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Appendix B

Type theory

This Appendix is meant as a brief introduction to Martin-L�of type theory. Although the
relevance of the theory of �W -pretoposes to type theory is not what will be pursued
in this thesis (it is applications to set theory that will be worked out), type theory is
\ideologically" important. It is certainly arguable, but in my opinion Martin-L�of type
theory is the paradigmatic constructive-predicative theory. It is not the absence of
the Law of Excluded Middle or the powerset axiom that vindicates the constructive
and predicative status of the set theory CZF, but its interpretation in type theory. In
the same vein I feel that the example of a �W -pretopos de�nable from type theory,
proves that a �W -pretopos is a constructive and predicative structure (this example
is discussed in the Chapter 2 of this thesis). For this reason I think it is important to
introduce Martin-L�of type theory. But I should say right away that I realise that what
I tell here can in no way compete with the book-length expositions by the experts (see
[57] and [63], and also [64]).

There is immediately one complication: there exist di�erent versions of this the-
ory, extensional and intensional, polymorphic and monomorphic. Following [63], I
have made the choice to introduce the polymorphic version, which I feel is easier to
motivate, but I am not unaware of the advantages of the monomorphic version (for
that, see [64]). Comments on these issues I have relegated to the footnotes. For the
polymorphic version, I will discuss both the intensional and extensional versions.

Per Martin-L�of created the type theory that bears his name in order to clarify
constructive mathematics. And, in fact, I believe that it is as an attempt to analyse
the practice of the constructive mathematician that it can best be introduced.

An exposition of type theory should be preceeded by a discussion of Martin-L�of's
theory of expressions. I wish to treat this issue very quickly, referring to Chapter 3 of
[63] for more details. The expression

y + sin y

is analysed as the application of a binary operation + to a variable y and an expression
consisting of the unary function sin applied to that same variable y . Using brackets
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for application, this expression should be written as:

+(y ; sin(y)):

In the expression ∫ x

1
y + sin y dy

the variable y is considered to be a dummy. Nothing depends essentially on it being
y , rather than z or �. For that reason, the integral

∫
is thought of as working on an

expression, the integrand y + sin y , in which y does not occur freely, but has rather
been abstracted away. This abstraction is denoted by

(y) + (y ; sin(y)):

Certain expressions involving application and abstraction are considered equal (de�ni-
tionally equal, denoted by �), like:

((x) e)(x) � e;
or

(x) b � (y) b0

if b0 is b, with all free occurences of y replaced by x . In fact, as explained in [63],
application and abstraction satisfy the rules of the typed lambda calculus (with the �,
� and �-rule).

After the development of the theory of expressions, the �rst step in the analysis
of mathematics is that all the expressions (terms, like constants, variables etc.) are
always of a certain type. A mathematician who, in the course of an argument, intro-
duces a certain variable x never assumes that x is just an arbitrary set, but always
assumes that x is a mathematical object of a particular kind, like a natural number, a
2 by 2 matrix, an element of a group etc. These mathematical kinds are called types
and a basic assumption in type theory is that all mathematical objects are always pre-
supposed to be of a certain type. That x is of type A is usually abbreviated as x 2 A
and that A is a type as AType, the fact that A and A0 are equal types as A = A0. An
additional aspect in the analysis is that mathematical objects can only be compared
as elements of the same type. In type theory, it makes no sense to wonder whether x ,
which is of type natural number, and y , which is of type 2 by 2 matrix, are identical or
not identical. More controversially perhaps, the question whether the real number 2 is
the same as the integer 2 is regarded as ill-posed. When a and b are equal objects of
type A, this is written as a = b 2 A. I have now enumerated all the judgement forms,
which are

AType
A = A0
a 2 A
a = b 2 A:
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These are the kind of statements that are recognised in Martin-L�of type theory.

Types have structure and the next two steps analyse this structure. The second
step is the recognition of dependent types: types can depend on the value of a term x
of another type. An example is Rn, which is a type dependent on the value of n 2 N.
Another example is from category theory, where the homset

Hom(A;B)

depends on the values of A and B of type \object in the category C". The recognition
of dependent types is the main cause of the technical di�culty of the theory.

A third step is the recognition of type constructors. There are ways of building
new types from old types. For example, when � and � are types, there is the type

� � �
of pairs whose �rst element is of type � and second element is of type � . For example,
one could form the type N�N of pairs of natural numbers. In this example, � is the
type constructor, but there are also type constructors acting on dependent types, as
in the next example. When B(a) is a type dependent on a 2 A, there is the type

�a 2 A:B(a)

of pairs (a; b) where a 2 A and b 2 B(a). In set theory, one usually writes something
like

∐
a2ABa. This allows one to build the type

�n 2 N:Rn
which is the type of �nite sequences of reals together with their length.

In the �nal (fourth) step, there is the rôle of contexts. In the course of an argument,
when the mathematician has introduced all kinds of variables x , y . . . , and she is
reasoning about them, there is always implicit the typing information, which gives the
right types for all the variables she is working with. In a formal system like Martin-L�of
type theory, all these assumptions are required to be made fully explicit. Therefore
judgements like

a 2 �
are always made within a context � which gives explicitly all the types of the free
variables occurring in a and �. For example, the statement that Rn is a type can only
be made within the context n 2 N:

n 2 N ` Rn Type:

Therefore the statements that are premisses or conclusions in an argument are of the
following shapes:

� ` AType
� ` A = A0
� ` a 2 A
� ` a = b 2 A;
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where � is a context.

The general form of a context is the following:

� = [a1 2 �1; a2 2 �2(a1); : : : ; an 2 �n(a1; a2; : : : ; an�1)];

where the ai are distinct variables of the appropriate types. This includes the empty
context [] for n = 0. The presupposition here is that

a1 2 �1; : : : ; ai 2 �i(a1; : : : ai�1) ` �i+1(a1; : : : ; ai) Type

for all i < n.

A brief remark about these \presuppositions": what they amount to in this case
is that � can never be a context occurring in a statement, without these presup-
positions having been derived before. Typically in logic, the well-formed statements
are delineated, before formulating rules circumscribing which of those are provable.
Here, both processes occur simultaneously: well-formedness of types, for example, is
a property that has to be derived within the system (this is why there is a judgement
form AType). This is also why the axiom A = A has as a premiss AType, because
otherwise it could possibly not be well-formed.

Martin-L�of type theory is organized as follows: it is a system like natural deduction,
with two sets of rules. First, there is a basic set of axioms, that essentially regulates
the use of =: it is an equivalence relation allowing substitution. Then there are the
rules for the di�erent type constructors, four for each.

The rules for = are:

a 2 A
a = a 2 A a = b 2 A

b = a 2 A a = b 2 A b = c 2 A
a = c 2 A

AType
A = A

A = B
B = A

A = B B = C
A = C

a 2 A A = B
a 2 B a = b 2 A A = B

a = b 2 B
These rules have to be read with the following convention in mind: when formulating
a rule, the context that is shared by all the premisses and conclusion is omitted. This
means that the �rst rule in this list is really:

� ` a 2 A
� ` a = a 2 A

for any context � .
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The substitution rules are as follows:

x 2 A ` C(x) Type a 2 A
C(a) Type

x 2 A ` C(x) a = b 2 A
C(a) = C(b)

x 2 A ` c(x) 2 C(x) a 2 A
c(a) 2 C(a)

x 2 A ` c(x) 2 C(x) a = b 2 A
c(a) = c(b) 2 C(a)

x 2 A ` C(x) = D(x) a 2 A
C(a) = D(a)

x 2 A ` c(x) = d(x) 2 C a 2 A
c(a) = d(a) 2 C

And �nally there is the following assumption rule:

AType
x 2 A ` x 2 A

The second set of rules consists of four rules for every type constructor. I start
with �. It is analogous to the construction of the set �i2IAi for an indexed family
(Ai)i2I in set theory: it is the set of functions that chooses for each i 2 I an element
in the corresponding Ai .

First there is the formation rule:

AType x 2 A ` BType
�x 2 A:B(x) Type

The introduction rule:
x 2 A ` b(x) 2 B(x)
�(b) 2 �x 2 A:B(x):

The elimination rule:
f 2 �x 2 A:B(x) a 2 A

apply(f ; a) 2 B(a);

and the equality rule:
x 2 A ` b(x) 2 B(x) a 2 A
apply(�(b); a) = b(a) 2 B(a):
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In case B does not contain x , one usually writes A ! B instead of �x 2 A:B(x).
These rules are secretly accompanied by rules for judgemental equality (=) like the
following:

x 2 A ` b(x) = c(x) 2 B(x)
�(b) = �(c) 2 �x 2 A:B(x):

But these will be omitted in the sequel.1

The other types are thought of as being inductively generated.2 The general
pattern can be observed from the rules for �, the (binary) product type. First, there
is the formation rule:

AType BType
A� BType

The introduction rule is:
a 2 A b 2 B

pair(a; b) 2 A� B:
If one thinks of types as boxes, this rule tells us that there is a canonical way of
putting something into the box A � B: take elements a 2 A and b 2 B and pair
them (elements of the form pair(a; b) are therefore called canonical elements). The
elimination rule expresses that such elements exhaust the product type in the form of
an associated induction principle:

p 2 A� B v 2 A� B ` C(v) x 2 A; y 2 B ` e(x; y) 2 C(pair(a,b))
split(p; e) 2 C(p):

What this says, in terms of boxes, is that in case I am given a family of boxes C(v)
labelled by elements v in the type A�B and that I am given a way of putting elements
into boxes for every box labelled by a canonical element (i.e. into C(pair(x; y)) for
every x 2 A and y 2 B), I have a way of putting elements in every box. The
associated equality rule says that this way agrees with (extends) the given method for
the canonical elements:

a 2 A b 2 B x 2 A; y 2 B ` e(x; y) 2 C(pair(x; y))
split(pair(a; b); e) = e(a; b) 2 C(pair(a; b)):

The rules for all the type constructors follow this pattern. The rules for the
remaining type constructors will be given at the end of this Appendix.

So far any mathematician, even the classical one, may sympathise with the devel-
opment of the theory. It is by taking the next step that the system becomes essentially
constructive. As one may have the feeling that I have only explained the set-theoretic
part of the system, one may wonder how logic is incorporated in it. This is done

1When the monomorphic version is formulated in terms of a logical framework, as is customary, it
is not necessary to add these rules.

2It is possible to formulate the monomorphic version in such a way that the elements of the �-types
are also inductively generated.
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following the propositions-as-types interpretation: a proposition is interpreted as the
type of its proofs. The type constructors correspond to the various logical constants
and a proposition is considered true, when its corresponding type of proofs is inhab-
ited, i.e. there is a term of the appropriate type. This in itself might not make the
system constructive, but the type-theoretic understanding of what a proof is, does.
The type-theoretic interpretation (which follows the BHK-interpretation) of a proof of
an existential proposition 9a 2 A:B(a) is as the �-type �a 2 A:B(a), which therefore
means that implicit in a proof of this proposition is an a 2 A which has the desired
property B(a). Likewise, the �-type interprets the universal quanti�er 8. One can see
that the natural deduction rules for 8 are derived rules for the system:

x 2 A ` B(x) True
8x 2 A:B(x) True

8x 2 A:B(x) True a 2 A
B(a) True:

The �-type interprets conjunction ^ and the following are also derived rules:

ATrue BTrue
A ^ BTrue

A ^ BTrue
ATrue

A ^ BTrue
BTrue:

In order to have a complete translation from �rst-order intuitionistic logic into type
theory, one needs to have identity types. In the course of history, two sets of rules have
been formulated, an intensional version Id and an extensional version Eq, resulting in
two di�erent type theories: intensional and a stronger extensional type theory.3

Id-type (intensional) Intuitive description: set of proofs of an identity statement.

Formation rule
AType a 2 A b 2 A

Id(A; a; b) Type

Introduction rule
a 2 A

r(a) 2 Id(A; a; a)

Elimination rule

a 2 A
b 2 A

c 2 Id(A; a; b)
x 2 A; y 2 A; z 2 Id(A; x; y) ` C(x; y ; z) Type

x 2 A ` d(x) 2 C(x; x; r(x))
J(c; d) 2 C(a; b; c)

Equality rule

a 2 A
x 2 A; y 2 A; z 2 Id(A; x; y) ` C(x; y ; z) Type

x 2 A ` d(x) 2 C(x; x; r(x))
J(r(a); d) = d(a) 2 C(a; a; r(a))

3The extensional identity type does not �t into the monomorphic version of type theory as formulated
in [64].
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Eq-type (extensional) Intuitive description: set of proofs of an identity statement.

Formation rule
AType a 2 A b 2 A

Eq(A; a; b) Type

Introduction rule
a 2 A

r 2 Eq(A; a; a)

Elimination rule
c 2 Eq(A; a; b)
a = b 2 A

Equality rule
c 2 Eq(A; a; b)

c = r 2 Eq(A; a; b)

One can see that the intensional version �ts with the philosophy that types are in-
ductively generated sets and therefore with the general pattern, but the extensional
version is closer to category theory. Another important di�erence is that in type theory
with the extensional identity types, the judgemental equality = and the propositional
equality Eq collapse, thereby making judgmental equality and type checking undecid-
able, while in a type theory with intensional equality types, the di�erent equalities are
kept apart and judgmental equality and type checking remain decidable.

Also because of this, Martin-L�of considers the intensional version the right one,
and although I appreciate the philosophical and computer-scienti�c reasons for this,
the category theorist in me is dismayed, as it makes the categorical properties of the
system much more akward. Also it makes the theory of ML-categories and �W -
pretoposes less relevant to the study of Martin-L�of type theory.

From the syntax of type theory, whether intensional or extensional, one can build
a category in the following way. Objects are types (within the empty context) modulo
the judgemental equality =, while morphisms from a type A to a type B are terms of
type A ! B, again modulo the equality =. The fact that one so obtains a category,
is entirely trivial.

It is an (extension of a) result by Seely [79] that for extensional type theory this
gives an ML-category.4 It would be very convenient if one could prove that this was the
initial ML-category, but, as people discovered, this overlooks subtle coherence prob-
lems related to substitution. This is connected to the general problem of interpreting
extensional type theories in ML-categories.5

But solutions to the latter problem have been found: one can use the theory
of �brations, see [36] and [41], or change the type theory by introducing explicit
substitution operators, see [25]. In either way, one can consider ML-categories and
�W -pretoposes as models of extensional type theory. It is on this fact that the

4But in this connection universes are essential to show that the sums are disjoint. Moreover, an
extension of the type theory with quotient types should yield a �W -pretopos.

5Strictly speaking, a categorical semantics has only been worked out for the monomorphic version.

142 APPENDIX B. TYPE THEORY



Predicative topos theory and models for constructive set theory Benno van den Berg

relevance of the theory of ML-categories and �W -pretoposes is based, and this is
what is behind the PER models or !-set models of type theory. There are still some
obscurities. For example, what remains unclear to me is to what extend an analysis of
the initial ML-category can throw light on extensional type theory, but this is manifestly
a fruitful approach.

When one turns to intensional type theory, matters become very opaque. If one
performs the same construction as above starting from intensional type theory, the
structure of the category will be much less nice, but it will be something like a weak
�W -pretopos, a notion introduced in Chapter 3. To get a \decent" category from
intensional type theory, one should perform the setoids construction explained in Chap-
ter 2. In this way, one obtains a �W -pretopos. The importance of this result is of
\ideological" importance in the sense explained at the beginning of this Appendix, but
it does not make clear how �W -pretoposes help to understand intensional type theory.

I will end by formulating the rules for the remaining type constructors in Martin-L�of
type theory.

0-type Intuitive description: the empty set.

Formation rule 0 Type

Introduction rule None.

Elimination rule
a 2 0 x 2 0 ` C(x) Type

case(a) 2 C(a)

Equality rule None.

1-type Intuitive description: the one-point set.

Formation rule 1 Type

Introduction rule � 2 1

Elimination rule
a 2 1 x 2 1 ` C(x) Type b 2 C(�)

case(a; b) 2 C(a)

Equality rule
x 2 1 ` C(x) Type b 2 C(�)

case(�; b) = b 2 C(�)
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+-type Intuitive description: disjoint union of two sets.

Formation rule
AType BType
A+ BType

Introduction rules
a 2 A BType
inl(a) 2 A+ B

AType b 2 B
inr(b) 2 A+ B

Elimination rule

c 2 A+ B
v 2 A+ B ` C(v) Type
x 2 A ` d(x) 2 C(inl(x))
y 2 B ` e(y) 2 C(inr(y))

when(c; d; e) 2 C(c)

Equality rules

a 2 A
v 2 A+ B ` C(v) Type
x 2 A ` d(x) 2 C(inl(x))
y 2 B ` e(y) 2 C(inr(y))

when(inl(a); d; e) = d(a) 2 C(inl(a))

b 2 B
v 2 A+ B ` C(v) Type
x 2 A ` d(x) 2 C(inl(x))
y 2 B ` e(y) 2 C(inr(y))

when(inr(b); d; e) = e(b) 2 C(inr(b))

�-type Intuitive description: disjoint union of a family of sets.

Formation rule
AType x 2 A ` B(x) Type

�x 2 A:B(x) Type

Introduction rule
a 2 A x 2 A ` B(x) Type b 2 B(a)

ha; bi 2 �x 2 A:B(x)

Elimination rule

c 2 �x 2 A:B(x)
v 2 �x 2 A:B(x) ` C(v) Type

x 2 A; y 2 B(x) ` d(x; y) 2 C(hx; yi)
split(c; d) 2 C(c)

Equality rule

a 2 A
b 2 B

v 2 �x 2 A:B(x) ` C(v) Type
x 2 A; y 2 B(x) ` d(x; y) 2 C(hx; yi)

split(ha; bi; d) = d(a; b) 2 C(ha; bi)
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W-type Intuitive description: set of well-founded trees with �xed branching type (see
Chapter 2).

Formation rule

AType x 2 A ` B(x) Type
Wx 2 A:B(x) Type

Introduction rule

a 2 A t 2 B(a)!Wx 2 A:B(x)
sup(a; t) 2Wx 2 A:B(x)

Elimination rule

a 2Wx 2 A:B(x)
v 2Wx 2 A:B(x) ` C(v) Type
y 2 A; z 2 B(y)!Wx 2 A:B(x);

u 2 �x 2 B(y): C(z(x)) ` b(y ; z; u) 2 C(sup(y ; z))
wrec(a; b) 2 C(a)

Equality rule

d 2 A
t 2 B(d) ` e(t) 2Wx 2 A:B(x)
v 2Wx 2 A:B(x) ` C(v) Type
y 2 A; z 2 B(y)!Wx 2 A:B(x);

u 2 �x 2 B(y): C(z(x)) ` b(y ; z; u) 2 C(sup(y ; z))
wrec(sup(d; e); b) = b(d; e; �((t) wrec(e(t); b))) 2 C(sup(d; e)
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