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Appendix C

Pcas and realisability

This Appendix brie
y discusses the de�nitions of pcas and realisability toposes. Refer-
ences for pcas are [11] and [35], while on realisability toposes the reader should consult
[40], [39] and [69].

Pcas C.1 Before being able to de�ne pcas, I need the notion of a partial applicative
structure. A partial applicative structure Q = (Q; �) is a set Q equipped with a partial
binary operation (a; b) 7! a �b. The partial application � is frequently not written down:
one very often writes ab instead of a �b. The usual conventions for working with partial
operation are assumed to be in place. For two expressions � and  involving elements
of Q and the binary operation �, one writes � # to mean \� is de�ned", � =  to
mean \� and  are de�ned and equal" and � '  to mean \when � or  is de�ned,
so is the other and they are equal". Another convention is that of \bracketing to the
left": abc should be read as (ab)c .

Given a pca Q and a countable set of fresh variables x0; x1; x2; : : :, the set of terms
T (Q) is the smallest set closed under:

1. a 2 T (Q) for all a 2 Q,

2. xi 2 T (Q) for all i 2 N,

3. whenever a; b 2 T (Q), then (ab) 2 T (Q).

One should think of the elements of T (Q) as the set of polynomials with coe�cients
in Q.

A partial combinatory algebra (pca) Q = (Q; �) is a partial applicative structure that
is combinatory complete, in the sense that for every term t(x0; : : : ; xn) 2 T (Q) there
is an element q 2 Q such that for all a0; : : : ; an 2 Q:

(i) qa0 : : : an�1 # and

(ii) qa0 : : : an ' t(a0; : : : ; an).
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As is well-known, to get combinatory completeness it is necessary and su�cient to
require the existence of two elements k and s in Q satisfying the following laws:

1. kab = a,

2. sab #,
3. sabc ' ac(bc).

Actually, pcas are usually de�ned in terms of k and s, but since there are in any pca
an inde�nite number of ks and ss having these properties, the de�nition in this form
is less canonical. And combinatory completeness is where pcas are all about.

The important facts about pcas, from my point of view, are the following. Due to
combinatory completeness, elements in a pca may be denoted by lambda terms, like
�x0; : : : ; xn:t(x0; : : : ; xn). This is a bit tricky, since pcas are not models of the lambda
calculus, as there may be no good interpretation of lambda terms containing free
variables (see [11]). But, like in the lambda calculus, one can solve �xpoint equations,
there is a choice of Church numerals in any pca (which will usually be denoted by
the ordinary numerals), and there are pairing operations with associated projections.
By the latter I mean that there are always elements j; j0; j1 in a pca Q such jab #,
j0(jab) = a and j1(jab) = b for all a; b 2 Q. Instead of jab I will also frequently
write ha; bi. Results of repeated pairings will often be denoted by terms of the type
ha1; a2; : : : ; ani, with the associated projections denoted by ji (1 � i � n).

The prime example of a pca is that of the natural numbers equipped with Kleene
application: one �xes a particular coding f�g of the partial recursive functions as
natural numbers, so that fmg is the partial recursive function encoded by the natural
number m. Then de�nes m � n ' fmgn to obtain K1, Kleenes pca. Models of the
lambda calculus provide other examples, like Scott's graph model P!.

Heyting pre-algebras C.2 A Heyting pre-algebra is a pre-order, that has �nite limits
and colimits and is cartesian closed as a category. As for partial orders, products and
coproducts are denoted by ^ and _, respectively, while the exponentials ab are denoted
b ! a. The order is usually denoted by `.

For any pca Q, write � = PQ for the powerset of Q. � carries the structure of
pre-order as follows: A ` B, when there is a q 2 Q such that q � a # for all a 2 A, and
q � a 2 B. It has, in fact, the structure of a Heyting pre-algebra in which:

A ^ B = fha; bi j a 2 A; b 2 Bg
A _ B = fha; 0i j a 2 Ag [ fhb; 1i j b 2 Bg
A! B = fq 2 Q j q � a # and q � a 2 B for all a 2 Ag:

For any set X, one could give �X the structure of a Heyting pre-algebra, by de�ning
the ordering pointwise. But there is another possibility, which is more important for
our purposes. Say F ` G for F;G 2 �X, when there is a q 2 Q such that for all

148 APPENDIX C. PCAS AND REALISABILITY



Predicative topos theory and models for constructive set theory Benno van den Berg

x 2 X; a 2 F (x), q � a is de�ned and in G(x). The point is commonly expressed by
saying that there should be a realiser q that works uniformly for all x 2 X. It can
easily be shown by extending the de�nitions above that also when the order of �X is
de�ned in this way, it has the structure of a Heyting pre-algebra.

Triposes C.3 A tripos (over Sets) is an indexed category P over Sets whose �bres
P I are Heyting pre-algebras, with some more properties. In particular, the reindexing
functors along functions f : J // I are required to preserve the structure of a Heyting
pre-algebra, and the reindexing functors have left and right adjoints 9f and 8f , sat-
isfying the Beck-Chevalley condition. This means that triposes have the structure to
model many-sorted, �rst-order intuitionistic logic. I will skip the formal details, but
the idea is that the elements of P I are predicates on the set I, and formulas �(i)
in �rst-order logic with a free variable of sort I can be interpreted in the tripos as
such predicates (formulas with more free variables, maybe of di�erent sorts, are in-
terpreted using the products in Sets). Then such formulas �(i) are valid, when their
corresponding element in P I is isomorphic to the terminal object in that �bre. One
writes:

P ` �(i);

or simply ` �(i), when P is understood.

Any pca Q gives rise to a tripos P. The �bre P I is �I, and reindexing is de�ned by
precomposition. For a predicate F 2 �J and a function f : J // I, the quanti�ers are
de�ned by:

9f (F )(i) = fq 2 Q j 9j 2 f �1(i): q 2 F (j)g
8f (F )(i) = fq 2 Q j 8j 2 f �1(i) 8a 2 Q: q � a # and q � a 2 F (j)g:

Realisability toposes C.4 Given a tripos P, consider the following category. Objects
are pairs (X;=), where X is a set, and = is an element of PX�X, which the tripos
believes to be a partial equivalence relation (i.e. a symmetric and transitive relation),
in the sense that

P ` x = x 0 ! x 0 = x
P ` x = x 0 ^ x 0 = x 00 ! x = x 00:

The statement that x = x is sometimes abbreviated as Ex (and one thinks of this as
saying that \x exists").

Morphisms from (X;=) to (Y;=) are equivalence classes of functional relations. A
functional relation is an element F 2 PX�Y , such that the following are valid:

Fxy ^ x = x 0 ^ y = y 0 ! Fx 0y 0
Fxy ! Ex ^ Ey
Fxy ^ Fxy 0 ! x = x 0
Ex ! 9y Fxy :
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Two such functional relations F;G are equivalent, when they are extensionally equal
in the sense that

P ` Fxy $ Gxy

(for this to obtain, the validity of one implication is su�cient).

This de�nes a category (not quite, but identities and compositions can be con-
structed), which is actually a topos: for this, one uses some of the structure of a
tripos that I have not explained, but also does not concern me. The important thing
is the following theorem.

Theorem C.5 The category de�ned out of a tripos in the way explained above, is a
topos.

When the tripos derives from a pca Q, the topos built in this fashion is called the
realisability topos over Q, and denoted by RT(Q).

Theorem C.6 The category RT(Q) is a topos with nno.

In case Q is Kleene's pca K1, RT(Q) is what is called the e�ective topos Eff , which
is therefore also a topos with nno.

In the thesis, I use many results on the e�ective topos, but I do not think it is
worthwhile to summarise them here. However, I do want to record the following
two facts, which are useful to know. They both concern canonical representations of
categorical notions in a realisability topos.

Subobjects of an object (X;=) in RT(Q) are in one-to-one correspondence to equiv-
alence classes of strict relations, i.e. elements R 2 PX such that the following are
valid:

Rx ^ x = x 0 ! Rx 0
Rx ! Ex:

Two such strict relations R;S are equivalent, when Rx $ Sx is valid.

Quotients of an object (X;=) in RT(Q) are in one-to-one correspondence to equiva-
lence classes of elements R 2 PX�X satisfying the following:

P ` Ex ! Rxx
P ` Ex ^ Ey ^ Rxy ! Ryx
P ` Ex ^ Ey ^ Ez ^ Rxy ^ Ryz ! Rxz:

Again, two such elements R;S 2 PX�X are equivalent, when Rxy $ Sxy is valid.
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