keep in mind
that we could equally well have expressed it in terms of the -2 AMch_w dZ[po—po,buikl-
lateral pressure profile of aylindrical interface replacing
I, by 211 4, or in general replacél; by 2(dI1/3J). In  In the above formulas igy= po(z) the density profile of the
the following the subscrips refers to the spherical surface planar interface angg (z) the first order correction to the
and the subscript to the cylindrical surface. The additional density profile of the spherical interface in an expansion in
number tos andc (e.g.,s,1) refers to the coefficient in an 1/R. The subscript “bulk” refers to the bulk value extrapo-
expansion in R to that order. lated to the surface ar=0 so that for examplepg pyi

A second class of systems, for which the Helfrich free=p,, 6(—2) +po, 0(2).
energy has been used, are those in contact with a solid Comparing the expressions in Eq4.2) and (1.5 it is
curved wall. Several authdfs*®have calculated the electro- not obvious that the pressure expressions and the expressions
static contribution to the curvature coefficients using doublederived from van der Waals theory are in agreement. Yet the
layer theory for a charged solid waflwhile recently Clem-  validity of both expressions seems well established. The van
ent and Joanrly calculated the curvature energy associatecler Waals expressions in E¢L.5) were derived indepen-
with polymer adsorption onto a curved substrate. In theselently by Gompper and Zschokand by Blokhuis and
systems the curvature of the interface is varied simply byBedeaux® Furthermore the result fok/R, agrees with an
changing the radius of the solid wall. As in the case de-arlier expression by Fisher and WorfiAlso, these expres-
scribed above, the thermodynamic state of the system awagions can be derived from the virial expressions for the cur-
from the surface isinaffectedby the variation of the curva- vature coefficienfsby making a mean-field approximation to
ture of the interface. The result is that the curvature coeffithe pair density®?°
cients can be calculated using the pressure expressions in Eq. On the other hand, it is well established by various
(1.2) with the only difference that the integration oeruns  authors?~'®that the expressions for the electrostatic contri-
from the hard wall(at z=0) to infinity. bution to the curvature coefficients in double layer theory

A third route to the calculation of the curvature coeffi- calculated directly via the free energy are the same as when
cients has used van der Waals’' squared-gradient expressitine pressure expressions are used. This was shown by Win-
for the surface free energy?'° of a simple liquid—vapor terhalter and Helfrictf using the Debye—Ftkel theory, by

)

interface, Lekkerkerket® and by Mitchell and Ninhait using
Poisson—Boltzmann theory in excess salt, and by Fogden,
F[p]zf dF[m|€p(F)|2+f(p)—A,up(F)], (1.9 Daicic, and coworkers using Poisson—Boltzmann theory

with an arbitrary amount of added salt. Our object in this
wherem is the usual coefficient of the squared-gradient termarticle is to establish in more detail the correspondence be-
f(p) is the free energy density for a fluid constrained to havaween the expressions in Eqg€l.2) and (1.5. It will be
uniform densityp, and Au is the chemical potential differ- shown that, keeping the thermodynamic conditions under
ence between the chemical potential of the curved surfacehich the surface is bend in mind, that E¢$.2) and (1.5
and that of the planar surface\ fp=u— pcoe. Using the are indeed equivalent.
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When we compare Eq¢l.2) and(1.5 some similarities
are apparent. Suppose that we 8gi,=Au.=0 so that
Aps1=Apc1=0 and Apg,=Au.,=0, and, furthermore,
identify T1o(2) asIly(z)=—2m(pg)?, then already we see
that the pressure expressions fark/R,, andk reduce ex-

Pressure and van der Walls theories 6025
with Ap=p,—p, the density difference between the liquid
and the vapor phase.

To summarize, in the derivation of the van der Waals
expressions the radilR is varied by varying the chemical
potential. The variation of the chemical potential leads to the

actly to the squared-gradient expressions. The correspoiresence of additional terms in the squared-gradient expres-

dence between the two expressions Kkois less clear but

sions in Eq(1.5) with the explicit value of the coefficients of

still, this is very encouraging and we now first wonder these terms given in Eq2.3).

whether we can understand why there is no contribution

Next, we now consider the thermodynamic conditions

from the Change in chemical potentia| in the pressure expreéhat are used in the calculation of the curvature coefficients
sions. In order to do this we first need to consider the therof a fluid in contact with a hard wall. Here the situation is

modynamic circumstances.

IIl. THERMODYNAMIC CONDITIONS

somewhat simpler. A rigid sphefeolloidal particle is con-
sidered with a certaiffixed radiusR. The variation of the
radius does notinfluence the thermodynamic state of the
fluid outside with fixed density, and pressurg,. Terms
connected with the expansion of the chemical potential in the

In the van der Waals squared-gradient theory as used bjadius are therefore not present so that as a consequence,

Gompper and ZschockeFisher and Worti¢® and Blokhuis
and BedeauX® a sphericalcylindrical) drop of liquid is con-

sidered surrounded by a vapor phase. The two phases are not Aug,=Auc,=0.

in coexistence when the radil®<c., and the distance to

two-phase coexistence is determined by the chemical pote

tial difference A = ps— tcoex (OF Ap for the cylindrical
interfacg. The droplet radius is determined hyus and

when we consider the variation of the free energy with the

radius wereally are considering the variation of the free
energy with the chemical potential. The Laplace equatio

enables us to relate directly the expansion coefficients of th

chemical potential £ us1,Auso,...) to theradius. In order

to show this a bit more explicitly, we need to consider the

Laplace equation for a spherical and cylindrical interface:

A _20 k1 spherical interface
p= R R_o RZ’ p ,
o k1 o (2.9)
Ap= R 2R cylindrical interface,
which are both derived from the generalized Laplace equa-
tion,
4k k
Ap=0J— =J3+ 2kJK—KA J. (2.2

Ro 2
In this equationAp=p,—p, is the pressure difference be-
tween the liquid inside the droplétylinder and the vapor

outside, and\; is the surface Laplacian which is important

A:Uvs,lz A#c,lz 0,
(2.9

To show the correspondence between the van der Waals ex-

rb’ressions and pressure expressions in more detail, we calcu-

late the curvature coefficients with the only assumption that
the free energy density is some function of the dens(ty)

and the gradient of the densifjp(f) (to keep the calcula-

{ion as general as possibld his is done under the conditon

at the chemical potential is varied to vary the curvature
Sec. lll) and under the condition that the chemical potential
is constant(Sec. V).

Ill. VARIABLE CHEMICAL POTENTIAL

The surface free energy is written in the following gen-
eral way:
Flpl= | dT=T(p. )= App(1)], 3.
where it is supposed that the free energy in the bulk region is
subtracted so that the above free energy iseacessfree
energy. Furthermord](p,ﬁp) is the (grand free energy
density and is some function {f) andV p(F). In van der

Waals’ squared-gradient theory, for instance, it has the fol-
lowing form [cf. Eq. (1.9)]:

when the curvature varies from point to point on the surface.

For the spherical and cylindrical interface we consider in this
analysis, the curvature is constant along the surface so thg

AJ=0.
Since the pressure difference is directly related to th
chemical potential, one can show that

20
Aps1=2Apey = A_Po,
Mpoe—— T Ap K1 23
2=~ (3 p2 P51 Ry Ao (2.3
1 T

Apeo=— 2 mzﬁps;,

e

(p,Vp)=—m|Vp(7) 2= f(p)+ prcoexp(F), 3.2

bt we leave it unspecified in the remainder of this section.
Several authof€'® have included besides a squared-
gradient term a squared Laplacian term to the above free
energy. The inclusion of such a term in E§.1) leads to the
presence of additional terms in the Euler—Lagrange equa-
tions below with the consequence that the identification in
Egs. (3.8) and (3.10 below needs to be modified. In the
following it should therefore be realized that the conclusions
drawn only apply to mean-field theories whose free energy is
of the form of Eq.(3.1).20%%

The Euler—Lagrange equation to the surface free energy
in Eq. (3.1) reads
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d . .4 B,
a—H(p,Vp)=V' —1(p,Vp)—Au. (3.3
p

dVp

In the following, we expand the surface free energy arounqree

the planar interface and compare the results with the surfa
free energy expression by HelfridiEq. (1.1)] which for a
spherical and cylindrical geometry read

Fs 1 —1
KZO'_R—Oﬁ‘F(Zk'Fk)ﬁz,

(3.9
Fe 2k1 k1
A" RR 2R

Expanding the surface free energy for the spherical and cy-

lindrical interface to second order inR.gives

Fs (= z\? 1 1,
A=) 441+ 5] | o~ gllipsi— pllapsy
1 1 . s

- ﬁznl Ps2~ ﬁznz Ps2™ ﬁznnps,l
1 o1 , o, 1
- @Hul)s,lps,l_ ﬁnzz(l)s,l) - ﬁAMs,l Po
1 1
- @Aﬂs,lps,l_ @Aﬂs,zpo_ B.T.|,
(3.9
Fo (= z 1 1
A | 421+ g) Mo~ glipea— gllzpcy

1 1 , 1 5
- ﬁznl Pc2™ ﬁznz Pc2™ ﬁznupc,l

1

1 1
- ﬁznlzpc,lpc,l_ ﬁznzz(ﬁ’ca)z— ﬁAMc,lpo

1 1
- @Aﬂc,wc,l_ @Aﬂc,zpo_ B.T.|,

where the subscripts 1 and 2 kb refer to a differentiation

with respect to the first or second argument evaluated at the

planar interface, e.gll,= (d/dpo) M (pg,pg)- Mg is simply
defined adly=II(pg,py). The abbreviation B.T. stands for
the boundary termsat z= + < which are to be subtracted.

The Euler—Lagrange equatidB.3) is expanded in the
curvature for the spherical and cylindrical interface. To first
order the following equations result:

d

H]_:EHz,

J
Mypg —ppg =211+ E(HlZPS,l_ Myps1) —Apst,
(3.6

J
Mype =11, pe =115+ 5(H12Pc,1_ Hype)—Apig -

The first equation determines the profilg(z) of the planar

Blokhuis, Lekkerkerker, and Szleifer

interface while the latter two determine the profiles;(z)

and p.4(z). One immediately notices that sinc&ug,
=2Auc 1 0ne has thaps 1(z) =2p.1(2).

Inserting the above expressions fdy into the surface
energy and integrating by parts gives, after some alge-

Sia, the following results for the surface free energy of the

sphere and the cylinder:

Fo (=
K:f_wdz[_ﬂo]
1 o
ﬁf_wdz[_ZZHO_AMs,l(PO_PO,bqu)]
1 (= 5
+§2f_mdz — 2T+ 12ps1—2 A s 1Z (po— Po puik)

1
- EAMs,l(Ps,l— Ps,l,bulk) - A,U«s,z (po— PO,bqu) )

3.
- @7
o[ ag-mg
1 o
+2 | dd-2110- A e (po- popud]
1 (= N
tR2 j,m dz 3115 pe 1= A pc,1iZ(Po~ Pobui)

1
- EA/U«c,l (Pc,l_ pc,l,bulk) - A,U«c,z(Po_ pO,bqu) .

Comparing Eqs.(3.7) and (3.4) allows us to identify the
curvature coefficients as

U:_j dZHO,

Jm dz
(3.9
k= fﬁw dZ[—22H0+ (4Apc2—Aps2) (Po—Pobui) ],

2k

B 1
R Z

zITp+ > Aps1(pPo=Popuid |

oo

jdz

1
- ZAMs,l (Ps,l_ ps,l,bulk) -2 AMc,z(Po_ pO,bqu) )

k

1
§H2 Ps1—Aus1Z(po— Pobulld

where we have used thatug,;=2Au.q and pg1=2p ;.
As a final step we rewrite the expression knsomewhat by
using that

©

) dZ zlls; psq1t+2zl; pg 4]

f dZ j_[S’l:

oo

- " aa-11,p.0, (3.9

so that
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IV. CONSTANT CHEMICAL POTENTIAL
We now investigate the situation in which the chemical

k= f dz
1 potential is fixed Au=0) and the radius of curvature is
- ZA/,,stl(psyl— Pstpuk) —2 Apc2(Po— Populd) |- varied independent of the thermodynamic state. Therefore

we consider the surface free energy of a fluid in contact with
(3.10 a hard sphericalcylindrical) wall with fixed radiusR,

z
) Ils1—Aps12(po— Po,bulld

We have thus derived in Eq63.8) and (3.10 the pressure .

expressions for the curvature coefficients in the case that the Flp]= _f difIL(p,Vp) ]+ AD,(p"), (4.1)
chemical potential is varied to change the curvature of the

interface. The pressurd was identified as thégrand free  where®,,(p%) is the interaction of the fluid with the wall at
energy density defined by E3.1). One may verify that z=0 and is assumed to depend only on the density at the
these pressure expressions aguivalentto the van der wall, p". The form of the above free energy is quite general
Waals squared-gradient expressions in Eg5 when one  and in the Appendix we give two examples where the free

inserts the explicit expressions fbky andllg, energy indeed has this form.
- - The Euler—Lagrange equation to the surface free energy
Ho==m(pg)“—f(po) + KeoexPo= —2M(pg)*, in Eq. (4.1) reads
(3.1
s 1=—2mpgopg 1= ' (o) Ps it MeoexPs1 P .9 R
' " —I(p,Vp)=V-—II(p,Vp), (4.2
=—2Mpops1—2Mpops,1, ap aVp

derived using the form fofI(p,Vp) in Eq. (3.2). with the boundary condition at the walll,

An important issue that we have not addressed thus far is
the fact that a certain arbitrariness exists in locating the exact
position of the dividing surface and therefore in the exact ——, Puw(p") =M —
value of the radiusR.2 The consequences hereof for the P avp"
curvature coefficients can be read off from the expressionsin o ) ] ) )
Eq. (3.8) which are derived without specifying the location In this expression is the gmt vector in the direction normal
of the dividing surface. One finds that the surface tension of® the interface. Expanding the surface free energy for the
the planar interface does not depend on the location of the SPherical and cylindrical interface to second order iR 1/
dividing surface. Also, the spontaneous curvatif®, is  NMOW gIves
independenbf the location of the dividing surface. This can
be checked by shifting the dividing surface over a distancé:_S: fwdz
A. The first contribution tok/R, is then changed by an A 0
amounto A, while the second contribution changes by an
amount—1/2(App) A. Use of Eq.(2.3 then yields that the
net change irk/R, of shifting the dividing surface is zero.
The rigidity constants, howevedp depend on the location of 1 1
the dividing surface, and when numerical values are supplied  — @lepsylpévl— ﬁnzz(p;,l)z— B.T.|,
for k andk this can be done only after a certain choice for
the location of the dividing surface has been made. For in- T 1 ., wo
stance, in the derivation of the pressure equations for mono-  + Pwot g PwoPsit gz Pworset 55z Puwo(Ps)”
layers and bilayers by Szleifest al.® the location of the (4.4)

I1(p%,VpY). 4.3

1+Z
R

2 1
[_Ho_ ﬁnl Ps1— §H2 Pé,l

1 1
- ﬁznl Ps2~ ﬁznz Ps2™ ﬁznnpg,l

dividing surface was chosen to be the “surface of inexten-,:C o 7 1 1

sion” or “neutral surface.” This is the surface whose area is—— = f dz| 1+ R —1lp— ﬁl'll Pe1— ﬁHZ Pea
unchanged during the variation of the curvature. We refer to 0

Ref. 5 for a more elaborate discussion of this pdgge also 1 1

Ref. 3. For the evaluation of the curvature coefficients in the - ﬁzﬂl Pc2— ﬁznz pé,z— ﬁzﬂupg,l
van der Waals theory for a liquid—vapor droplet, the dividing

surface was located at Gibb’s equimolar surfitén the 1 , 1 ;o

next section we investigate the case of a fluid in contact with N @lepc,lpc,l_ WHZZ(PM) —B.T.

a hard sphericalcylindrical) wall. In that case the dividing
surface is chosen at the hard wall.

It is noteworthy that Eq9.3.8) and(3.10 reduceexactly
to the pressure expressions in Ed.2) when one sets
Aps1=Apc1=0 andApug,=Auc,=0. Therefore, we next where we have definedt,, .=®,,(pg). The Euler—Lagrange
look in more detail into the situation where the chemicalequation(4.2) is expanded to first order in the curvature for
potential is kept constant. the spherical and cylindrical interface,

1 1 1
+ @y 0t ﬁq)w,op\év,ﬁ @q’w,op\gﬁ ﬁq)w,o(P\év,l)za
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H—aH
17572

J
Iy ps1— 115 pg =215+ £(H12ps,l_ My ps4),

d
Hypea—1Ilp pe =TI+ E(Hupc,l_ 25p¢49),

and so is the boundary condition in E4.3),

wW__ ’
_HZ_ w,0
w w w W N7 " w
HlZPs,l_HZZ(ps,l) = ®w,0Ps,1:
w w w w r n w
HlZPc,l_HZZ(pc,l) =%wo0Pc1-

Again it is noted thapg 1(z) =2p 1(z). Using Egs(4.5) and

(4.9

(4.6

Blokhuis, Lekkerkerker, and Szleifer

free energy in Eq(4.1) we have thus rederived all the pres-
sure expressions for the system in which the chemical poten-
tial is fixed.

V. SUMMARY

We have investigated the apparent contradiction between
the pressure expressions and van der Waals expressions for
the curvature coefficients/ Ry, k, andk. In the context of
the mean-field theory expressed by the similar Eg4) and
(4.1), we showed that the origin of the difference between
the two types of expression lies solely in the thermodynamic
conditions used to vary the curvature. As we have seen, the
appropriate thermodynamic conditions depend very much on
the system at hand. To study, for instance, the nucleation of
liquid droplets, the curvature depends on the thermodynamic
distance to coexistenceAfu=u— ucey Via the Laplace

(4.6), the surface free energy of the sphere and cylinder caequation, and the analysis in Sec. Il is the appropriate one,

now be written as

F © 1 ©
—S:f dz[—H0]+<I>W0+—f dZ —2z11,]
A Jo “ RlJo
1 (= )
+¥fo dZ —z°Ily+ I ,ps 1],

FC o) 1 o)
K:fo dZ[_Ho]+q)w,o+§J'0 d4 —zIly]

» 1
+¥ 0 dZ EHzpc’]_

(4.7

so that one may identify the curvature coefficients as

o0 2k o
(T:_f dZ[H0]+¢)W’0, R_:f dZ[ZHO:l,
0 0 0

1
Eﬂz Ps,1

?zf d —2°11,], k=f dz
0 0

Notice that all the terms involving the interaction with sub-

(4.9

strate,®,,, have dropped out of the expressionskor,, k,

andk. As a final step we, again, rewrite the expressionkfor

somewhat by using that

o

| dzat,,= [ “adzn, o2ty

- "0z -11,p..,
so that

*® Z
k= fo dz — 51,

Apart from the presence ob,,, in the expression for the

4.9

(4.10

while for the description of the electric double layer of a
colloidal particle with fixed radius or the description of the
adsorption of a polymer onto a curved wall, the analysis in
Sec. IV is more suited. The latter analysis is also closely
related to the investigation of microemulsion systems and
systems containing membrane bilayers. In these cases one
may, for instance, change the chemical potential of the com-
ponent that is predominantly adsorbed at the interfacg.,

the surfactant or lipid moleculg# order to change the cur-
vature. As in the case of a system in contact with a curved
wall, the thermodynamic state of the system away from the
surfacé>?*is unaffected.

With these two thermodynamic conditions, expressions
for the curvature coefficients were derived. In Sec. Ill the
curvature was varied by varying the chemical potential,
while in Sec. IV the chemical potential is kept constant and
the curvature is varied by varying the radius of the spherical
or cylindrical substrate that is in contact with the system. The
resulting expressions from the former analysis were shown
to reduce to those obtained in van der Waals theory, while
the results from the latter analysis were shown to be equal to
the pressure expressions identifying the lateral pressure pro-
file as the excesgyrand free energy density.
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APPENDIX: EXAMPLES OF THE FREE ENERGY
AS GIVEN IN EQ. (4)

We now discuss two recent examples from the literature

surface tension and the fact that the integration runs fzom in which the surface free energy has the form of &ql). In

=0 instead ofz=—o, the expressions in Eq$4.8) and

the first example, the adsorption of polymers onto a curved

(4.10 are exactly equalto the pressure expressions in Eq. surface is considered, while in the second example the elec-
(1.2). Starting with the general expression for the surfacetric double layer theory is discussed.
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1. Polymer adsorption A- VY= —2pk (AB)

In the recent description of polymer adsorption onto awherepz 27Qal ke, with Q= e
curved substrate by Clement and Joahhthe surface free '
energy is a functional off, which is related to the local
monomer concentratios by #?=c. It has the following
form:

2|Ameqe kgT the Bjerrum
length.

In this case, the differential equation determining the
profile of the order parameter, the Poisson—Boltzmann equa-
tion, is derived from electrostatickhe Poisson equation

R 1 1 rather than from the minimization of the free energy in Eq.
FW]:f dF[|V¢(r)|2+ il WP yp)? —Aa(ww)z, (A1) (A4). In fact, in the derivation of the electrical free energy in

Eq. (A4) one has already made use of the Poisson—

where d is the extrapolation length which measures theggjtzmann equatio”®> However, the Poisson—Boltzmann
strength with which polymers are adsorbed at the walf  equation, Eq(A4), and boundary condition, E4A5), both
the excluded volume parameter, ang=c,, the local doresult from the Euler—Lagrange equation treafiugas if
monomer concentration in the bulk. Lengths are scaled with were a functional of; Fo=Fof ¢]. The result is that if we
a/\/6, with a the monomer size, and energieskyT, with  now identify
kg Boltzmann’s constant an@l the absolute temperature. 1

When Eq.(Al) is compared to Eq4.1) we can identify (4, V) = = €0, |V (F)|2+ 2 Nk T cos?‘(ﬂ) _ 1},
II and®,, as 2 kgT

. N A7
(V) == V(1) 5 w(gP— ), () =0 y", A7
1 (A2) we can again calculate the curvature coefficients using the
O, (") =— a(,/,W)Z_ expressions in Eq$4.8) and(4.10 as noted by Winterhalter

and Helfrich!? Lekkerkerker'® and by Fogden, Daicic, and
The Euler—Lagrange equation, E¢.2), and boundary con- coworkers:>
dition, Eq.(4.3), now read as

Ay=v (=), LW. Helfrich, Z. Naturforsch. 8, 693 (1973.

(A.3) 2For reviews sedicelles, Membranes, Microemulsions, and Monolayers
= 1 edited by W. M. Gelbart, A. Ben-Shaul, and D. Ro(8pringer-Verlag,
n-v ‘ﬁW: - a ¢W- New York, 1994; Statistical Mechanics of Membranes and Surfaeeb

ited by D. Nelson, T. Piran, and S. WeinbéWjorld Scientific, Singapore,

With the identification in Eq.(A2) and after solving the 1988 » _

. . . S. A. Safran,Statistical Thermodynamics of Surfaces, Interfaces, and
Euler—Lagrange equation in E¢A3), one is then able to MembranesAddison-Wesley, Reading, 1994
calculate the curvature coefficients using the expressions irw. Helfrich in Physics of Defectdes Houches, edited by R. Baliat al.
Eqs_(4_8) and(4.10. (North-Holland, Amsterdam, 1981
51. Szleifer, Ph.D. thesis, Hebrew University of Jerusalem, 1988; . Szleifer,
D. Kramer, A. Ben-Shaul, W. M. Gelbart, and S. A. Safran, J. Chem.
Phys.92, 6800(1990; I. Szleifer, D. Kramer, A. Ben-Shaul, D. Roux, and
W. M. Gelbart, Phys. Rev. Let60, 1966(1988.
6 : :
The electrostatic contribution to the free energy of the E- M- Blokhuis and D. Bedeaux, Physical84, 42 (1992.

9y V. Romero-Roch, C. Varea, and A. Robledo, Phys. Rev.44, 8417

double layer immersed in a 1-1 electrolyte has the following (1991): ¢ varea and A. Robledo, Mol. Phy85, 477 (1995.

form:1325 8G. Gompper and S. Zschocke, Europhys. L&6.731(1991); G. Gomp-

2. Electrostatic double layer

— 2ne|kBT

1 per and S. Zschocke, Phys. Rev.48, 4386(1992.
9 :
- N = 2 G. Porte and C. Ligoure, J. Chem. Ph$62 4290(1995.
Fel_f dr[ §€0€r|v¢(r)| 10F p. Buff, J. Chem. Phy23, 419 (1955.
10nly in the context of the mean-field theory that is considered here can we
ey identify IT asthelateral pressure profile. In general the pressure tensor has
cosl‘( —) —1|i+Ac¢", (A4) two lateral components and cannot be uniquely defined. For a discussion
kgT see, e.g., S. Ono and S. Kondo, Handbook Pt@s134 (1960; E. M.
h is the diel . fth di is th Blokhuis and D. Bedeaux, J. Chem. Ph9g, 3576(1992.
w erg €r .'S the dielectric O the aqueous mediuegy, Is t e 12M. Winterhalter and W. Helfrich, J. Phys. CheBf6, 327 (1992.
permittivity of vacuumpng, is the electrolyte number density, 3H. N. W. Lekkerkerker, Physica A59, 319 (1989; H. N. W. Lek-
e is the elementary charge, amd(not to be confused with l4kerkerker,;]bi|<|1- 1%7. 384(1992- 6 (1989
PN : D. J. Mitchell and B. W. Ninham, Langmuf, 1121(1989.
the surface ter_15|()ns the surface Charge de_nSIty'_ 157, Daicic, A. Fogden, |. Carlsson, H. Wennetstrand B. Jasson, Phys.
The electrical free energy above is written in terms of gey. 54, 3984(1996; A. Fogden, I. Carlsson, and J. Daicibid. 57,
the electrostatic potentiat(r), which is to be determined by 5694 (1998.

solving thePoissor-Boltzmannequation, 18t should be recognized that the results for the double layer thess.
12-15 extend beyond the situation of a system in contact with a charged
AV = 2 sinh(¥), (A5) solid wall. As long as the curvature is fixed independent of, say, surface

. ) ) ) charge or added salt, the calculated formulas then give the electrostatic
where the dimensionless potentifil= ey/kgT and inverse contributionto the curvature coefficients.

Debye lengthk=(2e?n,/ eye, kg T) 2 have been introduced. ’F. Clementand J.-F. Joanny, J. Phys?,1873 (1997.

: . M. P. A. Fisher and M. Wortis, Phys. Rev. B, 6252(1984).
The requirement of constant surface charge density leads 92 M. Blokhuis and D. Bedeaux, Mol. Phy80, 705 (1993,

the fo_IIowing boundary condition to the Poisson—Boltzmannzog . giokhuis and D. Bedeaux, Heterog. Chem. Riv55 (1994.
equation: 2IA. J. M. Yang, P. D. Fleming, I, and J. H. Gibbs, J. Chem. Pl&s.

Downloaded 16 Apr 2004 to 131.211.152.81. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



6030 J. Chem. Phys., Vol. 112, No. 13, 1 April 2000 Blokhuis, Lekkerkerker, and Szleifer

3732(1976; C. Varea and A. Robledo, Physica283 132(1996. 23See G. Gompper and M. Schick, “Self-assembling amphiphilic system,”
22ghifting the position of the interfad®— R+ AR leads to a change in the Phase Transitions and Critical Phenomeedited by C. Domb and J.
bulk contribution to the free energy; 47 R> Ap AR (for a spherical Lebowitz (Academic, London, 1994 Vol. 16.

interfacd. The reason that this has no consequence to the excess fréeE. M. Blokhuis, Ber. Bunsenges. Phys. Chetfi0, 313 (1996.
energy is that the change in free energy is cancelled by the change in fré8E. J. W. Verwey and J. Th. G. Overbeékeory of the Stability of Lyo-
energy due to surface tensionr&® o AR, via the Laplace equation. phobic Colloids(Elsevier, Amsterdam, 1948Eq. (379 on p. 79.
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