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Chapter 1

Introduction

1.1 Background

Mathematical logic is the study of formal systems. In this way, the logician claims
to understand something about mathematical reasoning. On the face of it, this is a
surprising claim: as formal systems hardly play any rôle in the work of the ordinary
mathematician, how can they illuminate her practices?

In everyday life, a mathematician who gives an argument never makes all her
assumptions and reasoning steps fully explicit. She relies on her intuition: things
she �nds obvious and does not care to explain only remain implicit. This does not
prevent her from communicating with her peers, because they have the same tacit
understanding she has. If requested, she can explain herself more fully and �ll in the
gaps. In the end, she expects to be able to go back to some basic axioms, those
of set theory, to make her argument absolutely rigorous, but this for her is an ideal
possibility she would not care to pursue, except in some extreme cases.

Nevertheless, her basic assumptions, which are most probably made fully precise
by the formal set theory ZFC, tell a lot about her conception of mathematics. From
a philosophical point of view, ZFC expresses a belief in a static universe of mathe-
matical objects, the properties of which she discovers rather than invents and which
are generally independent of her cognitive activity. But di�erent points of view are
possible. Some mathematicians and philosophers have objected to what are called the
non-constructive and impredicative aspects of ZFC.

Constructivism: An argument is constructive when the mathematical objects that
are claimed to exist can actually be e�ectively found. Ordinary mathematics is
full of arguments that are non-constructive (think of non-principal ultra�lters,
bases for every vector space, maximal ideals in rings, etcetera). Such arguments
express a strong belief in the mind-independent nature of mathematical objects,
since it is hard to see how the objects that are claimed to exist can actually
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be built by the mathematician. A constructivist may for various philosophical
reasons reject this picture, and insist that all arguments have to be constructive.
Constructivist views go back to Kronecker at least, but have found a coherent
and comprehensive expression in Brouwer's intuitionism. Not all constructivists
have since then been intuitionists, but Brouwer's identi�cation of the Law of
Excluded Middle as the main culprit of the non-constructive nature of classical
mathematics has been very in
uential.

Constructivism has its origin as a philosophy of mathematics, but is, ironically
enough, more in
uential nowadays in computer science than in mathematics. A
natural reading of the view that a constructive argument should always allow
one to �nd the objects that are asserted to exist, is that these objects can be
computed by an algorithm. In computer science, this has led to the paradigm
that constructive proofs can in fact be regarded as programs, and vice versa.
The same idea is behind what is called \realisability": realisability is an interpre-
tation of the arguments of the constructive mathematician using the concepts
of recursion theory, the mathematical theory of algorithms and computation.

Predicativism: Besides non-constructive arguments, ZFC also allows for the formali-
sation of impredicative arguments. These have been criticised by mathematicians
like Russell, Poincar�e and Weyl, also starting from a certain constructivist bias.

The view is basically that sets do not exist in themselves, but are the result of
the mathematician collecting objects into a whole. Predicativists observe that
certain de�nitions in ordinary mathematics de�ne an element x in terms of a set
A to which it might belong (think of a de�ning a real x as the supremum of a
set of reals A bounded from above). If one thinks of the element x as being
built by giving the de�nition, there is a clear problem here. The element x has
to exist before the set was built (because it was collected in the set A), but at
the same time it cannot exist before the set A was built (because it was de�ned
in terms of it). Usually, the Powerset Axiom and the unrestricted Separation
Axiom are considered to be the axioms that make the set theory ZFC intrinsically
impredicative.

The discovery that made the foundations of mathematics a part of mathematics,
was that ZFC and other foundational schemes, that are either intuitionistic or pred-
icative (or both), can be studied mathematically. For that purpose, all the principles
that the di�erent foundational stances are committed to, have to be made completely
explicit. Formalisation therefore not only makes fully precise what a conception of
mathematics is committed to, so that one can see whether an argument is correct
on such a conception, but it also allows the possibility of studying such conceptions
mathematically. And that is what happens in this thesis.

But what kind of questions could the mathematician try to answer about these
formal systems? She can compare di�erent schemes in terms of their strength, for
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example, by providing a translation from one into the other. Or she can try to prove
consistency of a formal system within another or try to prove that one can, without
loosing consistency, add principles to a formal system. Another possibility is to prove
certain principles independent: where one usually proves that certain principles can be
proved by doing precisely that, one could also to try to prove that certain principles
cannot be proved within a certain formal system. A statement is independent from
a formal theory when it is both impossible to prove and to disprove it in the theory
(the most famous examples of such independence results being the consistency of
Peano Arithmetic within Peano Arithmetic, the Continuum Hypothesis in ZFC and
the Axiom of Choice in ZF).

There is immediately one complication: what mathematical principles does one
employ in studying formal systems? If this is to be a mathematical investigation, the
arguments have to be conducted (ideally) within a certain formal system. Unfortu-
nately, there is no Archimedean point from which one can judge any formal system
in absolute terms. Also the mathematical logician is working within a mathematical
theory, her \metatheory", and the best she can do is to make this as weak as possible
(preferably, no stronger than the weakest theory she is studying). This is just a fact
of life.

The methods to establish metamathematical results can roughly be classi�ed as
either \syntactic" (proof-theoretic) or \semantic" (model-theoretic). As I understand
it, proof theorists assign ordinals to formal theories in order to measure their strength.
The starting point is G�odel's Incompleteness Theorem: a theory S that proves the
consistency of a theory T is stronger than T . So when Gentzen proves that adding
induction up to �0 to Peano Arithmetic (PA) allows you to prove the consistency of
the original system, PA plus induction up to �0 is a stronger system that PA itself.
Induction up to lower ordinals is provable in PA, so in a sense �0 measures the strength
of Peano Arithmetic. Theories that prove induction up to �0 are stronger than PA
and principles that imply this statement cannot be provable within Peano Arithmetic.

This thesis takes a model-theoretic approach. A model-theorist proves the consis-
tency of a collection of statements by exhibiting a model, a mathematical structure in
which they are all correct. Suppose one takes the famous translation of 2-dimensional
elliptic geometry into 3-dimensional Euclidean geometry in which the plane is a 2-
sphere, points are diametrically opposed points, and lines are concentric circles. If
you believe in the existence of the 2-sphere, diametrically opposed points and con-
centric circles, you have to believe in the consistency of elliptic geometry. The work
of Cohen proceeds along the same lines: starting with a model of ZFC, one can ma-
nipulate it in such a way that it becomes a model of ZFC including the negation of
the Continuum Hypothesis. This shows that one can consistently add the negation
of Continuum Hypothesis to ZFC. Assuming ZFC has a model, of course, which is
(in view of G�odel's Completeness theorem that guarantees the existence of models of
consistent (�rst-order) theories) the same as assuming the consistency of ZFC.

1.1. BACKGROUND 9
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The thesis will be about formal systems that are di�erent from ZFC, in that they
are constructive as well as predicative. Predicative systems with classical logic descend
from Weyl's Das Kontinuum and have mainly been studied from a proof-theoretic point
of view, while constructive systems that are impredicative, like IZF (which is basically
ZF with intuitionistic logic) and higher-order type theory, have also been studied from
a more semantic point of view, in the form of topos theory (I will come back to this).

The historical origin of the interest in formal systems that are both constructive
and predicative lies in Bishop's book on constructive analysis [17]. The book did a lot
to rekindle the interest in constructive analysis (as can be seen from the di�erence in
the lengths of the bibliographies in the �rst and second edition). There was of course
an intuitionistic school in constructive analysis, but many became disheartened by the
less attractive features of Brouwer's thought.1 Bishop skillfully managed to avoid
those and showed that it is possible to develop constructive analysis in an elegant
and coherent fashion. Among other things, he managed not to unnerve the classical
mathematician by only using methods she also believed to be valid, and not making
analysis dependent on strange entities called choice sequences. He did manage to
include variants of the well-known results, possibly with stronger assumptions, and
was able to develop some \higher" mathematics (more, say, than the mathematical
theory covered in any �rst-year analysis course). The impression the book left behind
on many people was that Bishop made the constructive program look much more
attractive than it had ever done.

The relative success of the book made it a worthwhile task to understand the
conception of mathematics that was expressed in the book. Although the book talked
about sets and functions in a way familiar to any mathematician, it is clear that these
terms cannot have the meaning they are usually taken to have (as is clear from Bishop's
insistence that all his mathematical statements have \numerical meaning"). But how
the notions of sets and functions were now supposed to be understood, Bishop did
not make very explicit. It may be considered an advantage that Bishop did not spend
page after page to explain his basic notions and instead went straight on to develop
his mathematics, but, as I explained, a formal framework is essential for studying such
notions mathematically.

As Bishop did not make his commitments fully precise, the task of formalising his
approach to mathematics fell to other people. The �rst attempt was made by Myhill
in [62]: he formulated a set theory CST that, he claimed, allows for a formalisation of
Bishop's book. CST was a theory much like ordinary ZFC, which has the advantage

1Think of the (in)famous obscurity of Brouwers philosophical views, which included a degree of
metaphysical solipsism, a considerable amount of mysticism and a distaste for formalisation. In addition
his views seemed to make doing mathematics very cumbersome as certain methods were considered
taboo, allowed for certain mathematical objects, like choice sequences, that were very much unlike
anything introduced into mathematics before, included mathematical principles that are false from the
classical point of view, and �nally seemed to be destructive of certain portions of mathematics treasured
by anyone who has ever studied it. One can understand why they were not considered very inviting.
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of looking familiar to the general mathematician. But it had the features of being
both constructive and predicative. That its underlying logic is intuitionistic, so as not
to include the Law of Excluded Middle, was to be expected, but Myhill also argued
that the framework had to be formulated within predicativist limits. More precisely,
he argued for a restricted version of the Separation Axiom and the exclusion of the
Powerset Axiom. In general, one might think (as I do) that a consistent constructivist
has to be a predicativist as well, but that being as it may, in his book, Bishop abided
by predicativist strictures.

The set theory CST was extended by Aczel to a stronger set theory he called CZF.
Besides formulating a framework for doing Bishop-style constructive mathematics, he
also provided a clear constructive justi�cation, by interpreting CZF into Martin-L�of's
type theory. Martin-L�of type theory is another attempt to elucidate the activity of the
constructive mathematician. Its strength is that it provides a direct analysis of the
basic concept of constructivism: that of a mathematical construction. Thus Aczel's
interpretation of CZF into type theory makes explicit how the constructive nature of
his theory is to be understood.

Martin-L�of type theory is a remarkable theory, which has made an impact on
computer science as well. While the system was originally formulated by Martin-L�of
as a formal analysis of constructivist mathematics, he also pointed out that it could
be regarded as a programming language. As such it has two noteworthy features:
�rst, programs written within this system are always correct, in the following sense.
Typically, programs are written to calculate the solution to a problem which has been
speci�ed in advance. While writing a program, one simultaneously (mathematically)
proves that the program computes what is the solution to the problem (and not
something else). Furthermore, it is impossible to write programs that do not terminate:
so-called \loops" are guaranteed not to occur.

Also in the mechanical veri�cation of mathematical arguments, type theory has
been in
uential. The most impressive feat in this respect might be the complete formal
veri�cation of the Four Colour Theorem in the system COQ by Gonthier. COQ is
based on the Calculus of Constructions, an extension of Martin-L�of type theory.

Both CZF and Martin-L�of type theory are still predicative formal theories. An early
formulation of Martin-L�of type theory allowed for impredicative de�nitions, but as that
turned out to be inconsistent (Girard's paradox), its successors have been formulated
within predicative limits. And, like CST, CZF is not committed to the existence of
all powersets, and contains the Separation Axiom only in a restricted form. Now
that both CZF and Martin-L�of type theory have emerged as formal systems for doing
constructive-predicative mathematics, and books are currently being written on how
to do that (on CZF by Aczel and Rathjen, on type theory by Dybjer, Coquand, Setzer
and Palmgren), the time seems ripe for a mathematical investigation of these systems.
This thesis hopes to contribute to that.

But before misunderstandings arise, several remarks should perhaps be made. As

1.1. BACKGROUND 11
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a �rst remark, I should say that I will focus on the set theory CZF. Implications of my
work for type theory will not be pursued and are left for the future. (I will, however,
say something about the connection in Appendix B.)

Secondly, I should say that I am not the �rst and only person to work on CZF. The
�rst results concerning CZF are, of course, due to Peter Aczel [2, 3, 4], but recently
the set theory has been investigated mainly from a proof-theoretic point of view by
Rathjen and Lubarsky [70, 74, 73, 75, 54, 53] (some of which is as yet unpublished).
Sheaf models (in particular, forcing) for CZF have been investigated by Grayson [34]
and, more recently, Gambino [30, 31, 32]. The best introduction to CZF is [7]. My
work distuingishes itself from the approach of these authors in its heavy reliance on
categorical language and methods and in emphasising inductively generated sets.

My source of inspiration for the categorical approach to the subject is topos theory.
While topos theory was initially developed in the Grothendieck school for the purposes
of algebraic geometry, the theory became interesting for logicians when Lawvere em-
phasised the importance of the \subobject classi�er" and gave the de�nition of an
elementary topos. For the logician, elementary toposes are models for a higher-order
intuitionistic type theory. Topos theory turned out to be a rich subject (as witnessed
by the two thick volumes of Johnstone's Elephant [44] and [45], with a third to come),
with plenty of implications for higher-order intuitionistic type theory.

Not only type theory, but also (intuitionistic) set theory pro�ted from the devel-
opment of topos theory. In the eighties of the last century, the study of the construc-
tive, but impredicative set theory IZF, was conducted mainly within a topos-theoretic
framework (as can be seen from sources like [51], Part III and [81], Chapter 15).2

This thesis studies constructive-predicative formal theories in a similar spirit. Some
adaptations are in order, as a topos is a structure that is far too rich for my purposes.
Due to the subobject classi�er, it models impredicative structures as well. Therefore
one of the themes of this thesis is the quest of a predicative analogue to the notion
of a topos, a kind of \predicative topos". Such predicative toposes should have the
same properties as toposes, especially having the same closure properties that have
proved important for logical applications, while simultaneously providing models for
constructive and predicative formal theories.

The idea of developing a predicative theory of toposes, helpful in studying set
theories like CZF and Martin-L�of type theory, goes back to two papers by Moerdijk
and Palmgren ([60] and [61]). In the �rst, they put forward a categorical de�nition
of W-type and the notion of a �W -pretopos, which I believe to be a very suitable
candidate for the title of \predicative topos". They prove stability of �W -pretoposes
under a number of topos-theoretic constructions, including slicing, taking sheaves and
glueing (over Sets).

2The work by Cohen on the independence of the Continuum Hypothesis and the Axiom of Choice
from classical set theory can also be reformulated topos-theoretically (see [18] and [56], Chapter 6).
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In their second paper, Moerdijk and Palmgren use \algebraic set theory" to con-
nect �W -pretoposes with set theory: with this machinery, they show how a model
of CZF can be built inside a �W -pretopos. Essentially, this is a generalisation of
Aczel's interpretation of CZF inside Martin-L�of type theory (this will be recapitulated
in Chapter 4 of this thesis).

The idea of categories as a place (\topos") where models of set theory can live,
is the starting point of algebraic set theory. This subject dates back to a book by
Joyal and Moerdijk [47] with the same name and provides a uniform categorical tool
for studying formal set theories. In the meantime the approach has been taken
up by several categorical logicians, including Steve Awodey, Alex Simpson, Carsten
Butz, Thomas Streicher, Henrik Forsell, Michael Warren, my former colleague Claire
Kouwenhoven-Gentil and present colleague Jaap van Oosten.3 Steve Awodey and his
PhD-student Michael Warren have also studied constructive-predicative set theories
within the setting of algebraic set theory [10].

Besides the usage of categorical methods, another respect in which the approach
taken here di�ers from that of other logicians working on CZF, is in emphasising in-
ductively de�ned structures. It is very natural to allow for a wide class of inductively
generated sets within a constructive-predicative viewpoint. For example, Poincar�e
took in his philosophical papers the principle of induction as the only truly mathemat-
ical (as opposed to logical) principle. Some predicative theories have been proposed
that do not allow for particular inductively de�ned sets, but that looks unnecessarily
restrictive, and theories like CZF and Martin-L�of type theory have in one form or
another incorporated features to build inductively de�ned sets. To be more precise,
Aczel extended CZF with a Regular Extension Axiom (REA) to allow for inductively
generated sets and Martin-L�of type theory contains a class of inductive types called
W-types.4 W-types are thought of as sets of well-founded trees, and the categories I
work with, will contain inductively de�ned structures of that form.

The emphasis on inductively generated structures, is complemented by a discussion
of coinduction. I do not mean to give an introduction here to the notions of coinduction
and bisimulation (for that, see [42] and [83]), but I do want to provide some historical
background.

The idea of a \non-well-founded" analogue to set theory was popularised by Peter
Aczel in his book [5]. He forcefully argued that it would be worthwhile to investigate
alternatives to the Axiom of Foundation (or Regularity Axiom), which (classically)
says that there are no in�nitely descending �-chains. The axiom is not necessary
to prevent set-theoretic paradoxes, and has no relevance for the work of \ordinary"
mathematicians, but is mainly of use to metamathematicians, in that it provides them
with a convenient picture of the universe of sets (the so-called cumulative hierarchy).

3References can be found at the webpage devoted to the subject:
http://www.phil.cmu.edu/projects/ast/.

4As explained in Appendix B, all the types in Martin-L�of type theory are in a sense inductively
generated sets.

1.1. BACKGROUND 13
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In set-theoretic texts, it is usually pointed out that it does no harm to accept the axiom
(a result by Von Neumann), but that does not exclude the possibility of interesting
alternatives.

In his book, Peter Aczel made a case for one such alternative: the Anti-Foundation
Axiom. The name is a bit misleading in that it suggests it might be the only possible
alternative, but it is more colourful than \X1-axiom", as it was originally called by Forti
and Honsell [28]. Aczel's starting point was the old idea that sets can be presented as
trees: the representation of a set x consists of a node, with one edge into this node for
every element of y of x , on which one sticks the representation of that element, which
consists of a node, etcetera. The Foundation Axiom implies that only well-founded
trees will now represent sets, and the sets they represent are automatically unique
(basically by the Extensionality Axiom). The idea of the Anti-Foundation Axiom is to
have all trees (well-founded or not) represent unique sets. (Hence \non-well-founded"
set theory.)

As Peter Aczel discovered, this means that one can solve systems of equations
like:

x = fx; yg
y = fx; fx; fyggg

uniquely. This proved a very fruitful idea in computer science, where people lacked
a conceptual language to describe circular (and, more generally, non-terminating)
phenomena. The other concepts that Aczel isolated (coinduction, bisimulation), fre-
quently put in a category-theoretic framework, now belong to the standard arsenal of
tools in the theory of concurrency and program speci�cation, as well as in the study
of semantics for programming languages with coinductive types [23, 24, 42, 83, 12].

1.2 Contents and results

One of the main aims of this thesis is to convince the reader that the notion of a
�W -pretopos is a sensible predicative analogue of the notion of a topos. In order to
make a persuasive case, I need to show two things: �rst, I have to make clear that the
class of �W -pretoposes shares many of the properties with the class of toposes. This
applies in particular to the closure properties that have been exploited in the logical
applications of topos theory. Secondly, I should explain how �W -pretoposes provide
models for constructive and predicative formal theories, like Aczel's CZF.

The contents of this thesis are therefore as follows. Chapter 2 introduces W-types
in a categorical context and �W -pretoposes. It also proves a (new) characterisation
theorem that helps one to recognise W-types in categories. This is then used to
identify and concretely describe W-types in various categories.

In Chapter 3, I prove two closure properties of �W -pretoposes, both of them new.

14 CHAPTER 1. INTRODUCTION
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The �rst of these is the closure under exact completion. This result is surprising, as the
corresponding result for toposes is false. As will be discussed, less than the structure
of �W -pretopos is needed to get an exact completion that is a �W -pretopos. I iden-
tify weaker categorical structures (\weak �W -pretoposes"), whose exact completions
are �W -pretoposes. This is then used to give more examples of �W -pretoposes, one
of which is a kind of predicative realisability topos. It shows that �W -pretoposes are
closed under a notion of realisability, which promises to be important for logical pur-
poses. Finally, I prove closure of �W -pretoposes under (general) glueing. Combined
with closure under exact completion, one obtains a result concerning the projectives
in the free �W -pretopos.

Chapter 4 leaves the area of pure \predicative topos theory" and studies an ap-
plication to the set theory CZF. Using the framework of algebraic set theory along
the lines of [61], I prove that the models of CZF of Streicher in [80] and Lubarsky in
[53] exist as objects in the e�ective topos, and are in fact the same. The model is
then further scrutinised and shown to validate a host of constructivist principles. The
result that these are therefore collectively consistent with CZF is new.

The two �nal Chapters are joint work with Federico De Marchi and are concerned
with categories with coinductively generated structures. In the same way as a W-type
is an inductively generated set of a particular type, which is to be thought of as a set
of well-founded trees, the dual notion of M-type is to be thought of as a coinductively
generated set of non-well-founded trees.

Chapter 5 studies M-types in categories. I prove some existence results concerning
M-types: the main result in this direction is that the existence of a �xpoint for a
polynomial functor implies the existence of an M-type. This is also used to strengthen a
result by Santocanale on the existence of M-types in locally cartesian closed pretoposes
with natural number object. The Chapter also introduces the notion of a �M-pretopos
and continues to investigate the possibility of developing a theory of �M-pretoposes
analogous to the theory of �W -pretoposes. More particularly, it studies the stability of
�M-pretoposes under various topos-theoretic constructions, like slicing, coalgebras for
a cartesian comonad and sheaves. In topos theory, these closure properties have proved
useful for logical applications and the hope is that these results will have applications
to models of non-well-founded set theory and type theories with coinductive types.

An interesting question is whether coinductively de�ned structures are essentially
impredicative. This question is also discussed by Rathjen in [72]: his conclusion is
that Aczel's theory of non-well-founded sets can be developed without using such
impredicative objects as powersets and the like. For that reason, he feels that the
circularity that the predicativist discerns in impredicative de�nitions is of a di�erent
kind than the circularity in coinductively de�ned sets. Such views are of course highly
philosophical, but are at least con�rmed in that there are models of predicative formal
theories where the Anti-Foundation Axiom is valid. A general method for constructing
such models (classical or constructive, predicative or impredicative) is obtained in

1.2. CONTENTS AND RESULTS 15



Benno van den Berg Predicative topos theory and models for constructive set theory

Chapter 6.

Following Aczel [5], I use a �nal coalgebra theorem to construct such models.
Therefore I �rst prove an abstract categorical �nal coalgebra theorem applicable in
the setting of algebraic set theory. This is then applied to prove the existence of
M-types and models of non-well-founded set theory in settings very much like that of
the original book on algebraic set theory by Joyal and Moerdijk [47]. This is also joint
work with Federico De Marchi.

The thesis concludes with three appendices that are meant to provide some back-
ground for this thesis. The �rst introduces the category theory and categorical termi-
nology that is needed to understand this thesis, while the second gives an introduction
to Martin-L�of type theory. The third is on partial combinatory algebras and realisability
toposes.
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Chapter 2

Induction in categories

Within a conception of mathematics that is constructive and predicative, it is very nat-
ural to assume the existence of a wide variety of inductively generated structures. To
allow for inductively de�ned sets, Aczel extended his set theory CZF with the Regular
Extension Axiom (REA), while for the same purpose, Martin-L�of has added well-
founded types (or W-types) to his type theory. To study categorically constructive-
predicative theories characterised by this liberal attitude towards inductively de�ned
sets, it is necessary to isolate categories in which there exist objects that can be
thought of as inductively generated.

In order to give a categorical formulation, the idea of an inductive de�nition is too
informal, and also too broad, so one has to restrict oneself to a class of sets that result
from an inductive de�nition of a determinate form. Following Moerdijk and Palmgren
[60], I take Martin-L�of's W-types as the inductively de�ned sets to incorporate: they
have a precise constructive justi�cation in type theory, while they are also su�cient
for obtaining models for set theory (see [61], generalising the work of Aczel in [2]; I
will discuss this work in Chapter 4).

The categorical notion of a W-type will be discussed in the �rst Section of this
Chapter. The main novelty of the discussion is a characterisation theorem which will
be helpful in recognizing W-types in concrete cases.

Two classes of categories with W-types are then de�ned, ML-categories and �W -
pretoposes. The latter, �W -pretoposes, were originally de�ned by Moerdijk and Palm-
gren, as predicative analogues of the notion of a topos. It is with these �W -pretoposes
that Chapters 3 and 4 of this thesis will be concerned. ML-categories are almost �W -
pretoposes, their only defect in this respect being that they are not exact. But this
\defect" can be remedied by taking their exact completion, as will be discussed in
Chapter 3.

The second Section of this Chapter discusses several examples of �W -pretoposes
and ML-categories. More examples will be given in Chapter 3.

Parts of this Chapter have previously appeared in [14] and are reprinted here with
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permission from Elsevier.

2.1 W-types

Martin-L�of's W-types are sets generated by an inductive de�nition with a particular
shape. The form of the inductive de�nition is determined by a signature: a set of term
constructors, each with a small (set-sized) arity. The inductively generated set (the
W-type) is then the free term algebra over this signature. There are sets which deserve
to be called inductively generated, but are not of this form, but these are beyond the
scope of this thesis (see [27] for a broader framework for inductive de�nitions).

To capture W-types categorically, the language of initial algebras (for an endo-
functor) immediately suggests itself, for, in general, it is the appropriate categorical
language to talk about inductively generated structures (see Appendix A for the basic
facts and terminology on algebras and coalgebras on which this Section relies). The
question then becomes which endofunctors one should require to possess initial alge-
bras in order to have W-types. Moerdijk and Palmgren identi�ed the following class,
de�nable in any lccc (also for categorical terminology and notation, one should consult
Appendix A).

De�nition 2.1.1 In a cartesian category C, there is a polynomial functor 1 Pf asso-
ciated to every exponentiable map f :B //A. It is the endofunctor de�ned as the
composite

C B� // C=B �f // C=A �A // C:

A more insightful way of writing Pf (X) may be the following:

Pf (X) = �A(X � A //A)(f :B // A);

or:
Pf (X) = �a2AXBa ;

where Ba = f �1(a) is the �bre of f over a 2 A.

De�nition 2.1.2 Let f :B //A be an exponentiable morphism in a cartesian category
C. The W-type associated to f is the initial Pf -algebra, when it exists; the M-type
associated to f is the �nal Pf -coalgebra, whenever it exists. If in a locally cartesian
closed category C, W-types (resp. M-types) exist for any map f , the category C is said
to have W-types (resp. M-types).

1Polynomial functors have received di�erent names in the literature: there is a tradition of calling
them partial product functors (they are called like this in [44], for example), while recently a group of
authors has emerged who use the name containers (for instance, see [1]).
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To understand this de�nition better, it helps to compute W-types and M-types in
the category of sets.

Fix a function f :B //A. One can think of f as specifying a signature: a term
constructor for every element a 2 A of arity Ba. The W-type Wf is now the set of all
terms over the signature speci�ed by f . But it is even more suggestive to represent
such terms as well-founded trees of a particular type. The W-type for f is the set
of all well-founded trees in which nodes are labelled by elements a 2 A and edges are
labelled by elements b 2 B, in such a way that the edges into a certain node labelled
by a are enumerated by f �1(a), as illustrated in the following picture.

: : : : : : : : : : : :
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Let us �rst try to understand why this set has the structure of a Pf -algebra. Now
Pf (X) for a set X can be written as:

Pf (X) =
∑

a2A
XBa :

So it consists of an element a 2 A together with a function t:Ba //X. Therefore
assume one is given an element a 2 A together with a function t:Ba //Wf . A new
well-founded tree of the appropriate type can be constructed as follows: take a fresh
node and label it with a. Draw edges into this node, one for every b 2 Ba and label
these accordingly. Then stick to the edge labelled by b 2 Ba the well-founded tree tb.
The new tree, which is easily seen to belong to Wf , is usually denoted by supa(t).

I have described an operation sup:Pf (Wf ) //Wf , giving Wf the structure of a
Pf -algebra. The fact that the trees are well-founded means that one could actually
generate all of them by (trans�nitely) repeating this sup-operation. This construction
terminates, because one has only a set of term constructors, and the arities are also
small, so there is only a set of trees with the appropriate labelling, well-founded or
not.

But this means that one can de�ne functions by recursion on this generation
process. And this is precisely what yields initiality of Wf . For if m:Pf (X) //X is any
Pf -algebra and one wishes to build a function g:Wf //X, one can do so by specifying
the value of g on an element supa(t), assuming that one has already speci�ed the value
on elements of the form tb, where b 2 Ba. Therefore one can put:

g(supa(t)) = m(�b 2 f �1(a):g(tb));
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expressing that g is a Pf -algebra morphism. The Pf -algebra morphism so de�ned is
automatically unique, because functions de�ned by recursion always are. Although
much of what I have said, applies only literally in the case of sets, thinking in terms of
well-founded trees and recursion is the right intuition also in the abstract categorical
case, to which I now turn.

Now let f :B //A be an exponentiable morphism in a Heyting category C. When
the W-type Wf associated to f exists, one can say right away that it has two properties,
both for abstract categorical reasons (see appendix A). First of all, the structure
map sup:Pf (Wf ) //Wf is an isomorphism, by Lambek's lemma (see Lemma A.14).
Secondly, it will have the feature of possessing no proper Pf -subalgebras.

The second property is re
ected as an induction principle in the internal logic. If
R is a subobject of W that is inductive in the sense that

8b 2 f �1(a)(tb 2 R)) supa(t) 2 R
holds in the internal logic, then R = W as subobjects of W . Induction also holds when
R depends on a parameter. This follows from the following fact (see [60, 33], and
Remark 2.1.6 below):

Theorem 2.1.3 Let f :B //A be an exponentiable morphism in a cartesian category
C. The polynomial functor Pf is automatically indexed. If C is Heyting, a W-type for
f is automatically an indexed well-founded �xpoint. If C is locally cartesian closed, a
W-type for f is automatically an indexed initial algebra.

As an illustration of this theme, there is this lemma:

Lemma 2.1.4 Let f :B //A be an exponentiable morphism in a Heyting category
C. When both the W-type and the M-type associated to f exist, the canonical map
i :Wf //Mf is monic.

Proof. There is a canonical morphism i , because an M-type is a �xpoint for the poly-
nomial functor and can therefore be regarded as a Pf -algebra (conversely, the W-type
can be regarded as Pf -coalgebra). I will now actually prove something stronger: the
Pf -algebra map i from Wf to any Pf -algebra with monic structure map m:PfX //X,
is a monomorphism.

For let
R = fw 2 Wf j 8v 2 Wf : i(w) = i(v)) w = vg:

Then R is inductive: for suppose w = supa(t) 2 Wf is such that tb 2 R for all b 2 Ba.
Let v 2 Wf be such that i(w) = i(v). Since sup is an isomorphism, v is of the form
supa0(t 0). Now

i(w) = m(a; �b 2 Ba:i tb) = m(a0; �b0 2 Ba0:i t 0b0) = i(v):
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Since m is monic, a = a0 and i tb = i t 0b for all b 2 Ba. Using that tb 2 R, one sees
that tb = t 0b for all b 2 Ba, i.e. t = t 0. Therefore w = v and the proof is �nished. �

In many categories, the two properties of being a �xpoint and being well-founded
characterise W-types completely, as I will prove at the end of this Section. But before
I do that, I will discuss Pf -coalgebras and M-types.

In the category of sets, the M-type associated to a function f :B //A is the set
of all trees (well-founded or otherwise) labelled in the familiar way: nodes are labelled
by elements a 2 A, while edges into a node labelled by a are enumerated by b 2 Ba.
If one wishes for a more concrete description, one could regard Mf as the set of all
sets S of sequences of the form

ha0; b0; a1; b1; : : : ; ani
where ai 2 A and bi 2 B satisfy:

1. f (bi) = ai ;

2. hai 2 S for some a 2 A;

3. if ha0; b0; a1; b1; : : : ; an; bn; an+1i 2 S, then also ha0; b0; a1; b1; : : : ; ani 2 S;

4. if ha0; b0; a1; b1; : : : ; ani 2 S and b 2 Ban , then ha0; b0; a1; b1; : : : ; an; b; ai 2 S
for some a 2 A.

That this yields the �nal Pf -coalgebra, one sees as follows.

There is the projection morphism Pf (X) //A for any X, so to any Pf -coalgebra
m:X //PfX one can associate a root map �:X //A. The name is suggested by
the case of M-types and W-types, where � assigns to a tree the label of its root (a
W-type is also naturally a Pf -coalgebra, because it is a �xpoint for Pf ). Another notion
that makes sense in any Pf -coalgebra m:X //PfX is that of a path, the name again
being suggested by the case of W- and M-types. A sequence of the form

hx0; b0; x1; b1; : : : ; xni
is called a path from x0 to xn, if xi 2 X and bi 2 B are such that they satisfy the
following compatibility condition: if for an i < n, m(xi) is of the form (ai ; ti), then
f (bi) = ai and xi+1 = tibi .

A Pf -coalgebra morphism g:X //Mf can now be obtained as follows: thinking
of trees as sets of paths, one sends an element x 2 X to the set of all sequences of
the form

h�(x0); b0; �(x1); b1; : : : ; �(xn)i;
where hx0; b0; x1; b1; : : : ; xni is a path starting from x . One readily sees that g is
well-de�ned, a Pf -coalgebra morphism and the unique such.
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An important observation is that the notions of a root and a path are readily
formalized in the internal logic of locally cartesian closed regular categories C with �nite
disjoint sums and natural number object: an object Paths = Paths(m) can be de�ned
in any such C as the subobject of (X +B+ 1)N consisting of those � 2 (X +B+ 1)N

for which one has:

1. �(0) 2 X.

2. If �(n) 2 X for an even natural number n, then either �(n+1) 2 B or �(n+1) =
� (with � denoting the unique element of 1).

3. If �(n) = x and �(n+ 1) = b for an even number n, then f b = a and �(n+ 2) =
tb, where (a; t) = r(x).

4. n < k and �(n) = � imply �(k) = �.
5. There is a natural number n such that �(n) = �.
Since paths will play a prominent rôle in this thesis, I establish some terminology

and notation, which will also make sense in the internal logic of C. Because there is a
natural number n such that �(n) = �, there is also a least such (this is a consequence
of the constructively valid principle that every inhabited decidable subset of the natural
numbers has a least element). That number will be called the length of �. Then �(0)
will be called the beginning, while �(the length of � � 1) will be called the end of the
path. One has a map Paths! X de�ned by assigning to a path the beginning of the
path. The �bre above x for this map will be denoted by Pathsx . Also in the internal
logic, I will continue to use the notation h: : : ; : : : ; : : :i for writing down sequences and
� as a symbol for concatenation.

One can then use the notion of path to de�ne the notion of subtree. Once again,
this notion has a clear meaning in the case of W- and M-types, but makes sense in
any Pf -coalgebra. I will call y a subtree of x if there is a path � in Pathsx such that
�(n) = y for some even natural number n. If n can be chosen to be bigger than 1, y
is called a proper subtree. Observe that the subtree relation is re
exive and transitive.
For example, in a W-type, the tree t(b) is a subtree of w = supa(t) (the tbs are really
the immediate proper subtrees of supa(t)).

As an application of the notion of path, one has the following characterisation or
recursion theorem for W-types, which will be very helpful in recognizing W-types.

Theorem 2.1.5 (Characterisation Theorem) Let C be a locally cartesian closed reg-
ular category with �nite disjoint sums and a natural number object, and f :B //A a
morphism in C. The following are equivalent for a Pf -algebra (W; s:Pf (W ) //W ):

1. It is the W-type for f .
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2. It is an indexed well-founded �xpoint.

3. It is a well-founded �xpoint.

The idea of the proof of the characterisation theorem is essentially that of Cantor's
general recursion theorem (see, for example, [49], Theorem 5.6): one builds a map
by pasting together \attempts" (partial approximations). Some care has to be taken,
because the argument has to be predicative. In the impredicative context of elementary
toposes, the characterisation would follow from a general result (see Theorem 2.2.3),
but that argument does not obviously carry over to a predicative one.

Proof. The di�cult part will be to show that (3) implies (1). Before Theorem 2.1.3
I pointed out that (1) implies (2), while the implication from (2) to (3) is trivial.

So assume W is a �xpoint having no proper Pf -subalgebras. In particular, it is a Pf -
coalgebra and hence it makes sense to talk about paths in W . This can therefore be
used to de�ne a notion of attempt.

Now let (X;m:Pf (X) //X) be an arbitrary Pf -algebra. An attempt for an element
w 2 W is a morphism g: Pathsw //X with the additional property that for any path
� 2 Pathsw ending with an element w 0 = sa0(t 0) the following equality holds:

g(�) = m(�b0 2 f �1(a0):g(� � hb0; t 0b0i))

Later it will become apparent that g(�) is p(w 0) where w 0 is the last element of � and
p is the unique Pf -algebra morphism p:W //X. So an attempt will turn out to be
the restriction to the subtrees of w of the unique Pf -algebra morphism p:W //X,
which I still have to construct.

Let S be the collection of all those w 2 W for which there exists a unique attempt.
Then S is a subalgebra of W . For let w = sa(t) be such that tb 2 S for all b 2 f �1(a).
This means that there are for every b 2 f �1(a) unique attempts gb for tb. Write
xb = gb(htbi). Now de�ne a morphism g: Pathsw //X for w as follows:

g(hwi) = m(�b 2 f �1(a):xb) and
g(hw; bi � �) = gb(�)

The fact that this is an attempt is easily veri�ed.

Uniqueness relies on the following observation: if � is a path starting with w and
ending w 0 and g is an attempt for w , then h(hw 0i � �) = g(� � �) de�nes an attempt
for w 0. So if h is any attempt for w , then hb(htbi � �) = g(hw; b; tbi � �) de�nes an
attempt for tb for every b 2 f �1(a). So hb = gb and what remains is the proof of
h(hwi) = g(hwi). But that is established by an easy calculation:

h(hwi) = m(�b 2 f �1(a):h(hw; b; tbi)
= m(�b 2 f �1(a):hb(htbi)
= m(�b 2 f �1(a):gb(htbi)
= g(hwi)
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So h = g and w 2 S. Therefore S is a subalgebra of W .

As W has no proper subalgebras, S = W as subobjects of W . But that allows one to
de�ne p:W //X by:

p(w) = g(hwi)
for the unique attempt g for w . This de�nes a Pf -algebra morphism, which is actually
the unique such: for if q is another Pf -algebra morphism the equaliser of p and q is a
subalgebra of W . �

Remark 2.1.6 It would not be di�cult to give a direct proof that (3) implies (2). The
crucial fact is that in case T is a PX�f -subalgebra of X�W in C=X, then

S = fw 2 W j 8x 2 X: (x; w) 2 T g
de�nes a Pf -subalgebra of W in C.

I can now give the following two, important, de�nitions:

De�nition 2.1.7 A locally cartesian closed category C with �nite disjoint sums and
W-types is called an ML-category .

Observe that ML-categories possess a natural number object, because the functor
X 7! 1 +X is polynomial, and an initial algebra for this functor is a nno (see Appendix
A). In fact, X 7! 1 + X is X 7! Pf (X), where f is the right inclusion 1 // 1 + 1.

De�nition 2.1.8 A locally cartesian closed pretopos C with W-types is called a �W -
pretopos. (So a �W -pretopos is an exact ML-category.)

It is with these kinds of categories that the �rst part of this thesis will mostly be
concerned. In Chapters 3 and 4, I will show that, for logical purposes, �W -pretoposes
can be regarded as a kind of predicative toposes, in that a theory analogous to topos
theory, with similar closure conditions, can be developed for them, while they at the
same time provide a natural habitat for models of set theory.

In the next Section I will give a number of examples of ML-categories and �W -
pretoposes. Once I have developed more theory, especially concerning exact comple-
tions, I will be able to give more.

Generalised polynomial functors 2.1.9 Which functors, aside from polynomial ones,
automatically have initial algebras in a category, when that category has W-types? The
question is interesting, but I will not attempt to give an answer.
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However, in [33], Gambino and Hyland identify a class of functors that have initial
algebras, when all W-types exist. Suppose C is an ML-category, and recall that, since
C is an lccc, pullback functors

f �: C=X // C=Y
have left and right adjoints for all f : Y //X, called �f and �f , respectively. Consider
all possible compositions of such functors f �, �f and �f , possibly for di�erent f . When
such a composition has the same slice of C as domain and codomain, the functor is
called generalised polynomial .

The class of generalised polynomial functors is less unwieldy than one might initially
think, because of the following \normal form lemma".

Lemma 2.1.10 For any generalised polynomial functor � there is a (not necessarily
commutative) triangle

B f //

h
ÂÂ

??
??

??
? A

g
ÄÄÄÄ

ÄÄ
ÄÄ

Ä

C

such that � is naturally isomorphic to �g�f h�.

In their paper, Gambino and Hyland prove:

Theorem 2.1.11 (See [33], Theorem 12.) All generalised polynomial functors on a
ML-category C have initial algebras in the appropriate slice.

One could prove an extension of the characterisation result Theorem 2.1.5 for initial
algebras for generalised polynomial functors: when an algebra is a well-founded �xpoint
for a generalised polynomial functor, it is the initial algebra.

2.2 Categories with W-types

In this Section, I will introduce various examples of the notions of ML-category and
�W -pretopos, introduced above. It is well known that these categories have this
structure, W-types excepted, and for proofs, the reader is therefore referred to the
literature. Frequently, a concrete description of W-types or M-types was not available
in the literature, and in some cases their presence was unknown. Therefore concrete
descriptions will be provided.

Toposes 2.2.1 Elementary toposes with a natural number object form an important
class of examples of �W -pretoposes. Recall that a morphism >: 1 // 
 in a cartesian
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category C is the subobject classi�er of C, when for any monomorphism m:A //X
there is a unique map cA:X // 
 such that

A
²²

m
²²

// 1
>

²²

X cA
// 


is a pullback. And recall that (elementary) topos is a cartesian closed category with
pullbacks and a subobject classi�er.

Topos theory is a rich subject with plenty of examples, among which are Grothendieck
toposes, in particular categories of sheaves over a topological space (see [56]), the
free topos (with nno) (see [51]) and the e�ective topos (see [39]). Any (good) book
on topos theory will prove that a topos is a �-pretopos (for example, [44], Corollaries
A2.3.4 and A2.4.5). The fact that toposes with nno have W- and M-types is folklore.
The description that I gave of an M-type for a map f :B //A as consisting of sets
of sequences

ha0; b0; a1; b1; : : : ; ani
having four properties, makes sense in the internal logic of any topos with nno. It is a
routine exercise in the use of internal logic to show that the object so de�ned is the
M-type for the map f . Therefore:

Proposition 2.2.2 (See Lemma 2.4 in [46].) Toposes with nno have M-types.

The fact that toposes have W-types now follows from another folklore result:

Theorem 2.2.3 (See Proposition 1 in [43].) Let F be an indexed functor on a topos
E preserving pullbacks. If F has a �xpoint, it also has a well-founded �xpoint (see
Appendix A), which necessarily is the initial F -algebra.

Since M-types are �xpoints and polynomial functors are indexed and preserve pullbacks,
one immediately obtains:

Proposition 2.2.4 (See Proposition 2.3.5 in [68].) Toposes with nno have W-types.

Alternatively, one can simply select in the internal logic the trees in the M-type that
are well-founded (the internal logic of toposes is impredicative, so this is expressible),
and obtain the W-type in that way (see Proposition 3.6 in [60]).

The next couple of examples concern full subcategories of the realisability topos
RT(Q) on a pca Q. For a (brief) discussion of pcas and realisability toposes, see
Appendix C.
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Convention 2.2.5 When in the name of a category depending on a pca Q, this index
is omitted, it is to be understood that the relativization is to K1, Kleene's �rst pca.
So RT is RT(K1), i.e. the e�ective topos.

Assemblies 2.2.6 Fix a pca Q. An assembly on Q consists of set X together with a
function [�]X:X //PiQ (by PiQ, I mean the set of non-empty subsets of Q). Instead
of q 2 [x ]X, I will frequently write q `X x , or simply q ` x , when X is understood.
In this case q is called a realiser of x . A function f :X // Y is a morphism of
assemblies from (X; [�]X) to (Y; [�]Y ), when there is an element t 2 Q such that for
all x 2 X; q 2 Q:

q `X x ) t � q # and q � p `Y f (x):

Such a t is said to track f , or to realise f . In this way, one obtains a category Asm(Q)
of assemblies on Q.

The category Asm(Q) is a regular ML-category for any pca Q. It is not a �W -
pretopos, as it is not exact. Asm(Q) occurs as the full subcategory of RT(Q) con-
sisting of the ::-separated objects, and the inclusion of Asm(Q) in RT(Q) preserves
the regular ML-category structure. These facts are well-known. Even the fact that
the category of assemblies has W-types and M-types, and that they are preserved
by the inclusion, seems to be familiar to many people, although it is seldom pointed
out explicitly (it is implicit in [67], for example). Also for the sake of completeness,
I explain the construction here, based on some unpublished notes by Ieke Moerdijk
(another description is contained in [37]).

But before I can give a concrete description of the W-types and M-types in the category
of assemblies for a pca Q, I �rst need to investigate the behaviour of the functor Pf
for a morphism f :B //A of assemblies. The underlying set of Pf (X) consists of
those pairs (a; t) where a is an element of Q and t is a function from Ba to X that
has a realiser. An element n 2 A is a realiser for (a; t), if n = hn0; n1i is such that n0

realises a and n1 tracks t (the latter meaning, of course, that for every b 2 Ba and
every realiser m of b, n1 �m is de�ned and equal to a realiser of tb).

The key concept behind the construction of the W-types is the notion of decoration.
This notion will recur a number of times, so I will take some time explaining it. The
idea behind this notion is as follows. Elements w of the W-type Wf belonging to a
function f :B //A are thought of as being constructed by repeated application of the
sup operation to maps of the form f �1(a) //Wf . When constructing the W-types in
Asm(Q), I only want those elements w of W (f ) that can be constructed by applying
the operation sup to \trackable" maps of the form f �1(a) //Wf . A decoration of
an element in the W-type speci�es for each application of the sup operation that has
been used to generate the element, a realiser for the \applicant", i.e. both an element
in Q that tracks the map t: f �1(a) //Wf to which it has been applied, as well as a
realiser for a.

Therefore the W-type for f is constructed as follows. First construct the W-type W for
the underlying function f in the category of sets. Next de�ne a function E:W //PQ
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by trans�nite induction: E(supat) consists of those elements n = hn0; n1i 2 Q such
that (i) n0 realises a; and (ii) n1 tracks t, that is, for every b 2 Ba and every realiser
m of b, n1 � m is de�ned and a member of E(tb). I call a member n of E(w) a
decoration or a realiser of the tree w 2 W . The trees w that have a decoration are
called decorable and V will be the name of the set of all decorable trees.

The set V is the underlying set of an assembly whose realisability relation is determined
by restriction of E to V . This assembly, also to be called V , is, I claim, the W-type
for f in the category of assemblies. It is not hard to see that it has the structure of
a Pf -algebra. Let a be an element of A and t be a function Ba ! V . The element
supa(t) 2 W is actually an element of V , because if n is a realiser of (a; t) in Pf (V ),
then n is a decoration of supa(t) (this is immediate from the de�nition of E and the
description of Pf (V )). So there is a map of assemblies s:Pf (V )! V , which is tracked
by the identity.

To verify that the constructed object is the W-type, I appeal to the characterisation
theorem, Theorem 2.1.5. The map s is iso, basically because the underlying map sup
is, therefore I only need to show that V has no proper subalgebras.

Let (X;m:Pf (X) //X) be a subalgebra of V . One may assume that the underlying
set X is actually a subset of V and that m is the restriction of s to Pf (X) on the level
of underlying functions. First of all, one sees that X = V on the level of sets. Let P
be set of trees w 2 W for which one has that

w 2 V ) w 2 X:
That P = W can be proved by trans�nite induction, which immediately shows that
X = V as sets. For suppose supat 2 W and tb 2 P for all b 2 Ba (here a 2
A; t:Ba //W , of course). One needs to show that supat 2 P , so assume that
supat 2 V . Because s is iso, one has that tb 2 V and hence, by induction hypothesis,
tb 2 X. Since on the level of sets, m is the restriction of s, which is a restriction of
sup, one has that supat is in X. This completes the proof.

To show, �nally, that the X and V are isomorphic as assemblies, I have to show that
the identity map i : V ! X is tracked by some element r 2 Q. For this, let q be the
element in Q tracking m and let H be the element computing the composition of two
elements in Q (that is, H(x; y) � n = x � (y � n)). Now use the fact that one can solve
recursion equations, to obtain an r satisfying the following equation:

r � j(n0; n1) = q � j(n0; H(r; n1)):

It is easy to see that r tracks i , by proving by a trans�nite induction that for any tree
w 2 W and any decoration n of w , r � n is de�ned and a realiser of i(w).

This completes the proof of the fact that V is the W-type of f in the category of
assemblies. The fact that the inclusion of assemblies on Q into the realisability topos
on Q preserves W-types, is easily seen as follows. Since the inclusion preserves the
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lccc structure, the inclusion also preserves the functor Pf in the sense that

Asm(Q) i //

Pf
²²

RT(Q)

Pi f
²²Asm(Q)

i
// RT(Q)

commutes (up to natural isomorphism). Therefore the W-type in Asm(Q) is a �xpoint
in RT(Q). It is also well-founded, because subobjects of ::-separated objects are
again ::-separated. Therefore it is also the W-type in RT(Q) by either Theorem
2.1.5 or Theorem 2.2.3.

M-types are constructed in a similar fashion. When f :B //A is a morphism of
assemblies, write M for the M-type of sets associated to the underlying function of
f in sets. Write sup for the inverse of the structure map of the coalgebra M. A
decoration for an element m = supa(t) 2 M is an element d 2 Q such that d codes
a pair hd0; d1i, where d0 realises a = �(m) and d1 � y is de�ned for every realiser y of
some b 2 Ba and is a decoration of tb, in the sense that it codes a pair he0; e1i, where
. . . etcetera (somewhat pedantically, one can say that the notion of a decoration is
coinductively de�ned). More formally, say that a sequence of elements

hd0; e0; d1; e1; : : : ; dni
in Q tracks a path

hm0; b0; m1; b1; : : : ; mni
in M, when j0(di) realises �(mi), ei realises bi and j1(di) � ei = ei+1. An element d 2 Q
is a decoration for m, when every path starting from m is tracked by a sequence
beginning with d . The advantage of de�ning the M-type in this manner, is that it
makes clear that any reliance on impredicative methods turns out be only apparent.
Since this de�nition in the case of well-founded trees coincides with the de�nition given
above, this means that both the construction of the W-type as that of the M-type can
also be performed within a predicative metatheory, as long as W-types, respectively
M-types are available in that metatheory.

Modest sets 2.2.7 Again, �x a pca Q. A modest set on Q consists of a set X
together with a function [�]X:X //PiQ mapping distinct elements of X to disjoint
subsets of Q. Again, one writes a `X x or simply a ` x to mean a 2 [x ]X, and one
says that a realises x . Equivalently, a modest set as a set X together with a relation
`X� Q�X satisfying

x = y , 9a 2 Q: a ` x and a ` y :
A morphism of modest sets from (X;`X) to (Y;`Y ) is a function of sets f :X // Y
having the property that there is a t 2 Q tracking f in the sense that for all a 2 Q; x 2
X

a ` x ) t � a # and t � a ` f (x):
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In this way one obtains a category Mod(Q), another regular ML-category that is a
full subcategory of the realisability topos on Q, where the inclusion is a morphism of
regular ML-categories.

Mod(Q) is equivalent to the category PER(Q) of partial equivalence relations on
Q. A partial equivalence relation (or simply a PER) on Q is a symmetric, transitive
relation on Q. If R and S are partial equivalence relations on Q, one calls f 2 Q
equivalence preserving, when for all a; b 2 Q

aRb ) f � a #; f � b # and (f � a)S(f � b):

Two equivalence preserving elements f ; g 2 P are considered equivalent when (f �
a)S(g � a) for all a 2 P . A morphism of PERs is an equivalence class of equivalence
preserving elements. A good reference on modest sets and PERs is [13].

Usually, when people talk about PERs, they mean partial equivalence relation on the
pca K1, but the de�nition makes good sense for any pca. For example, as proved
in [13], when Q is Scott's graph model P!, PER(Q) is equivalent to the category
of countably based equilogical spaces, which, for that reason, is also a regular ML-
category.

That Mod(Q) for any pca Q has both W-types and M-types is pointed out in [13].
But the description there is not very concrete, and one can easily give a concrete
description along the lines of the previous example, so that is what I will do here.

Fix a morphism f :B //A of modest sets. Let W be the W-type of the underlying
map of f in sets. Again, de�ne a function E:W //PQ by trans�nite induction as
follows: E(supat) consists of those elements n = j(n0; n1) 2 Q such that (i) n0 realises
a; and (ii) n1 tracks t, that is, for every b 2 Ba and every realiser m of b, n1 � m is
de�ned and a member of E(tb). I call a member n of E(w) a decoration or a realiser
of the tree w 2 W . By a straightforward proof by trans�nite induction, one shows
that E maps distinct well-founded trees to disjoint subsets. So if V is a the set of all
decorated trees (w 2 W such that Ew 6= ;), then (V; E) is a modest set, which is
actually the W-type for f in modest sets. The proof of this fact is completely similar
to the one given above and therefore omitted. The inclusion of modest sets over a pca
into the realisability topos over that pca again preserves W-types, because it preserves
the lccc structure and modest sets are closed under subobjects in RT(Q). Also the
construction of M-types contains no surprises.

Heyting-valued sets 2.2.8 The category of sets valued on a frame forms another
regular ML-category. Let H be a frame (a.k.a. a complete Heyting algebra). An
object of the category H+ of H-valued sets is a set X together with a function
[�]X:X //H. A function f :X // Y is a morphism of H-valued sets, whenever for
all x 2 X, [x ]X � [f (x)]Y . It is not so hard to see that it is a regular ML-category,
but references seem to be scarce (some facts are collected in [59] and [66]). The
presence of W-types and M-types appears to be new.
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For a morphism f :B //A of H-valued sets, Pf (X) for an H-valued set X is con-
structed as follows. Writing j : : : j for the obvious forgetful functor j : : : j:H+ // Sets,
jPf (X)j = Pjf j(jXj). An element (a; t) 2 jPf (X)j is then mapped to

∧

b2Ba
([b]) [tb]) ^ [a]:

The W-type Wf is then also computed as in sets on the level of the underlying sets.
An element supa(t) has the above expression as its value (this inductively de�nes an
element in H for the well-founded tree). M-types are a bit more involved, but not
harder, to describe, and will be omitted.

Heyting algebras 2.2.9 Heyting algebras can be considered as categories, like any
poset. Considered in this way, they are cartesian closed, because of the implication
!: ab = b ! a. They are in fact locally cartesian closed, because for any a in a
Heyting algebra H, H=a = fx 2 H j x � ag is again a Heyting algebra, with implication
given by b ! b0 (in H=a) = (b ! b0) ^ a. So it makes sense to ask whether Heyting
algebras possess W-types and/or M-types. The curious answer is that they have both:
for a map f : b // a (which simply means b � a),

Pf (x) = (b ! (x ^ a)) ^ a:
So the W-type is the least �xpoint for this, which is :b ^ a, and the M-type is the
greatest �xpoint, which is a.

Setoids 2.2.10 The last example, for now, is built from the syntax of (intensional)
Martin-L�of type theory (see Appendix B for an introduction to type theory). A setoid
is a type X together with an equivalence relation, meaning a type R(x; y) in the
context x 2 X; y 2 X with proof terms for re
exivity, symmetry and transitivity.
A morphism of setoids from (X;R) to (Y; S) is an equivalence class of terms t of
type X ! Y preserving the equivalence relation (meaning that there is a term of type
�x; y 2 X:R(x; y)! S(tx; ty)). Such terms s and t are considered equivalent, when
there is a term of type �x : 2 X:S(sx; tx). The category obtained in this fashion,
will be denoted by Setoids.

Theorem 2.2.11 (See [60], Section 7.) Setoids is a �W -pretopos.

This theorem has \ideological" importance, in that it shows that a �W -pretopos
is a predicative structure (I consider Martin-L�of type theory to be the paradigmatic
constructive-predicative theory). In the next Chapter, I will show that Setoids is not
the free �W -pretopos. This is unfortunate, because if it were, there would have been
a way in which the theory of �W -pretoposes would have been useful also for studying
intensional type theory. Now it seems that all light that it will shed on type theory, will
fall on the extensional version (see the Appendix for the di�erence between intensional
and extensional type theory).

2.2. CATEGORIES WITH W-TYPES 31





Predicative topos theory and models for constructive set theory Benno van den Berg

Chapter 3

Exact completion and glueing

This Chapter will be an exercise in \pure predicative topos theory". I prove two closure
properties of �W -pretoposes: closure under exact completion and under glueing. Clo-
sure under exact completion is especially noteworthy, because toposes are not closed
under exact completion.

As an application of these two results, I give more examples of �W -pretoposes
and prove a result on the projectives in the free �W -pretopos. The latter will imply
that the free �W -pretopos and the category of setoids are non-equivalent.

Parts of this Chapter have appeared in [14] and are reprinted here with permission
from Elsevier.

3.1 Exact completion of a cartesian category

The examples of �W -pretoposes that we have seen so far are toposes with nno and
the category of setoids. The categorical construction called exact completion will
provide us with a host of other examples. To show that they are examples, I need a
set of conditions on a category C for its exact completion Cex to be a �W -pretopos.
As always in the theory of exact completions, the category C has to satisfy the axioms
for a �W -pretopos in a weaker sense. I identify a set of conditions and I show that
for the categories satisfying these conditions the exact completion is a �W -pretopos.
As it turns out, ML-categories are examples of such \weak �W -pretoposes". This
means that the exact completion of an ML-category is a �W -pretoposes, so the
ML-categories of the previous Chapter can be remedied in this way to become �W -
pretoposes. It also shows that the exact completion of a topos with nno is a �W -
pretopos. As exact completions of toposes are rarely toposes, this shows that there
are many �W -pretoposes that are not toposes.

Intuitively, the exact completion is the universal way of constructing an exact cat-
egory out of a cartesian category. In more precise (2-categorical) terms it is the
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following. Write Cart for the large category of (small) cartesian categories and Exact
for the large category of (small) exact categories. The exact completion of a given
a cartesian category C is an exact category Cex , together with a cartesian embedding
y: C // Cex , such that for any exact category D, composition with y induces an equiv-
alence Exact(Cex ;D) // Cart(C;D). As Joyal discovered, it is possible to explicitly
describe Cex .

Explicit description of an exact completion 3.1.1 Two parallel arrows

R
r0 //

r1
// X

in a cartesian category C form an pseudo-equivalence relation when for any object A
in C the image of the induced function

Hom(A;R) // Hom(A;X)� Hom(A;X)

is an equivalence relation on the set Hom(A;X). These pseudo-equivalence relations
are the objects in the category Cex . A morphism from

RX
x0 //

x1
// X

to

RY
y0 //

y1
// Y

in Cex is an equivalence class of arrows f :X // Y in C for which there exists a
g:RX //RY such that f xi = yig for i = 0; 1. Two such arrows f0; f1:X // Y
are equivalent if there exists an h:X //RY such that fi = yih for i = 0; 1.

The embedding y is given by the obvious functor y: C // Cex that sends an object A
in C to

A
1A //

1A
// A:

Besides being cartesian, the functor is evidently full and faithful. The proof that the
category thus constructed is exact and actually the exact completion of C can be
found in [21], [20].

For both the objects in the exact completion that are in the image of y and
categories that arise as exact completions, there exist remarkable characterisation
results. To state these, I need the following terminology.

Projectives, external and internal 3.1.2 An object P in a category C is (externally)
projective if for any cover g:X // Y and any morphism f :P // Y , there exists a
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morphism h:P //X such that gh = f .1 When C is cartesian, this is equivalent to:
any cover p:X //P has a section. An object X is covered by a projective, if there
exists a projective P and a cover f :P //X. A category C has enough projectives if
any object in C is covered by a projective.

These external projectives are to be distinguished from the following class of objects.
In a cartesian category C, an object P is called internally projective, when for any
cover Y //X and any arrow T � P //X, there exists a cover T 0 //T and map
T 0 � P // Y such that the square

T 0 � P //

²²²²

Y

²²²²

T � P // X

commutes. A morphism f : Y //X is called a choice map, when it is internally pro-
jective as an object of C=X.

In case P is exponentiable, this coincides with the more common de�nition: P is
internally projective i� the functor (�)P preserves covers. This means that in a Heyting
category C, for an exponentiable object A that is also internally projective, the axiom
of choice is valid \relative to A", in the sense that the following scheme is valid in the
internal logic of C:

8a 2 A 9x 2 X �(a; x)! 9f 2 XA 8a 2 A�(a; f (a)):

The two characterisation results now are (see [21]):

Lemma 3.1.3 The objects in the image of y: C // Cex are, up to isomorphism, the
projectives of Cex .

Proposition 3.1.4 An exact category C is an exact completion if and only if it has
enough projectives and the projectives are closed under �nite limits. In that case, C is
the exact completion of the full subcategory of its projectives.

An immediate consequence is (see [16]):

Proposition 3.1.5 If C is cartesian and A an object in C, then

(C=A)ex �= Cex=yA:

One combines this with the following observation (which I am not the �rst to point
out, see [38]) to show that morphisms of the form yf in Cex are choice maps.

1Some mathematicians call such objects \regular projectives", but as this is to distinguish them
from a class of objects that does not concern me, I do not follow their terminology.
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Lemma 3.1.6 In an exact completion Cex of a cartesian category C, the external and
internal projectives coincide.

Proof. An internal projective is also externally projective, because in an exact com-
pletion the terminal object 1 is projective. An external projective is also internally
projective, because in an exact completion, every object is covered by an external
projective and external projectives are closed under products. �

3.2 Two existence results for W-types

For the main theorem of this Chapter, explaining which categories have a �W -pretopos
as exact completion, I need two auxiliary results on the existence of W-types, to be
proved here. In both cases I rely essentially on the notion of path, introduced in the
previous Chapter. Its main use is to help to de�ne in a predicative fashion a certain
predicate or relation, that would in an impredicative context (like that of toposes) be
de�ned using trans�nite induction.

To state the �rst theorem, I need the following de�nition.

De�nition 3.2.1 A square
D //

²²

C

²²

B // A

in a cartesian category C is called a quasi-pullback , when the induced map D //B�A
C is a cover.

Theorem 3.2.2 Suppose in a �-pretopos E with a natural number object, one has a
diagram of the following form:

D
[�]B // //

g
²²

B
f

²²

C [�]A
// // A

(3.1)

Suppose furthermore that this diagram is a quasi-pullback and that g is a choice map
for which there exists a W-type. Then there also exists a W-type for f .

Proof. Write W for the W-type for g and sup for the structure map. The idea is
to use the well-founded trees in W , whose branching type is determined by g, to
represent well-founded trees whose branching type is determined by f . Intuitively this
representation works as follows: a well-founded tree with branching type determined
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by f is represented by an element w 2 W if it can be obtained by \bracketing" all
labels in w .

: : : : : : : : : : : : : : : : : : : : : : : :

�
u ;;

;;
; a

v©©
©©
©

�
x

�
y

ÄÄ
ÄÄ

ÄÄ
�

zooooooooooo �
[u]

>>
>>

> [a]

[v ]¡¡
¡¡

�
[x ]

�
[y ]

ÄÄ
ÄÄ

Ä
�

[z ]oooooooooo

a
x LLLLLLLLL b

y

c
zsss

sss
sss

) [a]

[x ] OOOOOOOOO [b]
[y ]

[c ]

[z ]ppppppppp

c [c ]

While every tree with branching type determined by f can be so represented, not every
element in W is suitable for representing such a tree. A tree supc(t) in W is suitable
for representing, or representing for short, whenever for any pair d; d 0 2 g�1(c) such
that [d ]B = [d 0]B, the trees td and td 0 are representing and represent the same tree.
The trees td and td 0 are then identi�ed in the bracketing process.

So the question is when two (representing) elements supc(t) and supc 0(t 0) in W repre-
sent the same tree (in which case I will write supc(t) � supc 0(t 0)). They do, whenever
[c ]A = [c 0]A and td � t 0d 0 for all pairs d 2 g�1(c); d 0 2 g�1(c 0). In an impred-
icative context, like the internal logic of a topos, one could de�ne � as the unique
relation having this property. Here, with a predicative metatheory, one has to work
a little harder and de�ne � explicitly in terms of paths. Then the property of being
representing can be de�ned as being self-related via �.

The binary relation � on W is de�ned as follows: w � w 0 if and only if

all paths � in Pathsw and �0 in Pathsw 0 having the same length (2n + 1
say) and satisfying the equality

[�(2k + 1)]B = [�0(2k + 1)]B

for all k < n, also satisfy the equality

[�(�(2k))]A = [�(�0(2k))]A

for all k � n (� being the canonical map W �= �CW g //C).

The reader should now verify that � has the desired property:

supc(t) � supc 0(t 0);

if and only if [c ] = [c 0] and for all d 2 g�1(c); d 0 2 g�1(c 0): if [d ] = [d 0], then td � t 0d 0
(one proves this by induction).

Symmetry and transitivity of � now follow. Symmetry is immediate, while transitivity

w � w 0 and w 0 � w 00 imply w � w 00
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is proved by induction on w 0, as follows. Suppose supc(t) � supc 0(t 0) and supc 0(t 0) �
supc 00(t 00). Now clearly [c ] = [c 00], because [c] = [c 0] and [c 00] = [c 0]. Suppose
d 2 g�1(c) and d 00 2 g�1(c 00) are such that [d ] = [d 00]. Since diagram (3.1) is a
quasi-pullback, there exists a d 0 2 g�1(c 0) such that [d 0] = [d ] = [d 00]. One has now
that td � t 0d 0 and t 0d 0 � t 00d 00, and so td � t 00d 00 by induction hypothesis. This shows
that supc(t) � supc 00(t 00).

A w = supc(t) 2 W such that w � w will be called a representing tree. The point is
that such a tree has the desired property that for any pair d; d 0 2 g�1(c), td and td 0
represent the same tree. Denote the set of all representing trees by R and observe
that R is closed under subtrees.

Now, � is an equivalence relation on R and hence one can form the quotient V ,
together with a quotient map q:R // V . This map q sends a representing tree to
the tree it represents. Let me also de�ne an object R� in E=C by setting for c 2 C:

R�c = f t 2 W g�1(c) j supc(t) 2 R g
Or, equivalently: t 2 R�c if and only if

for any d; d 0 2 g�1(c) such that [d ]B = [d 0]B, one has that t(d) � t(d 0).

One clearly has a commuting diagram

�CR� // //

sup
²²

�CW g

sup
²²

R // // W

(in fact, this diagram is a pullback). I will now construct a commuting diagram of the
following form:

�CR�
q�

// //

sup
²²

�AV f

s
²²

R q
// // V

(3.2)

To see that there is a morphism q�: �CR� // �AV f in E , one needs to note that the
subobject

Q� = f (t; h) 2 �CR� ��AV f jQ�(t; h) g
where Q�(t; h) is the statement:

for the particular c 2 C and a 2 A such that t 2 R�c and h 2 V f �1(a), one
has that [c]A = a and for all d 2 g�1(c) that q(t(d)) = h([d ]B).
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is functional (for the de�nition of a functional relation, see Appendix A). The map q�
so constructed is a cover: for let h be an arbitrary element of V f �1(a) for a certain
a 2 A. Pick a c 2 C such that [c ]A = a. One has

8d 2 g�1(c)9r 2 R: q(r) = h([d ]B);

since q is a cover. Since g is a choice map, there is a map t: g�1(c) //R such that
q(t(d)) = h([d ]B) for all d 2 g�1(c). If d; d 0 2 g�1(c) are such that [d ]B = [d 0]B,
then

q(t(d)) = h([d ]B) = h([d 0]B) = q(t(d 0));

so t(d) � t(d 0). This means that t 2 R�c and hence that (t; h) 2 Q�. Since h was
arbitrary, this means that q� is a cover.

One now constructs s: �AV f // V in E by using the fact that in a pretopos every
epi is the coequaliser of its kernel pair. So suppose for certain c; c 0 2 C elements
t: g�1(c) //W 2 R� and t 0: g�1(c 0) //W 2 R� are given such that q�(t) = q�(t 0).
This implies that [c ]A = [c 0]A and that

8d 2 g�1(c); d 0 2 g�1(c 0): [d ]B = [d 0]B ) td � t 0d 0:
This means that supc(t) � supc 0(t 0). Using the coequaliser property of q�, this gives
a morphism s: �AV f // V making (3.2) commute.

This map s is actually monic. For suppose sa(h) = sa0(h0) for some h: f �1(a) // V and
h0: f �1(a0) // V . There are t: g�1(c) //W and t 0: g�1(c 0) //W , both in �CR�,
such that q�t = h and q�g0 = h0. But now qsupa(t) = qsupa0(t 0), i.e. supa(t) �
supa0(t 0). But this implies [c ] = [c 0], so a = a0, and also that for all d 2 g�1(c) and
d 0 2 g�1(c 0) such that [d ] = [d 0], td � t 0d 0. Hence q�t = q�t 0 and h = h0. So s is
monic. But as s is also clearly epic, s is in fact an isomorphism.

I now claim that the Pf -algebra (W; s:Pf (W ) //W ) is actually the W-type for f . I
work towards applying Theorem 2.1.5.

Now, if S is a subalgebra of V , i.e. a subobject of V for which one has that

8a 2 A 8h: f �1(a) // V (8b 2 f �1(a) (hb 2 S)) sa(h) 2 S);

let T be the following subobject of W :

fw 2 W j if w is representing, then q(w) 2 S g:
I prove that T = W as subobjects of W by induction. This will immediately imply
that S = V as subobjects of V . Suppose w = supc(t) 2 W is such that td 2 T for
all d 2 g�1(c). I assume that w is representing and want to prove that qw 2 S.

Because w is representing, the trees td (d 2 g�1(c)) are representing as well. Since
they belong to T , q(td) belongs to S. This means that for h = q�t, hb 2 S for all
b 2 f �1(a), where a = [c ]. So sa(h) 2 S, but sa(h) = saq�(t) = qsupc(t).
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So V is the W-type for f by Theorem 2.1.5 and the proof of Theorem 3.2.2 is com-
pleted. �

Theorem 3.2.3 Let E be a �-pretopos with natural number object and f :B //A be
a choice map in E . Assume that in a Pf -coalgebra V with the following two properties
exists: (1) its structure map s is a cover; (2) the only subobject R of V for which

v 2 V; s(v) = (a; t) and tb 2 R for all b 2 f �1(a) imply that v 2 R
is the subobject V itself. Then a W-type for f exists.

Proof. The idea is to turn s into an isomorphism. This means identifying those v
and v 0, with the property that for (a; t) = s(v) and (a0; t 0) = s(v 0), one has that both
a = a0 and t and t 0 are extensionally equal functions. In other words, I need a relation
� on V such that:

v � v 0 , if (a; t) = s(v) and (a0; t 0) = s(v 0), then a = a0 and
tb � t 0b for all b 2 f �1(a): (3.3)

In other contexts, I might turn to a trans�nite induction to construct such a relation,
but here I again rely on paths.

First, I de�ne an equivalence relation on the object of paths in V . I will call � and �0
equivalent if they satisfy three conditions:

1. they have the same length, 2n + 1 say.

2. they satisfy the equation

�(2k + 1) = �0(2k + 1)

for all k < n.

3. they satisfy the equation

�(�(2k)) = �(�0(2k))

for all k � n (� being the root map).

Then I de�ne the following equivalence relation on V :

v � v 0 i� for every � in Pathsv there exists an equivalent �0
in Pathsv 0 and for every �0 in Pathsv 0 there exists
an equivalent � in Pathsv .
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The reader should verify that � now has the desired property 3.3.

Consider the quotient W = V= � and the quotient map q: V //W . Note that Pf q
is also a cover, because f is a choice map. I now want to complete the following
diagram:

V
q

// //

s
²²²²

V
m

²²

Pf V Pf q
// // Pf V:

Using that in a pretopos every epi is the coequaliser of its kernel pair and the fact that
� satis�es 3.3, one can show that an isomorphism m making the diagram commute,
exists. Call its inverse n.

The proof will be completed once I show that (W; n:PfW //W ) satis�es the condi-
tions of Theorem 2.1.5. n is certainly mono, so let A be an arbitary Pf -subalgebra of
W . De�ne

R = f v 2 V j q(v) 2 A g
It is easy to see that R satis�es the hypothesis of condition (2): for assume s(v) =
(a; t) and tb 2 R for all b 2 f �1(a). This means that q(tb) 2 A for all b 2 f �1(a),
and hence na(qt) 2 A because A is subalgebra of W . But na(qt) = (nPf q)(a; t) =
(nPf qs)(v) = q(v). So R = V and hence A = W . �

3.3 �W -pretoposes as exact completions

This Section isolates a set of conditions on a cartesian category C su�cient for its
exact completion to be a �W -pretopos. Su�cient (and necessary) conditions for
the exact completion to be a �-pretopos can be extracted from the literature, but
su�cient conditions for the exact completion to have W-types were unknown. I will
recall the results available from the literature and then introduce the notion of a \weak
W-type". In this way, I arrive at the notion of a \weak �W -pretopos", and prove the
main theorem of this Section:

Theorem 3.3.1 If C is a weak �W -pretopos, then Cex is a �W -pretopos.

How this can be used to give more examples of �W -pretoposes will be the subject of
the next Section.

The following terminology and results are taken from the literature, especially
Menni's PhD thesis [59]. C is always a cartesian category.

Proposition 3.3.2 (See [59], proposition 4.4.1.) The exact completion of C is a
pretopos if and only if C has �nite, disjoint and stable sums. In this case, the embedding
y: C // Cex preserves the sums.
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For the exact completion to be locally cartesian closed, one weakens the require-
ment for dependent products, by dropping the uniqueness clause. So:

De�nition 3.3.3 For two morphisms c :C // J and t: J // I in a cartesian category
C, the dependent product of c along t is an object w :W // I in C=I together with
a morphism ": t�w // c in C=J such that for any object m:M // I in C=I together
with a morphism h: t�m // c in C=J there exists a unique morphism H:m //w in
C=I such that h = " � t�H in C=J.

De�nition 3.3.4 For two morphisms c :C // J and t: J // I in a cartesian category
C, a weak dependent product of c along t is an object w :W // I in C=I together with
a morphism ": t�w // c in C=J such that for any object m:M // I in C=I together
with a morphism h: t�m // c in C=J there exists a (not necessarily unique) morphism
H:m //w in C=I such that h = " � t�H in C=J. One says that a cartesian category
C has weak dependent products if it has all possible weak dependent products.

The following proposition is contained in [22] (see also [16]):

Proposition 3.3.5 The exact completion Cex of a cartesian category C is locally carte-
sian closed if and only if C has weak dependent products.

Remark 3.3.6 Unfortunately, the authors do not point out, although it follows from
their proofs, that in case C has genuine dependent products, the embedding y: C // Cex
preserves them. Hence the following argument.

By Proposition 3.1.5, it su�ces to show that y preserves exponentials. How are
exponentials of projectives A and B computed in Cex? It is not hard to see that you
can compute BA in C and obtain the exponential in Cex by taking the quotient of the
following equivalence relation:

R = f(f ; g) j8b 2 B:f (b) = g(b)g //

// y(BA):

For the purpose of computing the universal quanti�er 8b 2 B, let me introduce the
notion of a proof.

For any object X in C, pre-order the slice category C=X by declaring that

A //X � B //X;

whenever there is a morphism A //B making the obvious triangle commute. The set
of proofs (or weak subobjects) Prf X is then the poset obtained by identifying A //X
and B //X in case both A //X � B //X and B //X � A //X. Clearly,
any morphism f : Y //X in C induces an order-preserving map f �: Prf X // Prf Y by
pullback. The fact that C has weak dependent products means precisely that f � always
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has a right adjoint. When C has genuine dependent products, these right adjoints can
be computed by taking these real dependent products.

The functor y now induces an order-preserving bijection Prf X // Prf yX, basically
by taking images, commuting with f � for any morphism f : Y //X in C. This means
that in Cex , the operation of pulling back subobjects along a morphism f : Y //X
between projectives, has a right adjoint, and for this reason universal quanti�ers along
such f exist. The universal quanti�er that concerns me is precisely of this form, so, in
a way, it can be computed \type-theoretically" (by taking �f ) in the original category
C.

Therefore, to compute R in Cex , I should take the following object in C:

�f ;g2AB�b2Bf� j f (b) = g(b)g:
But this is just AB, because the principle of extensionality holds in C. So the equiva-
lence relation in question takes the following form:

y(BA)
//

// y(BA):

Hence its quotient is simply y(BA), and therefore y preserves exponentials.

There are a number of special cases of the notion of a weak dependent product
that will be important later on. There is the weak exponential , which is a weakening
of the familiar notion of an exponential. A weak version of the exponential Y X can be
de�ned as a weak dependent product of the projection X � Y //X along X // 1.
More concretely this means that it is an object Z together with a \weak evaluation"
":Z � X // Y such that for every map h:X � A // Y there is a (not necessarily
unique) morphism H:A //Z such that h = " � (X �H).

Furthermore, there is the notion of a weak simple product. Not surprisingly, this is
the weakening of the notion of a simple product, which may not be so familiar. One
calls

W �K � //

w�KKKK
K

%%KKK
K

C
c

²²

I �K
(3.4)

a simple product diagram, if for any other such diagram

X �K f //

x�KKKK
K

%%KKK
K

C
c

²²

I �K
there exists a unique f 0:X //W over I such that f = � � (f 0 � K). In this case
w :W // I together with � will be the simple product of c :C // I �K with respect
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to K. (Observe that this is equivalent to being the dependent product of c :C // I�K
along the projection I �K // I.)

If one drops the uniqueness condition for f 0, then diagram (3.4) is called a weak
simple product diagram. w together with � will be called a weak simple product
and this is equivalent to being a weak dependent product of c along the projection
I �K ! I.

In addition, one can weaken the notion of a natural number object.

De�nition 3.3.7 Let C be a cartesian category. A diagram

1 // A // A

is called an inductive structure. t:A //B is a morphism of inductive structures
with domain 1 //A ! A and codomain 1 //B //B, if the following diagram
commutes:

A //

t

²²

A

t

²²

1

??ÄÄÄÄÄÄÄÄ

ÂÂ
??

??
??

?

B // B
A natural number object is an inductive structure

1 0 // N s // N

that is initial in the category of inductive structures. It is a weak natural number
object if it is weakly initial in the category of inductive structures (meaning that for
any inductive structure 1 //A //A there exists a morphism of inductive structures
t:N //A).

The following result follows from Proposition 5.1 in [16]:

Proposition 3.3.8 If C is cartesian category with weak dependent products and a
weak natural number object, then Cex has a natural number object.

The results contained in the literature can therefore be summarized as follows:

Corollary 3.3.9 When C is a cartesian category with �nite, disjoint sums, weak depen-
dent products and a weak natural number object, Cex is a �-pretopos with a natural
number object.

Proof. Combine Proposition 3.3.2, Proposition 3.3.5 and Proposition 3.3.8. �
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What is missing is a su�cient condition for the exact completion to have W-types.
To �ll this gap, I will introduce the notion of a \weak W-type", inspired by Theorem
2.1.5, and subsequently prove that it has the desired property. Unfortunately, it is
also rather involved. To make things easier it will be good to set some notation and
terminology.

Fix a morphism f :B //A in a cartesian category C. As in any cartesian cate-
gory, one has for any object X in C two functors: X�: C // C=X (the pullback along
X // 1) and �X: C=X // C (its left adjoint, given by composition).

De�nition 3.3.10 A Pf -structure is a quadruple (4-tuple) x = (X;X�; �X; "X) with
X an object in C, X� an object in C=A, �X a map �A(X�) ! X in C and "X a map
X� � f //A�X in C=A. A homomorphism of Pf -structures from x = (X;X�; �X; "X)
to z = (Z;Z�; �Z; "Z) is a pair t = (t; t�), where t is a map in C from X to Z, and t�
is a map from X� to Z� in C=A. Furthermore, the following diagrams should commute:

�AX�
�At� //

�X
²²

�AZ�

�Z
²²

X t
// Z

X� � f t��f
//

"X
²²

Z� � f
"Z

²²

A�X A�t
// A�Z

It is easy to see that this de�nes a category, one I shall denote by Pf (C).

De�nition 3.3.11 A map t: x // z in Pf (C) is said to be a weak Pf -substructure map,
if for the pullback L in this diagram in C=A:

L
p0 //

p1

²²

Z� � f
"Z

²²

A�X A�t
// A�Z

the following is a weak simple product diagram:

X� � f �X //

t��f %%LLLLLLLLLL L
p0

²²

Z� � f
where �X = h(t� � f ); "Xi.

Before I can de�ne weak W-types, I �rst have to de�ne the notion of a weak
Pf -algebra.

De�nition 3.3.12 A weak Pf -algebra is a Pf -structure

x = (X;X�; �X; "X)
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such that X� is a weak version of the exponential (A�X)f in C=A with "X as weak
evaluation map. The morphisms of weak Pf -algebras are simply the morphisms of Pf -
structures. (So the category of weak Pf -algebras is a full subcategory of the category
of Pf -structures.)

De�nition 3.3.13 A morphism t = (t; t�: x // z) is a weak Pf -subalgebra, if it is a
weak Pf -substructure and both x and z are weak Pf -algebras.

It would have been enough to require that z is weak Pf -algebra, in view of the
following easy lemma.

Lemma 3.3.14 If t: x // z is a weak Pf -substructure map and z is a weak Pf -algebra,
then so is x.

And �nally:

De�nition 3.3.15 A weak W-type for f is a weak Pf -algebra v with two properties:
(i) its structure map �V is an isomorphism; (ii) every weak Pf -subalgebra i: x // v
has a section.

The second property (ii) is supposed the be a weakening of the property of having no
proper subalgebras. Although very technical, I would like to stress that the property
is precisely what one would expect, in that it is the strong property with unique-
ness clauses dropped and subobjects replaced by \weak subobjects" or \proofs" (see
above).

In the de�nition, it would have been su�cient to require that the structure map
�V is monic, because of the following lemma:

Lemma 3.3.16 If w = (W;W �; �W ; "W ) is a weak Pf -algebra for some f in a cartesian
category C with weak dependent products with the property that every weak Pf -
subalgebra t: x // w has a section, then the structure map �W has a section.

(For those who know how to derive Lambek's result concerning initial algebras, proving
this lemma should be easy.)

Lemma 3.3.17 Let C be a locally cartesian closed category. A W-type Wf for a
morphism f :B //A is also a weak W-type for f .

Proof. It is easy to see that Wf can be considered as a weak Pf -algebra w. Then the
�rst condition for being a weak W-type is certainly satis�ed, because sup:PfWf //Wf

is an isomorphism. To verify the second condition, let x = (X;X�; �X; "X) be any weak
Pf -algebra and t = (t; t�): x // w be a weak Pf -subalgebra morphism in C. Because

46 CHAPTER 3. EXACT COMPLETION AND GLUEING



Predicative topos theory and models for constructive set theory Benno van den Berg

t is a weak Pf -subalgebra, there is a morphism r : (A�X)f //X� in C=A such that
t�r = (A�t)f . Now (X; �X�Ar :PfX //X) is a Pf -algebra and t is a morphism of
Pf -algebras from this algebra to Wf . Hence t has a section u in the category of Pf -
algebras. Then s = (u; r(A�u)f ) is a section of t. �

De�nition 3.3.18 A cartesian category C is called a weak �W -pretopos, if it has �nite
disjoint and stable sums, weak dependent products, a weak natural number object and
weak W-types for all morphisms.

Now the main theorem of this Section has a precise meaning.

Theorem 3.3.19 (= Theorem 3.3.1.) If C is a weak �W -pretopos, then Cex is a
�W -pretopos.

To prove this theorem, it su�ces to show that Cex has W-types for all maps lying
in the image of y (proof: use the remark before Lemma 3.1.6 to see that these are
choice maps and then apply Theorem 3.2.2). So the main theorem will follow from:

Proposition 3.3.20 Let C be a cartesian category with �nite disjoint and stable sums,
weak dependent products and a weak natural number object. If C has a weak W-type
for a map f in C, then Cex has a genuine W-type for the map yf .

To prove Proposition 3.3.20, I will make use of Theorem 3.2.3. What I show is
that if w = (W;W �; �W ; "W ) is a weak W-type in C for a map f :B //A, then yW
has the structure of a Pyf -coalgebra in Cex , with the special properties formulated in
Theorem 3.2.3. This is established by the following sequence of lemmas.

Warning 3.3.21 In the remainder of this Section, I will drop the occurences of y; I
trust that the reader will not get confused.

From now on, suppose C is a cartesian category with �nite disjoint and stable
sums, weak dependent products and a weak natural number object, and suppose that
w = (W;W �; �W ; "W ) is a weak W-type for a map f :B //A in C.

Lemma 3.3.22 The unique map q:W � // (A�W )f in Cex=A such that

W � � f q�f
//

"W
%%JJJJJJJJJJ (A�W )f � f

ev
xxqqqqqqqqqq

A�W

commutes is a cover.
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Proof. Since w is a weak Pf -algebra, one knows that W � is a weak version of (A�W )f

in C=A. One can now de�ne the equivalence relation

Ra = f (g; h) 2 W �a �W �a j 8b 2 f �1(a): "W (g; b) = "W (h; b) g
on W �a (a 2 A) in Cex=A. It is not di�cult to see that the quotient W �=R in Cex=A is
a strong version of the exponential (A�W )f . So q is (up to iso) the quotient map and
hence a cover. �

This establishes that W has the structure of a Pf -coalgebra in Cex , with an epic
structure map

n:W
��1
W // // �AW �

�Aq // // PfW = �A(A�W )f :

Notice that w is also a Pf -structure in Cex , via y.

Lemma 3.3.23 If r = (R;R�; �R; "R) is a Pf -structure in Cex and t: r // w is a weak
Pf -substructure map, then t has a section in Pf (Cex).

Proof. Consider the pullback L in Cex=A in the diagram

L
p0 //

p1

²²

W � � f
"W

²²

A�R A�t
// A�W

Since t is a weak Pf -substructure map, the following is a weak simple product diagram:

R� � f �R //

t��f &&LLLLLLLLLL L
p0

²²

W � � f
where �R = h(t� � f ); "Ri.
Let �:K //R be a cover by an object in the image of y. Now consider the following
two pasted pullback diagrams:

L0 l0 //

l1
²²

L
p0 //

p1

²²

W � � f
"W

²²

A�K A��
// A�R A�t

// A�W

Since the objects K, W and W � � f lie in the image of y, and since this functor
preserves pullbacks, I may assume that L0 also lies in the image of y.
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Construct the following pullback:

L00
j0 //

j1
²²

L0
l0

²²

R� � f �R
// L

And construct the strong version of ��0(j1) in Cex=A (where �0 is the projection
R� � f //R�). This means that one has an object K�0 with maps ��2:K�0 //R� and
�K0:K�0 � f //L00 such that

K�0 � f �K0 //

��2�f %%KKKKKKKKKK L00

j1
²²

R� � f
is a simple product diagram.

It is not hard to verify that

K�0 � f j0�K0 //

(t���2)�fLLL

%%LLL
L

L0

p0l0
²²

W � � f
is a weak simple product diagram. Now let ��1:K� //K�0 be a cover by an element in
the image of y. This implies that

K� � f �K //

(t���)�fLLL
L

&&LLL
L

L0
p0l0

²²

W � � f
(3.5)

with �K = j0�K0(��1� f ) and �� = ��2��1, can be seen as a weak simple product diagram
in C=A.

Using the fact that K� is projective, one constructs a map �K making

�AK�
�A�� //

�K
²²

�AR�

�R
²²

K �
// // R

commutative. This means that one has a Pf -structure k = (K;K�; �K; "K = l1�K) in
Cex , that can also be seen as a Pf -structure in C, and a Pf -structure map � = (�; ��)
in Cex . Now t� can be seen as a Pf -structure map in C, and it is actually a weak
Pf -substructure map in C (since (3.5) is a weak simple product diagram). Therefore
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k can be seen as a weak Pf -algebra in C, and since w is a weak W-type in C, one has
a Pf -structure map s0 such that (t�)s0 = 1W in Pf (C) and Pf (Cex). So s = �s0 is a
Pf -structure map in Cex that is a section of t. �

Corollary 3.3.24 Let R � W be a subobject in Cex and assume that the following
statement holds in the internal logic of Cex :

8w 2 W ( If n(w) = (a; t) and 8b 2 f �1(a): tb 2 R , then w 2 R ): (3.6)

Then R = W as subobjects of W .

Proof. De�ne the following object in Cex=A: for any a 2 A
R�a = f � 2 W �a j 8b 2 f �1(a): projW ("W (�; b)) 2 R g:

Or, equivalently:

R�a = f � 2 W �a j 8b 2 f �1(a): qa(�)(b) 2 R g:
The validity of statement (3.6) implies that for the inclusion map j�:R� //W �,
�W�Aj� factors through R. For if � 2 R�a, write w = (�W�j�)(�). Since n(w) =
(q�j�)(�) = (a; q(�)), q(�)(b) 2 R for all b 2 f �1(a), and so w 2 R. Hence there is
a map �R making

�R� �j�
//

�R
²²

�W �
�W

²²

R j
// W

commute. By the �rst de�nition of R�, the map "W (j� � f ) factors through A�R, so
one has a map "R making

R� � f j��f
//

"R
²²

W � � f
"W

²²

A�R A�j
// A�W

commute. So r = (R;R�; �R; "R) is a Pf -structure in Cex and j = (j; j�) is a Pf -
structure map. It is actually a weak Pf -substructure map, so j has a section s: w // r.
This implies that j is iso, and R = W as subobjects. �

This completes the proof of the main result, Theorem 3.3.1.
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3.4 More examples of �W -pretoposes

I have identi�ed a categorical structure, that of a weak �W -pretopos, whose exact
completion always is a �W -pretopos. Using this, I give several more examples of �W -
pretoposes. One of them is what one might call a \predicative realisability topos",
which is analogous to the realisability toposes in topos theory.

Exact completion of an ML-category 3.4.1 Any ML-category C is a weak �W -
pretopos. It is clear that a category that has genuine dependent products, also has
weak dependent products, and in Lemma 3.3.17, I also showed that it has all weak
W-types. Therefore:

Theorem 3.4.2 The exact completion Cex of an ML-category C is again an ML-
category. Moreover, the embedding y: C // Cex is a morphism of ML-categories.

Proof. That Cex is an ML-category is a direct application of Theorem 3.3.1. Of
course, y is cartesian (it always is), but it also preserves the sums and the dependent
products by Proposition 3.3.2 and Remark 3.3.6. It remains to check to y preserves
W-types.

Because y preserves �, it is clear that whenever W is the W-type for a morphism
f :B //A in C, yW is also an algebra for Pyf in Cex . It is weakly initial for the
following reason: when X is an object with a Pyf -algebra structure t:PyfX //X,
cover X with a projective Y via some map q: Y //X. Since Pyf Y is again projective
(because it can be computed in C), the following diagram can be �lled:

Pyf Y
Pyf q

//

²²

PyfX

t
²²

Y q
// // X:

Therefore Y has the structure of a Pf -algebra in C and there exists a Pf -algebra
morphism p:W // Y . Then qp is a Pyf -algebra morphism in Cex .

But then yW is initial, because it possesses no non-trivial Pf -algebra endomorphisms.
For if m: yW // yW is a Pyf -algebra morphism in Cex , m is also a Pf -algebra morphism
in C, since y is full and faithful. Therefore m is the identity on yW . This is su�-
cient to prove that yW is initial, because whenever s; t: yW //X are two Pf -algebra
morphisms, their equaliser i :E // yW is also a Pf -algebra, with i preserving this
structure. Because yW is weakly initial, there is a Pf -algebra morphism k : yW //E.
So ik is a Pf -algebra endomorphism on yW , hence the identity. Therefore E = yW
as subobjects of yW and s = t. �

This has several consequences. First of all, the exact completions of all the ML-
categories discussed in Chapter 1 are �W -pretoposes. In general, it shows that it is
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not a serious loss of generality to require predicative toposes to be exact. The reason
for including it is that exactness is very useful in obtaining models of set theory. Prima
facie this might look unnecessarily restrictive, but I believe that this result shows
that this is not so. In particular, it shows that there is no reason not to develop
a predicative theory analogous to topos theory only for �W -pretoposes and not for
general ML-categories, as I am doing in these Chapters.

Secondly, this theorem also shows that �W -pretoposes are closed under exact com-
pletion. But beware, the inclusion y will rarely be a morphism of �W -pretoposes. In
that case y: C // Cex would be exact, which can only happen when all objects in C
are projective and C is its own exact completion.

Finally, since the exact completion of a topos (with nno) is seldom again a topos,
but it is a �W -pretopos, there are many examples of �W -pretoposes that are not
toposes. It also shows that there is a closure property of \predicative toposes" that
has no analogue in the topos-theoretic case. This will be exploited in the next Section.

Realisability toposes 3.4.3 This example is basically a warm-up exercise for the
following one. I am going to prove that the realisability topos RT(Q) is a �W -
pretopos. The point is that I try not to rely on the fact that RT(Q) is a topos
with nno, but instead try to give a predicative proof that admits relativisation to a
�W -pretopos. But that is the next example.

So let Q be a pca with underlying set Q. A partitioned assembly (over a Q in Sets)
consists of a set X together with a morphism X //Q. A morphism of partitioned
assemblies from [�]X:X //Q to [�]Y : Y //Q is a function f :X // Y for which
there exists an element r 2 Q such that:

8x 2 X: r � [x ]X # and r � [x ]X = [f (x)]Y :

This de�nes a category Pasm(Q), which, I claim, is a weak �W -pretopos.

It is readily seen to be a full subcategory of the category Asm(Q). The �nite limits
and sums are computed as in this category. To be more explicit, assume that the
conventions for pcas as explained in Appendix C are in place. In particular, assume
one has chosen a pairing operator j with projections j0 and j1 and a set C of Church
numerals, which will simple be denoted by the standard natural numbers. A product
(X; [�]X) � (Y; [�]Y ) would then be constructed by taking X � Y as underlying set,
where a pair (x; y) is realised by h[x ]X; [y ]Y i. A sum (X; [�]X) + (Y; [�]Y ) has as
underlying set X + Y , where x is realised by h0; xi and y by h1; yi.
If (X; [�]X) and (Y; [�]Y ) are partitioned assemblies, a weak version of XY is the
following: F = f(f ; t) 2 XY � Q j t tracks f g. So F consists of pairs (f ; t) such
that for all x 2 X, the expression t � [x ]X is de�ned and its value equals [f (x)]Y .
The map [�]F :F //Q is given by the second projection and the evident evaluation
morphism F �Y //X is tracked by the element in Q coding application. To see that
this is indeed the weak exponential, let r be the realiser of some H:Z � Y //X in
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Pasm(Q). The transpose of H in Sets, l :Z ! XY , extends to a morphism h:Z ! F
in Pasm(Q) by sending z to (l(z); �n 2 Q:r � h[z ]; ni). (I will refer to the weak
exponentials constructed in this fashion as the \canonical" weak exponentials.)

More or less the same argument will establish that Pasm(Q) has weak dependent
products. Let me just give the construction. To construct the weak dependent product
of c :C // J along t: J // I one sets Wi , for every i 2 I, to be as follows:

f (f ; af ; ai) 2 CJi �Q�Q j f is a section of c; af realises f and ai realises i g
The morphism W //Q is given by projection onto the last two coordinates (suitably
coded). The morphism " is de�ned on a j 2 J by sending (f ; af ; ai) 2 t�Wi (where
i = t(j)) to f (j). (I will refer to the weak dependent products constructed in this
fashion as the \canonical" weak dependent products.)

Finally, the construction of the weak natural number object in Pasm(Q) is easy: it is
simply the set C of all Church numerals together with the inclusion of C in Q.

Weak W-types are constructed as follows. Recall the construction of real W-types in
Asm(Q) via the notion of a decoration. As I pointed out, a morphism f :B //A of
partitioned assemblies can also be regarded as a morphism of assemblies, and therefore
one can associate the set of decorations, a particular set of elements in Q, to every
well-founded tree w in the W-type associated to the underlying map of f in set. The
weak W-type associated to f is now the set of decorated trees, pairs (w; a) where a
is a decoration of the tree w , together with the projection on the second coordinate.
A proof of this claim will follow later.

An immediate corollary is that the exact completion of Pasm(Q) is a �W -pretopos.
Assuming the axiom of choice, one can prove this is a topos, in fact it is the realisability
topos on Q (see [77]), so in that case this is something that is well-known. In case
one is unwilling to assume the axiom of choice, that it is a �W -pretopos seems to be
the best one can say.

Intermezzo: W-types in realisability toposes 3.4.4 Since, under the assumption of
the axiom of choice, the realisability topos on a pca is the exact completion of its full
subcategory of partitioned assemblies, one can use the theory developed in this Chapter
to give a concrete description of W-types in realisability toposes. This has been worked
out in a small note by Claire Kouwenhoven-Gentil and me.

Since RT(Q) is the exact completion of Pasm(Q), every object in RT(Q) is covered
by a partitioned assembly (in fact, (X;=) is covered by f(x; n) 2 X � Q j n 2 E(x)g
with second projection). The partitioned assemblies are also internally projective and
maps between partitioned assemblies are choice maps in RT(Q). This implies that for
any morphism f :B //A, there exists a choice map �:B0 //A0 between partitioned
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assemblies such that

B0
f�g

// //

�
²²

B
f

²²

A0 f�g
// // A

is a quasi-pullback.

By Theorem 3.2.2, given such a square, W : = Wf can be constructed as a subquotient
of W 0: = W�. More precisely, consider the following relation on W 0, de�ned inductively
in the internal logic by: sup�� � sup�0� 0 i�

f�g = f�0g ^ 8� 2 ��1(�); 8�0 2 ��1(�0): f�g = f�0g ! �� � � 0�0:
� is symmetric and transitive. One now constructs W by considering the re
exive
elements and dividing out by the equivalence relation �.

Besides, the structure map s:Pf (W ) //W is the unique arrow making the following
diagram commute:

Pf (W )

s
²²

R�q�
oooo // //

sup
²²

P�(W 0)
sup

²²

W Rq
oooo // // W 0:

Here R is the object of re
exive elements, q the quotient map and q� is de�ned on a
pair (�; � :B0� ! W 0) with sup�� 2 R as the pair (a; t), with a = f�g and t:Ba ! W
de�ned by t(f�g) = [�(�)] (which is well-de�ned, as sup�� 2 R).

Consider the following object in that category in RT(Q):

(WSets(�);�);

where � is as above, and r ` w � w 0 for w = sup�� and w 0 = sup�0� 0, if and only if
r = hr0; r1; r2i is such that the following hold:

� r0 ` Ew ^ Ew 0.
� r1 ` a = a0.
� for all �; �0; m such that m ` � 2 ��1(�) ^ �0 2 ��1(�0) ^ b = b0, r2 � m is

de�ned and r2 �m ` �� � � 0�0.
In these conditions, a = f�g, a0 = f�0g, b = f�g, b0 = f�0g and Ew is the set of
decorations of w .

Corollary 3.4.5 The object under consideration is the W-type for f in RT(Q).

Proof. From Chapter 2, one knows how to compute W-types for � in the categories
of assemblies or in the realisability topos. Then the proof consists in rewriting in terms
of realisers the description given above in terms of the internal logic of RT(Q). �

54 CHAPTER 3. EXACT COMPLETION AND GLUEING



Predicative topos theory and models for constructive set theory Benno van den Berg

Predicative realisability toposes 3.4.6 One can relativise the preceeding example to
a �xed �W -pretopos E , which will then act as a kind of predicative metatheory. But
�rst, one has to agree on a notion of an internal pca in E . The notion will have to
be more stringent than might be expected at �rst, in order to circumvent problems
related to choice. What I will need is that the elements of the pca that are required
to exist in the condition of combinatory completeness are given as a function of the
initial data (by a morphism in E). For this it su�ces to assume that the combinators
k and s are given as global elements (morphisms 1 //Q).

Then the de�nition of a partitioned assembly can go through as follows: a partitioned
assembly over an internal pca Q in a �W -pretopos E consists of an object X in
E together with a morphism [�]X:X //Q. A morphism of partitioned assemblies
f : (X; [�]X) // (Y; [�]Y ) is a morphism f :X // Y for which there exists a global
element2 r : 1 //Q such that:

8x 2 X: r � [x ]X # and r � [x ]X = [f (x)]Y

holds in the internal logic of E . As usual, r is said to track or realise f .

The construction of the �nite limits, �nite sums and weak dependent products is the
same as in the more speci�c case of the previous example. That it has weak W-types is
far from obvious. One somehow needs to be able to de�ne the notion of a decoration
predicatively, which is possible by giving a key rôle to the notion of path. De�ning
decorations will thereby inevitably become a rather technical exercise, but it can done,
as I will now show.

Suppose f is a morphism in Pasm(Q). Now �x a tree w 2 W (f ). A function
�: Pathsw //Q is called a decoration of w , if for any path � ending with the subtree
w 0 = supa(t), one has that �(�) codes a pair hn0; n1i where n0 equals [a] and n1 has
the property that

8b 2 f �1(a): n1 � [b] is de�ned and is equal to �(� � hb; tbi):

Observe that there is a lot of redundancy in this de�nition. In fact, all the information
is already contained in the element �(hwi) 2 Q. One might call the element � 2
Q a decoration of w if for every path � of length l , say, there exists a function
c : f0; 2; : : : ; l � 1g //Q such that (1) c(0) = �; (2) for any even m < l � 1, c(m)
codes a pair hn0; n1i such that (a) n0 = [��(m)] and (b) n1 � [�(m+ 1)] is de�ned and
equals c(m+2). Notice that for �xed � and �, a function c having these properties, if
it exists, is necessarily unique: � determines c(0) by (1) and c(m) determines c(m+2)
by (2b). For this reason, I may write c�, whenever � is understood.

So one has a notion of decoration in the \functional" and the \elementary" sense.
The numerical de�nition of a decoration may contain less redundancy, but is, I feel,

2It is necessary to require the existence of a global element, rather than the existence of such an
r 2 Q in the internal logic of E , for otherwise the resulting category would not have weak exponentials.
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somewhat opaque. It is convenient to have both perspectives available and I will
make use of both of them. (That they are indeed equivalent, as I am suggesting, is
something one may see as follows: every decoration � in the functional sense induces
one in the elementary sense by taking �(hwi). Then the function c� for a path � is
given by c�(m) = �h�(0); : : : �(m)i. Conversely, because c is a function of �, one
can put �(�) = c�(l � 1).)

A pair v = (w; �) 2 W (f )�Q such that � is a decoration of w is called a decorated
tree. Furthermore, v 0 = (w 0; �0) will be called a decorated subtree of v = (w; �) if
there is a path � in Pathsw , of length n say, such that �(n � 1) = w 0 and �0 = �(�).
(In the equation �0 = �(�), �0 is a decoration in the elementary sense and � is a
decoration in the functional sense. Here one clearly sees it pays o� to have both
perspectives available.) One might call v 0 a proper decorated subtree, if the length n
can be chosen to be bigger than 1. I will denote the collection of decorated subtrees of
v by DSubTrv . One again sees that the notion of a decorated subtree is re
exive and
transitive, and that there are immediate decorated subtrees of (supa(t); �), namely
the (tb; �hsupa(t); b; tbi)'s (b 2 f �1(a)). These are obviously proper.

After these preliminaries, the weak W-types in Pasm(Q) can quickly be constructed.
Set

V = f v = (w; �) 2 W (f )�Q j v is a decorated tree g
This is an object in Pasm(Q) by de�ning [�]V : V //Q to be the second projection.
Let V � be the \canonical" weak version of V f in the slice over A, so:

V �a = f (t; (n0; n1)) 2 V f �1(a) � P j n1 tracks t and n0 = [a] g:
In more detail: (t; (n;m)) is in V �a if m = [a] and n � [b] is de�ned and equal to the
\decoration-component" of t(b) for every b 2 f �1(a). (Now "W is, of course, the
corresponding weak evaluation.)

The morphism �V : �AV � // V is de�ned by sending (t; (n;m)) 2 V �a to the pair
(supa(t); (n;m)), where the pair (n;m) is suitably coded. (The reader should verify
that this pair consists of a tree together with a decoration for this tree, and that �V
is tracked by the identity, basically.)

Observe that �V is actually an isomorphism. The unique element � such that �(�) =
v = (w = supa(t); �) is ((a; �b 2 f �1(a):(tb; �(hw; b; tbi))); �).

This completes the construction of the quadruple v = (V; V �; �V ; "V ). That it is a
weak Pf -algebra is immediate by the construction. That it is the weak W-type is not
easy to show, but it follows from the following sequence of lemmas.

I have to show that every weak Pf -subalgebra morphism i: x ! v has a section. So
suppose one has a weak Pf -algebra x = (X;X�; �X; "X), together with a weak Pf -
subalgebra map i: x // v. If L = (V � � f ) �V X and if p0 is the map L // V � � f ,
one may assume that i�:X� // V � is the \canonical" weak dependent product of p0

along the projection V � � f // V � constructed above with "X the \canonical" weak
evaluation map, in view of the following lemma:
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Lemma 3.4.7 Let a weak Pf -algebra x = (X;X�; �X; "X) together with a weak Pf -
subalgebra morphism i: x // v in PASL(P) be given. Now there exists a weak Pf -
algebra z = (Z;Z�; �Z; "Z) with a weak Pf -subalgebra morphism j: z // v where
j�:Z� // V � is the canonical weak dependent product of p0 along the projection
Z� � f //Z� and "Z the canonical weak evaluation map, together with a weak Pf -
algebra morphism k: z // x.

Proof. Suppose a weak Pf -algebra x = (X;X�; �X; "X) is given together with a weak
Pf -subalgebra morphism i: x // v. Now put Z = X and j = i . Now let j�:Z� // V �
be the canonical weak dependent product of p0 along the projection V � � f // V �
and let "Z be the canonical weak evaluation map. Let k :Z //X be the identity.

Because X� is a weak dependent product of p0 along the projection V � � f // V �
there exists a morphism k�:Z� //X� such that "X � (k� � f ) = k � "Z. Now set
�Z = �X � k�. Now z = (Z;Z�; �Z; "Z) is a canonical weak Pf -subalgebra, with
j = (j; j�) as weak Pf -subalgebra morphism. Furthermore, k = (k; k�) is a weak Pf -
algebra morphism. �

So for a given � in V �, one may assume that X�� is de�ned as

f(h 2 Lf ; nh 2 Q; n� 2 Q) j (p0h)(�) = (�;�); nh realises h and n� realises �g:
Or, equivalently, de�ned as

f(h 2 Xf ; nh 2 Q; n� 2 Q) j ih = "W (�;�); nh realises h and n� realises �g:
The latter will be my working de�nition.

After making this simplifying assumption, one chooses an s: 1 //Q such that s tracks
�X and constructs a solution r of the recursion equation:3

r � j(n0; n1) = s � j(n0; H(r; n1))

(here H is the realiser of the function yielding the code of the composition of two
elements).

The idea behind the construction of the Pf -algebra morphism d: v // x that is going
to be a section of i is essentially the same as that behind the construction of the
Pf -algebra morphism in Theorem 2.1.5, although technical details will make this con-
struction more complex. Again, the crux is an appropriate notion of an attempt. Here
I de�ne an attempt for some element v of V as a function g: DSubTrv //X such
that:

1. r � [v 0]V = [g(v 0)]X for all decorated subtrees v 0 of v .

2. If v 0 = �X(�) is some decorated subtree of v , then the function h = g � � is
tracked by m = H(r; j1[v 0]) and satis�es the equation (�X)�(h; (m; [� ])) = g(v 0).

3It is here that one needs the strict requirements on the pca Q.
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3. ig(v 0) = v 0 for all decorated subtrees v 0 of v .

One should think of an attempt as a partial approximation of a section d of i. Once
the construction of d is completed, a attempt will turn out to be a restriction of d to
the subtrees of a particular element v of V .

Concerning attempts one proves the following two lemmas.

Lemma 3.4.8 Attempts are unique, so if g and h are two maps DSubTrv //X both
satisfying the de�ning condition for attempts for an element v , then g = h.

Proof. Let

Q = fw 2 W jFor all decorations � of w; attempts for (w;�) are unique. g
I use induction to show that Q = W : that will immediately imply the desired result.
Assume that w 2 W is such that for all proper subtrees w 0 and decorations �0 of w 0
attempts are unique for (w 0; �0). Let � be a decoration of w and notice that attempts
are unique for proper decorated subtrees of v = (w; �), in particular for the immediate
subtrees vb = (tb; �(hw; b; tbi)).

Suppose g is a attempt on v . The values of g on proper decorated subtrees of v are
uniquely determined by the fact that the restriction of a attempt to the decorated
subtrees of a particular decorated subtree is again a attempt for that decorated sub-
tree. In particular, the value of g on the immediate subtrees vb is �xed. Then the
second element in the de�nition of a attempt determines the value of g on v itself.
This completes the induction step and the proof. �

Lemma 3.4.9 Attempts exist for every v .

Proof. Let

Q = fw 2 W jFor all decorations � of w; attempts for (w; �) exist. g
Again, by induction I show that Q = W , which will prove the lemma. Now, assume
that w 2 W is such that for all proper subtrees w 0 and decorations �0 of w 0 attempts
exist for (w 0; �0). Let � be a decoration of w and observe that (necessarily unique)
attempts gb exist for the immediate subtrees vb = (tb; �(hw; b; tbi)).

If one wants to de�ne a attempt g: DSubTrv //X on v , one is forced to put g(v 0) =
gb(v 0) if v 0 is some decorated subtree of some vb with b 2 f �1(a) (this is independent
of the particular b involved in view of the previous lemma). It remains to de�ne g(v).
In the previous lemma, I already observed that I have no choice in how to de�ne g(v).
Let me now be more detailed. Let

h = �b 2 f �1(a):gb(vb)
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and m = H(r; j1�). Write � = (t; �) 2 V �a , so [� ] = �. First I claim that m tracks h.
Let b 2 f �1(a) be arbitrary and calculate:

m � [b] = H(r; j1�) � [b]
= r � (j1� � [b])
= r � �(hw; b; tbi)
= r � [vb]
= [g(vb)]:

This means that (h; (m; [� ])) is actually a member of X�� and one puts (is even forced
to put) g(v) = �X(h; (m; [� ]).

The map g: DSubTrv //X satis�es the second condition for being a attempt by
construction. What about the �rst?

r � [v ] = r � �
= s � (j0�;H(r; j1�))
= s � [(h; ([a]; m))]
= [�X(h; ([a]; m))]
= [g(v)]

This being satis�ed: what about the third?

ig(v) = i(�X)�(h; (m; [� ]))
= �V i�� (h; (m; [� ]))
= �V (�)
= v

So this one is also satis�ed. This means that g has the required properties and hence
the induction step is completed. This also completes the proof. �

Using these two lemmas, one can de�ne the map d : V //X by setting d(v) = g(v),
where g is the unique attempt g: SubTrv //X. It is immediate from the proof of
the second lemma, where the attempts were actually built, that the natural number r
tracks s and that s extends to a weak Pf -algebra map d that is a section of i. So v
is a weak W-type for f in Pasm(Q).

In this way, within a predicative metatheory, one shows that the exact completion
of Pasm(Q) is a �W -pretopos. I would argue that this deserves to be called \the
predicative realisability topos on Q relative to E", as it would yield RT(Q) in case E
= Sets. Then the argument shows that �W -pretoposes are closed under a notion of
realisability, like toposes.
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Subcountables in the e�ective topos 3.4.10 Again �x a pca Q. A base on Q is a
subobject X � Q. A morphism f :X // Y of bases is a function f :X // Y that is
tracked by an element r 2 Q in the sense that

8x 2 X: r � x # and r � x = f (x):

This yields a category, which will be denoted by Base(Q). Bases can be identi�ed by
partitioned assemblies (X; [�]X) where [�]X is injective, so where realisers are unique.
It is then rather easy to see that the category of bases inherits the weak �W -pretopos
structure of Pasm(Q).

In case Q = K1, and assuming the axiom of choice, the exact completion of the cate-
gory of bases is a subcategory of the e�ective topos. Actually, it is the full subcategory
of subcountables, which is therefore a �W -pretopos (an object is subcountable, when
it is covered by a subobject of the natural number object).

Corollary 3.4.11 The subcountable objects in the e�ective topos form a �W -preto-
pos.

Proof. To prove that the category of subcountables is the exact completion of the
category of bases, it su�ces to show that both contain the same objects, as the exact
completion of the category of bases is also a full subcategory of the e�ective topos,
since Eff = Pasmex and Base is a full subcategory of Pasm.

The natural number object N in Eff is the same as in assemblies: the underlying set
is that of the natural numbers, and n is realised solely by n, so En = fng. As the
bases are precisely the ::-closed subobjects of N, and objects in Baseex are covered
by bases, they are certainly subcountable. Conversely, a subobject of N in Eff can
be represented by a predicate P :N //PN such that ` P (x) ! Ex . It is in Baseex ,
because it can be obtained as the quotient:

f(x;m;m0) jm;m0 ` P (x)g //

// f(x;m) jm ` P (x)g:
A subcountable in Eff is represented by a symmetric, transitive relation on N in Eff ,
more precisely, a function R:N� N //PN such that

` R(x; x)! Ex;
` R(x; y)! R(y ; x);
` R(x; y) ^ R(y ; z)! R(x; z):

Therefore it can be obtained as the following quotient of subobjects of N:

f(x; y) jR(x; y) 6= ;g //

// fx jR(x; x) 6= ;g;
and hence it is in Baseex . �
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The subcountables in the e�ective topos will in the next Chapter be exploited to give
a model of constructive-predicative set theory, that validates a principle incompatible
with the existence of the powerset of the natural numbers.

It would be interesting to see to what extent the subcountables in the e�ective topos
can be regarded as a kind of \modi�ed PERs". The point is that they are modi�ed so
that the category will be exact, and it may therefore model quotient types in addition
to what is modelled by the category of ordinary PERs.

3.5 Glueing and the free �W -pretopos

This Section discusses another closure property of �W -pretoposes, one that they
share with toposes: closure under glueing. When combined with the theory of exact
completions, it yields a (to me) surprising fact concerning the free �W -pretopos.
Among other things, it shows that the free �W -pretopos cannot be the same as the
category of setoids.

Consider any cartesian functor F : E //F between �W -pretoposes. Out of these
data, one builds a new category Gl(F ) as follows. Objects are triples (A;X;�), where
A and B are objects of E and F respectively and �:B //FA in F . Such triples are
also sometimes denoted by �:B //FA. Morphisms (A;X;�) // (B; Y; �) are pairs
(f :A //B; g:X // Y ) such that

X � //

g
²²

FA
F f

²²

Y �
// FB

commutes.

I will prove in an instant that the category Gl(F ) so de�ned is actually a �W -
pretopos. But more is true. There is an adjoint pair of functors

E
bF

11
? Gl(F );
P

ss

where P is a forgetful functor, sending a triple (A;X;�) to A, and F̂ sends an object
A to the triple (A; FA; 1FA). P will be a morphism of �W -pretoposes, while F̂ will
typically preserve whatever F preserves (so it will be at least cartesian). Clearly,
P F̂ �= 1.

Theorem 3.5.1 If F : E //F is a cartesian functor between �W -pretoposes, then
Gl(F ) is a �W -pretopos. Furthermore, there is a pair of adjoint functors

E
bF

11
? Gl(F );
P

ss
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where P is a morphism of �W -pretoposes, F̂ is cartesian, and P F̂ �= 1. In case F is
a morphism of ML-categories, so is F̂ .

Proof. All the claims will follow from the concrete description of the �W -pretopos
structure of Gl(F ).

That Gl(F ) is cartesian is obvious, as �nite limits can be computed componentwise and
they are preserved by F . There is no di�culty in seeing that Gl(F ) has �nite, disjoint
sums, because the sum of X //FA and Y //FB is X+Y //FA+FB //F (A+
B). To see that Gl(F ) is regular, observe the following facts, where (f ; g) is a
morphism in Gl(F ).

1. When f and g are both monic, so is (f ; g).

2. When f and g are both covers, so is (f ; g).

3. When (f ; g) is a cover (monic), so are both f and g.

4. Gl(F ) is regular.

1 is obvious, while 2 follows from Joyal's result that covers in a regular category
are the coequalisers of their kernel pair (see Lemma A.3). Now one can see that
any morphism (f ; g) can be factored as a cover followed by a mono, by doing this
componentwise. Since such factorisations are unique up to isomorphism, 3 follows. 4
is then immediate.

That Gl(F ) is a pretopos follows from the fact that coequalisers of equivalence re-
lations can be computed componentwise, and that it has a natural number object is
also trivial (it is N //FN). To see that Gl(F ) is a �-pretopos, it is su�cient to
show that is a cartesian closed, because for any (A;X;�) in Gl(F ), the slice category
Gl(F )=(A;X;�) is again a glueing category: it is Gl(G), where G is the composite:

E=A FA // F=FA �� // F=X:
More explicitly, t:B //A is sent by G to the upper side of the pullback square:

GB
�X

²²

Gt // X
�

²²

FB F t
// FA:

(3.7)

As the composite of two cartesian functors, G is cartesian as well.

Gl(F ) is cartesian closed, because the exponential (A;X;�)(B;Y;�) is computed by �rst
forming the pullback (� is the obvious comparison map):

Z



²²

// XY

�Y
²²

F (AB) �
// FAFB FA�

// FAY ;
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when it will be (AB; Z; 
).

It is more complicated to see that Gl(F ) inherits W-types. First one should describe
polynomial functors for morphisms � = (f ; g): (B; Y; �) // (A;X;�) in Gl(F ). Let
G: E=A //F=X be as above, and observe that there is a natural transformation

�C:G(PfC) //Pg(FC);

which is the composite of

G(PfC) = G�A(C � A //A)(B // A) // �XG((C � A //A)(B // A)) //

�XG(C � A //A)G(B // A) = PGf (FC);

and the natural transformation PGf //Pg induced by the commuting triangle:

Y
g

!!CC
CC

CC
CC

²²

GB Gf
// X;

obtained from (3.7) (see [60], Section 4.2). For any triple (C;Z; 
) in Gl(F ), let
P Cg (Z; 
) be de�ned by taking the pullback:

P Cg (Z) //

�
²²

Pg(Z)

Pg(
)
²²

G(PfC) // Pg(FC):

P Cg (Z; 
) can be regarded as an object in F=(FPfC), by composing � with �Pf C. P�
computed on the triple (C;Z; 
) is now (PfC; P Cg Z; �Pf C�).

When W is the initial Pf -algebra in E , W �= PfW , so PWg is an endofunctor on F=FW .
In the terminology of Gambino and Hyland [33], PWg is a generalised polynomial func-
tor, hence has an initial algebra (V;  ). I claim that (W; V; ) is the W-type for � in
Gl(F ). It is a �xpoint by construction, and it is not hard to see that an extension of
Theorem 2.1.5 will prove that it is initial. �

The promised application to the free �W -pretopos is the following theorem. In
the remainder of the Section, write D for the free ML-category and E for the free
�W -pretopos.

Theorem 3.5.2 If B:D // E is the unique morphism of ML-categories from the free
ML-category to the free �W -pretopos, all the objects in the image of B are projective.

Proof. The proof relies on the combination of Theorem 3.4.2 with the previous
theorem. Let E be the free �W -pretopos, and take its exact completion Eex . From
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Theorem 3.4.2, one knows that y: E // Eex is a morphism of ML-categories. If one
writes F for the �W -pretopos obtained by glueing along y, one obtains by the previous
result a pair of adjoint functors

E
by

++> F ;
P

kk

where P is a morphism of �W -pretoposes, ŷ is a morphism of ML-categories, and
P ŷ �= 1. Since F is a �W -pretopos and E is initial among �W -pretoposes, there is
a morphism S: E //F of �W -pretoposes, such that also PS �= 1. If B:D // E is
the unique morphism of ML-categories from the free ML-category to the free �W -
pretopos, one also has ŷB �= SB.

It is easy to see that objects of the form ŷX are projective in F , because objects of
the form yX are, and y is full and faithful (also use the characterisation of covers in
Gl(F ) given in the proof of the previous theorem). It is also not hard to that in case
SX is projective for an object X in E , X is itself projective, because S, as a morphism
of �W -pretoposes, preserves covers. Since objects in the image of B are such objects,
the statement of the theorem is proved. �

What is most surprising (to me, at least) about this result is that it shows that
all higher types, like NN, are projective in the free �W -pretopos. What is not true,
however, is that NN is internally projective in the free �W -pretopos, as the following
result shows.

Proposition 3.5.3 1. If F is a �-pretopos in which NN is internally projective, then
Church's Thesis is false in the internal logic of F .

2. NN is not internally projective in the free �W -pretopos.

Proof. If NN is internally projective in a �W -pretopos F , its internal logic will model
HA! + AC1;0 + EXT . It is a well-known result by Troelstra [82] (see also [81]) that
this theory refutes Church's Thesis.

Because the validity of statements in the internal logic is preserved by morphisms of
�W -pretoposes, validity of the negation of Church's Thesis in the free �W -pretopos
would imply validity of the negation of Church's Thesis in all �W -pretoposes. But
since Church's Thesis is valid in the e�ective topos, for instance, this is impossible.
Therefore NN is not internally projective in the free �W -pretopos. �

Corollary 3.5.4 The following three �W -pretoposes are all di�erent:

� The free �W -pretopos E .
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� The exact completion Dex of the free ML-category D.

� The category Setoids.

Proof. This corollary is an immediate consequence of the following table:

Category NN externally projective NN internally projective
Setoids No No
E Yes No
Dex Yes Yes

The two bottom rows are consequences of the results obtained in this Chapter. The
entries for Dex follow immediately from Theorem 3.4.2 and Lemma 3.1.6, while the
previous two results give the entries for E .

The entries for the category of setoids are consequences of the following sequence
of facts. Among the setoids, there are the \pure types", consisting of a type with
its intensional equality as equivalence relation. These pure types are projective. This
includes the pure type 1 = N1, which is the terminal object in the category of setoids.
So the terminal object in Setoids is projective, and hence the internal projectives are
also externally projective.

The object NN in Setoids is the type N ! N together with the \extensional" equality
relation

�n 2 N: Id(N; f n; gn):

This object is covered by the pure type N ! N, so if it were projective, this cover
would have a section. This would imply that there is a de�nable operation s 2 (N !
N)! (N ! N) such that the following types are provably inhabited:

�f 2 N ! N:EXTEQ(f ; sf )
�f ; g 2 N ! N:EXTEQ(f ; g)! INTEQ(sf ; sg);

where

INTEQ(f ; g) : = Id(N ! N; f ; g)
EXTEQ(f ; g) : = �n 2 N: Id(N; f n; gn):

Such an s cannot exist, because if it would, one could decide extensional equality of
terms of type N ! N, which is known to be impossible: for any two closed terms p; r
of type N ! N, the type EXTEQ(p; r) is inhabited, i� INTEQ(sp; sr) is inhabited, i�
sp and sr are convertible, which is decidable (many thanks to Thomas Streicher for
helping me out on this). Therefore NN is not projective in Setoids, and, a fortiori,
not internally projective either. �
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Chapter 4

Algebraic set theory and CZF

This Chapter is meant to make good on the claim that �W -pretoposes form a natural
context for models of constructive-predicative set theories, like CZF.

Aczel's set theory CZF is introduced in the �rst Section. CZF provides not only a
setting in which one can practice Bishop-style constructive mathematics in manner very
similar to ordinary mathematics, but it also has a precise justi�cation as a constructive
theory. In [2] (see also [3] and [4]), Aczel interpreted his theory in Martin-L�of type
theory with W-types and one universe, a theory which is indisputably constructive,
and, in this sense, CZF has the best possible credentials for deserving the epithet
\constructive".1

The connection with �W -pretoposes goes via algebraic set theory. Algebraic set
theory is a 
exible categorical framework for studying set theories of very di�erent
stripes. How this theory can be used to model CZF in �W -pretoposes is the subject
of Moerdijk and Palmgren's article [61]. This will be recapitulated in Section 2.

In Section 3, I explain how a recent model of CZF discovered independently by
Streicher and Lubarsky falls within this framework. The model is then further in-
vestigated and shown to validate some interesting principles incompatible with either
classical logic or the powerset axiom.

4.1 Introduction to CZF

This Section provides an introduction to Aczel's set theory CZF. A good reference
for CZF is [7].

Like ordinary formal set theory, CZF is a �rst-order theory with one non-logical
symbol �. But unlike ordinary set theory, its underlying logic is intuitionistic. To

1For the interpretation to work, the universe need not be closed under W-types. And one needs
only one W-type, which is then used to build a universe of well-founded sets.
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formulate its axioms, I will use the following abbreviations:

9x�a (: : :) : = 9x (x�a ^ : : :);
8x�a (: : :) : = 8x (x�a! : : :):

Recall that a formula is called bounded when all the quanti�ers it contains are of one
of these two forms. Finally, I write B(x�a; y�b)� to mean:

8x�a 9y�b � ^ 8y�b 9x�a �:
Its axioms are the (universal closures of) the following formulas, in which � is

arbitrary, unless otherwise stated.

(Extensionality) 8x (x�a$ x�b)! a = b

(Pairing) 9y 8x (x�y $ (x = a _ x = b))

(Union) 9y 8x (x�y $ 9z (x�z ^ z�a))

(Set Induction) 8x (8y�x �(y)! �(x))! 8x �(x)

(In�nity) 9a (9 x x�a ^ 8x�a 9y�a x�y)

(�0-Separation) 9y 8x (x�y $ (�(x)^x�a)) for all bounded formulas � not contain-
ing v as a free variable

(Strong Collection) 8x�a 9y �(x; y)! 9bB(x�a; y�b)�(x; y)

(Subset Collection) 9c 8z (8x�a 9y�b �(x; y ; z)! 9d�c B(x�a; y�d)�(x; y ; z))

Set Induction is constructive version of the Axiom of Foundation (or Regularity
Axiom). Such a reformulation is in order, because the axiom as usually stated implies
the Law of Excluded Middle. Strong Collection can be considered as a strengthening
of the Replacement Axiom. The Subset Collection Axiom has a more palatable for-
mulation (equivalent to it over the other axioms), called Fullness. Write mv(a; b) for
the class of all multi-valued functions from a set a to a set b, i.e. relations R such
that 8x�a 9y�b (a; b)�R (pairs of sets can be coded by the standard trick).

(Fullness) 9z (z � mv(a; b) ^ 8x�mv(a; b)9c�z (c � x))

Using this formulation, it is also easier to see that Subset Collection implies Exponen-
tiation, the statement that the functions from a set a to a set b form a set.

In order to have a fully satisfactory theory of inductively de�ned sets in CZF, Aczel
proposed to extend CZF with the Regular Extension Axiom.2 A set A is called regular ,

2The extension is a good one in that the Regular Extension Axiom is validated by the interpretation
of CZF in Martin-L�of type theory with W-types and one universe closed under W-types. This is a
stronger type theory than the one needed for CZF proper, but still indisputably constructive.
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when it is transitive, and for every R�mv(a; A), where a�A, there is a bounding set
b�A such that B(x�a; y�b) (x; y)�R. The Regular Extension Axiom (REA for short)
says:

(REA) 8x 9r (x�r ^ r is regular)

For instance, this allows one to prove that, working inside CZF, the category of sets
has W-types (see [7]). In fact:

Theorem 4.1.1 The category of sets and functions of CZF+REA is a �W -pretopos.

4.2 Introduction to algebraic set theory

Algebraic set theory, as introduced by Joyal and Moerdijk in their book [47], is a

exible categorical framework for studying formal set theories. The idea is that a
uniform categorical approach should be applicable to set theories with very di�erent

avours: classical or constructive, predicative or impredicative, well-founded or non-
well-founded, etcetera.

The approach relies on the notion of a small map. In a category, whose objects and
morphisms are thought of as general classes and functional relations (possibly of the
size of a class) or general sets and functions, certain morphisms are singled out because
their �bres possess a special set-theoretic property, typically that of being relatively
small in some precise sense. One could think of being a set as opposed to being a
proper class, �nite as opposed to in�nite, countable as opposed to uncountable, but
also of being a small type as opposed to a type outside a particular type-theoretic
universe.

The 
exibility of the approach resides in the fact that the axioms for the class of
small maps are not �xed once and for all: these are determined by the particular set
theory or set-theoretic notion one is interested in. This is something we will actually
see, because in this thesis, two di�erent sets of axioms will be introduced. But in this
Chapter the axioms for the class of small maps I will work with are those of Moerdijk
and Palmgren in [61]. This choice is determined by two things: my interest in the
predicative-constructive set theory CZF and my wish to see the category of setoids
as a natural example.3

This Section recaps de�nitions and results from [61].

Let S be a class of maps in an ambient category E , which I assume to be a
�W -pretopos.

3For di�erent axiom systems, see [47], [9] and other references at the \Algebraic Set Theory"
website: http://www.phil.cmu.edu/projects/ast/. And also Chapter 6.
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De�nition 4.2.1 S is called stable if it satis�es the following axioms:

(S1) (Pullback stability) In a pullback square

D //

g
²²

C
f

²²

B p
// A

(4.1)

g belongs to S, whenever f does.

(S2) (Descent) If in a pullback diagram as in (4.1), p is epi, then f belongs to S,
whenever g does.

(S3) (Sum) If two maps f :B //A and f 0:B0 //A0 belong to S, then so does f +
f 0:A+ A0 //B + B0.

These axioms express that maps belong to S by virtue of the properties of their �bres.

De�nition 4.2.2 A class S is called a locally full subcategory , if it is stable and also
satis�es the following axiom:

(S4) In a commuting triangle

C
g

//

h
ÂÂ

??
??

??
? B

f
ÄÄÄÄ

ÄÄ
ÄÄ

Ä

A
where f belongs to S, g belongs to S if and only if h does.

Remark 4.2.3 If (S1) holds and all identities belong to S, (S4) is equivalent to the
conjunction of the following two statements:

(S4a) Maps in S are closed under composition.

(S4b) If f :X // Y belongs to S, the diagonal X //X�Y X in E=Y also belongs to
S.

When thinking in terms of type constructors, this means that (S4) expresses that
smallness is closed under dependent sums and (extensional) equality types. I will
actually require the class of small maps to be closed under all type constructors,
hence the next de�nition.

For any object X in E , I write SX for the full subcategory of E=X whose objects
belong to S. An object X is called small, when the unique map X // 1 is small.
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De�nition 4.2.4 A locally full subcategory S in a �W -pretopos E is called a class of
small maps, if for any object X of E , SX is a �W -pretopos, and the inclusion functor

SX // // E=X
preserves the structure of a �W -pretopos.

Lemma 4.2.5 (See [61], Lemma 3.4.) A locally full subcategory S in a �W -pretopos
E is class of small maps i� it has the following �ve properties:

(F1) 1X 2 S for every object X in E .

(F2) 0 //X is in S, and if Y //X and Z //X are in S then so is Y + Z //X.

(F3) For an exact diagram in E=X,

R
//

//

ÂÂ
??

??
??

??
Y // //

²²

Y=R

}}{{
{{

{{
{{

X

if R //X and Y //X belong to S then so does Y=R //X.

(F4) For any Y //X and Z //X in S, their exponent (Z //X)(Y // X) in E=X
belongs to S.

(F5) For a commutative diagram

B f //

ÂÂ
@@

@@
@@

@ A

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

X

with all maps in S, the W-type WX(f ) taken in E=X (which is a map in E with
codomain X) belongs to S.

De�nition 4.2.6 A stable class (locally full subcategory, class of small maps) S is
called representable, if there is a map �:E //U in S such that any map f :B //A
in S �ts into a double pullback diagram of the form

B
f

²²

B0 //

²²

oo E
�

²²

A A0p
oooo // U

where p is epi, as indicated.
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Representability formulates the existence of a weak version of a universe. The
map � in the de�nition of representability is often called the universal small map, even
though it is not unique (not even up to isomorphism). In the internal logic of E ,
representability means that a map f :B //A belongs to S i� it holds that

8a 2 A9u 2 U:Ba �= Eu:

In particular, it means that one can talk about \being small" in the internal logic of
E .

The axioms for a class of small maps that I have given so far form the basic
de�nition. The de�nition can be extended by adding various choice or collection
principles. There is the collection axiom (CA) in the sense of Joyal and Moerdijk in
[47]:

(CA) For any small map f :A //X and epi C //A, there exists a quasi-pullback of
the form

B //

g
²²

C // // A
f

²²

Y // // X
where Y //X is epi and g:B // Y is small.

As discussed in [61], the collection axiom can be reformulated using the notion of
a collection map. Informally, a map g:D //C in E is a collection map, whenever it
is true (in the internal logic of E), that for any map f :F //Dc covering some �bre
of g, there is another �bre Dc 0 covering Dc via a map p:Dc 0 //Dc which factors
through f .

De�nition 4.2.7 A morphism g:D //C in E is a collection map, when for any map
T //C and any epi E //T �C D there is a diagram of the form

D

²²

D �C T 0

²²

oo // E // // T �C D
²²

// D

²²

C T 0oo // // T // C

where the middle square is a quasi-pullback with an epi on the bottom, while the two
outer squares are pullbacks. A map g:D //C over A is a collection map over A, if
it is a collection map in E=A.

Observe that a collection map is a categorical notion, and does not refer to or depend
on a class of small maps.

Proposition 4.2.8 (See [61], Proposition 4.5.) A map D //C is a collection map
over C if, and only if, it is a choice map.
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In case the class of small maps is representable, the collection axiom is equivalent to
stating that the universal small map �:E //U is a collection map. (This is imprecise,
but in a harmless way: if one universal small map is a collection map, they all are.)

In [61], Moerdijk and Palmgren work with a much stronger axiom: what they call
the axiom of multiple choice (AMC). Internally it says that for any small set B there
is a collection map D //C where D and C are small, and C is inhabited, together
with a map D //B making D //B � C into a surjection.

De�nition 4.2.9 A class of small maps S satis�es the axiom of multiple choice
(AMC), i� for any map B //A in S, there exists an epi A0 //A and a quasi-pullback
of the form

D

²²

// B

²²

C // // A0 // // A

where D //C is a small collection map over A0 and C //A0 is a small epi.

Proposition 4.2.10 (See [61], Proposition 4.3.) The axiom of multiple choice implies
the collection axiom.

The idea of Moerdijk and Palmgren in [61] is to generalise Aczel's interpretation of
CZF into Martin-L�of type theory with W-types and one universe, to an interpretation
of CZF into any �W -pretopos E with a representable class of small maps, where one
expects to recover Aczel's syntactic construction in case E is Setoids. In that light
one should see the following two results:

Theorem 4.2.11 (See [61], Section 12.) When intensional Martin-L�of type theory is
equipped with W-types and one universe, the category of setoids is equipped with a
representable class of small maps satisfying (AMC).

Theorem 4.2.12 (See [61], Theorem 7.1.) Let E be a �W -pretopos equipped with
a representable class of small maps S satisfying (AMC). Then E contains a model of
the set theory CZF + REA.

4.3 A realisability model of CZF

To illustrate the framework of algebraic set theory, I will show here how the models of
CZF obtained by Streicher in [80] and by Lubarsky in [53] �t into it. Actually, I will
show that the models are the same.
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Using category theory and some known results on the e�ective topos, it will be
an easy exercise to establish the validity of a lot of constructivist principles in the
model. Their collective consistency is new. Finally, I show that CZF is consistent with
a general uniformity principle:

8x 9y�a �(x; y)! 9y�a 8x �(x; y);

which appears to be new.4

Our ambient category E is the e�ective topos RT = Eff . Recall that a set is
called subcountable, when it is covered by a subset of the natural numbers. Since the
e�ective topos is a topos with nno N, the notion also makes sense in the internal logic
of the e�ective topos: Y is subcountable, when

9X 2 PN 9g:X // Y : g is a surjection:

Also recall that the e�ective topos is the exact completion of its subcategory of
projectives, the partitioned assemblies, as discussed in the previous Chapter.

Lemma 4.3.1 The following are equivalent for a morphism f :A //B in Eff .

1. In the internal logic of Eff it is true that all �bres of f are subcountable.

2. The morphism f �ts into a diagram of the following shape

Y � N
##FFFFFFFFF Xoooo // //

g
²²

A
f

²²

Y // // B;

where the square is a quasi-pullback.

3. The morphism f �ts into a diagram of the following shape

Q� N
##FF

FF
FF

FF
F Poooo // //

g
²²

A
f

²²

Q // // B;

where the square is a quasi-pullback, P is a ::-closed subobject of Q� N and
g is a choice map between partitioned assemblies.

4The model, and my results, are obviously related to earlier work by Friedman in [29], but especially
his unpublished work as reported in Myhill's paper [62]. I must confess I �nd it hard to get a clear picture
of Friedman's work and therefore I am having di�culties in establishing its precise relation to mine.
Still, I think I can safely say that the set theories studied there are weaker that CZF in not containing
Subset Collection, there is no result on the regular extension axiom or the presentation axiom, and the
relationship to subcountable morphisms in the e�ective topos.
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Proof. The equivalence of 1 and 2 is a standard exercise in translating internal logic
into diagrammatic language, and vice versa. That 3 implies 2 is trivial.

2) 3: Because every object is covered by a partitioned assembly, X can be covered
by a partitioned assembly Q. Now Q � N is also a partitioned assembly, since N is
a partitioned assembly and partioned assemblies are closed under products. Now the
subobject Z = Q �Y X of Q � N can be covered by a ::-closed subobject P of
Q� N. The idea is easy: the subobject Z � Q� N can be identi�ed with a function
Z:Q� N //PN such that there is a realiser for

` Z(q; n)! [q] ^ [n]:

Then form P = f (q; n) j n1 2 Z(q; n0) g, which is a partitioned assembly with [(q; n)] =
n, and actually a ::-closed subobject of Q� N. P covers Z, clearly. The diagram

Z // // Q� N

P

OOOO

;;

;;wwwwwwww

does not commute, but composing with the projection Q � N //Q it does. (What
I am basically using here is Shanin's Principle, a principle valid in the internal logic of
Eff , see [65], Proposition 1.7.) Finally, g:P � Q� N //Q, as a morphism between
partitioned assemblies, is a choice map. �

Let S be the class of maps having any of the equivalent properties in this lemma.
This class of maps was already identi�ed by Joyal and Moerdijk in [47] and baptised
\quasi-modest", but I prefer simply \subcountable". Joyal and Moerdijk prove many
useful properties of these subcountable morphisms, but they are not put to any use
in [47]. Here I will show that it leads to a model of CZF, actually the same one as
contained in both [80] and [53].

First I want to prove that S is a class of small maps. To do so, it will be useful
to introduce the the category of bases over a partitioned assembly X. When X is a
partitioned assembly, consider the full subcategory BaseX of Eff =X consisting of the
::-closed subobjects of X�N //X. The point is that BaseX has the structure of a
weak �W -pretopos, and the inclusion of BaseX in Pasm=X preserves this structure.
(These are not exactly trivial, but entirely innocent generalisations of things we have
seen before.)

Lemma 4.3.2 The inclusion (BaseX)ex � (Pasm=X)ex = Eff =X is an inclusion of
�W -pretoposes.

Proof. I will skip numbers of uninteresting details: the inclusion is exact, by con-
struction. That it preserves sums is easy to see. The inclusion of BaseX in Pasm=X
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preserves weak �, so the inclusion (BaseX)ex � (Pasm=X)ex , preserves � by con-
struction (of genuine � in the exact completion out of weak � in the original category).
Then it also preserves polynomial functors Pf and hence also W-types by yet another
application of Theorem 2.1.5, because subcountables are closed under subobjects. �

Proposition 4.3.3 The class S of subcountable maps is a class of small maps in Eff .

Proof. That S is a locally full subcategory can be found in [47]. Now I use Lemma
4.2.5 to see that is a class of small maps.

That it satis�es (F1) and (F2) is trivial (and can also be found in [47]). It also satis�es
(F3); actually, it is easy to see that in any triangle where the top is epi

B // //

g
ÂÂ

??
??

??
? C

f
ÄÄÄÄ

ÄÄ
ÄÄ

Ä

A

and g is in S, f is also in S.

To check (F4), assume Y //X and Z //X are in S. Both �t into quasi-pullback
squares

P // //

²²

Y

²²

Q // // X

R // //

²²

Z

²²

S // // X;

where P //Q and R //S are morphisms in BaseR and BaseS, respectively, hence
choice maps. Actually, one may assume Q = S and Q //X = S //X. Then
(P //Q)(R // Q) is in (BaseQ)ex , hence in SQ. But (Y //X)(Z // X) is a sub-
quotient of this, hence in SX.

To check (F5), suppose f �ts into a commutative diagram

B f //

ÂÂ
@@

@@
@@

@ A

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

X

where all arrows are in S. Now X can be covered by a partitioned assembly Y via a
map

Y
p

// // X;
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in such a way that in Eff /Y, we have a quasi-pullback diagram

B0
g

²²

// // p�B
p�f

²²

A0 // // p�A;

where B0 // Y and A0 // Y are in BaseX 0. By the previous lemma, Wg is in (BaseX 0)ex ,
hence in SX 0. By (the proof of) Theorem 3.2.2, Wp�f �= p�Wf is a subquotient of Wg,
hence also subcountable. Then by stability of W-types and axiom (S2), Wf is also
subcountable. �

But the class S has more properties:

Lemma 4.3.4 The class S also has the following properties:

(R) The class S is representable.

(F) All the monos belong to S.

(Q) In any triangle where the top is epi

B // //

g
ÂÂ

??
??

??
? C

f
ÄÄÄÄ

ÄÄ
ÄÄ

Ä

A

and g is in S, f is also in S.

(AMC) The class S satis�es AMC.

Proof. Properties (R), (F), (Q) are all proved in [47]. That it satis�es (AMC) is
trivial: every f 2 S �ts into a quasi-pullback diagram

X // //

g
²²

A
f

²²

Y // // B;

where g:X // Y is a small choice map, hence a small collection map over Y (see
Proposition 4.2.8). �

Since S is representable and also satis�es (AMC), we know by Theorem 4.2.12
that the e�ective topos contains a model V of CZF + REA based on the class of
subcountable maps. In the remainder of this Chapter, I will study this model V . In
e�ect, I will show that it validates the following list of principles. Since the set of
natural numbers ! is de�nable in CZF, I will freely use this symbol when formulating
these principles. I will also use 0 and the successor operation s.
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Theorem 4.3.5 The following principles are valid in the model V :

(Full Separation) 9y 8x (x�y $ (�(x)^ x�a)) for all formulas � not containing v as
a free variable.

(All sets subcountable) All sets are subcountable.

(Non-existence of P!) The powerset of the set of natural numbers does not exist.

(Axiom of Countable Choice) 8i �! 9x  (i ; x)! 9a; f :! // a 8i �!  (i ; f (i)).

(Axiom of Relativised Dependent Choice) �(x0)^8x (�(x)! 9y ( (x; y)^�(y)))!
9a 9f :! // a (f (0) = x0 ^ 8i 2 ! �(f (i); f (si))).

(Presentation Axiom) Every set is the surjective image of a base (see below).

(Markov's Principle) 8n�! [�(n) _ :�(n)]! [::9n 2 ! �(n)! 9n�! �(n)].

(Independence of Premisses) (:� ! 9x  )! 9x (:� !  ).

(Church's Thesis) 8n�! 9m�! �(n;m)! 9e�! 8n�! 9m; p�! [T (e; n; p)^U(p;m)^
�(n;m)] for every formula �(u; v), where T and U are the set-theoretic predi-
cates which numeralwise represent, respectively, Kleene's T and result-extraction
predicate U.

(Uniformity Principle) 8x 9y�a �(x; y)! 9y�a 8x �(x; y).

(Unzerlegbarkeit) 8x (�(x) _ :�(x))! 8x � _ 8x :�.

Most of these principles also hold in the realisability models of Rathjen [70], except
for the subcountability of all sets, and the general Uniformity Principle. In order to
show all of this, I need to give a concrete description. In our case that is somewhat
easier than in [61], since the axiom (Q) is valid here.

On Eff , one can de�ne the powerclass functor Ps . The idea is that Ps(X) is the
set of all subcountable subsets of X. This one can easily construct in terms of the
universal small map �:E //U:

Ps(X) = fR 2 PX j 9u 2 U:R �= Eu g:
Ps is obviously a subfunctor of the powerobject functor P (which exists in any topos),
and inherits an elementhood relation 2X� Ps(X)�X from P.

The model for CZF is the initial algebra for the functor Ps , which happens to
exist. This means that it is a �xpoint V and there are mutually inverse mappings
I:Ps(V ) // V and E: V //Ps(V ). The internal elementhood relation � on V is
de�ned in terms of 2 as follows:

x�y , x 2 E(y):
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One can see that the model V exists by slightly modifying the work of Moerdijk
and Palmgren in [61]. Call a map �:E //U a weak representation for a class of
small maps S, when a morphism belongs to S, if and only if, there is a diagram of the
following form:

B
f

²²

B0 //

²²

oo E
�

²²

A A0p
oooo // U

where the left square is a quasi-pullback, and the right square is a genuine pullback.
This expresses that every small map is locally a quotient of �. Moerdijk and Palmgren
show how the initial Ps-algebra can be constructed from �.

Our class of small maps has a weak representation of a relatively easy form:

2N // //

�
²²

2N
²²P::(N) // // P(N):

Therefore � is a morphism between assemblies, where P::(N) = rPN, i.e. the set
of all subsets A of the natural numbers, where A is realised by any natural number,
and 2N= f(n; A) j n 2 Ag, where (n; A) is realised simply by n.

According to Moerdijk and Palmgren, the initial Ps-algebra can be constructed by
�rst taking the W-type associated to � and then dividing out, internally, by bisimula-
tion:

supA(t) � supA0(t 0) , 8a 2 A 9a0 2 A0: ta � t 0a0 and 8a0 2 A0 9a 2 A: ta � t 0a0:
The W-type associated to � can be calculated in the category of assemblies, and is
the following. The underlying set consists of well-founded trees where the edges are
labelled by natural numbers, in such a way that the edges into a �xed node are labelled
by distinct natural numbers. The decorations (realisers) of such trees supA(t) are
those n 2 N such that n � a # for all a 2 A and n � a is a decoration of t(a).

Now I have to translate the bisimulation relation in terms of realisers. When using
the abbreviation:

m ` x � supA(t) , j0m 2 A and j1m ` x � t(j0m);

it becomes:

n ` supA(t) � supA0(t 0) , 8a 2 A: j0n � a # and j0n � a ` ta � supA0(t 0) and
8a0 2 A0: j1n � a0 # and j1n � a0 ` t 0a0 � supA(t):

Using the Recursion Theorem, it is not hard to see that this de�nes a subobject � of
W� �W�, in fact, an equivalence relation on W�. The quotient in Eff is V , which is
therefore W�, with � as equality.
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Using the description of Ps as a quotient of P� in [47], one can see that:

Ps(X;=) = f(A � N; t:A //X)g;
where n ` (A; t) = (A0; t 0), when n realises the statement that t and t 0 they have the
same image, i.e.:

8a 2 A 9a0 2 A0: ta = t 0a0 and 8a0 2 A0 9a 2 A: ta = t 0a0:

I and E map (A; t) to supA(t) and vice versa, whereas the internal elementhood
relation is de�ned by:

m ` x � supA(t) , j0m 2 A and j1m ` x = t(j0m);

which was not just an abbreviation.

Proposition 4.3.6 As an object of the e�ective topos, V is uniform, i.e. there is a
natural number n such that:

n ` x = x

for all x 2 V .

Proof. It is clear that W� is uniform (a solution for f = �n:f decorates every tree),
and V , as its quotient, is therefore also uniform. �

Corollary 4.3.7 The following clauses recursively de�ne what it means that a certain
statement is realised by a natural number n in the model V :

n ` x � supA(t) , j0n 2 A and j1n ` x = t(j0n):
n ` supA(t) = supA0(t 0) , 8a 2 A: j0n � a # and j0n � a ` ta � supA0(t 0)) and

8a0 2 A0: j0n � a0 # and j1n � a0 ` t 0a0 � supA(t):
n ` � ^  , j0n ` � and j1n `  :
n ` � _  , n = h0; mi and m ` �, or n = h1; mi and m `  :
n ` �!  , For all m ` �; n �m # and n �m `  :

n ` :� , There is no m such that m ` �:
n ` 9x �(x) , n ` �(a) for some a 2 V:
n ` 8x �(x) , n ` �(a) for all a 2 V:

Therefore the model is the same as the one introduced by Lubarsky in [53]. One
could use these clauses to verify that all the principles that are listed in Theorem 4.3.5
are valid, but that is not what I recommend. Instead, it is easier to use that V is
�xpoint for Ps , together with properties of the class of subcountable maps S and of
the e�ective topos.

Proof of Theorem 4.3.5.
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(Full Separation) The model V satis�es full separation, because all monos belong
to S. In more detail, assume w 2 V and �(x) is a set-theoretic property.
W = E(w) is a small subset of V , and since monos are small, so is V = fx 2
W j�(x)g. Then take v = I(V ).

(All sets subcountable) Before we check the principle that all sets are subcountable
in V , let us �rst see how the natural numbers are interpreted in V . The empty
set ; is interpreted by I(0), where 0 � V is the least subobject of V , which is
small. s(x) = I(x [fxg) de�nes an operation on V , therefore there is a mapping
i :N // V . This is actually an inclusion, and its image is small (because N is).
So if one writes ! = I(N), then this interprets the natural numbers.

If x is an arbitrary element in V , E(x) is small, so (internally in Eff ) �ts into a
diagram like this:

A // //

q
²²²²

N

E(x):

One embeds the graph of q in V , by de�ning a morphism T :A // V , as follows:

T (a) = (i(a); q(a)) 2 V;
where I implicitly use the standard coding of pairs of sets. Since A is small, T
can also be considered as an element of Ps(V ). Now t = I(T ) is inside V a
function that maps a subset of the natural numbers to x .

(Non-existence of P!) The principle that all sets are subcountable immediately im-
plies the non-existence of P!, using Cantor's Diagonal Argument.

(Axiom of Countable Choice), (Axiom of Relativised Dependent Choice) The Prin-
ciple of Relativised Dependent Choice V inherits from the e�ective topos Eff .

(Presentation Axiom) Recall that a set b in CZF is called a base, when every sur-
jection q: x // b has a section. To see that every set is the surjective image of
a base, notice that in V every set is the surjective image of a ::-closed subset
of !, and these are internally projective in Eff .

(Markov's Principle), (Independence of Premisses) These hold in V , because these
principles are valid in Eff .

(Church's Thesis) This is a bit harder: see below for an argument.

(Uniformity Principle), (Unzerlegbarkeit) To see that the uniformity principle holds,
observe that a realiser for a statement of the form 8x 9y�a (: : :) speci�es an y�a
that works uniformly for all x . Unzerlegbarkeit follows from the uniformity prin-
ciple, using a = f0; 1g.
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�

Remark 4.3.8 It may be good to point out that not only does P! not exist in the
model, neither does Px when x consists of only one element, say x = f;g. For if it
would, so would (Px)!, by Subset Collection. But it is not hard to see that (Px)!

can be reworked into the powerset of !.

Relationship with work of Streicher 4.3.9 In [80], Streicher builds a model of CZF
which in my terms can be understood as follows. He starts from a well-known map
�:E //U in the category Asm of assemblies. Here U is the set of all modest sets,
with a modest set u realised by any natural number, and a �bre Eu in assemblies being
precisely the modest set u. He proceeds to build the W-type associated to �, takes it
as a universe of sets, and then interprets equality as bisimulation. One cannot literally
quotient by bisimulation, for which one could pass to the e�ective topos.

When considering � as a morphism in the e�ective topos, it is not hard to see that
it is in fact a \weak representation" for the class of subcountable morphisms S: for
all �bres of \my" weak representation � also occur as �bres of �, and all �bres of �
are quotients of �bres of �. Therefore the model is again the initial Ps-algebra for
the class of subcountable morphisms S in the e�ective topos, by the work of Moerdijk
and Palmgren.

Relationship with work of McCarty 4.3.10 In his PhD thesis [58], McCarty intro-
duced a realisability model U for the constructive, but impredicative set theory IZF.
U is very similar to the model V I have been investigating, but its exact relation is not
immediately obvious. In [48], the authors Kouwenhoven-Gentil and Van Oosten show
how also McCarty's model U is the initial Pt-algebra for a class of small maps T in
the e�ective topos. As S � T , and hence Ps � Pt , U is also a Ps-algebra, so it is
clear that V embeds into U. Actually, V consists of those x 2 U that U believes to
be hereditarily subcountable.

To see this, write

A = fx 2 U jU j= x is hereditarily subcountableg:
A is a Ps-subalgebra of U, and it will be isomorphic to V , once one proves that is
initial. It is obviously a �xpoint, so it su�ces to show that it is well-founded (see [48]).
So let B � A be a Ps-subalgebra of A, and de�ne

W = fx 2 U j x 2 A) x 2 Bg:
It is not hard to see that this is a Pt-subalgebra of U, so W = U and A = B.

This also shows concerning Church's Thesis, that, as it is valid in McCarty's model U
and it concerns only sets that also exist in V , it is also valid in V . The same applies
to what is called Extended Church's Thesis.
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Chapter 5

Coinduction in categories

In the preceeding Chapters, I have been exploiting the connections between the three
concepts in the following picture.

ÂÁ À¿

»¼ ½¾
CZF with

REA

OOOOOOOOOOOO

ÂÁ À¿

»¼ ½¾
Martin-L�of type theory

with W-types and a universe

kkkkkkkkkkkkkkk

ÂÁ À¿

»¼ ½¾
�W -pretopos with

a class of small maps

They all concern basic notions (the set theory CZF, Martin-L�of type theory, locally
cartesian closed pretoposes) extended with additional structure (REA, W-types and
the existence of certain initial algebras, respectively) to incorporate inductive de�ni-
tions. The idea of Federico De Marchi and me was to investigate a possible \non-
well-founded" or \coinductive" analogue to this picture.

The question we asked ourselves is whether a set theory like CZF with the Anti-
Foundation Axiom instead of the Axiom of Foundation, has similar strong relations
with categories or type theories equipped with coinductive types, as does CZF +
REA with categories and type theories with inductive types. Categories with what I
have called M-types (see Chapter 2) seem the appropriate analogue to investigate.
Where W-types are the initial algebras for polynomial functors, M-types are their �nal
coalgebras. As we have seen in the Chapter 1, W-types frequently consist of well-
founded trees, while M-types consist of general (\non-well-founded"1) trees. Type
theory with coinductive types (M-types) instead of W-types was introduced by Federico
De Marchi in [26], and the relation between categories with M-types and type theory
with coinductive types was investigated there.

1The phrase \non-well-founded" is a bit confusing: it does not mean \not well-founded". It means
rather something like \not necessarily well-founded". The function of the word \non-well-founded"
is more to warn the reader that one is thinking of arbitrary trees and is not restricting oneself to the
well-founded case.
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A result by Lindstr�om [52] connected type theory and non-well-founded set theory:
she discovered how one can model non-well-founded set theory in Martin-L�of type
theory with one universe. Somewhat surprisingly, she did not need any kind of coin-
ductive types. A similar phenomenon will arise in the next Chapter where I will discuss
models of non-well-founded set theory in categories. On this point, the analogy with
the inductive (well-founded) picture does not seem to be perfect: categorical or type-
theoretic W-types are necessary to build interpretations of well-founded set theory in
[2] and [61].

In this Chapter, I will be more concerned with categories possessing M-types in
themselves. In particular, I will prove existence results for M-types and closure prop-
erties of categories with M-types (glueing, coalgebras for a cartesian comonad and
(pre)sheaves). In some cases, the results for categories with M-types are better than
the ones for �W -pretoposes, on which they occasionally shed some light. As dis-
cussed, these closure properties have proved most important in topos theory and led
to the formulation of various independence results. Hopefully, these closure proper-
ties of categories with M-types will prove helpful in investigating non-well-founded set
theories and type theories.

This Chapter reports joint work with Federico De Marchi, and has been submitted
for publication.

5.1 Preliminaries

Throughout this Chapter, E will denote a locally cartesian closed pretopos with a
natural number object.

Recall from Chapter 1 that one associates to a morphism f :B //A in E , a poly-
nomial functor Pf : E // E , which is de�ned as

Pf (X) = �a2AXBa

or, more formally, as

Pf (X) = �A(A�X p1 //A)(B
f //A);

where the exponential is taken in the slice category E=A. The �nal coalgebra for Pf
is called the M-type for f , whenever it exists, and denoted by Mf . The intuition is
that f represents a signature, with the elements a in A representing term constructors
of arity Ba. The elements of the M-type are then (possibly in�nite) terms over this
signature. Another intuition is that they are trees where nodes are labelled by elements
a in A and edges by elements b in B, in such a way that f �1(a) enumerates the edges
into a node labelled by a.

One says that E has M-types, if �nal coalgebras exist for every polynomial functor.
A �M-pretopos will be a locally cartesian closed pretopos with a natural number object
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and M-types. It is the purpose of this Chapter to prove the closure of �M-pretoposes
under slicing, formation of coalgebras for a cartesian comonad and (pre)sheaves.

As already pointed out, by Lambek's lemma (Lemma A.14), the Pf -coalgebra
structure map of an M-type Mf for a morphism f :B //A,

�f :Mf //Pf (Mf )

is an isomorphism, and therefore has a section, denoted by supf (or just sup, when
f is understood). Furthermore, because there is a natural transformation �:Pf //A,
where A is the constant functor sending objects to A and morphisms to the identity on
A, whose component on an object X sends (a; t) 2 Pf (X) to a 2 A, � also determines
a root map

Mf
�f // Pf (Mf ) �

// A;

which, by an abuse of notation, will again be denoted by �. I will also abuse terminol-
ogy by calling the components �X of the natural transformation \root maps". I am
con�dent that this will not generate any confusion.

Given a pullback diagram in E

B0

f 0
²²

�
// B
f

²²

A0 �
// A;

one can think of � as a morphism of signatures, since the �bre over each a0 2 A0 is
isomorphic to the �bre over �(a0) 2 A. It is therefore reasonable to expect, in such a
situation, an induced morphism between Mf 0 and Mf , when these exist.

In fact, as already pointed out in [60], such a pullback square induces a natural
transformation �̃:Pf 0 //Pf such that

��̃ = ��: (5.1)

Post-composition with �̃ turns any Pf 0-coalgebra into one for Pf . In particular, this
happens for Mf 0, thus inducing a unique coalgebra homomorphism as in

Mf 0
�! //

�f 0
²²

Mf

�f

²²

Pf 0(Mf 0)

e�
²²

Pf (Mf 0) Pf (�!)
// Pf (Mf ):

(5.2)

Notice that, by (5.1), the morphism �! preserves the root maps.
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Again, extensive use will be made of the language of paths. Recall the observation
made in Chapter 2, that the notion of path can be de�ned in the internal logic of E
for any Pf -coalgebra

X 

//PfX:

The idea is that a �nite sequence of odd length hx0; b0; x1; b1; : : : ; xni is called a path
in (X; 
), if every xi is in X, every bi is in B and for every i < n one has

xi+1 = 
(xi)(bi): (5.3)

More precisely, if 
(xi) = (ai ; ti), then one is asking that f (bi) = ai and xi+1 = ti(bi).
An element x 2 X is called a child of y 2 X, when there is a path hy ; b; xi.

In the particular case when X is the �nal coalgebra Mf , a path hm0; b0; : : : ; mni in
this sense coincides precisely with a path in the usual sense in the non-well-founded
tree m0. I will therefore say that such a path lies in m0, and by extension, a path
hx0; b0; : : : ; xni lies in x0 2 X for any coalgebra (X; 
). All paths in a coalgebra (X; 
)
are collected into a subobject

Paths(
) � (X + B + 1)N:

Any morphism of coalgebras �: (X; 
) // (Y; �) induces a morphism

��: Paths(
) // Paths(�) (5.4)

between the objects of paths in the respective coalgebras. A path hx0; b0; : : : ; xni is
sent by �� to h�(x0); b0; : : : ; �(xn)i. Furthermore, given a path � = hy0; b0; : : : ; yni
in Y and an x0 such that �(x0) = y0, there is a unique path � starting with x0 such
that ��(�) = � . (Proof: de�ne xi+1 inductively for every i < n using (5.3) and put
� = hx0; b0; : : : ; xni.)

In fact, in order to introduce the concept of path, one needs even less than a
coalgebra: it is su�cient to have a common environment in which to read equation
(5.3). Given a map f :B //A in E , consider the category Pf �prtclg of Pf -proto-
coalgebras. Its objects are pairs of maps

(
;m) = X 

// Y Pf (X);oomoo (5.5)

where m is monic. An arrow between (
;m) and (
 0; m0) is a pair of maps (�; �)
making the following commute:

X



//

�
²²

Y
�

²²

Pf (X)oomoo

Pf (�)
²²

X 0 
0
// Y 0 Pf (X 0):oo

m0
oo

Notice that there is an obvious inclusion functor

I:Pf �coalg //Pf �prtclg; (5.6)
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mapping a coalgebra 
:X //Pf (X) to the pair (
; idPfX). Proto-coalgebras do not
seem to be very interesting in themselves, but they will be very helpful for studying
M-types.

For a proto-coalgebra as in (5.5), one can introduce the notion of a path in the
following way. I shall call an element x 2 X branching if 
(x) lies in the image of m.
Then, I call a sequence of odd length � = hx0; b0; x1; b1; : : : ; xni a path if it satis�es
the properties:

1. xi 2 X is branching for all i < n

2. bi 2 Bai for all i < n

3. ti(bi) = xi+1 for all i < n

where (ai ; ti) is the (unique) element in PfX such that 
(xi) = m(ai ; ti). An element
x 2 X is called coherent, if all paths starting with x end with a branching element.
So, all coherent elements are automatically branching, and their children, identi�ed
through m, are themselves coherent. So the object Coh(
) of coherent elements has
a Pf -coalgebra structure. In fact, this is the biggest coalgebra which one can embed
in (
;m), i.e. a core
ection of the latter for the inclusion functor I of (5.6).

Proposition 5.1.1 The assignment (
;m) Â //Coh(
) mapping any Pf -proto-coal-
gebra to the object of coherent elements in it, determines a right adjoint Coh to the
functor I:Pf �coalg //Pf �prtclg.

Proof. Consider a proto-coalgebra

X



// Y Pf (X);oomoo

and build the object Coh(
) of coherent elements in X. Because any coherent element
x 2 Coh(
) is also branching, one can �nd a (necessarily unique) pair (a; t) such that

(x) = m(a; t). By de�ning �(x) = (a; t), I equip Coh(
) with a Pf -coalgebra
structure (notice that, x being coherent, so are the elements in the image of t). The
coalgebra (Coh(
); �) clearly �ts in a commutative diagram

Coh(
) // i //

�
²²

X



²²

Pf (Coh(
)) //

Pf i
// Pf (X) //

m
// Y:
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Let now (X 0; �0) be any other Pf -coalgebra. Then, given a coalgebra morphism

X 0
�

//

�0
²²

Coh(
)
�

²²

Pf (X 0)
Pf �

// Pf (Coh(
));

the pair (i�;mPf (i�)) clearly determines a proto-coalgebra morphism from I(X 0; �0)
to (
;m). Conversely, any proto-coalgebra morphism

X 0
�0

//

�
²²

Pf (X 0)
�

²²

Pf (X 0)
Pf (�)

²²

X 

// Y Pf (X)oo

m
oo

has the property that �(x 0) is branching for any x 0 2 X 0. Using an opportune extension
to proto-coalgebras of the morphism �� described in (5.4) above, one can then easily
check that elements in the image of � are coherent. Hence, � factors through the
object Coh(
), inducing a coalgebra morphism from (X 0; �0) to (Coh(
); �).

It is now easy to check that the two constructions are mutually inverse, thereby de-
scribing the desired adjunction. �

A particular subcategory of proto-coalgebras arises when one has another endo-
functor F on E and an injective natural transformation m:Pf // //F . In this case, any
F -coalgebra �:X //FX can easily be turned into the Pf -proto-coalgebra (�;mX).
This determines a functor m̂:F�coalg //Pf �prtclg, which is clearly faithful.

Proposition 5.1.2 The adjunction I aCoh of Proposition 5.1.1 restricts to an adjunc-
tion m� aCoh m̂, if m�:Pf �coalg //F�coalg takes �:X //PfX to (X;mX�).

Proof. Consider a Pf -coalgebra (Z; 
) and an F -coalgebra (X;�). Then, a sim-
ple diagram chase, using the naturality of m, shows that F -coalgebra morphisms
from m�(Z; 
) to (X;�) correspond bijectively to morphisms of proto-coalgebras from
I(Z; 
) to m̂(X;�), hence by Proposition 5.1.1 to Pf -coalgebra homomorphisms from
(Z; 
) to Coh(m̂(X;�)). �

5.2 Existence results for M-types

The crucial point in showing that �M-pretoposes are closed under the various con-
structions I am going to consider, will always be that of showing existence of M-types.
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The machinery to do so will be set up in this Section. But the results are not just useful
for that. They are, I think, valuable in themselves and raise interesting questions.

Traditionally, one can recover non-well-founded trees from well-founded ones,
whenever the signature has one speci�ed constant. In fact, the constant allows for
the de�nition of truncation functions, which cut a tree at a certain depth and replace
all the term constructors at that level by that speci�ed constant. The way to recover
non-well-founded trees is then to consider sequences of trees (tn)n>0 such that each
tn is the truncation at depth n of tm for all m > n. Each such sequence is viewed as
the sequence of approximations of a non-well-founded tree.

Recall that the context is that of a �-pretopos E with nno. In this context, I call
a map f :B //A pointed , when the signature it represents has a speci�ed constant
symbol, i.e. if there exists a global element ?: 1 //A such that the following is a
pullback:

0 //

²²

B
f

²²

1 ? // A:

The next two statements make clear that, instead of starting with well-founded
trees, i.e. with the W-type for f , one can build these approximations from any �xpoint
of Pf .

Lemma 5.2.1 If for some pointed f in E , Pf has a �xpoint, then it also has a �nal
coalgebra.

Proof. Assume X is an algebra whose structure map sup:PfX //X is an isomor-
phism. Observe, �rst of all, that X has a global element

?: 1 //X; (5.7)

namely sup?(t), where ? is the point of f and t is the unique map B? = 0 //X.

De�ne, by induction, the following truncation functions trn:X //X:

tr0 = ?
trn+1 = sup � Pf (trn) � sup�1

Using these maps, one can de�ne an object M, consisting of sequences (�n 2 X)n>0

with the property:
�n = trn(�m) for all n < m:

Now, one de�nes a morphism � :M //PfM as follows. Given a sequence � = (�n) 2
M, observe that �(�n) is independent of n and is some element a 2 A. Hence, each
�n is of the form supa(tn) for some tn:Ba //X, and I de�ne t:Ba //M by putting
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t(b)n = tn+1(b) for every b 2 Ba; then �(�) = (a; t). Thus, M has the structure of
a Pf -coalgebra, and I claim it is the terminal one.

To show this, given another coalgebra �: Y //Pf Y , I wish to de�ne a map of coal-
gebras p̂: Y //M. This means de�ning maps p̂n: Y //X for every n > 0, with the
property that p̂n = trnp̂m for all n < m. Intuitively, p̂n maps a state of Y to its \un-
folding up to level n", which I can mimic in X. Formally, they are de�ned inductively
by

p̂0 = ?
p̂n+1 = sup � Pf (p̂n) � �:

It is now easy to show, by induction on n, that p̂n = trnp̂m for all m > n. For
n = 0, both sides of the equation become the constant map ?. Supposing the
equation holds for a �xed n and any m > n, then for n + 1 and any m > n one has
p̂n+1 = supPf (p̂n)� = supPf (trnp̂m)� = supPf (trn)sup�1supPf (p̂m)� = trn+1p̂m+1:

I leave to the reader the veri�cation that p̂ is the unique Pf -coalgebra morphism from
Y to M. �

Theorem 5.2.2 If �xpoints exist in E for all Pf (with f pointed), then E has M-types.

Proof. Let f :B //A be a map. I freely add a point to the signature represented by
f , by considering the composite

f?:B f // A // i // A+ 1 (5.8)

(with the point j = ?: 1 //A+ 1). Notice that the obvious pullback

B id //

f
²²

B
f?

²²

A //

i
// A+ 1

determines a (monic) natural transformation i!:Pf //Pf? by (5.2); hence, by Proposi-
tion 5.1.2, the functor (i!)�:Pf �coalg //Pf?�coalg has a right adjoint. Now observe
that Pf? has a �xpoint, by assumption, hence a �nal coalgebra by Lemma 5.2.1. This
will be preserved by the right adjoint of (i!)�, hence Pf has a �nal coalgebra. �

This proof gives a categorical counterpart of the standard set-theoretic construc-
tion: add a dummy constant to the signature, build in�nite trees by sequences of
approximations, then select the actual M-type by taking those in�nite trees which
involve only term constructors from the original signature. This last passage is per-
formed by the core
ection functor of Proposition 5.1.2, since branching elements are
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trees in the M-type of f? whose root is not ?, and coherent ones are trees with no
occurrence of ? at any point.

From this last theorem, one readily deduces the following result, �rst pointed out
by Abbott, Altenkirch and Ghani [1].

Corollary 5.2.3 Every �W -pretopos is a �M-pretopos.

Proof. Since the W-type associated to a (pointed) map f is a �xpoint for Pf , E also
has all M-types by the previous theorem. �

Remark 5.2.4 This result shows that there is a substantial class of examples of �M-
pretoposes. It is an open problem to �nd a non-syntactic example of a �M-pretopos
that is not a �W -pretopos.

In Chapter 2, we have seen some examples of categories which have M-types, but
are not �M-pretoposes; for instance, the category of modest sets, or that of assem-
blies (or !-sets). The only reason these categories are not examples of �M-pretoposes
is that they fail to be exact. However, notice that exactness is not necessary for the
proofs. In fact, regularity would be su�cient to establish all the closure properties.

Although Theorem 5.2.2 is clearly helpful in proving that categories have M-types,
it is even more so, when combined with the following observation.

Lemma 5.2.5 Any pre�xpoint �:PfX //X, that is, an algebra whose structure map
is monic, has a subalgebra that is a �xpoint.

Proof. Any pre�xpoint �:PfX //X can be seen as a Pf -proto-coalgebra

X id // X PfX:oo�oo

Its core
ection Coh(id; �), de�ned in Proposition 5.1.1, is a Pf -coalgebra 
: Y //Pf Y
(in fact, the largest) �tting in the following commutative square:

Y // i //



²²

X

Pf Y //

Pf i
// PfX:

OO
�

OO

Now, consider the image under the functor I:Pf �coalg //Pf �prtclg of the coalgebra
Pf (
):Pf Y //P 2

f Y . The morphism of proto-coalgebras

Pf Y
Pf 
 //

�Pf i
²²

P 2
f Y

�Pf (�)P 2
f i

²²

P 2
f Yooidoo

Pf (�)P 2
f i

²²

X
id

// X PfXoo
�

oo
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transposes through the adjunction I aCoh to a morphism �: (Pf Y; Pf 
) // (Y; 
),
which is a right inverse of 
: (Y; 
) // (Pf Y; Pf 
) by the universal property of (Y; 
).
Hence, I have 
� = Pf (�
) = id, proving that 
 and � are mutually inverse. �

Putting together Theorem 5.2.2 and Lemma 5.2.5, one gets at once the following:

Corollary 5.2.6 If E has pre�xpoints for every polynomial functor, then E has M-types.

As an application of the techniques in this Section, I present the following result,
which is to be compared with the one by Santocanale in [78]. An immediate corollary
of his Theorem 4.5 is that M-types exist in every locally cartesian closed pretopos with
a natural number object, for maps of the form f :B //A where A is a �nite sum of
copies of 1. Notice that such an object A has decidable equality, i.e. the diagonal
�:A //A � A has a complement in the subobject lattice of A � A. I extend the
statement above to all maps whose codomain has decidable equality.

Proposition 5.2.7 When f :B //A is a morphism in E whose codomain A has de-
cidable equality, then the M-type for f exists.

Proof. Without loss of generality, one may assume that f is pointed; in fact, if one
replaces A by A? = A+ 1 and f by f? as in (5.8), then A? also has decidable equality,
and the existence of an M-type for the composite f? implies that of an M-type for
f (see the proof of Theorem 5.2.2). Then, by Lemma 5.2.5 and Lemma 5.2.1, it is
enough to show that Pf has a pre�xpoint.

Let S be the object of all �nite sequences of the form

ha0; b0; a1; b1; : : : ; ani
where f (bi) = ai for all i < n. (Like paths in a coalgebra, this object S can be
constructed using the internal logic of E .) Now, let V be the object of all decidable
subobjects of S (these can be considered as functions S // 1 + 1). De�ne the map
m:Pf V // V taking a pair (a; t:Ba // V ) to the subobject P of S de�ned by the
following clauses:

1. ha0i 2 P i� a0 = a.

2. ha0; b0i � � 2 P i� a0 = a and � 2 t(b0).

(Here, � is the symbol for concatenation.) P is obviously decidable, so m is well-
de�ned. To see that it is monic, suppose P = m(a; t) and P 0 = m(a0; t 0) are equal.
Then,

hai 2 P =) hai 2 P 0 =) a = a0;
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and, for every b 2 Ba and � 2 S,

� 2 t(b) () ha; bi � � 2 P
() ha; bi � � 2 P 0
() � 2 t 0(b);

so t = t 0 and m is monic. Hence, (V;m) is a pre�xpoint for Pf and the proof is
�nished. �

It is an interesting question whether this result can be generalised even further.
However, it is my feeling that not all M-types can be proved to exist in general.
Unfortunately, the lack of examples of �-pretoposes with natural number object, but
without W-types makes it hard to give counterexamples.

Remark 5.2.8 To obtain a concrete description of the M-type for a map f with a
codomain with decidable equality, one should start with the objects S and V con-
structed in the proof of Proposition 5.2.7. Then one should deduce a �xpoint V 0 from
V , as in Corollary 5.2.6. This means selecting the coherent elements of V , and these
turn out to be those decidable subobjects P of S satisfying the following properties:

1. hai 2 P for a unique a 2 A;

2. if ha0; b0; : : : ; ani 2 P , then there exists a unique an+1 for any bn 2 Ban such
that ha0; b0; : : : ; an; bn; an+1i 2 P .

Next, one should turn this �xpoint into the M-type for f (as in Lemma 5.2.1), but this
step is redundant, since the choice of V is such that V 0 already is the desired M-type.

5.3 Closure properties

After these preliminaries, I establish closure of �M-pretoposes under slicing, coalgebras
for a cartesian comonad, presheaves and sheaves.

5.3.1 M-types and slicing

I start by considering preservation of the �M-pretopos structure under slicing. Let I
be an object in a �-pretopos with nno E . Then, it is well-known that the slice category
E=I has again the same structure, and the reindexing functor x�: E=I // E=J for any
map x : J // I in E preserves it. So, I can focus on showing the existence of M-types
in E=I. Their preservation under reindexing immediately follows from some results on
indexed categories (see Lemma A.19 and Lemma A.21). Therefore, I shall concentrate
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on the existence of M-types in slice categories, proving a \local existence" result, from
which I derive a global statement.

Let us consider a map
B f //

�
ÁÁ

>>
>>

>>
>>

A

�
¡¡¢¢

¢¢
¢¢

¢

I

(5.9)

in E=I. I shall denote by Pf the polynomial functor determined by f (or, more precisely,
by �f ) in E , and by P If the polynomial endofunctor determined in E=I. The functor
Pf : E // E can be extended to a functor Pf : E // E=I; in fact, PfX lives over A via
the root map, and the composite ��:PfX // I de�nes the desired extension.

Lemma 5.3.1 There is an injective natural transformation of endofunctors on E=I
c :P If //Pf �I:

Proof. For an object �:X // I in E=I and i 2 I:
P If (X �

//I)i = f(a; t:Ba //X) j�(a) = i ; 8b 2 Ba:�t(b) = ig
and

Pf (�I(X
�

//I)) = f(a; t:Ba //X) j�(a) = ig:
The �rst in clearly contained in the second. Naturality is readily checked. �

Using the map c of Lemma 5.3.1, one can build an M-type for f in E=I, whenever
Mf exists in E .

Theorem 5.3.2 Let E be a locally cartesian closed pretopos with a natural number
object and I an object in E . Consider a map f :B //A over I, such that the functor
Pf : E // E has a �nal coalgebra. Then, f has an M-type in E=I.
Proof. Let �f :Mf //PfMf be the M-type associated to f in E . Mf can be consid-
ered as an object over I, by taking the composite � of the root map �:Mf //A with
the map �:A // I, and (Mf ; �f ) then becomes the �nal Pf �I-coalgebra, as one can
easily check. The adjunction determined by the natural transformation c :P If //Pf �I

as in Proposition 5.1.2 takes the �nal Pf �I-coalgebra (Mf ; �f ) to its core
ection MI
f ,

and because right adjoints preserve limits, this is the �nal P If -coalgebra. �

Remark 5.3.3 The injective natural transformation c of Lemma 5.3.1 identi�es as
branching elements in Pf �I those obtained by applying a term constructor in A to
elements living in its same �bre over I.
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The core
ection process used to build MI
f out of the M-type (Mf ; �f ), helps to

understand which elements of the latter do actually belong to the former. Trees in
MI
f are coherent for the notion of branching determined by P If , hence, not only the

children of the root node live in its same �bre over I, but all the children of the children
do too, and so on. In other words, MI

f consists of those trees in Mf all nodes of which
live in the same �bre over I. As such, the object MI

f can also be described as the
equaliser

MI
f

// // Mf
hid;�i! //

hid;��i &&MMMMMMM Mf�I;

Mf � I
�

77ooooooo

where � is the map coinductively de�ned as

�(supat; i) = sup(a;i)(�ht; ii):

As an immediate consequence of Theorem 5.3.2, one gets the following:

Corollary 5.3.4 For any given object I of a �M-pretopos E , the slice category E=I is
again a �M-pretopos.

Remark 5.3.5 This last result could have also been proved directly by combining
Corollary 5.2.6 and Lemma 5.3.1. However, the proof of Theorem 5.3.2 shows that
the construction is actually simpler. More speci�cally, notice that, in this case, one
obtains the M-type for a map f directly after the core
ection, and it is not necessary
to add any dummy variable, nor to build sequences of approximations.

5.3.2 M-types and coalgebras

In this Section, I turn my attention to the construction of categories of coalgebras for
a cartesian comonad (G; �; �). See [55], Chapter VI, for the de�nition of a comonad
and a coalgebra for a comonad. By a cartesian comonad, I mean here that the functor
G is cartesian. As for the slicing case, I already know that most of the structure of a
�M-pretopos is preserved by taking coalgebras for G:

Theorem 5.3.6 If E is a locally cartesian closed pretopos with natural number object,
then so is EG for a cartesian comonad G = (G; �; �) on E .

Proof. Theorem 4.2.1 on page 173 of [44] gives us that EG is cartesian, in fact lo-
cally cartesian closed, and that it has a natural number object. The two additional
requirements of having �nite disjoint sums and being exact are easily veri�ed, using in
particular that the forgetful functor U: EG // E creates �nite limits. �
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The aim of this Subsection is to prove that EG inherits M-types from E , in case they
exist in that category. The question whether �W -pretoposes are closed under taking
coalgebras for a cartesian comonad, is still open.

Given a morphism f of coalgebras, this induces a polynomial functor Pf : EG // EG,
while its underlying map Uf determines the endofunctor PUf on E . The two are related
as follows:

Proposition 5.3.7 Let f : (B; �) // (A;�) be a map of G-coalgebras. Then, there is
an injective natural transformation

E
i�G

²²

PUf // E
G

²²EG Pf
// EG;

whose mate under the adjunction U aG, I shall denote by

j :UPf // PUfU: EG // E : (5.10)

Proof. Recall from [44] that there is the following natural isomorphism

EG=(A;�) �= (E=A)G0; (5.11)

where G 0 is a cartesian comonad on E=A, which is computed on an object t:X //A
in E=A by taking the following pullback:

G 0X
G0t

²²

// // GX
Gt

²²

A //
�

// GA:

(5.12)

Notice that both horizontal arrows in this pullback are monic, because �A is a retraction
of the G-coalgebra �.

Through the isomorphism (5.11), the object A�GX //A corresponds to G 0(p1:A�
X ! A), whereas f corresponds to some map f 0 in (E=A)G0. Therefore the object
Pf (GX) (i.e. the source of the exponential (A�GX //A)f in the category EG=(A;�))
corresponds to the exponential (G 0p1)f 0. Since U 0: (E=A)G0 // E=A preserves products
because G 0 does, there is the following chain of natural bijections:

Y // G 0(pU 0f 01 )
U 0Y // pU 0f 01

U 0Y � U 0f 0 // p1

U 0(Y � f 0) // p1

Y � f 0 // (G 0p1)
Y // (G 0p1)f 0:

96 CHAPTER 5. COINDUCTION IN CATEGORIES



Predicative topos theory and models for constructive set theory Benno van den Berg

So one deduces (G 0p1)f 0 �= G 0(pU 0f 01 ) = G 0(pUf1 ). The latter �ts in the following
pullback square, which is an instance of (5.12):

G 0((A�X ! A)Uf )

²²

//
iX // G((A�X ! A)Uf )

²²

A //
�

// GA:

Now notice that the top-right entry of the diagram is exactly GPUf (X), hence the
map i therein de�nes the X-th component of a natural transformation of the desired
form. �

I am now ready to formulate a local existence result for M-types in categories of
coalgebras.

Theorem 5.3.8 Let f : (B; �) // (A;�) be a map of G-coalgebras. If the underlying
map Uf has an M-type in E , then the functor Pf : EG // EG has a �nal coalgebra in
EG.

Proof. The natural transformation i of Proposition 5.3.7 allows one to turn any PUf -
coalgebra into a Pf -proto-coalgebra. In particular, for the M-type � :M = MUf //PUfM
in E , one obtains the proto-coalgebra

GM G� // GPUfM PfGM;oo
iMoo

whose core
ection Coh(M) = Coh(G�; iM) is �nal in Pf�coalg. To see this, consider
another coalgebra (X; 
) (therefore, X is a G-coalgebra, and 
:X //PfX is a G-
coalgebra homomorphism). To give a morphism of Pf -coalgebras from (X; 
) to
Coh(M) is the same, through I aCoh, as giving a map  :X //GM in EG which is
a morphism of Pf -proto-coalgebras, i.e. that makes the following commute:

X



//

 
²²

PfX
Pf  

²²

GM G�
// GPUfM PfGM:oo

iM
oo

This transposes, through U aG, to the following diagram in E , where j is the natural
transformation de�ned in (5.10):

UX
U


//

b 
²²

UPfX
jX // PUfUX

PUf b 
²²

M �
// PUfM:

But �nality of M implies that there is precisely one such  ̂ for any coalgebra (X; 
),
hence �nality is proved. �
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Corollary 5.3.9 If E is a �M-pretopos and G = (G; �; �) is a cartesian comonad on E ,
then the category EG of (Eilenberg-Moore) coalgebras for G is again a �M-pretopos.

Remark 5.3.10 Notice that Corollary 5.3.9 could also be deduced by Corollary 5.2.6,
in conjunction with Proposition 5.3.7. However, analogously to what happens in
the slicing case, Theorem 5.3.8 shows that one does not need to perform the whole
construction, since the coreflection step gives directly the final coalgebra.

Remark 5.3.11 In particular, this result shows stability of �M-pretoposes under the
glueing construction, since this is a special case of taking coalgebras for a cartesian
comonad (see [44]).

5.3.3 M-types and presheaves

In this Section, I concern myself with the formation of presheaves for an internal
category in a �M-pretopos. My aim is to show that the resulting category is again a
�M-pretopos.

So consider an internal category C in a �M-pretopos E , with object of objects C0

(see Appendix A for the de�nition of an internal category). By using the fact that the
category of presheaves Psh(C) is the category of coalgebras for a cartesian comonad
on the slice category E=C0 (see for instance [44], Example A.4.2.4 (b)), I get at once

Proposition 5.3.12 The presheaf category Psh(C) is a �M-pretopos.

Unwinding the proof, it is possible to give a concrete description of the M-type in
presheaf categories, along the lines of the description of W-types in [61]. I will just
give the description and leave the veri�cations to the reader.

First of all, I need to introduce the functor j � j: Psh(C) // E which takes a presheaf
A to its \underlying set" jAj = f(a; C) j a 2 A(C)g. This is just the composite of
the forgetful functor U: Psh(C) // E=C0 with �C0: E=C0 // E .

Let f :B //A be a morphism of presheaves. Then, the \�bre" Ba of f over
a 2 A(C) for an object C in C is a presheaf, whose action on D is described in the
internal language of E as

Ba(D) = f(�; b) j �:D //C; a � � = f (b)g
and restriction along a morphism �:D0 //D is de�ned as

(�; b) � � = (��; b � �):

Now the presheaf morphism f also induces a map

f 0: �(a;C)2jAjjBaj // jAj
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whose �bre over (a; C) is precisely jBaj. Consider the M-type Mf 0 in E : the M-type
M for f in presheaves will be built by selecting the right elements from this M-type.

Elements T 2 Mf 0 are of the form

T = sup(a;C)t;

where (a; C) 2 jAj and t:Ba //Mf 0. Mf 0 can be considered as an object in E=C0,
when one maps such a T to C. Write N (C) for the �bre over C 2 C0. N actually
possesses the structure of a presheaf, because for any T 2 N (C) and �:C 0 //C,

T � � = supa0;C0t�̃;

where a0 = a �� and �̃ is the obvious morphism jBa0 j // jBaj, de�ned by sending (�; b)
to (��; b).

Out of this presheaf N , one has to select the coherent elements (the trees called
natural in [60]). Call a tree S composable, when all subtrees T = sup(a;C)t of S
satisfy

t(�; b) 2 N (dom(�)):

Call S coherent or natural, when all subtrees T = sup(a;C)t of S in addition satisfy
that

t(�; b) � 
 = t(�
; b � 
):

These notions can be de�ned using the language of paths. LetM be the subobject of
N consisting of the coherent elements. It is a presheaf, and, as the reader can verify,
the M-type for f in presheaves. So, in e�ect, I have proved:

Theorem 5.3.13 Consider a map f :B //A in Psh(C). If the induced map f 0 has an
M-type in E , then f has an M-type in Psh(C).

5.3.4 M-types and sheaves

In this Section, I wish to show that �M-pretoposes are closed under taking sheaves.
I approach this question in the following manner: I show that �M-pretoposes are
closed under re
ective subcategories with cartesian re
ector (by the way, the question
whether the corresponding result for �W -pretoposes holds, is still open). It is well-
known that in topos theory categories of sheaves are such subcategories of the category
of presheaves. Within a predicative metatheory, the construction of a shea��cation
functor, a cartesian left adjoint for the inclusion of sheaves in presheaves, runs into
some problems. Solutions have been proposed in [61] and [15]. Here, I will simply
assume that this problem can be solved. Then closure of �M-pretoposes under sheaves
follows from closure under re
ective subcategories, because I have just shown that
�M-pretoposes are closed under taking presheaves for an internal site.
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On cartesian re
ectors and the universal closure operators they induce, the reader
should consult [44], Sections A4.3 and A4.4. Very brie
y, the story is like this. A cate-
gory D is a re
ective subcategory of a cartesian category E , when the inclusion functor
i :D //E has a left adjoint L such that Li �= 1. Now the inclusion is automatically
full and faithful.

When the re
ector L is cartesian, as I will always assume, it induces an operator
on the subobject lattice of any object X. The operator sends a subobject

m:X 0 // // X

to the left side of the pullback square

c(X 0)
²²

²²

// iLX 0
²²

iLm
²²

X �X
// iLX:

This operation is order-preserving, idempotent (c(c(X 0)) = c(X 0)) and in
ationary
(X 0 � c(X 0)) and commutes with pullback along arbitrary morphisms. Such operators
are called universal closure operators. In topos theory, every universal closure operator
derives from a cartesian re
ector, but in the context of �-pretoposes that is probably
not the case.

The objects in E that come from D can be characterised in terms of the closure
operator c as follows. Call a mono

m:X 0 // // X

dense, when its closure c(X 0) is the maximal object X � X. An object Y in E is from
D in case any triangle

X 0 f 0 //

²²

m
²²

Y

X
f

>>

with m a dense mono, can be �lled uniquely by a map f . These objects are, not
accidentally, called the sheaves for the closure operator c . Objects Y for which such
triangles have at most one �lling are called separated with respect to c . Also the
separated objects form a re
ective subcategory of E .

It is well-known that in this setting D is a locally cartesian closed pretopos with
a natural number object. Parts of this result, especially that D is an lccc, can be
found in [44] in the aforementioned Sections: I will also need that i preserves the lccc
structure, which can also be found there. The same is true for the separated objects:
they are also an lccc (not a pretopos, though), where the inclusion also preserves the
lccc structure.
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Theorem 5.3.14 Let f :B //A be a morphism in E .

1. When f is a morphism of separated objects, Mf is separated.

2. When f is a morphism of sheaves, Mf is a sheaf.

Proof. I will give the argument for sheaves, but the proof is the same in both cases.
Let M = Mf be the M-type in E associated to f , and obtain the sheaf LM by applying
the re
ector to M. The object Pf (LM) is also a sheaf, because the inclusion preserves
the lccc structure. Because of the universal property of L the diagram

M
�M //

�
²²

iLM

²²

Pf (M)
Pf (�M)

// Pf (iLM) �= iPf (LM)

can be �lled. Therefore iLM has the structure of Pf -coalgebra in such a way that
�M is a Pf -coalgebra morphism. By �nality of M, there is a Pf -coalgebra morphism
r : iLM //M such that r�M = 1. So �Mr�M = �M = 1�M and the universal property
of �M immediately gives that also �Mr = 1. So M �= iLM and M is a sheaf. �

Remark 5.3.15 In both cases, it would have been enough to require that the codo-
main of f is a sheaf (respectively separated). This essentially because the sheaves and
separated objects both form exponential ideals in E .

Remark 5.3.16 In case the universal closure operator is not known to derive from a
cartesian re
ector, it is still possible to show that the M-type M = Mf for a morphism
f :B //A with separated codomain is separated. For that purpose, write x =c x 0 for
x; x 0 2 X, when (x; x 0) 2 c(�:X //X �X). An object X is then separated, when

x =c x 0 ) x = x 0

(see [44], Lemma 4.3.6). To show that M is separated, consider

B = f(supa(t); supa0(t 0)) 2 M �M j supa(t) =c supa0(t 0)g:
B has the structure of a Pf -coalgebra in such a way that composing B � M � M
with either of the two projections yields a Pf -coalgebra morphism. In other words,
B has the structure of a bisimulation on M. This is true, simply because whenever
supa(t) =c supa0(t 0), then a =c a0, and hence a = a0, because A is separated. And
because one therefore also has that tb =c t 0b for every b 2 Ba.

But because of �nality of M, all bisimulations on M are contained in the diagonal
of M. Hence

supa(t) =c supa0(t 0)) supa(t) = supa0(t 0) (5.13)

and M is separated.
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Remark 5.3.17 As a corollary, one obtains that the subcategory of separated objects
for a universal closure operator on a �W -pretopos E has W-types. E has M-types by
Corollary 5.2.3, and for morphisms f between separated objects, these M-types are
separated by the preceeding remark. But since W-types are subobjects of M-types (see
Lemma 2.1.4), and separated objects are easily seen to be closed under subobjects,
the W-types associated to such morphisms are separated as well. Another way of
showing this fact is by directly proving (5.13) by induction.

Theorem 5.3.14 now directly shows:

Theorem 5.3.18 If D is a re
ective subcategory of a �M-pretopos E with cartesian
re
ector, D is also a �M-pretopos.

Corollary 5.3.19 f C is an internal site in a �M-pretopos E such that the inclusion of
internal sheaves in presheaves has a cartesian left adjoint (a \shea��cation functor"),
then the category Sh(C) of internal sheaves for the site C in E is a �M-pretopos.
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Chapter 6

Non-well-founded set theory

Since its �rst appearance in the book by Joyal and Moerdijk [47], algebraic set theory
has always claimed the virtue of being able to describe, in a single framework, various
di�erent set theories. However, despite the suggestion in [47] to construct sheaf
models for the theory of non-well-founded set theory in the context of algebraic set
theory, it appears that up until now no one ever tried to put small maps to use in order
to model a set theory with the Anti-Foundation Axiom AFA.

This Chapter, which is joint work with Federico De Marchi, provides a �rst step
in this direction. In particular, I build a categorical model of the weak constructive
theory CZF0 of (possibly) non-well-founded sets, studied by Aczel and Rathjen in [7],
extended by AFA. Classically, the universe of non-well-founded sets is known to be
the �nal coalgebra of the powerclass functor [5]. Therefore, it should come as no
surprise that one can build such a model from the �nal coalgebra for the functor Ps
determined by a class of small maps.

Perhaps more surprising is the fact that such a coalgebra always exists. I prove
this by means of a �nal coalgebra theorem, for a certain class of functors on a �nitely
complete and cocomplete category. The intuition that guides one along the argument
is a standard proof of a �nal coalgebra theorem by Aczel [5] for set-based functors on
the category of classes, that preserve inclusions and weak pullbacks. Given one such
functor, he �rst considers the coproduct of all small coalgebras, and show that this
is a weakly terminal coalgebra. Then, he quotients by the largest bisimulation on it,
to obtain a �nal coalgebra. The argument works more generally for any functor of
which one knows that there is a generating family of coalgebras, for in that case one
can take the coproduct of that family, and perform the construction as above. The
condition of a functor being set-based assures that one is in such a situation.

My argument is a recasting of the given one in the internal language of a category.
Unfortunately, the technicalities that arise when externalising an argument which is
given in the internal language can be o�-putting at times. For instance, the exter-
nalisation of internal colimits forces one to work in the context of indexed categories
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and indexed functors. Within this context, I say that an indexed functor (which turns
pullbacks into weak pullbacks) is small-based when there is a \generating family" of
coalgebras. For such functors I prove an indexed �nal coalgebra theorem. I then apply
this machinery to the case of a Heyting pretopos with a class of small maps, to show
that the functor Ps is small-based and therefore has a �nal coalgebra. As a byproduct,
I am able to build the M-type for any small map f (i.e. the �nal coalgebra for the
polynomial functor Pf associated to f ).

For sake of clarity, I have tried to collect as much indexed category theory as I
could in a separate Section. This forms the content of Section 6.1. This should not
a�ect readability of Section 6.2, where I prove the �nal coalgebra results. Finally, in
Section 6.3 I prove that the �nal Ps-coalgebra is a model of the theory CZF0+AFA.

The choice to focus on a weak set theory such as CZF0 is deliberate, since stronger
theories can be modelled simply by adding extra requirements for the class of small
maps. For example, one can model the theory CST of Myhill [62] (plus AFA), by
adding the Exponentiation Axiom, or IZF�+AFA by adding the Powerset, Separation
and Collection axioms. And one can force the theory to be classical by working in a
Boolean pretopos. This gives a model of ZF�+AFA, the theory presented in Aczel's
book [5], apart from the Axiom of Choice. And, �nally, by adding appropriate axioms,
it is possible to build a model of the theory CZF�+AFA, which was extensively studied
by M. Rathjen in [71, 72].

The present results �t in the general picture described in the previous Chapter.1

Recall that there I set myself the task of investigating a non-well-founded analogue
to the established connection between Martin-L�of type theory, constructive set theory
and the theory of �W -pretoposes. In the well-founded picture, W-types in �W -
pretoposes can be used to obtain models for (well-founded) set theories, as explained
in Chapter 4. The analogy suggests that M-types in �M-pretoposes provide the
means for constructing models for non-well-founded set theories. But in this Chapter,
it will turn out that the M-types in �M-pretoposes are not necessary for that purpose.
This phenomenon resembles the situation in [52], where Lindstr�om built a model of
CZF�+AFA out of (intensional) Martin-L�of type theory with one universe, without
making any use of M-types.

This Chapter has been submitted for publication.

6.1 Generating objects in indexed categories

As mentioned before, the aim is to prove a �nal coalgebra theorem for a special class
of functors on �nitely complete and cocomplete categories. The proof of such results
will be carried out by repeating in the internal language of such a category C a classical

1Incidentally, I expect that, together with the results on sheaves therein, they should yield an
adequate response to the suggestion by Joyal and Moerdijk.
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set-theoretic argument. This forces one to consider C as an indexed category, via its
canonical indexing C, whose �bre over an object X is the slice category C=X. I shall
then focus on endofunctors on C which are components over 1 of indexed endofunctors
on C. For such functors, one can prove the existence of an indexed �nal coalgebra,
under suitable assumptions. The component over 1 of this indexed �nal coalgebra will
be the �nal coalgebra of the original C-endofunctor.

Although I apply this result in a rather speci�c context, it turns out that all the
basic machinery needed for the proof can be stated in a more general setting. This
Section collects as much of the indexed category theoretic material as possible, hoping
to make the other Sections easier to follow for a less experienced reader.

I will mostly be concerned with S-cocomplete indexed categories for a cartesian
base category S. The reader should consult Appendix A for the relevant de�nitions.
The notation follows closely that of Johnstone in Chapters B1 and B2 of [44].

The �rst step, in the set-theoretic argument to build the �nal coalgebra, is to
identify a \generating family" of coalgebras, in the sense that any other coalgebra is
the colimit of all coalgebras in that family mapping to it. When forming the internal
diagram of those coalgebras that map into a given one, say (A;�), I need to select out
of an object of maps to A those which are coalgebra morphisms. In order to consider
such objects of arrows in the internal language, I need to introduce the following
concept:

De�nition 6.1.1 Let E and A be two objects, respectively in �bres CU and CI of an
S-indexed category C. Whenever it exists, the object Hom(E;A) in S is called the
internal homset from E to A (in S), if it �ts into a span

U Hom(E;A)soo t // I (6.1)

in S and there is a generic arrow ": s�E // t�A in CHom(E;A), with the following uni-
versal property: for any other span in S

U Jxoo
y

// I

and any arrow  : x�E // y �A in CJ, there is a unique arrow �: J // Hom(E;A) in
S such that s� = x , t� = y and ��" �=  (via the canonical isomorphisms arising
from the two previous equalities). The object E is called exponentiable, if Hom(E;A)
exists for all A in some �bre of C.

Remark 6.1.2 It follows from the de�nition, via a standard diagram chasing, that the
reindexing along an arrow f : V //U in S of an exponentiable object E in CU is again
exponentiable.

Remark 6.1.3 The reader is advised to check that, in case C is a cartesian category
and C is its canonical indexing over itself, the notion of exponentiable object agrees
with the standard one of an exponentiable morphism (see Appendix A).
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Given an exponentiable object E in CU and an object A in CI, the canonical cocone
from E to A is in the internal language the cocone of those morphisms from E to A.
Formally, it is described as the internal diagram (KA; LA), where the internal category
KA and the diagram object LA are de�ned as follows. KA

0 is the object Hom(E;A),
with arrows s and t as in (6.1), and KA

1 is the pullback

KA
1

d0 //

x
²²

KA
0

s
²²

Hom(E;E)
t

// U;

where

U Hom(E;E)soo t // U

is the internal hom of E with itself. In the �bres over Hom(E;A) and Hom(E;E) one
has generic maps ": s�E // t�A and ": s�E // t�E, respectively.

The codomain map d0 of KA is the top row of the pullback above, whereas d1 is
induced by the composite

(sx)�E x�"��! (tx)�E �= (sd0)�E d�0"��! (td0)�A

via the universal property of Hom(E;A) and ".

The internal diagram LA is now the object s�E in CKA0 , and the arrow from d�1LA
to d�0LA is (modulo the coherence isomorphisms) x�".

When the colimit of the canonical cocone from E to A is A itself, one should think
of A as being generated by the maps from E to it. Therefore, it is natural to introduce
the following terminology.

De�nition 6.1.4 The object E is called a generating object if, for any A in C = C1,
A = colimKALA.

Later, we shall see how F -coalgebras form an indexed category. Then, a generating
object for this category will provide, in the internal language, a \generating family"
of coalgebras. The set-theoretic argument then goes on by taking the coproduct of
all coalgebras in that family. This provides a weakly terminal coalgebra. Categorically,
the argument translates to the following result.

Proposition 6.1.5 Let C be an S-cocomplete S-indexed category with a generating
object E in CU. Then, C = C1 has a weakly terminal object (an object is weakly
terminal if it is satis�es the existence but not necessarily the uniqueness requirement
for a terminal object).
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Proof. One builds a weakly terminal object in C by taking the internal colimit Q of the
diagram (K; L) in C, where K0 = U, K1 = Hom(E;E) (with domain and codomain
maps s and t, respectively), L = E and the map from d�0L to d�1L is precisely ".

Given an object A = colimKALA in C, notice that the serially commuting diagram

KA
1

d0

//

d1 //

x
²²

KA
0

s
²²

Hom(E;E)
t

//

s //

U

de�nes an internal functor J:KA //K. One has a commuting triangle of internal
S-categories

KA J //

ÃÃB
BB

BB
BB

B K

ÄÄ~~
~~

~~
~~

1:
Taking left adjoint along the reindexing functors which this induces on categories of
internal diagrams, one gets that colimKA �= colimK � LanJ. Hence, to give a map
from A = colimKALA to Q = colimKL it is su�cient to give a morphism of internal
diagrams from (K; LanJLA) to (K; L), or, equivalently, from (KA; LA) to (KA; J�L),
but the reader can easily check that these two diagrams are in fact the same. �

Once the coproduct of coalgebras in the \generating family" is formed, the set-
theoretic argument is concluded by quotienting it by its largest bisimulation. One
way to build such a bisimulation constructively is to identify a generating family of
bisimulations and then taking their coproduct.

This suggests that to apply Proposition 6.1.5 twice; �rst in the indexed category
of coalgebras, in order to obtain a weakly terminal coalgebra (G; 
), and then in the
(indexed) category of bisimulations over (G; 
). To this end, one needs to prove co-
completeness and existence of a generating object for these categories. The language
of inserters allows one to do that in a uniform way.

Instead of giving the general de�nition of an inserter in a 2-category, I will only
describe an inserter explicitly for the 2-category of S-indexed categories.

De�nition 6.1.6 Given two S-indexed categories C and D and two parallel S-indexed
functors F;G:C //D, the inserter I = Ins(F;G) of F and G has as �bre IX the
category whose objects are pairs (A;�) consisting of an object A in CX and an arrow
in DX from FXA to GXA, an arrow �: (A;�) // (B; �) being a map �:A //B in CX
such that GX(�)� = �FX(�).

The reindexing functor for a map f : Y //X in S takes an object (A;�) in IX to
the object (f �A; f ��), where f �� has to be read modulo the coherence isomorphisms
of D, but I shall ignore these thoroughly.
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There is an indexed forgetful functor U: Ins(F;G) //C which takes a pair (A;�)
to its carrier A; the maps � determine an indexed natural transformation FU //GU.
The triple (Ins(F;G); U; FU //GU) has a universal property, like any good categorical
construction, but it will not be used. The situation is depicted as below:

Ins(F;G) U // C
F //

G
// D: (6.2)

A tedious but otherwise straightforward computation, yields the proof of the fol-
lowing:

Lemma 6.1.7 Given an inserter as in (6.2), if C and D are S-cocomplete and F
preserves indexed colimits, then Ins(F;G) is S-cocomplete and U preserves colimits
(in other words, U creates colimits). In particular, Ins(F;G) has all internal colimits,
and U preserves them.

Example 6.1.8 Here, we shall be concerned with two particular examples of inserters.
One is the indexed category F�Coalg of coalgebras for an indexed endofunctor F on
C, which can be presented as the inserter

Ins(Id; F ) U // C
Id //

F
// C: (6.3)

More concretely, (F�Coalg)I = F I�coalg consists of pairs (A;�) where A is an object
and �:A //F IA a map in CI, and morphisms from such an (A;�) to a pair (B; �)
are morphisms �:A //B in CI such that F I(�)� = ��. The reindexing functors are
the obvious ones.

The other inserter we shall encounter is the indexed category Span(M;N) of spans
over two objects M and N in C1 of an indexed category. This is the inserter

Ins(�; hM;Ni) U // C
� //

hM;Ni
// C�C (6.4)

Where C�C is the product of C with itself (which is de�ned �brewise), � is the diagonal
functor (also de�ned �brewise), and hM;Ni is the pairing of the two constant indexed
functors determined by M and N. By this I mean that an object in C is mapped to
the pair (M;N) and an object in CX is mapped to the pair (X�M;X�N).

Remark 6.1.9 Notice that, in both cases, the forgetful functors preserve S-indexed
colimits in C, hence both F �Coalg and Span(M;N) are S-cocomplete, and also
internally cocomplete, if C is.

108 CHAPTER 6. NON-WELL-FOUNDED SET THEORY



Predicative topos theory and models for constructive set theory Benno van den Berg

In order to apply Proposition 6.1.5 to these indexed categories, one needs to �nd
generating objects for them. This will be achieved by means of the following two
lemmas.

First of all, consider an S-indexed inserter I = Ins(F;G) as in (6.2), such that F
preserves exponentiable objects. Then, given an exponentiable object E in CU, de�ne
an arrow U r�! U in S and an object (E; ") in IU, as follows.

Then form the generic map ": s�F UE // t�GUE associated to the internal hom
of F UE and GUE (which exists because F preserves exponentiable objects), and then
de�ne U as the equaliser of the following diagram

U
e // Hom(F UE;GUE)

s //

t
// U; (6.5)

the arrow r :U //U being one of the two equal composites se = te.

Put E = r �E and

" = F U(r �E)
�= // e�s�F UE e�" // e�t�GUE

�= // GU(r �E):

The pair (E; ") de�nes an object in IU.

Lemma 6.1.10 The object (E; ") is exponentiable in Ins(F;G).

Proof. Consider an object (A;�) in a �bre IX. Then, I de�ne the internal hom
Hom((E; "); (A;�)) as follows.

First, I build the internal homset

U L = Hom(E;A)soo t // X

of A and E in C, with generic map �: s�E // t�A. Because F preserves exponentiable
objects, it is also possible to form the internal hom in D

U Hom(F UE;GXA)soo t // X

with generic map �: s�F UE // t�GXA. By the universal property of �, the two com-
posites in DL

s�F UE
�= // F Ls�E

F L�
// F L(t�A)

�= // t�FXA t�� // t�GXA

and

s�F UE
s�" // s�GUE

�= // GLs�E
GL�

// GLt�A
�= // t�GXA

give rise to two maps p1; p2:L // Hom(F UE;GXA) in S, whose equaliser i :M //L
has as domain the internal hom Hom((E; "); (A;�)).
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The generic map (si)�(E; ") // (ti)�(A;�) in IM associated to this internal hom
forms the central square of the following diagram, and this commutes because its
outer sides are the reindexing along the maps p1i = p2i of the generic map � above:

(si)�F UE
(si)�"

//

�=
²²

(si)�GUE
�=

²²

FM(si)�E
(si)�(E;")

//

FM i��
²²

GM(si)�E
GM i��

²²

FM(ti)�A (ti)�(A;�)
//

�=
²²

GM(ti)�A
�=

²²

(ti)�FXA
(ti)��

// (ti)�GXA:

The veri�cation of its universal property is a lengthy but straightforward exercise. �

Next, I �nd a criterion for the exponentiable object (E; ") to be generating.

Lemma 6.1.11 Consider an inserter of S-indexed categories as in (6.2), where C and
D are S-cocomplete, and F preserves S-indexed colimits. If (E; ") is an exponentiable
object in IU and for any (A;�) in I1 the equation

colimK(A;�)UL(A;�) �= U(A;�) = A

holds, where (K(A;�); L(A;�)) is the canonical cocone from (E; ") to (A;�), then (E; ")
is generating in Ins(F;G).

Proof. Recall from Lemma 6.1.7 that Ins(F;G) is internally cocomplete and the
forgetful functor U: Ins(F;G) //C preserves internal colimits. Therefore, given an
arbitrary object (A;�) in I1, one can always form the colimit (B; �) = colimK(A;�)L(A;�).
All I need to show is that (B; �) �= (A;�). The isomorphism between B and A exists
because, by the assumption,

B = U(B; �) = UcolimK(A;�)L(A;�) �= colimK(A;�)UL(A;�) �= A:

Now, it is not too hard to show that the transpose of the composite

colimK(A;�)F UUUL(A;�) �= FUcolimK(A;�)L(A;�) ��! GUcolimK(A;�)L(A;�)

is (modulo isomorphisms preserved through the adjunction colimK(A;�) aK(A;�)�) the
transpose of �. Hence, � �= � and I am done. �

As an example, I show the following result about the indexed category of spans:
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Proposition 6.1.12 Given an S-cocomplete indexed category C and two objects M
and N in C1, if C has a generating object, then so does the indexed category of spans
P = Span(M;N).

Proof. Recall from Example 6.1.8 that the functor U:Span(M;N) //C creates
indexed and internal colimits. If E in CU is a generating object for C, then, by Lemma
6.1.10 one can build an exponentiable object

(E; ") = M E
"1oo

"2 // N

in PU. I am now going to prove that Span(M;N) meets the requirements of Lemma
6.1.11 to show that E is a generating object.

To this end, consider a span

(A;�) = M A
�1oo

�2 // N

in P1. Then, I can form the canonical cocone (K(A;�); L(A;�)) from (E; ") to (A;�) in
Span(M;N), and the canonical cocone (KA; LA) from E to A in C. The map r :U //U
of (6.5) induces an internal functor u:K(A;�) //KA, which is an isomorphism. There-
fore, the induced reindexing functor u�:CKA //CK(A;�) between the categories of in-
ternal diagrams in C is also an isomorphism, and hence colimK(A;�)u� �= colimKA. More-
over, it is easily checked that u�LA = UL(A;�). Therefore, one has

colimK(A;�)UL(A;�) �= colimK(A;�)u�LA �= colimKALA �= A

and this �nishes the proof. �

6.2 Final coalgebra theorems

In this Section, I am going to use the machinery of Section 6.1 in order to prove an
indexed �nal coalgebra theorem. I then give an axiomatisation for class of small maps,
which is a bit di�erent from the one studied in Chapter 4, for a Heyting pretopos with
an (indexed) natural number object, and apply the theorem in order to derive existence
of �nal coalgebras for various functors in this context. In more detail, I shall show
that every small map has an M-type, and that the functor Ps has a �nal coalgebra.

6.2.1 An indexed �nal coalgebra theorem

In this Section, C is a category with �nite limits and stable �nite colimits (that is,
its canonical indexing C is a C-cocomplete C-indexed category), and F is an indexed
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endofunctor over it (I shall write F for F 1). Recall from Remark 6.1.9 that the indexed
category F �Coalg is C-cocomplete (and the indexed forgetful functor U preserves
indexed colimits).

I say that F is small-based whenever there is an exponentiable object (E; ") in F U�
coalg such that, for any other F -coalgebra (A;�), the canonical cocone (K(A;�); L(A;�))
from (E; ") to (A;�) has the property that

colimK(A;�)UL(A;�) �= U(A;�) = A: (6.6)

It is immediate from Example 6.1.8 and Lemma 6.1.11 that, whenever there is a
pair (E; ") making F small-based, this is automatically a generating object in F�Coalg.
I shall make an implicit use of this generating object in the proof of:

Theorem 6.2.1 Let F be a small-based indexed endofunctor on a category C as above.
If F 1 takes pullbacks to weak pullbacks, then F has an indexed �nal coalgebra.

Before giving a proof, I need to introduce a little technical lemma. A weak pullback
is a square that is satis�es the existence requirement for pullbacks (but not necessarily
the uniqueness requirement).

Lemma 6.2.2 If F = F 1 turns pullbacks into weak pullbacks, then every pair of arrows

(A;�) �
// (C; 
) (B; �) 

oo

can be completed to a commutative square by the arrows

(A;�) (P; �)�
oo � // (B; �)

in such a way that the underlying square in C is a pullback. Moreover, if  is a
coequaliser in C, then so is �.

Proof. Build P as the pullback of  and � in C = C1. Then, since F turns pullbacks
into weak pullbacks, there is a map �:P //FP , making both � and � into coalge-
bra morphisms. The second statement follows at once by the assumption that �nite
colimits in C are stable. �

Proof of Theorem 6.2.1. Because F�Coalg is C-cocomplete, it is enough, by Lemma
A.19, to show that the �bre over 1 of this indexed category admits a terminal object.

Given that (E; ") is a generating object in F �Coalg, Proposition 6.1.5 implies the
existence of a weakly terminal F -coalgebra (G; 
). The classical argument now goes
on taking the quotient of (G; 
) by the maximal bisimulation on it, in order to obtain a
terminal coalgebra. I do that as follows. Let B = Span((G; 
); (G; 
)) be the indexed
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category of spans over (G; 
), i.e. bisimulations. Then, by Remark 6.1.9, B is a C-
cocomplete C-indexed category, and by Proposition 6.1.12 it has a generating object.
Applying again Proposition 6.1.5, I get a weakly terminal span (i.e. a weakly terminal
bisimulation)

(G; 
) (B; �)�oo
�

// (G; 
):

I now want to prove that the coequaliser

(B; �)
� //

�
// (G; 
) q

// (T; �)

is a terminal F -coalgebra.

It is obvious that (T; �) is weakly terminal, since (G; 
) is. On the other hand, suppose
(A;�) is an F -coalgebra and f ; g: (A;�) // (T; �) are two coalgebra morphisms; then,
by Lemma 6.2.2, the pullback s (resp. t) in C of q along f (resp. g) is a coequaliser
in C, which carries the structure of a coalgebra morphism into (A;�). One further
application of Lemma 6.2.2 to s and t yields a commutative square in F�coalg

(P; �) s 0 //

t 0
²²

�
t

²²� s
// (A;�)

whose underlying square in C is a pullback. Furthermore, the composite d = ts 0 = st 0
is a regular epi in C, hence an epimorphism in F�coalg.

Write s̃ (resp. t̃) for the composite of t 0 (resp. s 0) with the projection of the pullback
of f (resp. g) and q to G. Then, the triple ((P; �); s̃ ; t̃) is a span over (G; 
); hence,
there is a morphism of spans

�: ((P; �); s̃ ; t̃) // ((B; �); �; �):

It is now easy to compute that f d = q�� = q�� = gd , hence f = g, and the proof
is complete. �

As a particular instance of Theorem 6.2.1, one can recover the classical result from
Aczel [5, p. 87].

Corollary 6.2.3 (Final Coalgebra Theorem) Any standard functor (on the category
of classes) that preserves weak pullbacks has a �nal coalgebra.

Proof. First of all, notice that preservation of weak pullbacks is equivalent to our
requirement that pullbacks are mapped to weak pullbacks. Moreover, the category of
classes has �nite limits and stable �nite colimits. As an exponentiable object, take the
class U of all small coalgebras.
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Now, consider a standard functor F on classes (in Aczel's terminology). This can
easily be seen as an indexed endofunctor, since for any two classes X and I, one has
X=I �= XI (so, the action of F can be de�ned componentwise). It is now su�cient to
observe that every F -coalgebra is the union of its small subcoalgebras, therefore the
functor is small-based in our sense. �

Remark 6.2.4 With a bit of effort, the reader can see in the present proof of Theorem
6.2.1 an abstract categorical reformulation of the classical argument given by Aczel
in his book [5]. In order for that to work, he had to assume that the functor preserves
weak pullbacks (and so did I, in my reformulation). Later, in a joint paper with
Nax Mendler [6], they gave a different construction of final coalgebras, which allowed
them to drop this assumption. A translation of that argument in my setting, would
reveal that the construction relies heavily on the exactness properties of the ambient
category of classes. Since the functors in the following examples always preserve
weak pullbacks, I prefer sticking to the original version of the result (thus making
weaker assumptions on the category C), without bothering the reader with a (presently
unnecessary) second version, which, however, I believe can be proved.

More recently, the work of Adámek et al. [8] has shown that every endofunctor on
the category of classes is small-based, thereby proving that it has a final coalgebra
(by Aczel and Mendler’s result). Their proof makes a heavy use of set theoretic
machinery, which would be interesting to analyse in the present setting.

6.2.2 Small maps

I am now going to consider on C a class of small maps. This will allow us to show
that certain polynomial functors, as well as the powerclass functor, are small-based,
and therefore we will be able to apply Theorem 6.2.1 to obtain a �nal coalgebra for
them.

From now on, C will denote a Heyting pretopos with an (indexed) natural number
object. Recall that such categories have all �nite colimits, and these are stable under
pullback (see Lemma A.12).

As I explained in Chapter 4, there are various axiomatisations for a class of small
maps, starting with that of Joyal and Moerdijk in [47]. In this Chapter, I will follow
the formulation of Awodey et al. [9] and Awodey and Warren [10]. A comparison
with the original approach by Joyal and Moerdijk and the approach in Chapter 4, will
appear in Remark 6.2.5 below.

A class S of arrows in C is called a class of small maps if it satis�es the following
axioms:

(S1) S is closed under composition and identities;
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(S2) if in a pullback square
A //

g
²²

B
f

²²

C // D

f 2 S, then g 2 S;

(S3) for every object C in C, the diagonal �C:C //C�C is in S;

(S4) given an epi e:C //D and a commutative triangle

C e // //

f ''

D

g
wwA;

if f is in S, then so is g;

(S5) if f :C //A and g:D //A are in S, then so is their copairing

[f ; g]:C +D //A:

I have chosen labels that were also used in Chapter 4, but I do not think this will lead
to any confusion.

An arrow in S will be called small, and objects X will be called small in case the
unique arrow X // 1 is small. A small subobject R of an object A is a subobject
R // //A in which R is small. A small relation between objects A and B is a subobject
R // //A�B such that its composite with the projection on A is small (notice that
this does not mean that R is a small subobject of A�B).

On a class of small maps, I also require representability of small relations by means
of a powerclass object:

(P1) for any object C in C there is an object Ps(C) and a natural correspondence
between maps I //Ps(C) and small relations between I and C.

In particular, the identity on Ps(C) determines a small relation 2C� Ps(C)�C. One
should think of Ps(C) as the object of all small subobjects of C; the relation 2C then
becomes the membership relation between elements of C and small subobjects of C.
The association C 7! Ps(C) de�nes a covariant functor (in fact, a monad) on C. I
further require the two following axioms:

(I) The natural number object N is small;
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(R) There exists a universal small map �:E //U in C, such that any other small
map f :A //B �ts in a diagram

A
f

²²

�oo

²²

// E
�

²²

B � //
q

oooo U

where both squares are pullbacks and q is epi.

It can now be proved that a class S satisfying these axioms induces a class of
small maps on each slice C=C. Moreover, the reindexing functor along a small map
f :C //D has a right adjoint �f : C=C // C=D. In particular, it follows that all small
maps are exponentiable in C (see [10]).

Remark 6.2.5 The axioms that I have chosen for the class of small maps subsume all
of the Joyal-Moerdijk axioms in [47, pp. 6{8], except for the collection axiom (A7).
In particular, the Descent Axiom (A3) can be seen to follow from axioms (S1)� (S5)
and (P1).

Conversely, the axioms of Joyal and Moerdijk imply all of the present axioms except
for (S3) and (I). The results in Section 6.3 will imply that, by adding these axioms,
a model of the weak set theory CZF0 can be obtained in the setting of [47].

The axioms given here are in a similar manner incomparable in strength with the
axioms in Chapter 4. A class of small maps as de�ned here need not satisfy the axioms
called (F4) and (F5) in the statement of Lemma 4.2.5, while a (representable) class
of small maps in the sense of Chapter 4 need not satisfy (S3) and (S4).

6.2.3 Final coalgebras in categories with small maps

From now on, I shall consider on C a class of small maps S. Using their properties, I
am able to prove the existence of the M-type for every small map f :D //C, as well
as the existence of a �nal Ps-coalgebra.

Recall that a polynomial functor Pf induced by an exponentiable map f :D //C
in a cartesian category C is indexed, see Theorem 2.1.3. In fact, it can be presented
as the composite Pf = �C�fD� of three indexed functors preserving pullbacks. It is
therefore also immediate that Pf preserves pullbacks. Of course, the indexed M-type
of f is the indexed �nal coalgebra of Pf (if necessary, see Appendix A for the de�nition
of an indexed �nal coalgebra).

Theorem 6.2.6 If f :D //C is a small map in C, then f has an (indexed) M-type.
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Proof. In order to obtain an (indexed) �nal Pf -coalgebra, I want to apply Theorem
6.2.1, and for this, what remains to be checked is that Pf is small-based. To this end,
I �rst need to �nd an exponentiable coalgebra (E; "), and then to verify condition
(6.6).

The universal small map �:E //U in C is exponentiable, as I noticed after the pre-
sentation of axiom (R). Hence, unwinding the construction preceding Lemma 6.1.10,
I obtain an exponentiable object in Pf�Coalg. Using the internal language of C, I can
describe (E; ") as follows.

The object U on which E lives is described as

U = f(u 2 U; t:Eu //Pf (Eu))g;
and E is now de�ned as

E = f(u 2 U; t:Eu //Pf (Eu); e 2 Eu)g:
The coalgebra structure ":E //P Uf E takes a triple (u; t; e) (with te = (c; r)) to
the pair (c; s:Dc //E), where the map s takes an element d 2 Dc to the triple
(u; t; r(d)).

Given a coalgebra (A;�), the canonical cocone from (E; ") to it takes the following
form. The internal category K(A;�) is given by

K(A;�)
0 = f(u 2 U; t:Eu ! Pf (Eu); m:Eu ! A) j Pf (m)t = �mg;

K(A;�)
1 = f(u; t;m; u0; t 0; m0; �:Eu ! Eu0) j (u; t;m); (u0; t 0; m0) 2 K(A;�)

0 ;
t 0� = Pf (�)t and m0� = mg:

(Notice that, in writing the formulas above, I have used the functor Pf in the internal
language of C; I can safely do that because the functor is indexed. I shall implicitly
follow the same reasoning in the proof of Theorem 6.3.4 below, in order to build an
(indexed) �nal Ps-coalgebra.)

The diagram L(A;�) is speci�ed by a coalgebra over K(A;�)
0 , but for my purposes I only

need to consider its carrier, which is

UL(A;�) = f(u; t;m; e) j (u; t;m) 2 K(A;�)
0 and e 2 Eug:

Condition (6.6) says that the colimit of this internal diagram in C is A, but this is
implied by the conjunction of the two following statements, which I am now going to
prove:

1. For all a 2 A there exists (u; t;m; e) 2 UL(A;�) such that me = a;

2. If (u0; t0; m0; e0) and (u1; t1; m1; e1) are elements of UL(A;�) such that m0e0 =
m1e1, then there exist (u; t;m; e) 2 UL(A;�) and coalgebra maps �i :Eu //Eui
(i = 0; 1) such that mi�i = m and �ie = ei .
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Condition 2 is trivial: given (u0; t0; m0; e0) and (u1; t1; m1; e1), Lemma 6.2.2 allows
one to �ll a square

(P; 
) //

²²

(Eu0; t0)

m0

²²

(Eu1; t1) m1
// (A;�);

in such a way that the underlying square in C is a pullback (hence, P is a small object).
Therefore, (P; 
) is isomorphic to a coalgebra (Eu; t), and, under this isomorphism,
the span

(Eu0; t0) (P; 
)oo // (Eu1; t1)

takes the form
(Eu0; t0) (Eu; t)�0oo

�1 // (Eu1; t1):

Moreover, since m0e0 = m1e1, there is an e 2 Eu such that �ie = ei . Then, de�ning
m as any of the two composites mi�i , the element (u; t;m; e) in UL(A;�) satis�es the
desired conditions.

As for condition 1, �x an element a 2 A. One can build a subobject hai of A inductively,
as follows:

hai0 = fag;
hain+1 =

⋃

a02hain
t(Dc) where �a0 = (c; t:Dc //A):

Then, each hain is a small object, because it is a small-indexed union of small objects.
For the same reason (since, by axiom (I), N is a small object) their union hai =⋃
n2Nhain is small, and it is a subobject of A. It is not hard to see that the coalgebra

structure � induces a coalgebra �0 on hai (in fact, hai is the smallest subcoalgebra of
(A;�) containing a, i.e. the subcoalgebra generated by a), and, up to isomorphism,
this is a coalgebra t:Eu //PfEu, with embedding m:Eu //A. Via the isomorphism
Eu �= hai, the element a becomes an element e 2 Eu such that me = a. Hence, one
gets the desired 4-tuple (u; t;m; e) in UL(A;�).

This concludes the proof of the theorem. �

Theorem 6.2.7 The powerclass functor Ps has an (indexed) �nal coalgebra.

Proof. It is easy to check that Ps is the component on 1 of an indexed functor, and
that it maps pullbacks to weak pullbacks.

Therefore, once again, I just need to verify that Ps is small-based. I proceed exactly
like in the proof of Theorem 6.2.6 above, except for the construction of the coalgebra
(hai; �0) generated by an element a 2 A in 1. Given a Ps-coalgebra (A;�), I construct
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the subcoalgebra of (A;�) generated by a as follows. First, I de�ne inductively the
subobjects

hai0 = fag;
hain+1 =

⋃

a02hain
�(a0):

Each hain is a small object, and so is their union hai =
⋃
n2Nhain. The coalgebra

structure �0 is again induced by restriction of � on hai. �

6.3 The �nal Ps-coalgebra as a model of AFA

The standing assumption in this Section is that C is a Heyting pretopos with an
(indexed) natural number object and a class S of small maps. In the last Section, I
proved that in this case the Ps-functor has a �nal coalgebra in C. Now I will explain
how this �nal coalgebra can be used to model various set theories with the Anti-
Foundation Axiom. First I work out the case for the weak constructive theory CZF0,
and then indicate how the same method can be applied to obtain models for stronger,
better known or classical set theories.

The presentation of CZF0 follows that of Aczel and Rathjen in [7]; the same theory
appears under the name BCST* in the work of Awodey and Warren in [10]. It is a
�rst-order theory whose underlying logic is intuitionistic; its non-logical symbols are a
binary relation symbol � and a constant !, to be thought of as membership and the
set of (von Neumann) natural numbers, respectively. Two more symbols will be added
for sake of readability, as I proceed to state the axioms. Notice that, as in Chapter 4,
in order to make a distinction between the membership relation of the set theory and
that induced by the powerclass functor, I shall denote the former by � and the latter
by 2.

The conventions of Chapter 4 are assumed to be in place. In particular, I use the
following abbreviations:

9x�a (: : :) : = 9x (x�a ^ : : :);
8x�a (: : :) : = 8x (x�a! : : :):

The axioms for CZF0 are (the universal closures) of the following statements:

(Extensionality) 8x (x�a$ x�b)! a = b

(Pairing) 9y 8x (x�y $ (x = a _ x = b))

(Union) 9y 8x(x�y $ 9z (x�z ^ z�a))
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(Emptyset) 9y 8x (x�y $ ?)

(Intersection) 9y 8x (x�y $ (x�a ^ x�b))

(Replacement) 8x�a 9!y �! 9b 8y (y�b $ 9x� a �)

Two more axioms will be added, but before I do so, I want to point out that all
instances of �0-separation follow from these axioms, i.e. one can deduce all instances
of

(�0-Separation) 9y 8x (x�y $ (x�a ^ �(x)))

where � is a formula in which y does not occur and all quanti�ers are bounded.
Furthermore, in view of the above axioms, I can introduce a new constant ; to denote
the empty set, and a function symbol s which maps a set x to its \successor" x [fxg.
This allows one to formulate concisely our last axioms:

(In�nity-1) ;�! ^ 8x�! (sx�!)

(In�nity-2)  (;) ^ 8x�! ( (x)!  (sx))! 8x�!  (x).

It is an old observation by Rieger that models for set theory can be obtained as
�xpoints for the powerclass functor (see [76]). The same is true in the context of
algebraic set theory (see, [19] for a similar result):

Theorem 6.3.1 Every Ps-�xpoint in C provides a model of CZF0.

Proof. Suppose there is a �xpoint E: V //PsV , with inverse I. Call y the name
of a small subobject A � V , when E(y) is its corresponding element in Ps(V ). One
interprets the formula x�y as an abbreviation of the statement x 2 E(y) in the internal
language of C. Then, the veri�cation of the axioms for CZF0 goes as follows.

Extensionality holds because two small subobjects E(x) and E(y) of V are equal if
and only if, in the internal language of C, z 2 E(x) $ z 2 E(y). The pairing of
two elements x and y represented by two arrows 1 // V , is given by I(l), where l
is the name of the (small) image of their copairing [x; y ]: 1 + 1 // V . The union
of the sets contained in a set x is interpreted by applying the multiplication of the
monad Ps to (PsE)(E(x)). The intersection of two elements x and y in V is given by
I(E(x)\E(y)), where the intersection is taken in Ps(V ). The least subobject 0 � V
is small, and its name ;: 1 // V models the empty set.

For the Replacement axiom, consider a, and suppose that for every x�a there exists
a unique y such that �. Then, the subobject fy j 9x�a �g of V is covered by E(a),
hence small. Applying I to its name, one obtains the image of �.
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Finally, the In�nity axioms follow from the axiom (I). The morphism ;: 1 // V to-
gether with the map s: V // V which takes an element x to x[fxg, yields a morphism
�:N // V . Since N is small, so is the image of �, as a subobject of V , and applying I
to its name one gets an ! in V which validates the axioms In�nity-1 and In�nity-2. �

This theorem shows that every �xpoint for the functor Ps models a very basic set
theory. Now, by demanding further properties of the �xpoint, one can deduce the
validity of more axioms. For example, in [47], it is shown how the initial Ps-algebra
(which is a �xpoint, after all) models the Axiom of Foundation. Here, I show that
a �nal Ps-coalgebra satis�es the Anti-Foundation Axiom. To formulate this axiom, I
de�ne the following notions. A (directed) graph consists of a pair of sets (n; e) such
that n � e � e. A colouring of such a graph is a function c assigning to every node
x�n a set c(x) such that

c(x) = fc(y) j (x; y)�eg:
This can be formulated solely in terms of � using the standard encoding of pairs and
functions. In ordinary set theory (with classical logic and the Foundation Axiom), the
only graphs that have a colouring are well-founded trees and these colourings are then
necessarily unique.

The Anti-Foundation Axiom says:

(AFA) Every graph has a unique colouring.

Proposition 6.3.2 If C has an (indexed) �nal Ps-coalgebra, then this is a model for
the theory CZF0+AFA.

Proof. I clearly have to check just AFA, since any �nal coalgebra is a �xpoint. To
this end, note �rst of all that, because (V; E) is an indexed �nal coalgebra, one can
think of it as a �nal Ps-coalgebra in the internal logic of C.

So, suppose one has a graph (n; e) in V . Then, n (internally) has the structure of a
Ps-coalgebra �: n //Psn, by sending a node x � n to the (small) set of nodes y � n
such that (x; y)�e. The colouring of n is now given by the unique Ps-coalgebra map

: n // V . �

By Theorem 6.2.7, it then follows at once:

Corollary 6.3.3 Every Heyting pretopos with a natural number object and class of
small maps contains a model of CZF0+AFA.

This result can be extended to theories stronger than CZF0. For example, to the
set theory CST introduced by Myhill in [62]. This theory is closely related to (in
fact, intertranslatable with) CZF0+Exp, where Exp is (the universal closure of) the
following axiom.
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(Exponentiation) 9t (f �t $ Fun(f ; x; y))

Here, the predicate Fun(f ; x; y) expresses the fact that f is a function from x
to y , and it can be formally written as the conjunction of 8a�x 9!b�y (a; b)�f and
8z�f 9a�x; b�y (z = (a; b)).

Theorem 6.3.4 Assume the class S of small maps also satis�es

(E) The functor �f preserves small maps for any f in S.

Then, C contains a model of CST+AFA.

Proof. We already saw how the �nal Ps-coalgebra (V; E) models CZF0+AFA. Now,
(E) implies that AB is small, if A and B are, so, E(y)E(x) is always small. This gives
rise to a small subobject of V , by considering the image of the morphism that sends
a function f 2 E(y)E(x) to the element in V representing its graph. The image under
I of the name of this small object is the desired exponential t. �

Another example of a stronger theory which can be obtained by imposing further
axioms for small maps is provided by IZF�, which is intuitionistic ZF without the
Foundation Axiom. It is obtained by adding to CZF0 the following axioms:

(Powerset) 9y 8 x(x�y $ 8z�x(z�a))

(Full Separation) 9y 8x(x�y $ (x�a ^ �(x)))

(Collection) 8x�a 9y �(x; y)! 9b 8x�a 9y�b �(x; y)

(In Full Separation, y is not allowed to occur in �.)

By now, the proof of the following theorem should be routine (if not, the reader
should consult [19]):

Theorem 6.3.5 Assume the class of small maps S also satis�es

(P2) if X //B belongs to S, then so does Ps(X //B);

(M) every monomorphism is small;

(C) for any two arrows p: Y //X and f :X //A where p is epi and f belongs to S,
there exists a quasi-pullback square of the form

Z
g

²²

// Y
p

// // X
f

²²

B h
// // A

where h is epi and g belongs to S.
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Then, C contains a model of IZF�+AFA.

Corollary 6.3.6 If the pretopos C is Boolean, then classical logic is also true in the
model, which will therefore validate ZF�+AFA, Zermelo-Fraenkel set theory with
Anti-Foundation instead of Foundation.

Finally, one can build a model for a non-well-founded version of Aczel's set theory
CZF, discussed in Chapter 4. The set theory CZF�+AFA is obtained by dropping
Set Induction and replacing it by AFA, and was studied by M. Rathjen in [71, 72]. It
is obtained by adding to CZF0 the axiom AFA, as well as the following:

(Strong Collection) 8x�a 9y �(x; y)! 9bB(x�a; y�b)�(x; y)

(Subset Collection) 9c 8z (8x�a 9y�b �(x; y ; z)! 9d�c B(x�a; y�d)�(x; y ; z)

Here B(x�a; y�b)� abbreviates:

8x�a 9y�b � ^ 8y�b 9x�a �:

In order for a class of small maps to give a model Subset Collection, the class has
to satisfy a rather involved axiom that will be called (F). In order to formulate it, I need
to introduce some notation. For two morphisms A //X and B //X, MX(A;B) will
denote the poset of multi-valued functions from A to B over X, i.e. jointly monic
spans in C=X,

A Poooo // B

with P //X small and the map to A epic. By pullback, any f : Y //X determines
an order preserving function

f �:MX(A;B) //MY (f �A; f �B):

Theorem 6.3.7 Assume the class of small maps S also satis�es (C) as in Theorem
6.3.5, and the following axiom:

(F) for any two small maps A //X and B //X, there exist an epi p:X 0 //X, a
small map f :C //X 0 and an element P 2 MC(f �p�A; f �p�B), such that for
any g:D //X 0 and Q 2 MD(g�p�A; g�p�B), there are morphisms x :E //D
and y :E //C, with gx = f y and x epi, such that x�Q � y �P .

Then, C contains a model of CZF�+AFA.

Proof. Any �xpoint for Ps will model Strong Collection in virtue of property (C) of
the class of small maps.
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Because of (F) the �xpoint will also model the axiom called Fullness in Chapter 4.
But Fullness is equivalent to Subset Collection over CZF0 and Strong Collection (see
[7]). �

To illustrate that these are not empty theorems, I wish to conclude this Chapter
by presenting several cases to which they can be applied. Following [47], one can �nd
several examples of categories endowed with classes of small maps satisfying some
of the discussed axioms. I cannot study them in detail, but I would at least like to
present them brie
y. For a more complete treatment, the reader is advised to look
at [47]. A thorough study of the properties of the resulting models is the subject for
future research.

The most obvious example is clearly the category of classes, where the notion of
smallness is precisely that of a class function having as �bres just sets. This satis�es
all the presented axioms. Along the same lines, one can consider the category of sets,
where the class of small maps consists of those functions whose �bres have cardinality
at most �, for a �xed in�nite regular cardinal �. This satis�es axioms (S1-5), (P1),
(I), (R), (M) and (C), but not (E). However, if � is also inaccessible, then (E) is
satis�ed, as well as (P2) and (F).

Consider the topos Sh(C) of sheaves over a site C, with pullbacks and a subcanon-
ical topology. Then, for an in�nite regular cardinal � greater than the number of
arrows in C, de�ne the notion of smallness (relative to �) following [47], Chapter IV.3.
This satis�es the axioms (S1-5), (P1), (I) and (R). Moreover, if � is inaccessible, it
satis�es also (P2), (M), (C).

Finally, on the e�ective topos Eff one can de�ne a class of small maps in at least
two di�erent ways. For the �rst, consider the global section functor � : Eff //Sets,
and �x a regular cardinal �. Then, say that a map f :X // Y is small if it �ts in a
quasi-pullback

P // //

g
²²

X
f

²²

Q // // Y

where P and Q are projectives and � (g) is �-small in Sets. With this de�nition, the
class of small maps satis�es all the basic axioms (S1-5), (P1), (I) and (R), as well
as (C) and (M). If � is inaccessible, it also satis�es (P2).

Alternatively, one can take the class of small maps in Eff investigated in Chapter
4. This notion of smallness satis�es all the axioms apart from (P2).

124 CHAPTER 6. NON-WELL-FOUNDED SET THEORY



Predicative topos theory and models for constructive set theory Benno van den Berg

Appendix A

Categorical background

This Appendix is meant to provide the prospective reader of this thesis with su�cient
categorical background (or to refresh his, resp. her, memory). An excellent source on
these matters is the �rst volume of Johnstone's Elephant [44].

Cartesian categories A.1 A category C is called cartesian if it possesses all �nite
limits. A functor between cartesian categories is called cartesian if it preserves �nite
limits.

Practically all categories in this thesis are cartesian. Slightly better categories are
regular.

Regular categories A.2 There are several equivalent ways of de�ning regular cat-
egories. From a logical point of view, regular categories are cartesian categories in
which one can interpret the existential quanti�er. In any cartesian category, a mor-
phism f : Y //X induces a functor f �: Sub X // Sub Y , by pullback. In regular cat-
egories, such functors f � have left adjoints 9f . Applying 9f to the maximal subobject
Y � Y , one obtains the image of f : a subobject X � A is called the image of a map
f : Y //X in a category C, when it is the least subobject through which f factors. A
morphism f : Y //X having as image the maximal subobject X � X is called a cover .
As one can see, the notions of image and cover make sense in any category and will
be used frequently in this thesis.

The notion of a regular category can now be de�ned as follows. A cartesian category
C is called regular if every map in C factors, in a stable fashion, as a cover followed
by a monomorphism. A cartesian functor between regular categories is called regular
if it preserves covers.

For us, the most important fact about regular categories is the following result due to
Joyal:

Lemma A.3 In a regular category covers and regular epimorphism, i.e. epimorphisms
that arise as coequalisers, coincide.
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To interpret full �rst-order intuitionistic logic, regular categories have to be equipped
with more structure. In fact, a regular category C needs to satisfy the following
two conditions to interpret disjunction and the universal quanti�er (and implication)
respectively:

� The subobject lattice Sub X of any object X in C has �nite unions, preserved by
the operation f � for any f : Y //X.

� For any morphism f : Y //X, the functor f �: Sub X // Sub Y has a right ad-
joint 8f .

When these are satis�ed, the category C is called a Heyting category.

Lemma A.4 Let R � A�B be a relation from A to B in a Heyting category C. R is
the graph of a (necessarily unique) morphism A //B in C, if and only if the following
two statements

8a 2 A 9b 2 BR(a; b)
8a 2 A 8b; b0 2 B (R(a; b) ^ R(a; b0)! b = b0)

are valid in the internal logic of C.

Relations R as in the lemma are called functional.

Even better than regular categories are exact categories, also called e�ective regular
categories (in [44], for example).

Exact categories A.5 The idea behind exact categories is that equivalence relations
have \good" quotients. I will say in an instant what I mean by a good quotient, but
�rst I have to de�ne what I mean by an equivalence relation in a categorical context.

De�nition A.6 Two parallel arrows

R
r0 //

r1
// X

in category C form an equivalence relation when for any object A in C the induced
function

Hom(A;R) // Hom(A;X)2

is an injection de�ning an equivalence relation on the set Hom(A;X). A morphism
q:X //Q is called the quotient of the equivalence relation, if the diagram

R
r0 //

r1
// X

q
// Q
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is both a pullback and a coequaliser. In this case, the diagram is called exact. The
diagram is called stably exact, when for any p:P //Q the diagram

p�R
p�r0 //

p�r1
// p�X

p�q
// p�Q

is also exact.

A regular category C is now called exact, when any equivalence relation �ts into a
stably exact diagram. A functor between exact categories is called exact, if it is
regular.

Among exact categories, pretoposes are of special interest. To identify these, one
needs the following de�nition.

De�nition A.7 A cartesian category C has �nite disjoint, stable sums, when it has an
initial object 0 (the empty sum) and for any two objects A and B a binary sum A+B
that is disjoint in the sense that

0 //

²²

A

²²

B // A+ B

is a pullback, and stable in the sense that for all maps A //X, B //X and Y //X,
the canonical map Y �X A+ Y �X B // Y �X (A+ B) is an isomorphism.

A pretopos is an exact category with �nite disjoint, stable sums. On pretoposes there
is the following important result, that will frequently be used.

Lemma A.8 In a pretopos, every epimorphism �ts into a stably exact diagram. Put
di�erently, every epimorphism is the coequaliser of its kernel pair. In particular, epi-
morphisms, regular epimorphisms and covers coincide.

Because of the sums, disjunction can be interpreted in a pretopos, but it does not nec-
essarily have the structure to interpret universal quanti�cation. A pretopos C is there-
fore called Heyting, if for any morphism f : Y //X in C the functor f �: Sub X // Sub Y
induced by pullback, has a right adjoint �f . So Heyting pretoposes are exact Heyting
categories.

Lcccs A.9 Lccc is an abbreviation for \locally cartesian closed category". The quick-
est way to de�ne an lccc is by �rst observing that for any morphism f : Y //X in
a cartesian category C, pulling back along f determines a functor f �: C=X // C=Y .
Such functors always have a left adjoint �f given by composition with f , but when
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they also have right adjoints, the category C is an lccc. One also sometimes says that
C has dependent products.

This de�nition is the quickest, but it is not the one I will use most often. However,
to state the other equivalent de�nitions, I �rst need to recall the de�nitions of an
exponential and a cartesian closed category.

De�nition A.10 In a category C with products, an object Z is the exponential of two
objects A and B, if it is equipped with an evaluation morphism �:Z � A //B such
that for any morphism f :X � A //B there is a unique morphism f :X //Z such
that

X � A f�1
//

f
%%KKKKKKKKKKK Z � A
�

²²

B

commutes. In this case Z is often written as BA. An object A in C is called exponen-
tiable, if BA exists for any object B. A map f :X // Y is called exponentiable, if it is
exponentiable as an object of C=Y . A category C with products in which every object
is exponentiable, is called cartesian closed .

When an object A in a category C with products is exponentiable, the association
(�)A:B 7! BA is functorial. In fact, it is right adjoint to the functor (�) � A:B 7!
B � A. Therefore, lcccs are certainly cartesian closed.

A cartesian category C is now locally cartesian closed , when it satis�es any of the
following equivalent conditions:

1. All pullback functors f �: C=X // C=Y for a map f : Y //X have a right adjoint
�f .

2. Any morphism f : Y //X is exponentiable.

3. Any slice category of C is cartesian closed.

The existence of the right adjoints �f has a number of consequences. For example,
since pullback functors are now also left adjoints, they preserve all colimits. This
means in particular that in an lccc, sums are always stable.

Furthermore, because �f as a right adjoint preserves monos, right adjoints to the
operation of pulling back subobjects along an arbitrary map exist in an lccc. Therefore
universal quanti�ers can be interpreted. This means that a locally cartesian closed
regular category with disjoint sums is a Heyting category. In particular, locally carte-
sian closed pretoposes, or �-pretoposes as I will frequently call them, are Heyting
pretoposes.
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Algebras and coalgebras A.11 The setting is that of a category C equipped with
an endofunctor T : C // C. A category of T -algebras can then be de�ned as follows.
Objects are pairs consisting of an object X together with a morphism x :TX //X in
C. A morphism from (X; x :TX //X) to (Y; y :TY // Y ) is a morphism p:X // Y
in C such that

TX
Tp

//

x
²²

TY
y

²²

X p
// Y

commutes.

I will frequently be interested in the initial object in this category, whenever it exists.
This initial object (I; i) is then called the initial or free T -algebra. As the name free
T -algebra suggests, the idea is that the structure of I has been freely generated so
as to make it a T -structure. Very often, at least in the cases I am interested in,
I has been generated by an inductive de�nition. Its initiality is then a consequence
of the recursive property such an inductively de�ned object automatically possesses.
In fact, the language of initial algebras is the right categorical language for studying
inductively de�ned structures.

For example, in case C is a �-pretopos, consider the endofunctor T on C sending an
object X to 1 + X. Then T -algebras are morphisms x : 1 + X //X, or equivalently
pairs of morphisms (x0: 1 //X; x1:X //X), usually depicted as:

1
x0 // X

x1 // X:

Morphisms of T -algebras are then commuting diagrams like:

1
=

²²

x0 // X
p

²²

x1 // X
p

²²

1 y0
// Y y1

// Y:

The initial T -algebra is called the natural number object (nno) in X and is usually
depicted as:

1 0 // N s // N:

It is easy to see that in the category of sets, this is precisely the set of natural
numbers with zero and successor, and to verify this fact one uses precisely the fact
that functions can be (uniquely) de�ned by recursion on the natural numbers. One
sees that the language of initial algebras allows us to make sense of the notion of the
natural numbers in more general categories.

In case C is just a cartesian category, an indexed version of the above is more useful.
An indexed natural number object in a cartesian category C is an object N equipped
with the following structure

1 0 // N s // N;
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such that for any (parameter) object P and any arrows f :P // Y and t:P �Y // Y ,
there is a unique f :P � N // Y for which the diagram

P � 1
�=

²²

1�0
// P � N

(�1;f )
²²

1�s
// P � N

f
²²

P (1;f )
// P � Y t

// Y

commutes. When C is cartesian closed, it is su�cient to check this for P = 1 and the
di�erence between the two de�nitions disappears.

The following lemma is a result that illustrates the usefulness of an (indexed) nno.

Lemma A.12 A pretopos C with an indexed nno is cocartesian, i.e. it has all �nite
colimits and these are stable.

Initial algebras have special properties: they are well-founded �xpoints. In some cases,
this characterises them completely, but that is not always the case.

De�nition A.13 Let C be a category equipped with an endofunctor T : C // C. A
�xpoint is an object X together with an isomorphism TX �= X.

Fixpoints can always be regarded as T -algebras, and on the other hand one has the
following elementary, but very useful, result by Lambek (see [50]):

Lemma A.14 An initial T -algebra is a �xpoint.

De�nition A.15 Let C be a category equipped with an endofunctor T : C // C. A
T -algebra X together with a morphism f to a T -algebra Y is called a T -subalgebra
of Y , when the underlying map of f in C is a monomorphism. A T -algebra Y is called
well-founded , when in all its T -subalgebras f :X // Y , f is an isomorphism.

Instead of saying \X is well-founded", one also says that \X has no proper subalge-
bras". It is a trivial observation that initial algebras are always well-founded.

Where algebras form the right categorical language to study inductively de�ned struc-
tures, coalgebras are the right categorical language to study phenomena like coin-
duction and bisimulation, with which I will also be concerned. The setting is again
that of a category C equipped with an endofunctor T : C // C and the category of
T -coalgebras is de�ned dually to that of the category of T -algebras. So objects are
pairs consisting of an object X together with a morphism x :X //TX in C, and a
morphism p:X // Y in C is a morphism of T -coalgebras from (X; x :X //TX) to
(Y; y : Y //TY ), when (Tp)x = yp. The terminal object in this category, when it
exists, is called the �nal or cofree T -coalgebra. Some results on initial algebras simply
carry over by duality to �nal coalgebras, in particular Lambek's result that they are
�xpoints.
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Indexed categories A.16 Algebras and coalgebras can also be de�ned in an indexed
setting. For more on indexed categories, see again the Elephant [44], whose notational
conventions I will follow.

An indexed category C is de�ned by giving for every object I in a �xed category S,
the base of the indexed category, a category CI. Furthermore, there should be so-
called reindexing functors x�: CI // CJ for every x : J // I in S. Finally, for any two
composable arrows x : J // I and y :K // J in S, the functors (xy)� and y �x� are
required to be naturally isomorphic, and (idI)� is supposed to be naturally isomorphic
to the identity on CI. The natural isomorphisms, which are part of the data of an
indexed category, are in turn demanded to satisfy a number of coherence conditions,
which I shall not state here.

An indexed terminal object is given by a family of objects TI, one for every I in S,
such that TI is �nal in every category CI, and for every x : J // I, x�TI �= TJ. The
de�nition of an indexed initial object is similar. In case the base category S has a
terminal object 1, an indexed terminal object is given by the following data: a terminal
object T in C1, whose reindexings I�T are still �nal for every I = I // 1 in S.

An indexed functor F :C //D for two categories indexed over the same base category
S is given by a family of functors F I: CI //DI, one for every object I in S. These
functors are given together with natural isomorphisms for every x : J // I that �ll the
squares

CI
F I

²²

x� // CJ
F J

²²DI x�
// DJ:

I will again omit the coherence conditions that these natural isomorphisms need to
satisfy.

For an indexed endofunctor F on an indexed category C, one can de�ne a new indexed
category: the indexed category F�Alg of F -algebras. For any I in S, its �bre (F�Alg)I

is the category of F I-algebras in the category CI, and the reindexing functors are
de�ned in the obvious way. By an indexed initial algebra, one means an indexed
initial object in this indexed category. These are automatically indexed well-founded
�xpoints: by this, I mean a family of algebras AI, one for every I in S, such that each
AI is a well-founded �xpoint for F I in CI.
For any cartesian category C, there is the canonical indexing of C over itself. The
�bre CI for any I in C is the slice C=I, while x� is de�ned by pullback. Remark that C1

is really just C. By an indexed endofunctor on a cartesian category C, one means an
endofunctor that is indexed with respect to the canonical indexing of C over itself. In
this case, (F�Alg)1 is also just the ordinary category of F -algebras on C.

When F has an indexed initial algebra, this means that F has an ordinary initial algebra
A, with the additional property that for every object I in S, I�A is initial in (F�Alg)I.
These are also indexed well-founded �xpoints, that is, A is a well-founded �xpoint for
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F , and so are all its reindexings. Indexed natural number objects are examples of such
indexed initial algebras.

The de�nitions of an indexed category of coalgebras for an indexed endofunctor on an
indexed category, and an indexed �nal coalgebra, should now be obvious.

Internal categories and colimits A.17 Suppose S is a cartesian category. An in-
ternal category K in S consists of a diagram

K1

d1 //

d0

// K0;

where d1 is the domain map, d0 is the codomain one, and they have a common left
inverse i . Furthermore there is a composition. If K2 is the object of composable
arrows, i.e. the object

K2
p1 //

p0

²²

K1

d1
²²

K1 d0

// K0;

there is a morphism c :K2 //K1 such that d1c = d1p0 and d0c = d0p1. Composition
behaves well with respect to identities: chid; id0i = id and chid1; idi = id. Finally,
composition is associative: if one forms the limit of

K1

d0 ÃÃB
BB

BB
BB

B K1
d1

~~||
||

||
||

d0 !!CC
CC

CC
CC

K1

}}{{
{{

{{
{{

K0 K0;

then two possible composites K3 //K2 //K1 are equal. There is also a notion of
internal functor between internal categories, and this gives rise to the category of
internal categories in S (see Section B2.3 of [44] for the details).

An internal diagram L of shape K in an S-indexed category C consists of an internal
S-category K, an object L in CK0, and a map d�1L // d�0L in CK1 which interacts
properly with the categorical structure of K. Moreover, one can consider the notion
of a morphism of internal diagrams, and these data de�ne the category CK of internal
diagrams of shape K in C.

An indexed functor F :C //D induces an ordinary functor FK:CK //DK between the
corresponding categories of internal diagrams of shape K. Dually, given an internal
functor F :K // J, this (contravariantly) determines by reindexing of C an ordinary
functor on the corresponding categories of internal diagrams: F �:CJ //CK. One says
that C has internal left Kan extensions if these reindexing functors have left adjoints,
denoted by LanF . In the particular case where J = 1, the trivial internal category with
one object, I write K�:C //CK for the functor, and colimK for its left adjoint LanK,
and colimKL is called the internal colimit of L.
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Furthermore, suppose C and D are S-indexed categories with internal colimits of
shape K. Then, one says that an S-indexed functor F :C //D preserves colimits if
the canonical natural transformation �lling the square

CK
colimK

²²

FK // DK
colimK

²²

C F
// D

is an isomorphism.

Indexed cocomplete categories A.18 A S-indexed category C is called S-cocom-
plete, in case every �bre is �nitely cocomplete, �nite colimits are preserved by rein-
dexing functors, and these functors have left adjoints satisfying the Beck-Chevalley
condition. If S has a terminal object, there is the following easy lemma:

Lemma A.19 If the �bre C = C1 of an S-cocomplete S-indexed category C has a
terminal object T , then this is an indexed terminal object, i.e. X�T is terminal in CX
for all X in S.

From Proposition B2.3.20 in [44] it follows that:

Lemma A.20 If C is an S-cocomplete S-indexed category, then it has colimits of
internal diagrams and left Kan extensions along internal functors in S. Moreover, if
an indexed functor F :C //D between S-cocomplete categories preserves S-indexed
colimits, then it also preserves internal colimits.

The next result is pointed out in Chapter 6 (Remark 6.1.9):

Lemma A.21 If F is an indexed functor on a S-cocomplete indexed category C, the
indexed category F�Coalg of F -coalgebras is again S-cocomplete, and the indexed
forgetful functor U:F �Coalg //C preserves colimits (in other words, U creates
colimits).
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Appendix B

Type theory

This Appendix is meant as a brief introduction to Martin-L�of type theory. Although the
relevance of the theory of �W -pretoposes to type theory is not what will be pursued
in this thesis (it is applications to set theory that will be worked out), type theory is
\ideologically" important. It is certainly arguable, but in my opinion Martin-L�of type
theory is the paradigmatic constructive-predicative theory. It is not the absence of
the Law of Excluded Middle or the powerset axiom that vindicates the constructive
and predicative status of the set theory CZF, but its interpretation in type theory. In
the same vein I feel that the example of a �W -pretopos de�nable from type theory,
proves that a �W -pretopos is a constructive and predicative structure (this example
is discussed in the Chapter 2 of this thesis). For this reason I think it is important to
introduce Martin-L�of type theory. But I should say right away that I realise that what
I tell here can in no way compete with the book-length expositions by the experts (see
[57] and [63], and also [64]).

There is immediately one complication: there exist di�erent versions of this the-
ory, extensional and intensional, polymorphic and monomorphic. Following [63], I
have made the choice to introduce the polymorphic version, which I feel is easier to
motivate, but I am not unaware of the advantages of the monomorphic version (for
that, see [64]). Comments on these issues I have relegated to the footnotes. For the
polymorphic version, I will discuss both the intensional and extensional versions.

Per Martin-L�of created the type theory that bears his name in order to clarify
constructive mathematics. And, in fact, I believe that it is as an attempt to analyse
the practice of the constructive mathematician that it can best be introduced.

An exposition of type theory should be preceeded by a discussion of Martin-L�of's
theory of expressions. I wish to treat this issue very quickly, referring to Chapter 3 of
[63] for more details. The expression

y + sin y

is analysed as the application of a binary operation + to a variable y and an expression
consisting of the unary function sin applied to that same variable y . Using brackets
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for application, this expression should be written as:

+(y ; sin(y)):

In the expression ∫ x

1
y + sin y dy

the variable y is considered to be a dummy. Nothing depends essentially on it being
y , rather than z or �. For that reason, the integral

∫
is thought of as working on an

expression, the integrand y + sin y , in which y does not occur freely, but has rather
been abstracted away. This abstraction is denoted by

(y) + (y ; sin(y)):

Certain expressions involving application and abstraction are considered equal (de�ni-
tionally equal, denoted by �), like:

((x) e)(x) � e;
or

(x) b � (y) b0

if b0 is b, with all free occurences of y replaced by x . In fact, as explained in [63],
application and abstraction satisfy the rules of the typed lambda calculus (with the �,
� and �-rule).

After the development of the theory of expressions, the �rst step in the analysis
of mathematics is that all the expressions (terms, like constants, variables etc.) are
always of a certain type. A mathematician who, in the course of an argument, intro-
duces a certain variable x never assumes that x is just an arbitrary set, but always
assumes that x is a mathematical object of a particular kind, like a natural number, a
2 by 2 matrix, an element of a group etc. These mathematical kinds are called types
and a basic assumption in type theory is that all mathematical objects are always pre-
supposed to be of a certain type. That x is of type A is usually abbreviated as x 2 A
and that A is a type as AType, the fact that A and A0 are equal types as A = A0. An
additional aspect in the analysis is that mathematical objects can only be compared
as elements of the same type. In type theory, it makes no sense to wonder whether x ,
which is of type natural number, and y , which is of type 2 by 2 matrix, are identical or
not identical. More controversially perhaps, the question whether the real number 2 is
the same as the integer 2 is regarded as ill-posed. When a and b are equal objects of
type A, this is written as a = b 2 A. I have now enumerated all the judgement forms,
which are

AType
A = A0
a 2 A
a = b 2 A:
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These are the kind of statements that are recognised in Martin-L�of type theory.

Types have structure and the next two steps analyse this structure. The second
step is the recognition of dependent types: types can depend on the value of a term x
of another type. An example is Rn, which is a type dependent on the value of n 2 N.
Another example is from category theory, where the homset

Hom(A;B)

depends on the values of A and B of type \object in the category C". The recognition
of dependent types is the main cause of the technical di�culty of the theory.

A third step is the recognition of type constructors. There are ways of building
new types from old types. For example, when � and � are types, there is the type

� � �
of pairs whose �rst element is of type � and second element is of type � . For example,
one could form the type N�N of pairs of natural numbers. In this example, � is the
type constructor, but there are also type constructors acting on dependent types, as
in the next example. When B(a) is a type dependent on a 2 A, there is the type

�a 2 A:B(a)

of pairs (a; b) where a 2 A and b 2 B(a). In set theory, one usually writes something
like

∐
a2ABa. This allows one to build the type

�n 2 N:Rn
which is the type of �nite sequences of reals together with their length.

In the �nal (fourth) step, there is the rôle of contexts. In the course of an argument,
when the mathematician has introduced all kinds of variables x , y . . . , and she is
reasoning about them, there is always implicit the typing information, which gives the
right types for all the variables she is working with. In a formal system like Martin-L�of
type theory, all these assumptions are required to be made fully explicit. Therefore
judgements like

a 2 �
are always made within a context � which gives explicitly all the types of the free
variables occurring in a and �. For example, the statement that Rn is a type can only
be made within the context n 2 N:

n 2 N ` Rn Type:

Therefore the statements that are premisses or conclusions in an argument are of the
following shapes:

� ` AType
� ` A = A0
� ` a 2 A
� ` a = b 2 A;
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where � is a context.

The general form of a context is the following:

� = [a1 2 �1; a2 2 �2(a1); : : : ; an 2 �n(a1; a2; : : : ; an�1)];

where the ai are distinct variables of the appropriate types. This includes the empty
context [] for n = 0. The presupposition here is that

a1 2 �1; : : : ; ai 2 �i(a1; : : : ai�1) ` �i+1(a1; : : : ; ai) Type

for all i < n.

A brief remark about these \presuppositions": what they amount to in this case
is that � can never be a context occurring in a statement, without these presup-
positions having been derived before. Typically in logic, the well-formed statements
are delineated, before formulating rules circumscribing which of those are provable.
Here, both processes occur simultaneously: well-formedness of types, for example, is
a property that has to be derived within the system (this is why there is a judgement
form AType). This is also why the axiom A = A has as a premiss AType, because
otherwise it could possibly not be well-formed.

Martin-L�of type theory is organized as follows: it is a system like natural deduction,
with two sets of rules. First, there is a basic set of axioms, that essentially regulates
the use of =: it is an equivalence relation allowing substitution. Then there are the
rules for the di�erent type constructors, four for each.

The rules for = are:

a 2 A
a = a 2 A a = b 2 A

b = a 2 A a = b 2 A b = c 2 A
a = c 2 A

AType
A = A

A = B
B = A

A = B B = C
A = C

a 2 A A = B
a 2 B a = b 2 A A = B

a = b 2 B
These rules have to be read with the following convention in mind: when formulating
a rule, the context that is shared by all the premisses and conclusion is omitted. This
means that the �rst rule in this list is really:

� ` a 2 A
� ` a = a 2 A

for any context � .
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The substitution rules are as follows:

x 2 A ` C(x) Type a 2 A
C(a) Type

x 2 A ` C(x) a = b 2 A
C(a) = C(b)

x 2 A ` c(x) 2 C(x) a 2 A
c(a) 2 C(a)

x 2 A ` c(x) 2 C(x) a = b 2 A
c(a) = c(b) 2 C(a)

x 2 A ` C(x) = D(x) a 2 A
C(a) = D(a)

x 2 A ` c(x) = d(x) 2 C a 2 A
c(a) = d(a) 2 C

And �nally there is the following assumption rule:

AType
x 2 A ` x 2 A

The second set of rules consists of four rules for every type constructor. I start
with �. It is analogous to the construction of the set �i2IAi for an indexed family
(Ai)i2I in set theory: it is the set of functions that chooses for each i 2 I an element
in the corresponding Ai .

First there is the formation rule:

AType x 2 A ` BType
�x 2 A:B(x) Type

The introduction rule:
x 2 A ` b(x) 2 B(x)
�(b) 2 �x 2 A:B(x):

The elimination rule:
f 2 �x 2 A:B(x) a 2 A

apply(f ; a) 2 B(a);

and the equality rule:
x 2 A ` b(x) 2 B(x) a 2 A
apply(�(b); a) = b(a) 2 B(a):
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In case B does not contain x , one usually writes A ! B instead of �x 2 A:B(x).
These rules are secretly accompanied by rules for judgemental equality (=) like the
following:

x 2 A ` b(x) = c(x) 2 B(x)
�(b) = �(c) 2 �x 2 A:B(x):

But these will be omitted in the sequel.1

The other types are thought of as being inductively generated.2 The general
pattern can be observed from the rules for �, the (binary) product type. First, there
is the formation rule:

AType BType
A� BType

The introduction rule is:
a 2 A b 2 B

pair(a; b) 2 A� B:
If one thinks of types as boxes, this rule tells us that there is a canonical way of
putting something into the box A � B: take elements a 2 A and b 2 B and pair
them (elements of the form pair(a; b) are therefore called canonical elements). The
elimination rule expresses that such elements exhaust the product type in the form of
an associated induction principle:

p 2 A� B v 2 A� B ` C(v) x 2 A; y 2 B ` e(x; y) 2 C(pair(a,b))
split(p; e) 2 C(p):

What this says, in terms of boxes, is that in case I am given a family of boxes C(v)
labelled by elements v in the type A�B and that I am given a way of putting elements
into boxes for every box labelled by a canonical element (i.e. into C(pair(x; y)) for
every x 2 A and y 2 B), I have a way of putting elements in every box. The
associated equality rule says that this way agrees with (extends) the given method for
the canonical elements:

a 2 A b 2 B x 2 A; y 2 B ` e(x; y) 2 C(pair(x; y))
split(pair(a; b); e) = e(a; b) 2 C(pair(a; b)):

The rules for all the type constructors follow this pattern. The rules for the
remaining type constructors will be given at the end of this Appendix.

So far any mathematician, even the classical one, may sympathise with the devel-
opment of the theory. It is by taking the next step that the system becomes essentially
constructive. As one may have the feeling that I have only explained the set-theoretic
part of the system, one may wonder how logic is incorporated in it. This is done

1When the monomorphic version is formulated in terms of a logical framework, as is customary, it
is not necessary to add these rules.

2It is possible to formulate the monomorphic version in such a way that the elements of the �-types
are also inductively generated.
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following the propositions-as-types interpretation: a proposition is interpreted as the
type of its proofs. The type constructors correspond to the various logical constants
and a proposition is considered true, when its corresponding type of proofs is inhab-
ited, i.e. there is a term of the appropriate type. This in itself might not make the
system constructive, but the type-theoretic understanding of what a proof is, does.
The type-theoretic interpretation (which follows the BHK-interpretation) of a proof of
an existential proposition 9a 2 A:B(a) is as the �-type �a 2 A:B(a), which therefore
means that implicit in a proof of this proposition is an a 2 A which has the desired
property B(a). Likewise, the �-type interprets the universal quanti�er 8. One can see
that the natural deduction rules for 8 are derived rules for the system:

x 2 A ` B(x) True
8x 2 A:B(x) True

8x 2 A:B(x) True a 2 A
B(a) True:

The �-type interprets conjunction ^ and the following are also derived rules:

ATrue BTrue
A ^ BTrue

A ^ BTrue
ATrue

A ^ BTrue
BTrue:

In order to have a complete translation from �rst-order intuitionistic logic into type
theory, one needs to have identity types. In the course of history, two sets of rules have
been formulated, an intensional version Id and an extensional version Eq, resulting in
two di�erent type theories: intensional and a stronger extensional type theory.3

Id-type (intensional) Intuitive description: set of proofs of an identity statement.

Formation rule
AType a 2 A b 2 A

Id(A; a; b) Type

Introduction rule
a 2 A

r(a) 2 Id(A; a; a)

Elimination rule

a 2 A
b 2 A

c 2 Id(A; a; b)
x 2 A; y 2 A; z 2 Id(A; x; y) ` C(x; y ; z) Type

x 2 A ` d(x) 2 C(x; x; r(x))
J(c; d) 2 C(a; b; c)

Equality rule

a 2 A
x 2 A; y 2 A; z 2 Id(A; x; y) ` C(x; y ; z) Type

x 2 A ` d(x) 2 C(x; x; r(x))
J(r(a); d) = d(a) 2 C(a; a; r(a))

3The extensional identity type does not �t into the monomorphic version of type theory as formulated
in [64].
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Eq-type (extensional) Intuitive description: set of proofs of an identity statement.

Formation rule
AType a 2 A b 2 A

Eq(A; a; b) Type

Introduction rule
a 2 A

r 2 Eq(A; a; a)

Elimination rule
c 2 Eq(A; a; b)
a = b 2 A

Equality rule
c 2 Eq(A; a; b)

c = r 2 Eq(A; a; b)

One can see that the intensional version �ts with the philosophy that types are in-
ductively generated sets and therefore with the general pattern, but the extensional
version is closer to category theory. Another important di�erence is that in type theory
with the extensional identity types, the judgemental equality = and the propositional
equality Eq collapse, thereby making judgmental equality and type checking undecid-
able, while in a type theory with intensional equality types, the di�erent equalities are
kept apart and judgmental equality and type checking remain decidable.

Also because of this, Martin-L�of considers the intensional version the right one,
and although I appreciate the philosophical and computer-scienti�c reasons for this,
the category theorist in me is dismayed, as it makes the categorical properties of the
system much more akward. Also it makes the theory of ML-categories and �W -
pretoposes less relevant to the study of Martin-L�of type theory.

From the syntax of type theory, whether intensional or extensional, one can build
a category in the following way. Objects are types (within the empty context) modulo
the judgemental equality =, while morphisms from a type A to a type B are terms of
type A ! B, again modulo the equality =. The fact that one so obtains a category,
is entirely trivial.

It is an (extension of a) result by Seely [79] that for extensional type theory this
gives an ML-category.4 It would be very convenient if one could prove that this was the
initial ML-category, but, as people discovered, this overlooks subtle coherence prob-
lems related to substitution. This is connected to the general problem of interpreting
extensional type theories in ML-categories.5

But solutions to the latter problem have been found: one can use the theory
of �brations, see [36] and [41], or change the type theory by introducing explicit
substitution operators, see [25]. In either way, one can consider ML-categories and
�W -pretoposes as models of extensional type theory. It is on this fact that the

4But in this connection universes are essential to show that the sums are disjoint. Moreover, an
extension of the type theory with quotient types should yield a �W -pretopos.

5Strictly speaking, a categorical semantics has only been worked out for the monomorphic version.
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relevance of the theory of ML-categories and �W -pretoposes is based, and this is
what is behind the PER models or !-set models of type theory. There are still some
obscurities. For example, what remains unclear to me is to what extend an analysis of
the initial ML-category can throw light on extensional type theory, but this is manifestly
a fruitful approach.

When one turns to intensional type theory, matters become very opaque. If one
performs the same construction as above starting from intensional type theory, the
structure of the category will be much less nice, but it will be something like a weak
�W -pretopos, a notion introduced in Chapter 3. To get a \decent" category from
intensional type theory, one should perform the setoids construction explained in Chap-
ter 2. In this way, one obtains a �W -pretopos. The importance of this result is of
\ideological" importance in the sense explained at the beginning of this Appendix, but
it does not make clear how �W -pretoposes help to understand intensional type theory.

I will end by formulating the rules for the remaining type constructors in Martin-L�of
type theory.

0-type Intuitive description: the empty set.

Formation rule 0 Type

Introduction rule None.

Elimination rule
a 2 0 x 2 0 ` C(x) Type

case(a) 2 C(a)

Equality rule None.

1-type Intuitive description: the one-point set.

Formation rule 1 Type

Introduction rule � 2 1

Elimination rule
a 2 1 x 2 1 ` C(x) Type b 2 C(�)

case(a; b) 2 C(a)

Equality rule
x 2 1 ` C(x) Type b 2 C(�)

case(�; b) = b 2 C(�)
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+-type Intuitive description: disjoint union of two sets.

Formation rule
AType BType
A+ BType

Introduction rules
a 2 A BType
inl(a) 2 A+ B

AType b 2 B
inr(b) 2 A+ B

Elimination rule

c 2 A+ B
v 2 A+ B ` C(v) Type
x 2 A ` d(x) 2 C(inl(x))
y 2 B ` e(y) 2 C(inr(y))

when(c; d; e) 2 C(c)

Equality rules

a 2 A
v 2 A+ B ` C(v) Type
x 2 A ` d(x) 2 C(inl(x))
y 2 B ` e(y) 2 C(inr(y))

when(inl(a); d; e) = d(a) 2 C(inl(a))

b 2 B
v 2 A+ B ` C(v) Type
x 2 A ` d(x) 2 C(inl(x))
y 2 B ` e(y) 2 C(inr(y))

when(inr(b); d; e) = e(b) 2 C(inr(b))

�-type Intuitive description: disjoint union of a family of sets.

Formation rule
AType x 2 A ` B(x) Type

�x 2 A:B(x) Type

Introduction rule
a 2 A x 2 A ` B(x) Type b 2 B(a)

ha; bi 2 �x 2 A:B(x)

Elimination rule

c 2 �x 2 A:B(x)
v 2 �x 2 A:B(x) ` C(v) Type

x 2 A; y 2 B(x) ` d(x; y) 2 C(hx; yi)
split(c; d) 2 C(c)

Equality rule

a 2 A
b 2 B

v 2 �x 2 A:B(x) ` C(v) Type
x 2 A; y 2 B(x) ` d(x; y) 2 C(hx; yi)

split(ha; bi; d) = d(a; b) 2 C(ha; bi)
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W-type Intuitive description: set of well-founded trees with �xed branching type (see
Chapter 2).

Formation rule

AType x 2 A ` B(x) Type
Wx 2 A:B(x) Type

Introduction rule

a 2 A t 2 B(a)!Wx 2 A:B(x)
sup(a; t) 2Wx 2 A:B(x)

Elimination rule

a 2Wx 2 A:B(x)
v 2Wx 2 A:B(x) ` C(v) Type
y 2 A; z 2 B(y)!Wx 2 A:B(x);

u 2 �x 2 B(y): C(z(x)) ` b(y ; z; u) 2 C(sup(y ; z))
wrec(a; b) 2 C(a)

Equality rule

d 2 A
t 2 B(d) ` e(t) 2Wx 2 A:B(x)
v 2Wx 2 A:B(x) ` C(v) Type
y 2 A; z 2 B(y)!Wx 2 A:B(x);

u 2 �x 2 B(y): C(z(x)) ` b(y ; z; u) 2 C(sup(y ; z))
wrec(sup(d; e); b) = b(d; e; �((t) wrec(e(t); b))) 2 C(sup(d; e)
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Appendix C

Pcas and realisability

This Appendix brie
y discusses the de�nitions of pcas and realisability toposes. Refer-
ences for pcas are [11] and [35], while on realisability toposes the reader should consult
[40], [39] and [69].

Pcas C.1 Before being able to de�ne pcas, I need the notion of a partial applicative
structure. A partial applicative structure Q = (Q; �) is a set Q equipped with a partial
binary operation (a; b) 7! a �b. The partial application � is frequently not written down:
one very often writes ab instead of a �b. The usual conventions for working with partial
operation are assumed to be in place. For two expressions � and  involving elements
of Q and the binary operation �, one writes � # to mean \� is de�ned", � =  to
mean \� and  are de�ned and equal" and � '  to mean \when � or  is de�ned,
so is the other and they are equal". Another convention is that of \bracketing to the
left": abc should be read as (ab)c .

Given a pca Q and a countable set of fresh variables x0; x1; x2; : : :, the set of terms
T (Q) is the smallest set closed under:

1. a 2 T (Q) for all a 2 Q,

2. xi 2 T (Q) for all i 2 N,

3. whenever a; b 2 T (Q), then (ab) 2 T (Q).

One should think of the elements of T (Q) as the set of polynomials with coe�cients
in Q.

A partial combinatory algebra (pca) Q = (Q; �) is a partial applicative structure that
is combinatory complete, in the sense that for every term t(x0; : : : ; xn) 2 T (Q) there
is an element q 2 Q such that for all a0; : : : ; an 2 Q:

(i) qa0 : : : an�1 # and

(ii) qa0 : : : an ' t(a0; : : : ; an).
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As is well-known, to get combinatory completeness it is necessary and su�cient to
require the existence of two elements k and s in Q satisfying the following laws:

1. kab = a,

2. sab #,
3. sabc ' ac(bc).

Actually, pcas are usually de�ned in terms of k and s, but since there are in any pca
an inde�nite number of ks and ss having these properties, the de�nition in this form
is less canonical. And combinatory completeness is where pcas are all about.

The important facts about pcas, from my point of view, are the following. Due to
combinatory completeness, elements in a pca may be denoted by lambda terms, like
�x0; : : : ; xn:t(x0; : : : ; xn). This is a bit tricky, since pcas are not models of the lambda
calculus, as there may be no good interpretation of lambda terms containing free
variables (see [11]). But, like in the lambda calculus, one can solve �xpoint equations,
there is a choice of Church numerals in any pca (which will usually be denoted by
the ordinary numerals), and there are pairing operations with associated projections.
By the latter I mean that there are always elements j; j0; j1 in a pca Q such jab #,
j0(jab) = a and j1(jab) = b for all a; b 2 Q. Instead of jab I will also frequently
write ha; bi. Results of repeated pairings will often be denoted by terms of the type
ha1; a2; : : : ; ani, with the associated projections denoted by ji (1 � i � n).

The prime example of a pca is that of the natural numbers equipped with Kleene
application: one �xes a particular coding f�g of the partial recursive functions as
natural numbers, so that fmg is the partial recursive function encoded by the natural
number m. Then de�nes m � n ' fmgn to obtain K1, Kleenes pca. Models of the
lambda calculus provide other examples, like Scott's graph model P!.

Heyting pre-algebras C.2 A Heyting pre-algebra is a pre-order, that has �nite limits
and colimits and is cartesian closed as a category. As for partial orders, products and
coproducts are denoted by ^ and _, respectively, while the exponentials ab are denoted
b ! a. The order is usually denoted by `.

For any pca Q, write � = PQ for the powerset of Q. � carries the structure of
pre-order as follows: A ` B, when there is a q 2 Q such that q � a # for all a 2 A, and
q � a 2 B. It has, in fact, the structure of a Heyting pre-algebra in which:

A ^ B = fha; bi j a 2 A; b 2 Bg
A _ B = fha; 0i j a 2 Ag [ fhb; 1i j b 2 Bg
A! B = fq 2 Q j q � a # and q � a 2 B for all a 2 Ag:

For any set X, one could give �X the structure of a Heyting pre-algebra, by de�ning
the ordering pointwise. But there is another possibility, which is more important for
our purposes. Say F ` G for F;G 2 �X, when there is a q 2 Q such that for all
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x 2 X; a 2 F (x), q � a is de�ned and in G(x). The point is commonly expressed by
saying that there should be a realiser q that works uniformly for all x 2 X. It can
easily be shown by extending the de�nitions above that also when the order of �X is
de�ned in this way, it has the structure of a Heyting pre-algebra.

Triposes C.3 A tripos (over Sets) is an indexed category P over Sets whose �bres
P I are Heyting pre-algebras, with some more properties. In particular, the reindexing
functors along functions f : J // I are required to preserve the structure of a Heyting
pre-algebra, and the reindexing functors have left and right adjoints 9f and 8f , sat-
isfying the Beck-Chevalley condition. This means that triposes have the structure to
model many-sorted, �rst-order intuitionistic logic. I will skip the formal details, but
the idea is that the elements of P I are predicates on the set I, and formulas �(i)
in �rst-order logic with a free variable of sort I can be interpreted in the tripos as
such predicates (formulas with more free variables, maybe of di�erent sorts, are in-
terpreted using the products in Sets). Then such formulas �(i) are valid, when their
corresponding element in P I is isomorphic to the terminal object in that �bre. One
writes:

P ` �(i);

or simply ` �(i), when P is understood.

Any pca Q gives rise to a tripos P. The �bre P I is �I, and reindexing is de�ned by
precomposition. For a predicate F 2 �J and a function f : J // I, the quanti�ers are
de�ned by:

9f (F )(i) = fq 2 Q j 9j 2 f �1(i): q 2 F (j)g
8f (F )(i) = fq 2 Q j 8j 2 f �1(i) 8a 2 Q: q � a # and q � a 2 F (j)g:

Realisability toposes C.4 Given a tripos P, consider the following category. Objects
are pairs (X;=), where X is a set, and = is an element of PX�X, which the tripos
believes to be a partial equivalence relation (i.e. a symmetric and transitive relation),
in the sense that

P ` x = x 0 ! x 0 = x
P ` x = x 0 ^ x 0 = x 00 ! x = x 00:

The statement that x = x is sometimes abbreviated as Ex (and one thinks of this as
saying that \x exists").

Morphisms from (X;=) to (Y;=) are equivalence classes of functional relations. A
functional relation is an element F 2 PX�Y , such that the following are valid:

Fxy ^ x = x 0 ^ y = y 0 ! Fx 0y 0
Fxy ! Ex ^ Ey
Fxy ^ Fxy 0 ! x = x 0
Ex ! 9y Fxy :
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Two such functional relations F;G are equivalent, when they are extensionally equal
in the sense that

P ` Fxy $ Gxy

(for this to obtain, the validity of one implication is su�cient).

This de�nes a category (not quite, but identities and compositions can be con-
structed), which is actually a topos: for this, one uses some of the structure of a
tripos that I have not explained, but also does not concern me. The important thing
is the following theorem.

Theorem C.5 The category de�ned out of a tripos in the way explained above, is a
topos.

When the tripos derives from a pca Q, the topos built in this fashion is called the
realisability topos over Q, and denoted by RT(Q).

Theorem C.6 The category RT(Q) is a topos with nno.

In case Q is Kleene's pca K1, RT(Q) is what is called the e�ective topos Eff , which
is therefore also a topos with nno.

In the thesis, I use many results on the e�ective topos, but I do not think it is
worthwhile to summarise them here. However, I do want to record the following
two facts, which are useful to know. They both concern canonical representations of
categorical notions in a realisability topos.

Subobjects of an object (X;=) in RT(Q) are in one-to-one correspondence to equiv-
alence classes of strict relations, i.e. elements R 2 PX such that the following are
valid:

Rx ^ x = x 0 ! Rx 0
Rx ! Ex:

Two such strict relations R;S are equivalent, when Rx $ Sx is valid.

Quotients of an object (X;=) in RT(Q) are in one-to-one correspondence to equiva-
lence classes of elements R 2 PX�X satisfying the following:

P ` Ex ! Rxx
P ` Ex ^ Ey ^ Rxy ! Ryx
P ` Ex ^ Ey ^ Ez ^ Rxy ^ Ryz ! Rxz:

Again, two such elements R;S 2 PX�X are equivalent, when Rxy $ Sxy is valid.
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well-founded, 128

formula
bounded, 66

Fullness Axiom, 66
functor

cartesian, 123
exact, 125
generalised polynomial, 25
indexed, 129
internal, 130
polynomial, 18
powerclass, 76
regular, 123
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weak Pf -substructure, 45

Markov's Principle, 76
ML-category, 24
modest set, 29

nno, 127
indexed, 127

object
exponentiable, 126

in indexed category, 103
generating, 104
indexed terminal, 129
natural number, 44, 127

indexed, 127
weak, 44

powerclass, 113
separated, 98
small, 68, 113
subcountable, 59
weakly terminal, 104
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operator
universal closure, 98

Pairing Axiom, 66, 117
Partial Equivalence Relation, 29
path, 21, 84
pca, 145

internal, 54
PER, 29
Powerset Axiom, 120
predicativism, 8
pre�xpoint, 89
Presentation Axiom, 76
pretopos, 125

�M-, 82
�W , 24
�-, 126
Heyting, 125
weak �W -, 46

product
dependent, 41, 125
simple, 43
weak dependent, 41
weak simple, 43

projective
external, 34
internal, 35

proof, 42
proto-coalgebra, 84
pullback

quasi-, 36
weak, 110

quasi-pullback, 36
quotient in a category, 124

re
ector, 98
Regular Extension Axiom, 66
regular set, 67
relation in a category

equivalence, 124
functional, 124
pseudo-equivalence, 34
small, 113

Replacement axiom, 117
representation

weak, 76

Separation Axiom
�0-, 66
Bounded, 66
Full, 120

Set Induction Axiom, 66
setoid, 31
sheaf, 98
span (indexed category of spans), 106
structure

Pf -, 44
subalgebra, 128

weak Pf -, 45
subcategory

locally full, 68
re
ective, 98

subcountable, 72
in the e�ective topos, 59, 72

subobject
small, 113
weak, 42

subobject classi�er, 25
subtree, 22

decorated, 55
proper, 22

sum
�nite disjoint and stable, 125

topos, 25
e�ective, 148
predicative realisability, 54
realisability, 147

tree
coherent, 97
composable, 97
decorable, 27
decorated, 52
natural, 97

tripos, 147
type theory, 133{143

extensional, 139
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intensional, 139

Uniformity Principle, 76
Union Axiom, 66, 117
Unzerlegbarkeit, 76

W-type, 18
characterisation theorem, 22
in assemblies, 27
in Heyting algebra, 31
in Heyting-valued sets, 30
in modest sets, 30
in realisability topos, 52
in sets, 19
in topos with nno, 26
weak, 45

ZF�, 120
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Samenvatting in het Nederlands

Dit is een proefschrift in de wiskundige logica. Logica bestudeert formele systemen
met het doel meer te weten te komen over het wiskundige redeneren. Hoe gaat dat
in zijn werk?

Een wiskundige formuleert stellingen en probeert daar vervolgens een bewijs voor te
geven. Dergelijke bewijzen zijn aan nauw omschreven regels gebonden en in feite laten
de toegestane redeneerstappen zich zuiver formeel beschrijven. In andere woorden:
of een redeneerstap geldig is hangt niet af van het onderwerp van de redenering,
maar alleen van haar vorm (zoals Aristoteles zich al realiseerde). Wiskundige logica
bestudeert de vormen van correct redeneren op een wiskundige manier.

Toch is het geen sinecure om een raamwerk te formuleren waarbinnen alle bestaan-
de wiskunde past. Niet alleen moet de logica worden vastgelegd, er moet ook een
conceptuele taal ontwikkeld worden waarin over uiteenlopende wiskundige entiteiten
gesproken kan worden (van getallen en driehoeken tot C1-vari�eteiten en niet-abelse
groepen). En dan het liefst nog op een handzame en inzichtelijke manier.

De verzamelingenleer van Cantor biedt een dergelijke taal. Het aantal typen en-
titeiten is beperkt (er zijn alleen verzamelingen), het aantal relaties ook (alles is
gede�nieerd in termen van de elementrelatie), er is een klein aantal axioma's die
overwegend intu��tief zeer aansprekend zijn en alle bekende wiskundige entiteiten laten
zich opvatten als verzamelingen. De manier waarop allerlei wiskundige objecten zich
laten coderen als verzamelingen is niet altijd vrij van een zekere kunstmatigheid of
willekeurigheid, maar dit stoort de meeste wiskundigen niet. Van belang is dat een
dergelijke verzamelingstheoretische reductie van de wiskunde in principe mogelijk is en
dat stellingen over de verzamelingenleer hiermee ook iets zeggen over de wiskunde in
het algemeen.

Het formuleren van de verzamelingenleer als een adequate logische theorie zonder
tegenstrijdigheden kende zijn moeilijkheden, maar een periode van ontwikkeling leverde
uiteindelijk Zermelo-Fraenkel verzamelingenleer, inclusief het keuzeaxioma, op dat aan
de gestelde eisen lijkt te voldoen: het is een zuiver formeel te beschrijven systeem, dat
niet lijdt aan de bekende kinderziektes en waarin zich (nagenoeg) alle wiskunde laat
formaliseren. Tegenwoordig beroepen veel wiskundigen zich op deze klassieke theorie
als het logische fundament voor hun redeneringen en schikken zich in haar oordeel
waar het de correctheid daarvan aangaat.

Toch bestudeert dit proefschrift niet zozeer de klassieke verzamelingenleer, maar
eerder zijn alternatieven. Alternatieven kunnen in twee richtingen gezocht worden:
deze theorie onderschrijft het bestaan van entiteiten terwijl zij zich daar niet over uit
zou moeten laten of zij ontkent het bestaan van entiteiten waar ze die mogelijkheid
open zou moeten laten. Beide richtingen komen in dit proefschrift aan de orde.

Om met het eerste soort alternatief te beginnen: sommige axioma's (en zelfs
de onderliggende logica) van Zermelo-Fraenkel verzamelingenleer met keuze zijn het
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onderwerp geworden van �loso�sche kritiek, omdat ze het bestaan impliceren van ob-
jecten die als problematisch worden gezien. Twee groepen van critici zijn voor dit proef-
schrift van belang, te weten constructivisten en predicativisten. Zonder dit al te veel te
willen uitleggen, wil ik de bezwaren van beide groepen toch kort noemen: de bezwaren
van de constructivisten gelden objecten waarvoor slechts een niet-constructief bewijs
bestaat en de bezwaren van predicativisten gelden machtsverzamelingen en verzamelin-
gen gevormd door comprehensie voor willekeurige formules. Van belang is dat beide
groepen zich niet beperkten tot het leveren van kritiek, maar ze ook de noodzaak
voelden om in de vorm van een formeel systeem exact te beschrijven hoe wiskunde
eruit ziet die wel overeenkomt met hun �loso�sche opvattingen.

Constructieve Zermelo-Fraenkel verzamelingenleer is zo'n exact omschreven sys-
teem waarbinnen wiskunde bedreven kan worden die tegemoet komt aan de bezwaren
die door constructivisten en predicativisten naar voren zijn gebracht. Deze construc-
tieve theorie is daarmee een verzwakte vorm van de klassieke versie van de verzamelin-
genleer van Zermelo en Fraenkel, waar bepaalde axioma's geschrapt zijn en mogelijk
vervangen door een voor constructivisten en predicativisten acceptabele versie. Zij is
voor het eerst geformuleerd door Peter Aczel in 1978 en staat recent weer opnieuw in
de belangstelling door het werk van diverse bewijstheoretici.

Dit proefschrift kiest een andere, meer model-theoretische, benadering voor het
bestuderen van Aczels constructieve verzamelingenleer en leunt daarbij sterk op ca-
tegorie�entheorie. Het laat zien dat er binnen categorie�en objecten bestaan die zich
gedragen als \alternatieve wiskundige universa". Vanuit het perspectief van de gewone
wiskundige gelden niet alle wiskundige en logische wetten binnen zo'n universum, maar
de regels van een zwakke verzamelingenleer als constructieve Zermelo-Fraenkel verza-
melingenleer gelden dan bijvoorbeeld wel. Zo'n alternatieve wiskundige wereld waarin
redeneringen binnen constructieve Zermelo-Fraenkel verzamelingenleer wel betrouw-
baar zijn, maar argumenten die daarbuiten vallen mogelijk niet, heten modellen voor
constructieve Zermelo-Fraenkel verzamelingenleer. In dit proefschrift wordt deze con-
structieve verzamelingenleer bestudeerd door zijn modellen onder de loep te nemen.

Zo mondt het eerste gedeelte van het proefschrift, na een analyse van categorie�en
waarbinnen dergelijke universa kunnen bestaan, uit in een bespreking van recente mod-
ellen van Aczels theorie gegeven door Streicher en Lubarsky. Ik laat in de eerste plaats
zien dat ze hetzelfde zijn, maar verder bewijs ik dat dit alternatieve universum een
object is binnen een categorie (de zogenaamde e�ectieve topos). Dit gebruik ik vervol-
gens om aan te tonen dat binnen dit model principes gelden die vanuit een gebruikelijk
wiskundig perspectief zoals dat van de klassieke verzamelingenleer onjuist zijn. Het is
alsof binnen dit universum niet alleen niet al onze natuurwetten gelden, maar er andere
wetten gelden, die in tegenspraak zijn met de onze. Dit was tot op zekere hoogte
bekend, maar wordt in dit proefschrift systematisch onderzocht en bewezen.

Maar om op de kwestie van de alternatieven voor de klassieke verzamelingenleer
terug te komen: constructieve Zermelo-Fraenkel verzamelingenleer is een beperkte
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vorm daarvan, omdat het zich niet vastlegt op het bestaan van objecten waarvan de
existentie binnen de klassieke theorie bewezen kan worden. Het is aan de andere kant
ook mogelijk de wereld van de klassieke Zermelo-Fraenkel verzamelingenleer uit te brei-
den met objecten waarvan het bestaan binnen deze theorie weerlegd kan worden. Een
voorbeeld hiervan wordt bestudeerd in de tweede helft van het proefschrift. Daar wor-
den modellen onderzocht voor een verzamelingenleer waarbinnen niet-welgefundeerde
verzamelingen bestaan. Traditioneel sluit het zogenaamde funderingsaxioma (of regu-
lariteitsaxioma) de existentie van deze objecten uit, omdat deze beweert dat alle verza-
melingen welgefundeerd zijn, maar deze kan zonder problemen vervangen worden door
het anti-funderingsaxioma zodat naast de welgefundeerde er ook niet-welgefundeerde
verzamelingen bestaan. Dergelijke niet-welgefundeerde verzamelingen scheppen de
mogelijkheid circulaire verschijnselen verzamelingtheoretisch te beschrijven, waarvan
het belang vooral in de informatica ligt. Het laatste hoofdstuk verruimt een bestaande
methode om modellen te bouwen waarbinnen niet-welgefundeerde verzamelingen bestaan
door deze in een abstracte categorische context te plaatsen en legt uit hoe deze in
diverse situaties kan worden toegepast.

163





Predicative topos theory and models for constructive set theory Benno van den Berg

Acknowledgements

First of all, I would like to thank Ieke for being my supervisor. If I reached some degree
of professional maturity, it is thanks to him. I learned a lot of mathematics from him,
but equally important: he has assisted me with helpful advise during all the stages of
my PhD, while writing my �rst article, this thesis, while organising a workshop, while
searching for sensible questions to investigate and while looking for positions in the
future. And he created the stimulating work environment in which I have developed
into some kind of independent researcher.

Next, I would like to thank Federico. For working with me on things non-well-
founded, which resulted in the last two chapters of this thesis, and for his helpful
comments on one of its earlier versions. And for being such a socially binding and
enterprising element in our group. I will never again make dismissive comments about
modern architecture in general, but I still don't like Dal�� or 2001: A Space Odyssey.

I would also like to thank my room mates for being such pleasant company. I
mean Hristina, Andor, Ittay and especially Claire. I enjoyed our brief collaboration on
W-types in the e�ective topos and the moments which were spent in a way less useful
professionally. I can still feel my sense of shock when she decided to leave us.

And, of course, I would like to thank all the other members of our group for
making life at the department so enjoyable, whether they were logicians, topologists
or geometers: Jaap, Pieter, Pepijn, Marius, Alex, Camillo, David, Javier, Giorgio,
Andreas and Dmitry. I have developed an ambivalent relationship with that other
socially binding element of our group, co�ee, but it would be foolish for me to deny
that it has given me many relaxing moments over the last years. Besides I enjoyed the
time I spent on playing football (also with other members of the department, and the
physicists), cards (also with Behrooz, Hamid and Erik) and chess.

On a professional level, I learned and pro�ted from discussions with Pieter Hof-
stra, Jaap van Oosten, Nicola Gambino, Erik Palmgren, Thomas Streicher and many
others.

Furthermore, I would like to thank the Netherlands Organization for Scienti�c
Research (NWO) for funding my stay in Sweden from March to May in 2005. And
Thierry Coquand and Erik Palmgren for being such excellent hosts and generously
sacri�cing their time to teach me some type theory.

Finally, I am grateful to my family and friends for their sel
ess concern for my
non-mathematical welfare.

165





Predicative topos theory and models for constructive set theory Benno van den Berg

Curriculum Vitae

Benno van den Berg was born on November 1, 1978, in Emmen, the Netherlands. He
attended the Esdal College in Emmen, before studying both mathematics and philos-
ophy at the University of Utrecht. He started in 1996 and graduated with honours in
mathematics in 2001 under supervision of prof. Ieke Moerdijk and in philosophy in 2002
under supervision of prof. Albert Visser. In 1998-99 he participated in a Masterclass
on Mathematical Logic, organised by the MRI. From September 2002 onwards, he was
a PhD at the University of Utrecht, again under supervision of prof. Ieke Moerdijk.

167


