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Chapter 3

Exact completion and glueing

This Chapter will be an exercise in \pure predicative topos theory". I prove two closure
properties of �W -pretoposes: closure under exact completion and under glueing. Clo-
sure under exact completion is especially noteworthy, because toposes are not closed
under exact completion.

As an application of these two results, I give more examples of �W -pretoposes
and prove a result on the projectives in the free �W -pretopos. The latter will imply
that the free �W -pretopos and the category of setoids are non-equivalent.

Parts of this Chapter have appeared in [14] and are reprinted here with permission
from Elsevier.

3.1 Exact completion of a cartesian category

The examples of �W -pretoposes that we have seen so far are toposes with nno and
the category of setoids. The categorical construction called exact completion will
provide us with a host of other examples. To show that they are examples, I need a
set of conditions on a category C for its exact completion Cex to be a �W -pretopos.
As always in the theory of exact completions, the category C has to satisfy the axioms
for a �W -pretopos in a weaker sense. I identify a set of conditions and I show that
for the categories satisfying these conditions the exact completion is a �W -pretopos.
As it turns out, ML-categories are examples of such \weak �W -pretoposes". This
means that the exact completion of an ML-category is a �W -pretoposes, so the
ML-categories of the previous Chapter can be remedied in this way to become �W -
pretoposes. It also shows that the exact completion of a topos with nno is a �W -
pretopos. As exact completions of toposes are rarely toposes, this shows that there
are many �W -pretoposes that are not toposes.

Intuitively, the exact completion is the universal way of constructing an exact cat-
egory out of a cartesian category. In more precise (2-categorical) terms it is the
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following. Write Cart for the large category of (small) cartesian categories and Exact
for the large category of (small) exact categories. The exact completion of a given
a cartesian category C is an exact category Cex , together with a cartesian embedding
y: C // Cex , such that for any exact category D, composition with y induces an equiv-
alence Exact(Cex ;D) // Cart(C;D). As Joyal discovered, it is possible to explicitly
describe Cex .

Explicit description of an exact completion 3.1.1 Two parallel arrows

R
r0 //

r1
// X

in a cartesian category C form an pseudo-equivalence relation when for any object A
in C the image of the induced function

Hom(A;R) // Hom(A;X)� Hom(A;X)

is an equivalence relation on the set Hom(A;X). These pseudo-equivalence relations
are the objects in the category Cex . A morphism from

RX
x0 //

x1
// X

to

RY
y0 //

y1
// Y

in Cex is an equivalence class of arrows f :X // Y in C for which there exists a
g:RX //RY such that f xi = yig for i = 0; 1. Two such arrows f0; f1:X // Y
are equivalent if there exists an h:X //RY such that fi = yih for i = 0; 1.

The embedding y is given by the obvious functor y: C // Cex that sends an object A
in C to

A
1A //

1A
// A:

Besides being cartesian, the functor is evidently full and faithful. The proof that the
category thus constructed is exact and actually the exact completion of C can be
found in [21], [20].

For both the objects in the exact completion that are in the image of y and
categories that arise as exact completions, there exist remarkable characterisation
results. To state these, I need the following terminology.

Projectives, external and internal 3.1.2 An object P in a category C is (externally)
projective if for any cover g:X // Y and any morphism f :P // Y , there exists a
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morphism h:P //X such that gh = f .1 When C is cartesian, this is equivalent to:
any cover p:X //P has a section. An object X is covered by a projective, if there
exists a projective P and a cover f :P //X. A category C has enough projectives if
any object in C is covered by a projective.

These external projectives are to be distinguished from the following class of objects.
In a cartesian category C, an object P is called internally projective, when for any
cover Y //X and any arrow T � P //X, there exists a cover T 0 //T and map
T 0 � P // Y such that the square

T 0 � P //

²²²²

Y

²²²²

T � P // X

commutes. A morphism f : Y //X is called a choice map, when it is internally pro-
jective as an object of C=X.

In case P is exponentiable, this coincides with the more common de�nition: P is
internally projective i� the functor (�)P preserves covers. This means that in a Heyting
category C, for an exponentiable object A that is also internally projective, the axiom
of choice is valid \relative to A", in the sense that the following scheme is valid in the
internal logic of C:

8a 2 A 9x 2 X �(a; x)! 9f 2 XA 8a 2 A�(a; f (a)):

The two characterisation results now are (see [21]):

Lemma 3.1.3 The objects in the image of y: C // Cex are, up to isomorphism, the
projectives of Cex .

Proposition 3.1.4 An exact category C is an exact completion if and only if it has
enough projectives and the projectives are closed under �nite limits. In that case, C is
the exact completion of the full subcategory of its projectives.

An immediate consequence is (see [16]):

Proposition 3.1.5 If C is cartesian and A an object in C, then

(C=A)ex �= Cex=yA:

One combines this with the following observation (which I am not the �rst to point
out, see [38]) to show that morphisms of the form yf in Cex are choice maps.

1Some mathematicians call such objects \regular projectives", but as this is to distinguish them
from a class of objects that does not concern me, I do not follow their terminology.
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Lemma 3.1.6 In an exact completion Cex of a cartesian category C, the external and
internal projectives coincide.

Proof. An internal projective is also externally projective, because in an exact com-
pletion the terminal object 1 is projective. An external projective is also internally
projective, because in an exact completion, every object is covered by an external
projective and external projectives are closed under products. �

3.2 Two existence results for W-types

For the main theorem of this Chapter, explaining which categories have a �W -pretopos
as exact completion, I need two auxiliary results on the existence of W-types, to be
proved here. In both cases I rely essentially on the notion of path, introduced in the
previous Chapter. Its main use is to help to de�ne in a predicative fashion a certain
predicate or relation, that would in an impredicative context (like that of toposes) be
de�ned using trans�nite induction.

To state the �rst theorem, I need the following de�nition.

De�nition 3.2.1 A square
D //

²²

C

²²

B // A

in a cartesian category C is called a quasi-pullback , when the induced map D //B�A
C is a cover.

Theorem 3.2.2 Suppose in a �-pretopos E with a natural number object, one has a
diagram of the following form:

D
[�]B // //

g
²²

B
f

²²

C [�]A
// // A

(3.1)

Suppose furthermore that this diagram is a quasi-pullback and that g is a choice map
for which there exists a W-type. Then there also exists a W-type for f .

Proof. Write W for the W-type for g and sup for the structure map. The idea is
to use the well-founded trees in W , whose branching type is determined by g, to
represent well-founded trees whose branching type is determined by f . Intuitively this
representation works as follows: a well-founded tree with branching type determined
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by f is represented by an element w 2 W if it can be obtained by \bracketing" all
labels in w .

: : : : : : : : : : : : : : : : : : : : : : : :
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While every tree with branching type determined by f can be so represented, not every
element in W is suitable for representing such a tree. A tree supc(t) in W is suitable
for representing, or representing for short, whenever for any pair d; d 0 2 g�1(c) such
that [d ]B = [d 0]B, the trees td and td 0 are representing and represent the same tree.
The trees td and td 0 are then identi�ed in the bracketing process.

So the question is when two (representing) elements supc(t) and supc 0(t 0) in W repre-
sent the same tree (in which case I will write supc(t) � supc 0(t 0)). They do, whenever
[c ]A = [c 0]A and td � t 0d 0 for all pairs d 2 g�1(c); d 0 2 g�1(c 0). In an impred-
icative context, like the internal logic of a topos, one could de�ne � as the unique
relation having this property. Here, with a predicative metatheory, one has to work
a little harder and de�ne � explicitly in terms of paths. Then the property of being
representing can be de�ned as being self-related via �.

The binary relation � on W is de�ned as follows: w � w 0 if and only if

all paths � in Pathsw and �0 in Pathsw 0 having the same length (2n + 1
say) and satisfying the equality

[�(2k + 1)]B = [�0(2k + 1)]B

for all k < n, also satisfy the equality

[�(�(2k))]A = [�(�0(2k))]A

for all k � n (� being the canonical map W �= �CW g //C).

The reader should now verify that � has the desired property:

supc(t) � supc 0(t 0);

if and only if [c ] = [c 0] and for all d 2 g�1(c); d 0 2 g�1(c 0): if [d ] = [d 0], then td � t 0d 0
(one proves this by induction).

Symmetry and transitivity of � now follow. Symmetry is immediate, while transitivity

w � w 0 and w 0 � w 00 imply w � w 00
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is proved by induction on w 0, as follows. Suppose supc(t) � supc 0(t 0) and supc 0(t 0) �
supc 00(t 00). Now clearly [c ] = [c 00], because [c] = [c 0] and [c 00] = [c 0]. Suppose
d 2 g�1(c) and d 00 2 g�1(c 00) are such that [d ] = [d 00]. Since diagram (3.1) is a
quasi-pullback, there exists a d 0 2 g�1(c 0) such that [d 0] = [d ] = [d 00]. One has now
that td � t 0d 0 and t 0d 0 � t 00d 00, and so td � t 00d 00 by induction hypothesis. This shows
that supc(t) � supc 00(t 00).

A w = supc(t) 2 W such that w � w will be called a representing tree. The point is
that such a tree has the desired property that for any pair d; d 0 2 g�1(c), td and td 0
represent the same tree. Denote the set of all representing trees by R and observe
that R is closed under subtrees.

Now, � is an equivalence relation on R and hence one can form the quotient V ,
together with a quotient map q:R // V . This map q sends a representing tree to
the tree it represents. Let me also de�ne an object R� in E=C by setting for c 2 C:

R�c = f t 2 W g�1(c) j supc(t) 2 R g
Or, equivalently: t 2 R�c if and only if

for any d; d 0 2 g�1(c) such that [d ]B = [d 0]B, one has that t(d) � t(d 0).

One clearly has a commuting diagram

�CR� // //

sup
²²

�CW g

sup
²²

R // // W

(in fact, this diagram is a pullback). I will now construct a commuting diagram of the
following form:

�CR�
q�

// //

sup
²²

�AV f

s
²²

R q
// // V

(3.2)

To see that there is a morphism q�: �CR� // �AV f in E , one needs to note that the
subobject

Q� = f (t; h) 2 �CR� ��AV f jQ�(t; h) g
where Q�(t; h) is the statement:

for the particular c 2 C and a 2 A such that t 2 R�c and h 2 V f �1(a), one
has that [c]A = a and for all d 2 g�1(c) that q(t(d)) = h([d ]B).
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is functional (for the de�nition of a functional relation, see Appendix A). The map q�
so constructed is a cover: for let h be an arbitrary element of V f �1(a) for a certain
a 2 A. Pick a c 2 C such that [c ]A = a. One has

8d 2 g�1(c)9r 2 R: q(r) = h([d ]B);

since q is a cover. Since g is a choice map, there is a map t: g�1(c) //R such that
q(t(d)) = h([d ]B) for all d 2 g�1(c). If d; d 0 2 g�1(c) are such that [d ]B = [d 0]B,
then

q(t(d)) = h([d ]B) = h([d 0]B) = q(t(d 0));

so t(d) � t(d 0). This means that t 2 R�c and hence that (t; h) 2 Q�. Since h was
arbitrary, this means that q� is a cover.

One now constructs s: �AV f // V in E by using the fact that in a pretopos every
epi is the coequaliser of its kernel pair. So suppose for certain c; c 0 2 C elements
t: g�1(c) //W 2 R� and t 0: g�1(c 0) //W 2 R� are given such that q�(t) = q�(t 0).
This implies that [c ]A = [c 0]A and that

8d 2 g�1(c); d 0 2 g�1(c 0): [d ]B = [d 0]B ) td � t 0d 0:
This means that supc(t) � supc 0(t 0). Using the coequaliser property of q�, this gives
a morphism s: �AV f // V making (3.2) commute.

This map s is actually monic. For suppose sa(h) = sa0(h0) for some h: f �1(a) // V and
h0: f �1(a0) // V . There are t: g�1(c) //W and t 0: g�1(c 0) //W , both in �CR�,
such that q�t = h and q�g0 = h0. But now qsupa(t) = qsupa0(t 0), i.e. supa(t) �
supa0(t 0). But this implies [c ] = [c 0], so a = a0, and also that for all d 2 g�1(c) and
d 0 2 g�1(c 0) such that [d ] = [d 0], td � t 0d 0. Hence q�t = q�t 0 and h = h0. So s is
monic. But as s is also clearly epic, s is in fact an isomorphism.

I now claim that the Pf -algebra (W; s:Pf (W ) //W ) is actually the W-type for f . I
work towards applying Theorem 2.1.5.

Now, if S is a subalgebra of V , i.e. a subobject of V for which one has that

8a 2 A 8h: f �1(a) // V (8b 2 f �1(a) (hb 2 S)) sa(h) 2 S);

let T be the following subobject of W :

fw 2 W j if w is representing, then q(w) 2 S g:
I prove that T = W as subobjects of W by induction. This will immediately imply
that S = V as subobjects of V . Suppose w = supc(t) 2 W is such that td 2 T for
all d 2 g�1(c). I assume that w is representing and want to prove that qw 2 S.

Because w is representing, the trees td (d 2 g�1(c)) are representing as well. Since
they belong to T , q(td) belongs to S. This means that for h = q�t, hb 2 S for all
b 2 f �1(a), where a = [c ]. So sa(h) 2 S, but sa(h) = saq�(t) = qsupc(t).
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So V is the W-type for f by Theorem 2.1.5 and the proof of Theorem 3.2.2 is com-
pleted. �

Theorem 3.2.3 Let E be a �-pretopos with natural number object and f :B //A be
a choice map in E . Assume that in a Pf -coalgebra V with the following two properties
exists: (1) its structure map s is a cover; (2) the only subobject R of V for which

v 2 V; s(v) = (a; t) and tb 2 R for all b 2 f �1(a) imply that v 2 R
is the subobject V itself. Then a W-type for f exists.

Proof. The idea is to turn s into an isomorphism. This means identifying those v
and v 0, with the property that for (a; t) = s(v) and (a0; t 0) = s(v 0), one has that both
a = a0 and t and t 0 are extensionally equal functions. In other words, I need a relation
� on V such that:

v � v 0 , if (a; t) = s(v) and (a0; t 0) = s(v 0), then a = a0 and
tb � t 0b for all b 2 f �1(a): (3.3)

In other contexts, I might turn to a trans�nite induction to construct such a relation,
but here I again rely on paths.

First, I de�ne an equivalence relation on the object of paths in V . I will call � and �0
equivalent if they satisfy three conditions:

1. they have the same length, 2n + 1 say.

2. they satisfy the equation

�(2k + 1) = �0(2k + 1)

for all k < n.

3. they satisfy the equation

�(�(2k)) = �(�0(2k))

for all k � n (� being the root map).

Then I de�ne the following equivalence relation on V :

v � v 0 i� for every � in Pathsv there exists an equivalent �0
in Pathsv 0 and for every �0 in Pathsv 0 there exists
an equivalent � in Pathsv .
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The reader should verify that � now has the desired property 3.3.

Consider the quotient W = V= � and the quotient map q: V //W . Note that Pf q
is also a cover, because f is a choice map. I now want to complete the following
diagram:

V
q

// //

s
²²²²

V
m

²²

Pf V Pf q
// // Pf V:

Using that in a pretopos every epi is the coequaliser of its kernel pair and the fact that
� satis�es 3.3, one can show that an isomorphism m making the diagram commute,
exists. Call its inverse n.

The proof will be completed once I show that (W; n:PfW //W ) satis�es the condi-
tions of Theorem 2.1.5. n is certainly mono, so let A be an arbitary Pf -subalgebra of
W . De�ne

R = f v 2 V j q(v) 2 A g
It is easy to see that R satis�es the hypothesis of condition (2): for assume s(v) =
(a; t) and tb 2 R for all b 2 f �1(a). This means that q(tb) 2 A for all b 2 f �1(a),
and hence na(qt) 2 A because A is subalgebra of W . But na(qt) = (nPf q)(a; t) =
(nPf qs)(v) = q(v). So R = V and hence A = W . �

3.3 �W -pretoposes as exact completions

This Section isolates a set of conditions on a cartesian category C su�cient for its
exact completion to be a �W -pretopos. Su�cient (and necessary) conditions for
the exact completion to be a �-pretopos can be extracted from the literature, but
su�cient conditions for the exact completion to have W-types were unknown. I will
recall the results available from the literature and then introduce the notion of a \weak
W-type". In this way, I arrive at the notion of a \weak �W -pretopos", and prove the
main theorem of this Section:

Theorem 3.3.1 If C is a weak �W -pretopos, then Cex is a �W -pretopos.

How this can be used to give more examples of �W -pretoposes will be the subject of
the next Section.

The following terminology and results are taken from the literature, especially
Menni's PhD thesis [59]. C is always a cartesian category.

Proposition 3.3.2 (See [59], proposition 4.4.1.) The exact completion of C is a
pretopos if and only if C has �nite, disjoint and stable sums. In this case, the embedding
y: C // Cex preserves the sums.
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For the exact completion to be locally cartesian closed, one weakens the require-
ment for dependent products, by dropping the uniqueness clause. So:

De�nition 3.3.3 For two morphisms c :C // J and t: J // I in a cartesian category
C, the dependent product of c along t is an object w :W // I in C=I together with
a morphism ": t�w // c in C=J such that for any object m:M // I in C=I together
with a morphism h: t�m // c in C=J there exists a unique morphism H:m //w in
C=I such that h = " � t�H in C=J.

De�nition 3.3.4 For two morphisms c :C // J and t: J // I in a cartesian category
C, a weak dependent product of c along t is an object w :W // I in C=I together with
a morphism ": t�w // c in C=J such that for any object m:M // I in C=I together
with a morphism h: t�m // c in C=J there exists a (not necessarily unique) morphism
H:m //w in C=I such that h = " � t�H in C=J. One says that a cartesian category
C has weak dependent products if it has all possible weak dependent products.

The following proposition is contained in [22] (see also [16]):

Proposition 3.3.5 The exact completion Cex of a cartesian category C is locally carte-
sian closed if and only if C has weak dependent products.

Remark 3.3.6 Unfortunately, the authors do not point out, although it follows from
their proofs, that in case C has genuine dependent products, the embedding y: C // Cex
preserves them. Hence the following argument.

By Proposition 3.1.5, it su�ces to show that y preserves exponentials. How are
exponentials of projectives A and B computed in Cex? It is not hard to see that you
can compute BA in C and obtain the exponential in Cex by taking the quotient of the
following equivalence relation:

R = f(f ; g) j8b 2 B:f (b) = g(b)g //

// y(BA):

For the purpose of computing the universal quanti�er 8b 2 B, let me introduce the
notion of a proof.

For any object X in C, pre-order the slice category C=X by declaring that

A //X � B //X;

whenever there is a morphism A //B making the obvious triangle commute. The set
of proofs (or weak subobjects) Prf X is then the poset obtained by identifying A //X
and B //X in case both A //X � B //X and B //X � A //X. Clearly,
any morphism f : Y //X in C induces an order-preserving map f �: Prf X // Prf Y by
pullback. The fact that C has weak dependent products means precisely that f � always
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has a right adjoint. When C has genuine dependent products, these right adjoints can
be computed by taking these real dependent products.

The functor y now induces an order-preserving bijection Prf X // Prf yX, basically
by taking images, commuting with f � for any morphism f : Y //X in C. This means
that in Cex , the operation of pulling back subobjects along a morphism f : Y //X
between projectives, has a right adjoint, and for this reason universal quanti�ers along
such f exist. The universal quanti�er that concerns me is precisely of this form, so, in
a way, it can be computed \type-theoretically" (by taking �f ) in the original category
C.

Therefore, to compute R in Cex , I should take the following object in C:

�f ;g2AB�b2Bf� j f (b) = g(b)g:
But this is just AB, because the principle of extensionality holds in C. So the equiva-
lence relation in question takes the following form:

y(BA)
//

// y(BA):

Hence its quotient is simply y(BA), and therefore y preserves exponentials.

There are a number of special cases of the notion of a weak dependent product
that will be important later on. There is the weak exponential , which is a weakening
of the familiar notion of an exponential. A weak version of the exponential Y X can be
de�ned as a weak dependent product of the projection X � Y //X along X // 1.
More concretely this means that it is an object Z together with a \weak evaluation"
":Z � X // Y such that for every map h:X � A // Y there is a (not necessarily
unique) morphism H:A //Z such that h = " � (X �H).

Furthermore, there is the notion of a weak simple product. Not surprisingly, this is
the weakening of the notion of a simple product, which may not be so familiar. One
calls

W �K � //

w�KKKK
K

%%KKK
K

C
c

²²

I �K
(3.4)

a simple product diagram, if for any other such diagram

X �K f //

x�KKKK
K

%%KKK
K

C
c

²²

I �K
there exists a unique f 0:X //W over I such that f = � � (f 0 � K). In this case
w :W // I together with � will be the simple product of c :C // I �K with respect

3.3. �W -PRETOPOSES AS EXACT COMPLETIONS 43



Benno van den Berg Predicative topos theory and models for constructive set theory

to K. (Observe that this is equivalent to being the dependent product of c :C // I�K
along the projection I �K // I.)

If one drops the uniqueness condition for f 0, then diagram (3.4) is called a weak
simple product diagram. w together with � will be called a weak simple product
and this is equivalent to being a weak dependent product of c along the projection
I �K ! I.

In addition, one can weaken the notion of a natural number object.

De�nition 3.3.7 Let C be a cartesian category. A diagram

1 // A // A

is called an inductive structure. t:A //B is a morphism of inductive structures
with domain 1 //A ! A and codomain 1 //B //B, if the following diagram
commutes:

A //

t

²²

A

t

²²

1

??ÄÄÄÄÄÄÄÄ

ÂÂ
??

??
??

?

B // B
A natural number object is an inductive structure

1 0 // N s // N

that is initial in the category of inductive structures. It is a weak natural number
object if it is weakly initial in the category of inductive structures (meaning that for
any inductive structure 1 //A //A there exists a morphism of inductive structures
t:N //A).

The following result follows from Proposition 5.1 in [16]:

Proposition 3.3.8 If C is cartesian category with weak dependent products and a
weak natural number object, then Cex has a natural number object.

The results contained in the literature can therefore be summarized as follows:

Corollary 3.3.9 When C is a cartesian category with �nite, disjoint sums, weak depen-
dent products and a weak natural number object, Cex is a �-pretopos with a natural
number object.

Proof. Combine Proposition 3.3.2, Proposition 3.3.5 and Proposition 3.3.8. �
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What is missing is a su�cient condition for the exact completion to have W-types.
To �ll this gap, I will introduce the notion of a \weak W-type", inspired by Theorem
2.1.5, and subsequently prove that it has the desired property. Unfortunately, it is
also rather involved. To make things easier it will be good to set some notation and
terminology.

Fix a morphism f :B //A in a cartesian category C. As in any cartesian cate-
gory, one has for any object X in C two functors: X�: C // C=X (the pullback along
X // 1) and �X: C=X // C (its left adjoint, given by composition).

De�nition 3.3.10 A Pf -structure is a quadruple (4-tuple) x = (X;X�; �X; "X) with
X an object in C, X� an object in C=A, �X a map �A(X�) ! X in C and "X a map
X� � f //A�X in C=A. A homomorphism of Pf -structures from x = (X;X�; �X; "X)
to z = (Z;Z�; �Z; "Z) is a pair t = (t; t�), where t is a map in C from X to Z, and t�
is a map from X� to Z� in C=A. Furthermore, the following diagrams should commute:

�AX�
�At� //

�X
²²

�AZ�

�Z
²²

X t
// Z

X� � f t��f
//

"X
²²

Z� � f
"Z

²²

A�X A�t
// A�Z

It is easy to see that this de�nes a category, one I shall denote by Pf (C).

De�nition 3.3.11 A map t: x // z in Pf (C) is said to be a weak Pf -substructure map,
if for the pullback L in this diagram in C=A:

L
p0 //

p1

²²

Z� � f
"Z

²²

A�X A�t
// A�Z

the following is a weak simple product diagram:

X� � f �X //

t��f %%LLLLLLLLLL L
p0

²²

Z� � f
where �X = h(t� � f ); "Xi.

Before I can de�ne weak W-types, I �rst have to de�ne the notion of a weak
Pf -algebra.

De�nition 3.3.12 A weak Pf -algebra is a Pf -structure

x = (X;X�; �X; "X)
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such that X� is a weak version of the exponential (A�X)f in C=A with "X as weak
evaluation map. The morphisms of weak Pf -algebras are simply the morphisms of Pf -
structures. (So the category of weak Pf -algebras is a full subcategory of the category
of Pf -structures.)

De�nition 3.3.13 A morphism t = (t; t�: x // z) is a weak Pf -subalgebra, if it is a
weak Pf -substructure and both x and z are weak Pf -algebras.

It would have been enough to require that z is weak Pf -algebra, in view of the
following easy lemma.

Lemma 3.3.14 If t: x // z is a weak Pf -substructure map and z is a weak Pf -algebra,
then so is x.

And �nally:

De�nition 3.3.15 A weak W-type for f is a weak Pf -algebra v with two properties:
(i) its structure map �V is an isomorphism; (ii) every weak Pf -subalgebra i: x // v
has a section.

The second property (ii) is supposed the be a weakening of the property of having no
proper subalgebras. Although very technical, I would like to stress that the property
is precisely what one would expect, in that it is the strong property with unique-
ness clauses dropped and subobjects replaced by \weak subobjects" or \proofs" (see
above).

In the de�nition, it would have been su�cient to require that the structure map
�V is monic, because of the following lemma:

Lemma 3.3.16 If w = (W;W �; �W ; "W ) is a weak Pf -algebra for some f in a cartesian
category C with weak dependent products with the property that every weak Pf -
subalgebra t: x // w has a section, then the structure map �W has a section.

(For those who know how to derive Lambek's result concerning initial algebras, proving
this lemma should be easy.)

Lemma 3.3.17 Let C be a locally cartesian closed category. A W-type Wf for a
morphism f :B //A is also a weak W-type for f .

Proof. It is easy to see that Wf can be considered as a weak Pf -algebra w. Then the
�rst condition for being a weak W-type is certainly satis�ed, because sup:PfWf //Wf

is an isomorphism. To verify the second condition, let x = (X;X�; �X; "X) be any weak
Pf -algebra and t = (t; t�): x // w be a weak Pf -subalgebra morphism in C. Because
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t is a weak Pf -subalgebra, there is a morphism r : (A�X)f //X� in C=A such that
t�r = (A�t)f . Now (X; �X�Ar :PfX //X) is a Pf -algebra and t is a morphism of
Pf -algebras from this algebra to Wf . Hence t has a section u in the category of Pf -
algebras. Then s = (u; r(A�u)f ) is a section of t. �

De�nition 3.3.18 A cartesian category C is called a weak �W -pretopos, if it has �nite
disjoint and stable sums, weak dependent products, a weak natural number object and
weak W-types for all morphisms.

Now the main theorem of this Section has a precise meaning.

Theorem 3.3.19 (= Theorem 3.3.1.) If C is a weak �W -pretopos, then Cex is a
�W -pretopos.

To prove this theorem, it su�ces to show that Cex has W-types for all maps lying
in the image of y (proof: use the remark before Lemma 3.1.6 to see that these are
choice maps and then apply Theorem 3.2.2). So the main theorem will follow from:

Proposition 3.3.20 Let C be a cartesian category with �nite disjoint and stable sums,
weak dependent products and a weak natural number object. If C has a weak W-type
for a map f in C, then Cex has a genuine W-type for the map yf .

To prove Proposition 3.3.20, I will make use of Theorem 3.2.3. What I show is
that if w = (W;W �; �W ; "W ) is a weak W-type in C for a map f :B //A, then yW
has the structure of a Pyf -coalgebra in Cex , with the special properties formulated in
Theorem 3.2.3. This is established by the following sequence of lemmas.

Warning 3.3.21 In the remainder of this Section, I will drop the occurences of y; I
trust that the reader will not get confused.

From now on, suppose C is a cartesian category with �nite disjoint and stable
sums, weak dependent products and a weak natural number object, and suppose that
w = (W;W �; �W ; "W ) is a weak W-type for a map f :B //A in C.

Lemma 3.3.22 The unique map q:W � // (A�W )f in Cex=A such that

W � � f q�f
//

"W
%%JJJJJJJJJJ (A�W )f � f

ev
xxqqqqqqqqqq

A�W

commutes is a cover.
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Proof. Since w is a weak Pf -algebra, one knows that W � is a weak version of (A�W )f

in C=A. One can now de�ne the equivalence relation

Ra = f (g; h) 2 W �a �W �a j 8b 2 f �1(a): "W (g; b) = "W (h; b) g
on W �a (a 2 A) in Cex=A. It is not di�cult to see that the quotient W �=R in Cex=A is
a strong version of the exponential (A�W )f . So q is (up to iso) the quotient map and
hence a cover. �

This establishes that W has the structure of a Pf -coalgebra in Cex , with an epic
structure map

n:W
��1
W // // �AW �

�Aq // // PfW = �A(A�W )f :

Notice that w is also a Pf -structure in Cex , via y.

Lemma 3.3.23 If r = (R;R�; �R; "R) is a Pf -structure in Cex and t: r // w is a weak
Pf -substructure map, then t has a section in Pf (Cex).

Proof. Consider the pullback L in Cex=A in the diagram

L
p0 //

p1

²²

W � � f
"W

²²

A�R A�t
// A�W

Since t is a weak Pf -substructure map, the following is a weak simple product diagram:

R� � f �R //

t��f &&LLLLLLLLLL L
p0

²²

W � � f
where �R = h(t� � f ); "Ri.
Let �:K //R be a cover by an object in the image of y. Now consider the following
two pasted pullback diagrams:

L0 l0 //

l1
²²

L
p0 //

p1

²²

W � � f
"W

²²

A�K A��
// A�R A�t

// A�W

Since the objects K, W and W � � f lie in the image of y, and since this functor
preserves pullbacks, I may assume that L0 also lies in the image of y.
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Construct the following pullback:

L00
j0 //

j1
²²

L0
l0

²²

R� � f �R
// L

And construct the strong version of ��0(j1) in Cex=A (where �0 is the projection
R� � f //R�). This means that one has an object K�0 with maps ��2:K�0 //R� and
�K0:K�0 � f //L00 such that

K�0 � f �K0 //

��2�f %%KKKKKKKKKK L00

j1
²²

R� � f
is a simple product diagram.

It is not hard to verify that

K�0 � f j0�K0 //

(t���2)�fLLL

%%LLL
L

L0

p0l0
²²

W � � f
is a weak simple product diagram. Now let ��1:K� //K�0 be a cover by an element in
the image of y. This implies that

K� � f �K //

(t���)�fLLL
L

&&LLL
L

L0
p0l0

²²

W � � f
(3.5)

with �K = j0�K0(��1� f ) and �� = ��2��1, can be seen as a weak simple product diagram
in C=A.

Using the fact that K� is projective, one constructs a map �K making

�AK�
�A�� //

�K
²²

�AR�

�R
²²

K �
// // R

commutative. This means that one has a Pf -structure k = (K;K�; �K; "K = l1�K) in
Cex , that can also be seen as a Pf -structure in C, and a Pf -structure map � = (�; ��)
in Cex . Now t� can be seen as a Pf -structure map in C, and it is actually a weak
Pf -substructure map in C (since (3.5) is a weak simple product diagram). Therefore
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k can be seen as a weak Pf -algebra in C, and since w is a weak W-type in C, one has
a Pf -structure map s0 such that (t�)s0 = 1W in Pf (C) and Pf (Cex). So s = �s0 is a
Pf -structure map in Cex that is a section of t. �

Corollary 3.3.24 Let R � W be a subobject in Cex and assume that the following
statement holds in the internal logic of Cex :

8w 2 W ( If n(w) = (a; t) and 8b 2 f �1(a): tb 2 R , then w 2 R ): (3.6)

Then R = W as subobjects of W .

Proof. De�ne the following object in Cex=A: for any a 2 A
R�a = f � 2 W �a j 8b 2 f �1(a): projW ("W (�; b)) 2 R g:

Or, equivalently:

R�a = f � 2 W �a j 8b 2 f �1(a): qa(�)(b) 2 R g:
The validity of statement (3.6) implies that for the inclusion map j�:R� //W �,
�W�Aj� factors through R. For if � 2 R�a, write w = (�W�j�)(�). Since n(w) =
(q�j�)(�) = (a; q(�)), q(�)(b) 2 R for all b 2 f �1(a), and so w 2 R. Hence there is
a map �R making

�R� �j�
//

�R
²²

�W �
�W

²²

R j
// W

commute. By the �rst de�nition of R�, the map "W (j� � f ) factors through A�R, so
one has a map "R making

R� � f j��f
//

"R
²²

W � � f
"W

²²

A�R A�j
// A�W

commute. So r = (R;R�; �R; "R) is a Pf -structure in Cex and j = (j; j�) is a Pf -
structure map. It is actually a weak Pf -substructure map, so j has a section s: w // r.
This implies that j is iso, and R = W as subobjects. �

This completes the proof of the main result, Theorem 3.3.1.
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3.4 More examples of �W -pretoposes

I have identi�ed a categorical structure, that of a weak �W -pretopos, whose exact
completion always is a �W -pretopos. Using this, I give several more examples of �W -
pretoposes. One of them is what one might call a \predicative realisability topos",
which is analogous to the realisability toposes in topos theory.

Exact completion of an ML-category 3.4.1 Any ML-category C is a weak �W -
pretopos. It is clear that a category that has genuine dependent products, also has
weak dependent products, and in Lemma 3.3.17, I also showed that it has all weak
W-types. Therefore:

Theorem 3.4.2 The exact completion Cex of an ML-category C is again an ML-
category. Moreover, the embedding y: C // Cex is a morphism of ML-categories.

Proof. That Cex is an ML-category is a direct application of Theorem 3.3.1. Of
course, y is cartesian (it always is), but it also preserves the sums and the dependent
products by Proposition 3.3.2 and Remark 3.3.6. It remains to check to y preserves
W-types.

Because y preserves �, it is clear that whenever W is the W-type for a morphism
f :B //A in C, yW is also an algebra for Pyf in Cex . It is weakly initial for the
following reason: when X is an object with a Pyf -algebra structure t:PyfX //X,
cover X with a projective Y via some map q: Y //X. Since Pyf Y is again projective
(because it can be computed in C), the following diagram can be �lled:

Pyf Y
Pyf q

//

²²

PyfX

t
²²

Y q
// // X:

Therefore Y has the structure of a Pf -algebra in C and there exists a Pf -algebra
morphism p:W // Y . Then qp is a Pyf -algebra morphism in Cex .

But then yW is initial, because it possesses no non-trivial Pf -algebra endomorphisms.
For if m: yW // yW is a Pyf -algebra morphism in Cex , m is also a Pf -algebra morphism
in C, since y is full and faithful. Therefore m is the identity on yW . This is su�-
cient to prove that yW is initial, because whenever s; t: yW //X are two Pf -algebra
morphisms, their equaliser i :E // yW is also a Pf -algebra, with i preserving this
structure. Because yW is weakly initial, there is a Pf -algebra morphism k : yW //E.
So ik is a Pf -algebra endomorphism on yW , hence the identity. Therefore E = yW
as subobjects of yW and s = t. �

This has several consequences. First of all, the exact completions of all the ML-
categories discussed in Chapter 1 are �W -pretoposes. In general, it shows that it is
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not a serious loss of generality to require predicative toposes to be exact. The reason
for including it is that exactness is very useful in obtaining models of set theory. Prima
facie this might look unnecessarily restrictive, but I believe that this result shows
that this is not so. In particular, it shows that there is no reason not to develop
a predicative theory analogous to topos theory only for �W -pretoposes and not for
general ML-categories, as I am doing in these Chapters.

Secondly, this theorem also shows that �W -pretoposes are closed under exact com-
pletion. But beware, the inclusion y will rarely be a morphism of �W -pretoposes. In
that case y: C // Cex would be exact, which can only happen when all objects in C
are projective and C is its own exact completion.

Finally, since the exact completion of a topos (with nno) is seldom again a topos,
but it is a �W -pretopos, there are many examples of �W -pretoposes that are not
toposes. It also shows that there is a closure property of \predicative toposes" that
has no analogue in the topos-theoretic case. This will be exploited in the next Section.

Realisability toposes 3.4.3 This example is basically a warm-up exercise for the
following one. I am going to prove that the realisability topos RT(Q) is a �W -
pretopos. The point is that I try not to rely on the fact that RT(Q) is a topos
with nno, but instead try to give a predicative proof that admits relativisation to a
�W -pretopos. But that is the next example.

So let Q be a pca with underlying set Q. A partitioned assembly (over a Q in Sets)
consists of a set X together with a morphism X //Q. A morphism of partitioned
assemblies from [�]X:X //Q to [�]Y : Y //Q is a function f :X // Y for which
there exists an element r 2 Q such that:

8x 2 X: r � [x ]X # and r � [x ]X = [f (x)]Y :

This de�nes a category Pasm(Q), which, I claim, is a weak �W -pretopos.

It is readily seen to be a full subcategory of the category Asm(Q). The �nite limits
and sums are computed as in this category. To be more explicit, assume that the
conventions for pcas as explained in Appendix C are in place. In particular, assume
one has chosen a pairing operator j with projections j0 and j1 and a set C of Church
numerals, which will simple be denoted by the standard natural numbers. A product
(X; [�]X) � (Y; [�]Y ) would then be constructed by taking X � Y as underlying set,
where a pair (x; y) is realised by h[x ]X; [y ]Y i. A sum (X; [�]X) + (Y; [�]Y ) has as
underlying set X + Y , where x is realised by h0; xi and y by h1; yi.
If (X; [�]X) and (Y; [�]Y ) are partitioned assemblies, a weak version of XY is the
following: F = f(f ; t) 2 XY � Q j t tracks f g. So F consists of pairs (f ; t) such
that for all x 2 X, the expression t � [x ]X is de�ned and its value equals [f (x)]Y .
The map [�]F :F //Q is given by the second projection and the evident evaluation
morphism F �Y //X is tracked by the element in Q coding application. To see that
this is indeed the weak exponential, let r be the realiser of some H:Z � Y //X in
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Pasm(Q). The transpose of H in Sets, l :Z ! XY , extends to a morphism h:Z ! F
in Pasm(Q) by sending z to (l(z); �n 2 Q:r � h[z ]; ni). (I will refer to the weak
exponentials constructed in this fashion as the \canonical" weak exponentials.)

More or less the same argument will establish that Pasm(Q) has weak dependent
products. Let me just give the construction. To construct the weak dependent product
of c :C // J along t: J // I one sets Wi , for every i 2 I, to be as follows:

f (f ; af ; ai) 2 CJi �Q�Q j f is a section of c; af realises f and ai realises i g
The morphism W //Q is given by projection onto the last two coordinates (suitably
coded). The morphism " is de�ned on a j 2 J by sending (f ; af ; ai) 2 t�Wi (where
i = t(j)) to f (j). (I will refer to the weak dependent products constructed in this
fashion as the \canonical" weak dependent products.)

Finally, the construction of the weak natural number object in Pasm(Q) is easy: it is
simply the set C of all Church numerals together with the inclusion of C in Q.

Weak W-types are constructed as follows. Recall the construction of real W-types in
Asm(Q) via the notion of a decoration. As I pointed out, a morphism f :B //A of
partitioned assemblies can also be regarded as a morphism of assemblies, and therefore
one can associate the set of decorations, a particular set of elements in Q, to every
well-founded tree w in the W-type associated to the underlying map of f in set. The
weak W-type associated to f is now the set of decorated trees, pairs (w; a) where a
is a decoration of the tree w , together with the projection on the second coordinate.
A proof of this claim will follow later.

An immediate corollary is that the exact completion of Pasm(Q) is a �W -pretopos.
Assuming the axiom of choice, one can prove this is a topos, in fact it is the realisability
topos on Q (see [77]), so in that case this is something that is well-known. In case
one is unwilling to assume the axiom of choice, that it is a �W -pretopos seems to be
the best one can say.

Intermezzo: W-types in realisability toposes 3.4.4 Since, under the assumption of
the axiom of choice, the realisability topos on a pca is the exact completion of its full
subcategory of partitioned assemblies, one can use the theory developed in this Chapter
to give a concrete description of W-types in realisability toposes. This has been worked
out in a small note by Claire Kouwenhoven-Gentil and me.

Since RT(Q) is the exact completion of Pasm(Q), every object in RT(Q) is covered
by a partitioned assembly (in fact, (X;=) is covered by f(x; n) 2 X � Q j n 2 E(x)g
with second projection). The partitioned assemblies are also internally projective and
maps between partitioned assemblies are choice maps in RT(Q). This implies that for
any morphism f :B //A, there exists a choice map �:B0 //A0 between partitioned
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assemblies such that

B0
f�g

// //

�
²²

B
f

²²

A0 f�g
// // A

is a quasi-pullback.

By Theorem 3.2.2, given such a square, W : = Wf can be constructed as a subquotient
of W 0: = W�. More precisely, consider the following relation on W 0, de�ned inductively
in the internal logic by: sup�� � sup�0� 0 i�

f�g = f�0g ^ 8� 2 ��1(�); 8�0 2 ��1(�0): f�g = f�0g ! �� � � 0�0:
� is symmetric and transitive. One now constructs W by considering the re
exive
elements and dividing out by the equivalence relation �.

Besides, the structure map s:Pf (W ) //W is the unique arrow making the following
diagram commute:

Pf (W )

s
²²

R�q�
oooo // //

sup
²²

P�(W 0)
sup

²²

W Rq
oooo // // W 0:

Here R is the object of re
exive elements, q the quotient map and q� is de�ned on a
pair (�; � :B0� ! W 0) with sup�� 2 R as the pair (a; t), with a = f�g and t:Ba ! W
de�ned by t(f�g) = [�(�)] (which is well-de�ned, as sup�� 2 R).

Consider the following object in that category in RT(Q):

(WSets(�);�);

where � is as above, and r ` w � w 0 for w = sup�� and w 0 = sup�0� 0, if and only if
r = hr0; r1; r2i is such that the following hold:

� r0 ` Ew ^ Ew 0.
� r1 ` a = a0.
� for all �; �0; m such that m ` � 2 ��1(�) ^ �0 2 ��1(�0) ^ b = b0, r2 � m is

de�ned and r2 �m ` �� � � 0�0.
In these conditions, a = f�g, a0 = f�0g, b = f�g, b0 = f�0g and Ew is the set of
decorations of w .

Corollary 3.4.5 The object under consideration is the W-type for f in RT(Q).

Proof. From Chapter 2, one knows how to compute W-types for � in the categories
of assemblies or in the realisability topos. Then the proof consists in rewriting in terms
of realisers the description given above in terms of the internal logic of RT(Q). �
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Predicative realisability toposes 3.4.6 One can relativise the preceeding example to
a �xed �W -pretopos E , which will then act as a kind of predicative metatheory. But
�rst, one has to agree on a notion of an internal pca in E . The notion will have to
be more stringent than might be expected at �rst, in order to circumvent problems
related to choice. What I will need is that the elements of the pca that are required
to exist in the condition of combinatory completeness are given as a function of the
initial data (by a morphism in E). For this it su�ces to assume that the combinators
k and s are given as global elements (morphisms 1 //Q).

Then the de�nition of a partitioned assembly can go through as follows: a partitioned
assembly over an internal pca Q in a �W -pretopos E consists of an object X in
E together with a morphism [�]X:X //Q. A morphism of partitioned assemblies
f : (X; [�]X) // (Y; [�]Y ) is a morphism f :X // Y for which there exists a global
element2 r : 1 //Q such that:

8x 2 X: r � [x ]X # and r � [x ]X = [f (x)]Y

holds in the internal logic of E . As usual, r is said to track or realise f .

The construction of the �nite limits, �nite sums and weak dependent products is the
same as in the more speci�c case of the previous example. That it has weak W-types is
far from obvious. One somehow needs to be able to de�ne the notion of a decoration
predicatively, which is possible by giving a key rôle to the notion of path. De�ning
decorations will thereby inevitably become a rather technical exercise, but it can done,
as I will now show.

Suppose f is a morphism in Pasm(Q). Now �x a tree w 2 W (f ). A function
�: Pathsw //Q is called a decoration of w , if for any path � ending with the subtree
w 0 = supa(t), one has that �(�) codes a pair hn0; n1i where n0 equals [a] and n1 has
the property that

8b 2 f �1(a): n1 � [b] is de�ned and is equal to �(� � hb; tbi):

Observe that there is a lot of redundancy in this de�nition. In fact, all the information
is already contained in the element �(hwi) 2 Q. One might call the element � 2
Q a decoration of w if for every path � of length l , say, there exists a function
c : f0; 2; : : : ; l � 1g //Q such that (1) c(0) = �; (2) for any even m < l � 1, c(m)
codes a pair hn0; n1i such that (a) n0 = [��(m)] and (b) n1 � [�(m+ 1)] is de�ned and
equals c(m+2). Notice that for �xed � and �, a function c having these properties, if
it exists, is necessarily unique: � determines c(0) by (1) and c(m) determines c(m+2)
by (2b). For this reason, I may write c�, whenever � is understood.

So one has a notion of decoration in the \functional" and the \elementary" sense.
The numerical de�nition of a decoration may contain less redundancy, but is, I feel,

2It is necessary to require the existence of a global element, rather than the existence of such an
r 2 Q in the internal logic of E , for otherwise the resulting category would not have weak exponentials.
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somewhat opaque. It is convenient to have both perspectives available and I will
make use of both of them. (That they are indeed equivalent, as I am suggesting, is
something one may see as follows: every decoration � in the functional sense induces
one in the elementary sense by taking �(hwi). Then the function c� for a path � is
given by c�(m) = �h�(0); : : : �(m)i. Conversely, because c is a function of �, one
can put �(�) = c�(l � 1).)

A pair v = (w; �) 2 W (f )�Q such that � is a decoration of w is called a decorated
tree. Furthermore, v 0 = (w 0; �0) will be called a decorated subtree of v = (w; �) if
there is a path � in Pathsw , of length n say, such that �(n � 1) = w 0 and �0 = �(�).
(In the equation �0 = �(�), �0 is a decoration in the elementary sense and � is a
decoration in the functional sense. Here one clearly sees it pays o� to have both
perspectives available.) One might call v 0 a proper decorated subtree, if the length n
can be chosen to be bigger than 1. I will denote the collection of decorated subtrees of
v by DSubTrv . One again sees that the notion of a decorated subtree is re
exive and
transitive, and that there are immediate decorated subtrees of (supa(t); �), namely
the (tb; �hsupa(t); b; tbi)'s (b 2 f �1(a)). These are obviously proper.

After these preliminaries, the weak W-types in Pasm(Q) can quickly be constructed.
Set

V = f v = (w; �) 2 W (f )�Q j v is a decorated tree g
This is an object in Pasm(Q) by de�ning [�]V : V //Q to be the second projection.
Let V � be the \canonical" weak version of V f in the slice over A, so:

V �a = f (t; (n0; n1)) 2 V f �1(a) � P j n1 tracks t and n0 = [a] g:
In more detail: (t; (n;m)) is in V �a if m = [a] and n � [b] is de�ned and equal to the
\decoration-component" of t(b) for every b 2 f �1(a). (Now "W is, of course, the
corresponding weak evaluation.)

The morphism �V : �AV � // V is de�ned by sending (t; (n;m)) 2 V �a to the pair
(supa(t); (n;m)), where the pair (n;m) is suitably coded. (The reader should verify
that this pair consists of a tree together with a decoration for this tree, and that �V
is tracked by the identity, basically.)

Observe that �V is actually an isomorphism. The unique element � such that �(�) =
v = (w = supa(t); �) is ((a; �b 2 f �1(a):(tb; �(hw; b; tbi))); �).

This completes the construction of the quadruple v = (V; V �; �V ; "V ). That it is a
weak Pf -algebra is immediate by the construction. That it is the weak W-type is not
easy to show, but it follows from the following sequence of lemmas.

I have to show that every weak Pf -subalgebra morphism i: x ! v has a section. So
suppose one has a weak Pf -algebra x = (X;X�; �X; "X), together with a weak Pf -
subalgebra map i: x // v. If L = (V � � f ) �V X and if p0 is the map L // V � � f ,
one may assume that i�:X� // V � is the \canonical" weak dependent product of p0

along the projection V � � f // V � constructed above with "X the \canonical" weak
evaluation map, in view of the following lemma:
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Lemma 3.4.7 Let a weak Pf -algebra x = (X;X�; �X; "X) together with a weak Pf -
subalgebra morphism i: x // v in PASL(P) be given. Now there exists a weak Pf -
algebra z = (Z;Z�; �Z; "Z) with a weak Pf -subalgebra morphism j: z // v where
j�:Z� // V � is the canonical weak dependent product of p0 along the projection
Z� � f //Z� and "Z the canonical weak evaluation map, together with a weak Pf -
algebra morphism k: z // x.

Proof. Suppose a weak Pf -algebra x = (X;X�; �X; "X) is given together with a weak
Pf -subalgebra morphism i: x // v. Now put Z = X and j = i . Now let j�:Z� // V �
be the canonical weak dependent product of p0 along the projection V � � f // V �
and let "Z be the canonical weak evaluation map. Let k :Z //X be the identity.

Because X� is a weak dependent product of p0 along the projection V � � f // V �
there exists a morphism k�:Z� //X� such that "X � (k� � f ) = k � "Z. Now set
�Z = �X � k�. Now z = (Z;Z�; �Z; "Z) is a canonical weak Pf -subalgebra, with
j = (j; j�) as weak Pf -subalgebra morphism. Furthermore, k = (k; k�) is a weak Pf -
algebra morphism. �

So for a given � in V �, one may assume that X�� is de�ned as

f(h 2 Lf ; nh 2 Q; n� 2 Q) j (p0h)(�) = (�;�); nh realises h and n� realises �g:
Or, equivalently, de�ned as

f(h 2 Xf ; nh 2 Q; n� 2 Q) j ih = "W (�;�); nh realises h and n� realises �g:
The latter will be my working de�nition.

After making this simplifying assumption, one chooses an s: 1 //Q such that s tracks
�X and constructs a solution r of the recursion equation:3

r � j(n0; n1) = s � j(n0; H(r; n1))

(here H is the realiser of the function yielding the code of the composition of two
elements).

The idea behind the construction of the Pf -algebra morphism d: v // x that is going
to be a section of i is essentially the same as that behind the construction of the
Pf -algebra morphism in Theorem 2.1.5, although technical details will make this con-
struction more complex. Again, the crux is an appropriate notion of an attempt. Here
I de�ne an attempt for some element v of V as a function g: DSubTrv //X such
that:

1. r � [v 0]V = [g(v 0)]X for all decorated subtrees v 0 of v .

2. If v 0 = �X(�) is some decorated subtree of v , then the function h = g � � is
tracked by m = H(r; j1[v 0]) and satis�es the equation (�X)�(h; (m; [� ])) = g(v 0).

3It is here that one needs the strict requirements on the pca Q.
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3. ig(v 0) = v 0 for all decorated subtrees v 0 of v .

One should think of an attempt as a partial approximation of a section d of i. Once
the construction of d is completed, a attempt will turn out to be a restriction of d to
the subtrees of a particular element v of V .

Concerning attempts one proves the following two lemmas.

Lemma 3.4.8 Attempts are unique, so if g and h are two maps DSubTrv //X both
satisfying the de�ning condition for attempts for an element v , then g = h.

Proof. Let

Q = fw 2 W jFor all decorations � of w; attempts for (w;�) are unique. g
I use induction to show that Q = W : that will immediately imply the desired result.
Assume that w 2 W is such that for all proper subtrees w 0 and decorations �0 of w 0
attempts are unique for (w 0; �0). Let � be a decoration of w and notice that attempts
are unique for proper decorated subtrees of v = (w; �), in particular for the immediate
subtrees vb = (tb; �(hw; b; tbi)).

Suppose g is a attempt on v . The values of g on proper decorated subtrees of v are
uniquely determined by the fact that the restriction of a attempt to the decorated
subtrees of a particular decorated subtree is again a attempt for that decorated sub-
tree. In particular, the value of g on the immediate subtrees vb is �xed. Then the
second element in the de�nition of a attempt determines the value of g on v itself.
This completes the induction step and the proof. �

Lemma 3.4.9 Attempts exist for every v .

Proof. Let

Q = fw 2 W jFor all decorations � of w; attempts for (w; �) exist. g
Again, by induction I show that Q = W , which will prove the lemma. Now, assume
that w 2 W is such that for all proper subtrees w 0 and decorations �0 of w 0 attempts
exist for (w 0; �0). Let � be a decoration of w and observe that (necessarily unique)
attempts gb exist for the immediate subtrees vb = (tb; �(hw; b; tbi)).

If one wants to de�ne a attempt g: DSubTrv //X on v , one is forced to put g(v 0) =
gb(v 0) if v 0 is some decorated subtree of some vb with b 2 f �1(a) (this is independent
of the particular b involved in view of the previous lemma). It remains to de�ne g(v).
In the previous lemma, I already observed that I have no choice in how to de�ne g(v).
Let me now be more detailed. Let

h = �b 2 f �1(a):gb(vb)
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and m = H(r; j1�). Write � = (t; �) 2 V �a , so [� ] = �. First I claim that m tracks h.
Let b 2 f �1(a) be arbitrary and calculate:

m � [b] = H(r; j1�) � [b]
= r � (j1� � [b])
= r � �(hw; b; tbi)
= r � [vb]
= [g(vb)]:

This means that (h; (m; [� ])) is actually a member of X�� and one puts (is even forced
to put) g(v) = �X(h; (m; [� ]).

The map g: DSubTrv //X satis�es the second condition for being a attempt by
construction. What about the �rst?

r � [v ] = r � �
= s � (j0�;H(r; j1�))
= s � [(h; ([a]; m))]
= [�X(h; ([a]; m))]
= [g(v)]

This being satis�ed: what about the third?

ig(v) = i(�X)�(h; (m; [� ]))
= �V i�� (h; (m; [� ]))
= �V (�)
= v

So this one is also satis�ed. This means that g has the required properties and hence
the induction step is completed. This also completes the proof. �

Using these two lemmas, one can de�ne the map d : V //X by setting d(v) = g(v),
where g is the unique attempt g: SubTrv //X. It is immediate from the proof of
the second lemma, where the attempts were actually built, that the natural number r
tracks s and that s extends to a weak Pf -algebra map d that is a section of i. So v
is a weak W-type for f in Pasm(Q).

In this way, within a predicative metatheory, one shows that the exact completion
of Pasm(Q) is a �W -pretopos. I would argue that this deserves to be called \the
predicative realisability topos on Q relative to E", as it would yield RT(Q) in case E
= Sets. Then the argument shows that �W -pretoposes are closed under a notion of
realisability, like toposes.
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Subcountables in the e�ective topos 3.4.10 Again �x a pca Q. A base on Q is a
subobject X � Q. A morphism f :X // Y of bases is a function f :X // Y that is
tracked by an element r 2 Q in the sense that

8x 2 X: r � x # and r � x = f (x):

This yields a category, which will be denoted by Base(Q). Bases can be identi�ed by
partitioned assemblies (X; [�]X) where [�]X is injective, so where realisers are unique.
It is then rather easy to see that the category of bases inherits the weak �W -pretopos
structure of Pasm(Q).

In case Q = K1, and assuming the axiom of choice, the exact completion of the cate-
gory of bases is a subcategory of the e�ective topos. Actually, it is the full subcategory
of subcountables, which is therefore a �W -pretopos (an object is subcountable, when
it is covered by a subobject of the natural number object).

Corollary 3.4.11 The subcountable objects in the e�ective topos form a �W -preto-
pos.

Proof. To prove that the category of subcountables is the exact completion of the
category of bases, it su�ces to show that both contain the same objects, as the exact
completion of the category of bases is also a full subcategory of the e�ective topos,
since Eff = Pasmex and Base is a full subcategory of Pasm.

The natural number object N in Eff is the same as in assemblies: the underlying set
is that of the natural numbers, and n is realised solely by n, so En = fng. As the
bases are precisely the ::-closed subobjects of N, and objects in Baseex are covered
by bases, they are certainly subcountable. Conversely, a subobject of N in Eff can
be represented by a predicate P :N //PN such that ` P (x) ! Ex . It is in Baseex ,
because it can be obtained as the quotient:

f(x;m;m0) jm;m0 ` P (x)g //

// f(x;m) jm ` P (x)g:
A subcountable in Eff is represented by a symmetric, transitive relation on N in Eff ,
more precisely, a function R:N� N //PN such that

` R(x; x)! Ex;
` R(x; y)! R(y ; x);
` R(x; y) ^ R(y ; z)! R(x; z):

Therefore it can be obtained as the following quotient of subobjects of N:

f(x; y) jR(x; y) 6= ;g //

// fx jR(x; x) 6= ;g;
and hence it is in Baseex . �
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The subcountables in the e�ective topos will in the next Chapter be exploited to give
a model of constructive-predicative set theory, that validates a principle incompatible
with the existence of the powerset of the natural numbers.

It would be interesting to see to what extent the subcountables in the e�ective topos
can be regarded as a kind of \modi�ed PERs". The point is that they are modi�ed so
that the category will be exact, and it may therefore model quotient types in addition
to what is modelled by the category of ordinary PERs.

3.5 Glueing and the free �W -pretopos

This Section discusses another closure property of �W -pretoposes, one that they
share with toposes: closure under glueing. When combined with the theory of exact
completions, it yields a (to me) surprising fact concerning the free �W -pretopos.
Among other things, it shows that the free �W -pretopos cannot be the same as the
category of setoids.

Consider any cartesian functor F : E //F between �W -pretoposes. Out of these
data, one builds a new category Gl(F ) as follows. Objects are triples (A;X;�), where
A and B are objects of E and F respectively and �:B //FA in F . Such triples are
also sometimes denoted by �:B //FA. Morphisms (A;X;�) // (B; Y; �) are pairs
(f :A //B; g:X // Y ) such that

X � //

g
²²

FA
F f

²²

Y �
// FB

commutes.

I will prove in an instant that the category Gl(F ) so de�ned is actually a �W -
pretopos. But more is true. There is an adjoint pair of functors

E
bF

11
? Gl(F );
P

ss

where P is a forgetful functor, sending a triple (A;X;�) to A, and F̂ sends an object
A to the triple (A; FA; 1FA). P will be a morphism of �W -pretoposes, while F̂ will
typically preserve whatever F preserves (so it will be at least cartesian). Clearly,
P F̂ �= 1.

Theorem 3.5.1 If F : E //F is a cartesian functor between �W -pretoposes, then
Gl(F ) is a �W -pretopos. Furthermore, there is a pair of adjoint functors

E
bF

11
? Gl(F );
P

ss
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where P is a morphism of �W -pretoposes, F̂ is cartesian, and P F̂ �= 1. In case F is
a morphism of ML-categories, so is F̂ .

Proof. All the claims will follow from the concrete description of the �W -pretopos
structure of Gl(F ).

That Gl(F ) is cartesian is obvious, as �nite limits can be computed componentwise and
they are preserved by F . There is no di�culty in seeing that Gl(F ) has �nite, disjoint
sums, because the sum of X //FA and Y //FB is X+Y //FA+FB //F (A+
B). To see that Gl(F ) is regular, observe the following facts, where (f ; g) is a
morphism in Gl(F ).

1. When f and g are both monic, so is (f ; g).

2. When f and g are both covers, so is (f ; g).

3. When (f ; g) is a cover (monic), so are both f and g.

4. Gl(F ) is regular.

1 is obvious, while 2 follows from Joyal's result that covers in a regular category
are the coequalisers of their kernel pair (see Lemma A.3). Now one can see that
any morphism (f ; g) can be factored as a cover followed by a mono, by doing this
componentwise. Since such factorisations are unique up to isomorphism, 3 follows. 4
is then immediate.

That Gl(F ) is a pretopos follows from the fact that coequalisers of equivalence re-
lations can be computed componentwise, and that it has a natural number object is
also trivial (it is N //FN). To see that Gl(F ) is a �-pretopos, it is su�cient to
show that is a cartesian closed, because for any (A;X;�) in Gl(F ), the slice category
Gl(F )=(A;X;�) is again a glueing category: it is Gl(G), where G is the composite:

E=A FA // F=FA �� // F=X:
More explicitly, t:B //A is sent by G to the upper side of the pullback square:

GB
�X

²²

Gt // X
�

²²

FB F t
// FA:

(3.7)

As the composite of two cartesian functors, G is cartesian as well.

Gl(F ) is cartesian closed, because the exponential (A;X;�)(B;Y;�) is computed by �rst
forming the pullback (� is the obvious comparison map):

Z



²²

// XY

�Y
²²

F (AB) �
// FAFB FA�

// FAY ;
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when it will be (AB; Z; 
).

It is more complicated to see that Gl(F ) inherits W-types. First one should describe
polynomial functors for morphisms � = (f ; g): (B; Y; �) // (A;X;�) in Gl(F ). Let
G: E=A //F=X be as above, and observe that there is a natural transformation

�C:G(PfC) //Pg(FC);

which is the composite of

G(PfC) = G�A(C � A //A)(B // A) // �XG((C � A //A)(B // A)) //

�XG(C � A //A)G(B // A) = PGf (FC);

and the natural transformation PGf //Pg induced by the commuting triangle:

Y
g

!!CC
CC

CC
CC

²²

GB Gf
// X;

obtained from (3.7) (see [60], Section 4.2). For any triple (C;Z; 
) in Gl(F ), let
P Cg (Z; 
) be de�ned by taking the pullback:

P Cg (Z) //

�
²²

Pg(Z)

Pg(
)
²²

G(PfC) // Pg(FC):

P Cg (Z; 
) can be regarded as an object in F=(FPfC), by composing � with �Pf C. P�
computed on the triple (C;Z; 
) is now (PfC; P Cg Z; �Pf C�).

When W is the initial Pf -algebra in E , W �= PfW , so PWg is an endofunctor on F=FW .
In the terminology of Gambino and Hyland [33], PWg is a generalised polynomial func-
tor, hence has an initial algebra (V;  ). I claim that (W; V; ) is the W-type for � in
Gl(F ). It is a �xpoint by construction, and it is not hard to see that an extension of
Theorem 2.1.5 will prove that it is initial. �

The promised application to the free �W -pretopos is the following theorem. In
the remainder of the Section, write D for the free ML-category and E for the free
�W -pretopos.

Theorem 3.5.2 If B:D // E is the unique morphism of ML-categories from the free
ML-category to the free �W -pretopos, all the objects in the image of B are projective.

Proof. The proof relies on the combination of Theorem 3.4.2 with the previous
theorem. Let E be the free �W -pretopos, and take its exact completion Eex . From
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Theorem 3.4.2, one knows that y: E // Eex is a morphism of ML-categories. If one
writes F for the �W -pretopos obtained by glueing along y, one obtains by the previous
result a pair of adjoint functors

E
by

++> F ;
P

kk

where P is a morphism of �W -pretoposes, ŷ is a morphism of ML-categories, and
P ŷ �= 1. Since F is a �W -pretopos and E is initial among �W -pretoposes, there is
a morphism S: E //F of �W -pretoposes, such that also PS �= 1. If B:D // E is
the unique morphism of ML-categories from the free ML-category to the free �W -
pretopos, one also has ŷB �= SB.

It is easy to see that objects of the form ŷX are projective in F , because objects of
the form yX are, and y is full and faithful (also use the characterisation of covers in
Gl(F ) given in the proof of the previous theorem). It is also not hard to that in case
SX is projective for an object X in E , X is itself projective, because S, as a morphism
of �W -pretoposes, preserves covers. Since objects in the image of B are such objects,
the statement of the theorem is proved. �

What is most surprising (to me, at least) about this result is that it shows that
all higher types, like NN, are projective in the free �W -pretopos. What is not true,
however, is that NN is internally projective in the free �W -pretopos, as the following
result shows.

Proposition 3.5.3 1. If F is a �-pretopos in which NN is internally projective, then
Church's Thesis is false in the internal logic of F .

2. NN is not internally projective in the free �W -pretopos.

Proof. If NN is internally projective in a �W -pretopos F , its internal logic will model
HA! + AC1;0 + EXT . It is a well-known result by Troelstra [82] (see also [81]) that
this theory refutes Church's Thesis.

Because the validity of statements in the internal logic is preserved by morphisms of
�W -pretoposes, validity of the negation of Church's Thesis in the free �W -pretopos
would imply validity of the negation of Church's Thesis in all �W -pretoposes. But
since Church's Thesis is valid in the e�ective topos, for instance, this is impossible.
Therefore NN is not internally projective in the free �W -pretopos. �

Corollary 3.5.4 The following three �W -pretoposes are all di�erent:

� The free �W -pretopos E .
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� The exact completion Dex of the free ML-category D.

� The category Setoids.

Proof. This corollary is an immediate consequence of the following table:

Category NN externally projective NN internally projective
Setoids No No
E Yes No
Dex Yes Yes

The two bottom rows are consequences of the results obtained in this Chapter. The
entries for Dex follow immediately from Theorem 3.4.2 and Lemma 3.1.6, while the
previous two results give the entries for E .

The entries for the category of setoids are consequences of the following sequence
of facts. Among the setoids, there are the \pure types", consisting of a type with
its intensional equality as equivalence relation. These pure types are projective. This
includes the pure type 1 = N1, which is the terminal object in the category of setoids.
So the terminal object in Setoids is projective, and hence the internal projectives are
also externally projective.

The object NN in Setoids is the type N ! N together with the \extensional" equality
relation

�n 2 N: Id(N; f n; gn):

This object is covered by the pure type N ! N, so if it were projective, this cover
would have a section. This would imply that there is a de�nable operation s 2 (N !
N)! (N ! N) such that the following types are provably inhabited:

�f 2 N ! N:EXTEQ(f ; sf )
�f ; g 2 N ! N:EXTEQ(f ; g)! INTEQ(sf ; sg);

where

INTEQ(f ; g) : = Id(N ! N; f ; g)
EXTEQ(f ; g) : = �n 2 N: Id(N; f n; gn):

Such an s cannot exist, because if it would, one could decide extensional equality of
terms of type N ! N, which is known to be impossible: for any two closed terms p; r
of type N ! N, the type EXTEQ(p; r) is inhabited, i� INTEQ(sp; sr) is inhabited, i�
sp and sr are convertible, which is decidable (many thanks to Thomas Streicher for
helping me out on this). Therefore NN is not projective in Setoids, and, a fortiori,
not internally projective either. �
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