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Appendix A

Categorical background

This Appendix is meant to provide the prospective reader of this thesis with su�cient
categorical background (or to refresh his, resp. her, memory). An excellent source on
these matters is the �rst volume of Johnstone's Elephant [44].

Cartesian categories A.1 A category C is called cartesian if it possesses all �nite
limits. A functor between cartesian categories is called cartesian if it preserves �nite
limits.

Practically all categories in this thesis are cartesian. Slightly better categories are
regular.

Regular categories A.2 There are several equivalent ways of de�ning regular cat-
egories. From a logical point of view, regular categories are cartesian categories in
which one can interpret the existential quanti�er. In any cartesian category, a mor-
phism f : Y //X induces a functor f �: Sub X // Sub Y , by pullback. In regular cat-
egories, such functors f � have left adjoints 9f . Applying 9f to the maximal subobject
Y � Y , one obtains the image of f : a subobject X � A is called the image of a map
f : Y //X in a category C, when it is the least subobject through which f factors. A
morphism f : Y //X having as image the maximal subobject X � X is called a cover .
As one can see, the notions of image and cover make sense in any category and will
be used frequently in this thesis.

The notion of a regular category can now be de�ned as follows. A cartesian category
C is called regular if every map in C factors, in a stable fashion, as a cover followed
by a monomorphism. A cartesian functor between regular categories is called regular
if it preserves covers.

For us, the most important fact about regular categories is the following result due to
Joyal:

Lemma A.3 In a regular category covers and regular epimorphism, i.e. epimorphisms
that arise as coequalisers, coincide.
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To interpret full �rst-order intuitionistic logic, regular categories have to be equipped
with more structure. In fact, a regular category C needs to satisfy the following
two conditions to interpret disjunction and the universal quanti�er (and implication)
respectively:

� The subobject lattice Sub X of any object X in C has �nite unions, preserved by
the operation f � for any f : Y //X.

� For any morphism f : Y //X, the functor f �: Sub X // Sub Y has a right ad-
joint 8f .

When these are satis�ed, the category C is called a Heyting category.

Lemma A.4 Let R � A�B be a relation from A to B in a Heyting category C. R is
the graph of a (necessarily unique) morphism A //B in C, if and only if the following
two statements

8a 2 A 9b 2 BR(a; b)
8a 2 A 8b; b0 2 B (R(a; b) ^ R(a; b0)! b = b0)

are valid in the internal logic of C.

Relations R as in the lemma are called functional.

Even better than regular categories are exact categories, also called e�ective regular
categories (in [44], for example).

Exact categories A.5 The idea behind exact categories is that equivalence relations
have \good" quotients. I will say in an instant what I mean by a good quotient, but
�rst I have to de�ne what I mean by an equivalence relation in a categorical context.

De�nition A.6 Two parallel arrows

R
r0 //

r1
// X

in category C form an equivalence relation when for any object A in C the induced
function

Hom(A;R) // Hom(A;X)2

is an injection de�ning an equivalence relation on the set Hom(A;X). A morphism
q:X //Q is called the quotient of the equivalence relation, if the diagram

R
r0 //

r1
// X

q
// Q
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is both a pullback and a coequaliser. In this case, the diagram is called exact. The
diagram is called stably exact, when for any p:P //Q the diagram

p�R
p�r0 //

p�r1
// p�X

p�q
// p�Q

is also exact.

A regular category C is now called exact, when any equivalence relation �ts into a
stably exact diagram. A functor between exact categories is called exact, if it is
regular.

Among exact categories, pretoposes are of special interest. To identify these, one
needs the following de�nition.

De�nition A.7 A cartesian category C has �nite disjoint, stable sums, when it has an
initial object 0 (the empty sum) and for any two objects A and B a binary sum A+B
that is disjoint in the sense that

0 //

²²

A

²²

B // A+ B

is a pullback, and stable in the sense that for all maps A //X, B //X and Y //X,
the canonical map Y �X A+ Y �X B // Y �X (A+ B) is an isomorphism.

A pretopos is an exact category with �nite disjoint, stable sums. On pretoposes there
is the following important result, that will frequently be used.

Lemma A.8 In a pretopos, every epimorphism �ts into a stably exact diagram. Put
di�erently, every epimorphism is the coequaliser of its kernel pair. In particular, epi-
morphisms, regular epimorphisms and covers coincide.

Because of the sums, disjunction can be interpreted in a pretopos, but it does not nec-
essarily have the structure to interpret universal quanti�cation. A pretopos C is there-
fore called Heyting, if for any morphism f : Y //X in C the functor f �: Sub X // Sub Y
induced by pullback, has a right adjoint �f . So Heyting pretoposes are exact Heyting
categories.

Lcccs A.9 Lccc is an abbreviation for \locally cartesian closed category". The quick-
est way to de�ne an lccc is by �rst observing that for any morphism f : Y //X in
a cartesian category C, pulling back along f determines a functor f �: C=X // C=Y .
Such functors always have a left adjoint �f given by composition with f , but when
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they also have right adjoints, the category C is an lccc. One also sometimes says that
C has dependent products.

This de�nition is the quickest, but it is not the one I will use most often. However,
to state the other equivalent de�nitions, I �rst need to recall the de�nitions of an
exponential and a cartesian closed category.

De�nition A.10 In a category C with products, an object Z is the exponential of two
objects A and B, if it is equipped with an evaluation morphism �:Z � A //B such
that for any morphism f :X � A //B there is a unique morphism f :X //Z such
that

X � A f�1
//

f
%%KKKKKKKKKKK Z � A
�

²²

B

commutes. In this case Z is often written as BA. An object A in C is called exponen-
tiable, if BA exists for any object B. A map f :X // Y is called exponentiable, if it is
exponentiable as an object of C=Y . A category C with products in which every object
is exponentiable, is called cartesian closed .

When an object A in a category C with products is exponentiable, the association
(�)A:B 7! BA is functorial. In fact, it is right adjoint to the functor (�) � A:B 7!
B � A. Therefore, lcccs are certainly cartesian closed.

A cartesian category C is now locally cartesian closed , when it satis�es any of the
following equivalent conditions:

1. All pullback functors f �: C=X // C=Y for a map f : Y //X have a right adjoint
�f .

2. Any morphism f : Y //X is exponentiable.

3. Any slice category of C is cartesian closed.

The existence of the right adjoints �f has a number of consequences. For example,
since pullback functors are now also left adjoints, they preserve all colimits. This
means in particular that in an lccc, sums are always stable.

Furthermore, because �f as a right adjoint preserves monos, right adjoints to the
operation of pulling back subobjects along an arbitrary map exist in an lccc. Therefore
universal quanti�ers can be interpreted. This means that a locally cartesian closed
regular category with disjoint sums is a Heyting category. In particular, locally carte-
sian closed pretoposes, or �-pretoposes as I will frequently call them, are Heyting
pretoposes.

128 APPENDIX A. CATEGORICAL BACKGROUND



Predicative topos theory and models for constructive set theory Benno van den Berg

Algebras and coalgebras A.11 The setting is that of a category C equipped with
an endofunctor T : C // C. A category of T -algebras can then be de�ned as follows.
Objects are pairs consisting of an object X together with a morphism x :TX //X in
C. A morphism from (X; x :TX //X) to (Y; y :TY // Y ) is a morphism p:X // Y
in C such that

TX
Tp

//

x
²²

TY
y

²²

X p
// Y

commutes.

I will frequently be interested in the initial object in this category, whenever it exists.
This initial object (I; i) is then called the initial or free T -algebra. As the name free
T -algebra suggests, the idea is that the structure of I has been freely generated so
as to make it a T -structure. Very often, at least in the cases I am interested in,
I has been generated by an inductive de�nition. Its initiality is then a consequence
of the recursive property such an inductively de�ned object automatically possesses.
In fact, the language of initial algebras is the right categorical language for studying
inductively de�ned structures.

For example, in case C is a �-pretopos, consider the endofunctor T on C sending an
object X to 1 + X. Then T -algebras are morphisms x : 1 + X //X, or equivalently
pairs of morphisms (x0: 1 //X; x1:X //X), usually depicted as:

1
x0 // X

x1 // X:

Morphisms of T -algebras are then commuting diagrams like:

1
=

²²

x0 // X
p

²²

x1 // X
p

²²

1 y0
// Y y1

// Y:

The initial T -algebra is called the natural number object (nno) in X and is usually
depicted as:

1 0 // N s // N:

It is easy to see that in the category of sets, this is precisely the set of natural
numbers with zero and successor, and to verify this fact one uses precisely the fact
that functions can be (uniquely) de�ned by recursion on the natural numbers. One
sees that the language of initial algebras allows us to make sense of the notion of the
natural numbers in more general categories.

In case C is just a cartesian category, an indexed version of the above is more useful.
An indexed natural number object in a cartesian category C is an object N equipped
with the following structure

1 0 // N s // N;
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such that for any (parameter) object P and any arrows f :P // Y and t:P �Y // Y ,
there is a unique f :P � N // Y for which the diagram

P � 1
�=

²²

1�0
// P � N

(�1;f )
²²

1�s
// P � N

f
²²

P (1;f )
// P � Y t

// Y

commutes. When C is cartesian closed, it is su�cient to check this for P = 1 and the
di�erence between the two de�nitions disappears.

The following lemma is a result that illustrates the usefulness of an (indexed) nno.

Lemma A.12 A pretopos C with an indexed nno is cocartesian, i.e. it has all �nite
colimits and these are stable.

Initial algebras have special properties: they are well-founded �xpoints. In some cases,
this characterises them completely, but that is not always the case.

De�nition A.13 Let C be a category equipped with an endofunctor T : C // C. A
�xpoint is an object X together with an isomorphism TX �= X.

Fixpoints can always be regarded as T -algebras, and on the other hand one has the
following elementary, but very useful, result by Lambek (see [50]):

Lemma A.14 An initial T -algebra is a �xpoint.

De�nition A.15 Let C be a category equipped with an endofunctor T : C // C. A
T -algebra X together with a morphism f to a T -algebra Y is called a T -subalgebra
of Y , when the underlying map of f in C is a monomorphism. A T -algebra Y is called
well-founded , when in all its T -subalgebras f :X // Y , f is an isomorphism.

Instead of saying \X is well-founded", one also says that \X has no proper subalge-
bras". It is a trivial observation that initial algebras are always well-founded.

Where algebras form the right categorical language to study inductively de�ned struc-
tures, coalgebras are the right categorical language to study phenomena like coin-
duction and bisimulation, with which I will also be concerned. The setting is again
that of a category C equipped with an endofunctor T : C // C and the category of
T -coalgebras is de�ned dually to that of the category of T -algebras. So objects are
pairs consisting of an object X together with a morphism x :X //TX in C, and a
morphism p:X // Y in C is a morphism of T -coalgebras from (X; x :X //TX) to
(Y; y : Y //TY ), when (Tp)x = yp. The terminal object in this category, when it
exists, is called the �nal or cofree T -coalgebra. Some results on initial algebras simply
carry over by duality to �nal coalgebras, in particular Lambek's result that they are
�xpoints.
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Indexed categories A.16 Algebras and coalgebras can also be de�ned in an indexed
setting. For more on indexed categories, see again the Elephant [44], whose notational
conventions I will follow.

An indexed category C is de�ned by giving for every object I in a �xed category S,
the base of the indexed category, a category CI. Furthermore, there should be so-
called reindexing functors x�: CI // CJ for every x : J // I in S. Finally, for any two
composable arrows x : J // I and y :K // J in S, the functors (xy)� and y �x� are
required to be naturally isomorphic, and (idI)� is supposed to be naturally isomorphic
to the identity on CI. The natural isomorphisms, which are part of the data of an
indexed category, are in turn demanded to satisfy a number of coherence conditions,
which I shall not state here.

An indexed terminal object is given by a family of objects TI, one for every I in S,
such that TI is �nal in every category CI, and for every x : J // I, x�TI �= TJ. The
de�nition of an indexed initial object is similar. In case the base category S has a
terminal object 1, an indexed terminal object is given by the following data: a terminal
object T in C1, whose reindexings I�T are still �nal for every I = I // 1 in S.

An indexed functor F :C //D for two categories indexed over the same base category
S is given by a family of functors F I: CI //DI, one for every object I in S. These
functors are given together with natural isomorphisms for every x : J // I that �ll the
squares

CI
F I

²²

x� // CJ
F J

²²DI x�
// DJ:

I will again omit the coherence conditions that these natural isomorphisms need to
satisfy.

For an indexed endofunctor F on an indexed category C, one can de�ne a new indexed
category: the indexed category F�Alg of F -algebras. For any I in S, its �bre (F�Alg)I

is the category of F I-algebras in the category CI, and the reindexing functors are
de�ned in the obvious way. By an indexed initial algebra, one means an indexed
initial object in this indexed category. These are automatically indexed well-founded
�xpoints: by this, I mean a family of algebras AI, one for every I in S, such that each
AI is a well-founded �xpoint for F I in CI.
For any cartesian category C, there is the canonical indexing of C over itself. The
�bre CI for any I in C is the slice C=I, while x� is de�ned by pullback. Remark that C1

is really just C. By an indexed endofunctor on a cartesian category C, one means an
endofunctor that is indexed with respect to the canonical indexing of C over itself. In
this case, (F�Alg)1 is also just the ordinary category of F -algebras on C.

When F has an indexed initial algebra, this means that F has an ordinary initial algebra
A, with the additional property that for every object I in S, I�A is initial in (F�Alg)I.
These are also indexed well-founded �xpoints, that is, A is a well-founded �xpoint for
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F , and so are all its reindexings. Indexed natural number objects are examples of such
indexed initial algebras.

The de�nitions of an indexed category of coalgebras for an indexed endofunctor on an
indexed category, and an indexed �nal coalgebra, should now be obvious.

Internal categories and colimits A.17 Suppose S is a cartesian category. An in-
ternal category K in S consists of a diagram

K1

d1 //

d0

// K0;

where d1 is the domain map, d0 is the codomain one, and they have a common left
inverse i . Furthermore there is a composition. If K2 is the object of composable
arrows, i.e. the object

K2
p1 //

p0

²²

K1

d1
²²

K1 d0

// K0;

there is a morphism c :K2 //K1 such that d1c = d1p0 and d0c = d0p1. Composition
behaves well with respect to identities: chid; id0i = id and chid1; idi = id. Finally,
composition is associative: if one forms the limit of

K1

d0 ÃÃB
BB

BB
BB

B K1
d1

~~||
||

||
||

d0 !!CC
CC

CC
CC

K1

}}{{
{{

{{
{{

K0 K0;

then two possible composites K3 //K2 //K1 are equal. There is also a notion of
internal functor between internal categories, and this gives rise to the category of
internal categories in S (see Section B2.3 of [44] for the details).

An internal diagram L of shape K in an S-indexed category C consists of an internal
S-category K, an object L in CK0, and a map d�1L // d�0L in CK1 which interacts
properly with the categorical structure of K. Moreover, one can consider the notion
of a morphism of internal diagrams, and these data de�ne the category CK of internal
diagrams of shape K in C.

An indexed functor F :C //D induces an ordinary functor FK:CK //DK between the
corresponding categories of internal diagrams of shape K. Dually, given an internal
functor F :K // J, this (contravariantly) determines by reindexing of C an ordinary
functor on the corresponding categories of internal diagrams: F �:CJ //CK. One says
that C has internal left Kan extensions if these reindexing functors have left adjoints,
denoted by LanF . In the particular case where J = 1, the trivial internal category with
one object, I write K�:C //CK for the functor, and colimK for its left adjoint LanK,
and colimKL is called the internal colimit of L.
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Furthermore, suppose C and D are S-indexed categories with internal colimits of
shape K. Then, one says that an S-indexed functor F :C //D preserves colimits if
the canonical natural transformation �lling the square

CK
colimK

²²

FK // DK
colimK

²²

C F
// D

is an isomorphism.

Indexed cocomplete categories A.18 A S-indexed category C is called S-cocom-
plete, in case every �bre is �nitely cocomplete, �nite colimits are preserved by rein-
dexing functors, and these functors have left adjoints satisfying the Beck-Chevalley
condition. If S has a terminal object, there is the following easy lemma:

Lemma A.19 If the �bre C = C1 of an S-cocomplete S-indexed category C has a
terminal object T , then this is an indexed terminal object, i.e. X�T is terminal in CX
for all X in S.

From Proposition B2.3.20 in [44] it follows that:

Lemma A.20 If C is an S-cocomplete S-indexed category, then it has colimits of
internal diagrams and left Kan extensions along internal functors in S. Moreover, if
an indexed functor F :C //D between S-cocomplete categories preserves S-indexed
colimits, then it also preserves internal colimits.

The next result is pointed out in Chapter 6 (Remark 6.1.9):

Lemma A.21 If F is an indexed functor on a S-cocomplete indexed category C, the
indexed category F�Coalg of F -coalgebras is again S-cocomplete, and the indexed
forgetful functor U:F �Coalg //C preserves colimits (in other words, U creates
colimits).
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