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Chapter 6

Non-well-founded set theory

Since its �rst appearance in the book by Joyal and Moerdijk [47], algebraic set theory
has always claimed the virtue of being able to describe, in a single framework, various
di�erent set theories. However, despite the suggestion in [47] to construct sheaf
models for the theory of non-well-founded set theory in the context of algebraic set
theory, it appears that up until now no one ever tried to put small maps to use in order
to model a set theory with the Anti-Foundation Axiom AFA.

This Chapter, which is joint work with Federico De Marchi, provides a �rst step
in this direction. In particular, I build a categorical model of the weak constructive
theory CZF0 of (possibly) non-well-founded sets, studied by Aczel and Rathjen in [7],
extended by AFA. Classically, the universe of non-well-founded sets is known to be
the �nal coalgebra of the powerclass functor [5]. Therefore, it should come as no
surprise that one can build such a model from the �nal coalgebra for the functor Ps
determined by a class of small maps.

Perhaps more surprising is the fact that such a coalgebra always exists. I prove
this by means of a �nal coalgebra theorem, for a certain class of functors on a �nitely
complete and cocomplete category. The intuition that guides one along the argument
is a standard proof of a �nal coalgebra theorem by Aczel [5] for set-based functors on
the category of classes, that preserve inclusions and weak pullbacks. Given one such
functor, he �rst considers the coproduct of all small coalgebras, and show that this
is a weakly terminal coalgebra. Then, he quotients by the largest bisimulation on it,
to obtain a �nal coalgebra. The argument works more generally for any functor of
which one knows that there is a generating family of coalgebras, for in that case one
can take the coproduct of that family, and perform the construction as above. The
condition of a functor being set-based assures that one is in such a situation.

My argument is a recasting of the given one in the internal language of a category.
Unfortunately, the technicalities that arise when externalising an argument which is
given in the internal language can be o�-putting at times. For instance, the exter-
nalisation of internal colimits forces one to work in the context of indexed categories
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and indexed functors. Within this context, I say that an indexed functor (which turns
pullbacks into weak pullbacks) is small-based when there is a \generating family" of
coalgebras. For such functors I prove an indexed �nal coalgebra theorem. I then apply
this machinery to the case of a Heyting pretopos with a class of small maps, to show
that the functor Ps is small-based and therefore has a �nal coalgebra. As a byproduct,
I am able to build the M-type for any small map f (i.e. the �nal coalgebra for the
polynomial functor Pf associated to f ).

For sake of clarity, I have tried to collect as much indexed category theory as I
could in a separate Section. This forms the content of Section 6.1. This should not
a�ect readability of Section 6.2, where I prove the �nal coalgebra results. Finally, in
Section 6.3 I prove that the �nal Ps-coalgebra is a model of the theory CZF0+AFA.

The choice to focus on a weak set theory such as CZF0 is deliberate, since stronger
theories can be modelled simply by adding extra requirements for the class of small
maps. For example, one can model the theory CST of Myhill [62] (plus AFA), by
adding the Exponentiation Axiom, or IZF�+AFA by adding the Powerset, Separation
and Collection axioms. And one can force the theory to be classical by working in a
Boolean pretopos. This gives a model of ZF�+AFA, the theory presented in Aczel's
book [5], apart from the Axiom of Choice. And, �nally, by adding appropriate axioms,
it is possible to build a model of the theory CZF�+AFA, which was extensively studied
by M. Rathjen in [71, 72].

The present results �t in the general picture described in the previous Chapter.1

Recall that there I set myself the task of investigating a non-well-founded analogue
to the established connection between Martin-L�of type theory, constructive set theory
and the theory of �W -pretoposes. In the well-founded picture, W-types in �W -
pretoposes can be used to obtain models for (well-founded) set theories, as explained
in Chapter 4. The analogy suggests that M-types in �M-pretoposes provide the
means for constructing models for non-well-founded set theories. But in this Chapter,
it will turn out that the M-types in �M-pretoposes are not necessary for that purpose.
This phenomenon resembles the situation in [52], where Lindstr�om built a model of
CZF�+AFA out of (intensional) Martin-L�of type theory with one universe, without
making any use of M-types.

This Chapter has been submitted for publication.

6.1 Generating objects in indexed categories

As mentioned before, the aim is to prove a �nal coalgebra theorem for a special class
of functors on �nitely complete and cocomplete categories. The proof of such results
will be carried out by repeating in the internal language of such a category C a classical

1Incidentally, I expect that, together with the results on sheaves therein, they should yield an
adequate response to the suggestion by Joyal and Moerdijk.

104 CHAPTER 6. NON-WELL-FOUNDED SET THEORY



Predicative topos theory and models for constructive set theory Benno van den Berg

set-theoretic argument. This forces one to consider C as an indexed category, via its
canonical indexing C, whose �bre over an object X is the slice category C=X. I shall
then focus on endofunctors on C which are components over 1 of indexed endofunctors
on C. For such functors, one can prove the existence of an indexed �nal coalgebra,
under suitable assumptions. The component over 1 of this indexed �nal coalgebra will
be the �nal coalgebra of the original C-endofunctor.

Although I apply this result in a rather speci�c context, it turns out that all the
basic machinery needed for the proof can be stated in a more general setting. This
Section collects as much of the indexed category theoretic material as possible, hoping
to make the other Sections easier to follow for a less experienced reader.

I will mostly be concerned with S-cocomplete indexed categories for a cartesian
base category S. The reader should consult Appendix A for the relevant de�nitions.
The notation follows closely that of Johnstone in Chapters B1 and B2 of [44].

The �rst step, in the set-theoretic argument to build the �nal coalgebra, is to
identify a \generating family" of coalgebras, in the sense that any other coalgebra is
the colimit of all coalgebras in that family mapping to it. When forming the internal
diagram of those coalgebras that map into a given one, say (A;�), I need to select out
of an object of maps to A those which are coalgebra morphisms. In order to consider
such objects of arrows in the internal language, I need to introduce the following
concept:

De�nition 6.1.1 Let E and A be two objects, respectively in �bres CU and CI of an
S-indexed category C. Whenever it exists, the object Hom(E;A) in S is called the
internal homset from E to A (in S), if it �ts into a span

U Hom(E;A)soo t // I (6.1)

in S and there is a generic arrow ": s�E // t�A in CHom(E;A), with the following uni-
versal property: for any other span in S

U Jxoo
y

// I

and any arrow  : x�E // y �A in CJ, there is a unique arrow �: J // Hom(E;A) in
S such that s� = x , t� = y and ��" �=  (via the canonical isomorphisms arising
from the two previous equalities). The object E is called exponentiable, if Hom(E;A)
exists for all A in some �bre of C.

Remark 6.1.2 It follows from the de�nition, via a standard diagram chasing, that the
reindexing along an arrow f : V //U in S of an exponentiable object E in CU is again
exponentiable.

Remark 6.1.3 The reader is advised to check that, in case C is a cartesian category
and C is its canonical indexing over itself, the notion of exponentiable object agrees
with the standard one of an exponentiable morphism (see Appendix A).
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Given an exponentiable object E in CU and an object A in CI, the canonical cocone
from E to A is in the internal language the cocone of those morphisms from E to A.
Formally, it is described as the internal diagram (KA; LA), where the internal category
KA and the diagram object LA are de�ned as follows. KA

0 is the object Hom(E;A),
with arrows s and t as in (6.1), and KA

1 is the pullback

KA
1

d0 //

x
²²

KA
0

s
²²

Hom(E;E)
t

// U;

where

U Hom(E;E)soo t // U

is the internal hom of E with itself. In the �bres over Hom(E;A) and Hom(E;E) one
has generic maps ": s�E // t�A and ": s�E // t�E, respectively.

The codomain map d0 of KA is the top row of the pullback above, whereas d1 is
induced by the composite

(sx)�E x�"��! (tx)�E �= (sd0)�E d�0"��! (td0)�A

via the universal property of Hom(E;A) and ".

The internal diagram LA is now the object s�E in CKA0 , and the arrow from d�1LA
to d�0LA is (modulo the coherence isomorphisms) x�".

When the colimit of the canonical cocone from E to A is A itself, one should think
of A as being generated by the maps from E to it. Therefore, it is natural to introduce
the following terminology.

De�nition 6.1.4 The object E is called a generating object if, for any A in C = C1,
A = colimKALA.

Later, we shall see how F -coalgebras form an indexed category. Then, a generating
object for this category will provide, in the internal language, a \generating family"
of coalgebras. The set-theoretic argument then goes on by taking the coproduct of
all coalgebras in that family. This provides a weakly terminal coalgebra. Categorically,
the argument translates to the following result.

Proposition 6.1.5 Let C be an S-cocomplete S-indexed category with a generating
object E in CU. Then, C = C1 has a weakly terminal object (an object is weakly
terminal if it is satis�es the existence but not necessarily the uniqueness requirement
for a terminal object).

106 CHAPTER 6. NON-WELL-FOUNDED SET THEORY



Predicative topos theory and models for constructive set theory Benno van den Berg

Proof. One builds a weakly terminal object in C by taking the internal colimit Q of the
diagram (K; L) in C, where K0 = U, K1 = Hom(E;E) (with domain and codomain
maps s and t, respectively), L = E and the map from d�0L to d�1L is precisely ".

Given an object A = colimKALA in C, notice that the serially commuting diagram

KA
1

d0

//

d1 //

x
²²

KA
0

s
²²

Hom(E;E)
t

//

s //

U

de�nes an internal functor J:KA //K. One has a commuting triangle of internal
S-categories

KA J //

ÃÃB
BB

BB
BB

B K

ÄÄ~~
~~

~~
~~

1:
Taking left adjoint along the reindexing functors which this induces on categories of
internal diagrams, one gets that colimKA �= colimK � LanJ. Hence, to give a map
from A = colimKALA to Q = colimKL it is su�cient to give a morphism of internal
diagrams from (K; LanJLA) to (K; L), or, equivalently, from (KA; LA) to (KA; J�L),
but the reader can easily check that these two diagrams are in fact the same. �

Once the coproduct of coalgebras in the \generating family" is formed, the set-
theoretic argument is concluded by quotienting it by its largest bisimulation. One
way to build such a bisimulation constructively is to identify a generating family of
bisimulations and then taking their coproduct.

This suggests that to apply Proposition 6.1.5 twice; �rst in the indexed category
of coalgebras, in order to obtain a weakly terminal coalgebra (G; ), and then in the
(indexed) category of bisimulations over (G; ). To this end, one needs to prove co-
completeness and existence of a generating object for these categories. The language
of inserters allows one to do that in a uniform way.

Instead of giving the general de�nition of an inserter in a 2-category, I will only
describe an inserter explicitly for the 2-category of S-indexed categories.

De�nition 6.1.6 Given two S-indexed categories C and D and two parallel S-indexed
functors F;G:C //D, the inserter I = Ins(F;G) of F and G has as �bre IX the
category whose objects are pairs (A;�) consisting of an object A in CX and an arrow
in DX from FXA to GXA, an arrow �: (A;�) // (B; �) being a map �:A //B in CX
such that GX(�)� = �FX(�).

The reindexing functor for a map f : Y //X in S takes an object (A;�) in IX to
the object (f �A; f ��), where f �� has to be read modulo the coherence isomorphisms
of D, but I shall ignore these thoroughly.
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There is an indexed forgetful functor U: Ins(F;G) //C which takes a pair (A;�)
to its carrier A; the maps � determine an indexed natural transformation FU //GU.
The triple (Ins(F;G); U; FU //GU) has a universal property, like any good categorical
construction, but it will not be used. The situation is depicted as below:

Ins(F;G) U // C
F //

G
// D: (6.2)

A tedious but otherwise straightforward computation, yields the proof of the fol-
lowing:

Lemma 6.1.7 Given an inserter as in (6.2), if C and D are S-cocomplete and F
preserves indexed colimits, then Ins(F;G) is S-cocomplete and U preserves colimits
(in other words, U creates colimits). In particular, Ins(F;G) has all internal colimits,
and U preserves them.

Example 6.1.8 Here, we shall be concerned with two particular examples of inserters.
One is the indexed category F�Coalg of coalgebras for an indexed endofunctor F on
C, which can be presented as the inserter

Ins(Id; F ) U // C
Id //

F
// C: (6.3)

More concretely, (F�Coalg)I = F I�coalg consists of pairs (A;�) where A is an object
and �:A //F IA a map in CI, and morphisms from such an (A;�) to a pair (B; �)
are morphisms �:A //B in CI such that F I(�)� = ��. The reindexing functors are
the obvious ones.

The other inserter we shall encounter is the indexed category Span(M;N) of spans
over two objects M and N in C1 of an indexed category. This is the inserter

Ins(�; hM;Ni) U // C
� //

hM;Ni
// C�C (6.4)

Where C�C is the product of C with itself (which is de�ned �brewise), � is the diagonal
functor (also de�ned �brewise), and hM;Ni is the pairing of the two constant indexed
functors determined by M and N. By this I mean that an object in C is mapped to
the pair (M;N) and an object in CX is mapped to the pair (X�M;X�N).

Remark 6.1.9 Notice that, in both cases, the forgetful functors preserve S-indexed
colimits in C, hence both F �Coalg and Span(M;N) are S-cocomplete, and also
internally cocomplete, if C is.
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In order to apply Proposition 6.1.5 to these indexed categories, one needs to �nd
generating objects for them. This will be achieved by means of the following two
lemmas.

First of all, consider an S-indexed inserter I = Ins(F;G) as in (6.2), such that F
preserves exponentiable objects. Then, given an exponentiable object E in CU, de�ne
an arrow U r�! U in S and an object (E; ") in IU, as follows.

Then form the generic map ": s�F UE // t�GUE associated to the internal hom
of F UE and GUE (which exists because F preserves exponentiable objects), and then
de�ne U as the equaliser of the following diagram

U
e // Hom(F UE;GUE)

s //

t
// U; (6.5)

the arrow r :U //U being one of the two equal composites se = te.

Put E = r �E and

" = F U(r �E)
�= // e�s�F UE e�" // e�t�GUE

�= // GU(r �E):

The pair (E; ") de�nes an object in IU.

Lemma 6.1.10 The object (E; ") is exponentiable in Ins(F;G).

Proof. Consider an object (A;�) in a �bre IX. Then, I de�ne the internal hom
Hom((E; "); (A;�)) as follows.

First, I build the internal homset

U L = Hom(E;A)soo t // X

of A and E in C, with generic map �: s�E // t�A. Because F preserves exponentiable
objects, it is also possible to form the internal hom in D

U Hom(F UE;GXA)soo t // X

with generic map �: s�F UE // t�GXA. By the universal property of �, the two com-
posites in DL

s�F UE
�= // F Ls�E

F L�
// F L(t�A)

�= // t�FXA t�� // t�GXA

and

s�F UE
s�" // s�GUE

�= // GLs�E
GL�

// GLt�A
�= // t�GXA

give rise to two maps p1; p2:L // Hom(F UE;GXA) in S, whose equaliser i :M //L
has as domain the internal hom Hom((E; "); (A;�)).
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The generic map (si)�(E; ") // (ti)�(A;�) in IM associated to this internal hom
forms the central square of the following diagram, and this commutes because its
outer sides are the reindexing along the maps p1i = p2i of the generic map � above:

(si)�F UE
(si)�"

//

�=
²²

(si)�GUE
�=

²²

FM(si)�E
(si)�(E;")

//

FM i��
²²

GM(si)�E
GM i��

²²

FM(ti)�A (ti)�(A;�)
//

�=
²²

GM(ti)�A
�=

²²

(ti)�FXA
(ti)��

// (ti)�GXA:

The veri�cation of its universal property is a lengthy but straightforward exercise. �

Next, I �nd a criterion for the exponentiable object (E; ") to be generating.

Lemma 6.1.11 Consider an inserter of S-indexed categories as in (6.2), where C and
D are S-cocomplete, and F preserves S-indexed colimits. If (E; ") is an exponentiable
object in IU and for any (A;�) in I1 the equation

colimK(A;�)UL(A;�) �= U(A;�) = A

holds, where (K(A;�); L(A;�)) is the canonical cocone from (E; ") to (A;�), then (E; ")
is generating in Ins(F;G).

Proof. Recall from Lemma 6.1.7 that Ins(F;G) is internally cocomplete and the
forgetful functor U: Ins(F;G) //C preserves internal colimits. Therefore, given an
arbitrary object (A;�) in I1, one can always form the colimit (B; �) = colimK(A;�)L(A;�).
All I need to show is that (B; �) �= (A;�). The isomorphism between B and A exists
because, by the assumption,

B = U(B; �) = UcolimK(A;�)L(A;�) �= colimK(A;�)UL(A;�) �= A:

Now, it is not too hard to show that the transpose of the composite

colimK(A;�)F UUUL(A;�) �= FUcolimK(A;�)L(A;�) ��! GUcolimK(A;�)L(A;�)

is (modulo isomorphisms preserved through the adjunction colimK(A;�) aK(A;�)�) the
transpose of �. Hence, � �= � and I am done. �

As an example, I show the following result about the indexed category of spans:
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Proposition 6.1.12 Given an S-cocomplete indexed category C and two objects M
and N in C1, if C has a generating object, then so does the indexed category of spans
P = Span(M;N).

Proof. Recall from Example 6.1.8 that the functor U:Span(M;N) //C creates
indexed and internal colimits. If E in CU is a generating object for C, then, by Lemma
6.1.10 one can build an exponentiable object

(E; ") = M E
"1oo

"2 // N

in PU. I am now going to prove that Span(M;N) meets the requirements of Lemma
6.1.11 to show that E is a generating object.

To this end, consider a span

(A;�) = M A
�1oo

�2 // N

in P1. Then, I can form the canonical cocone (K(A;�); L(A;�)) from (E; ") to (A;�) in
Span(M;N), and the canonical cocone (KA; LA) from E to A in C. The map r :U //U
of (6.5) induces an internal functor u:K(A;�) //KA, which is an isomorphism. There-
fore, the induced reindexing functor u�:CKA //CK(A;�) between the categories of in-
ternal diagrams in C is also an isomorphism, and hence colimK(A;�)u� �= colimKA. More-
over, it is easily checked that u�LA = UL(A;�). Therefore, one has

colimK(A;�)UL(A;�) �= colimK(A;�)u�LA �= colimKALA �= A

and this �nishes the proof. �

6.2 Final coalgebra theorems

In this Section, I am going to use the machinery of Section 6.1 in order to prove an
indexed �nal coalgebra theorem. I then give an axiomatisation for class of small maps,
which is a bit di�erent from the one studied in Chapter 4, for a Heyting pretopos with
an (indexed) natural number object, and apply the theorem in order to derive existence
of �nal coalgebras for various functors in this context. In more detail, I shall show
that every small map has an M-type, and that the functor Ps has a �nal coalgebra.

6.2.1 An indexed �nal coalgebra theorem

In this Section, C is a category with �nite limits and stable �nite colimits (that is,
its canonical indexing C is a C-cocomplete C-indexed category), and F is an indexed
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endofunctor over it (I shall write F for F 1). Recall from Remark 6.1.9 that the indexed
category F �Coalg is C-cocomplete (and the indexed forgetful functor U preserves
indexed colimits).

I say that F is small-based whenever there is an exponentiable object (E; ") in F U�
coalg such that, for any other F -coalgebra (A;�), the canonical cocone (K(A;�); L(A;�))
from (E; ") to (A;�) has the property that

colimK(A;�)UL(A;�) �= U(A;�) = A: (6.6)

It is immediate from Example 6.1.8 and Lemma 6.1.11 that, whenever there is a
pair (E; ") making F small-based, this is automatically a generating object in F�Coalg.
I shall make an implicit use of this generating object in the proof of:

Theorem 6.2.1 Let F be a small-based indexed endofunctor on a category C as above.
If F 1 takes pullbacks to weak pullbacks, then F has an indexed �nal coalgebra.

Before giving a proof, I need to introduce a little technical lemma. A weak pullback
is a square that is satis�es the existence requirement for pullbacks (but not necessarily
the uniqueness requirement).

Lemma 6.2.2 If F = F 1 turns pullbacks into weak pullbacks, then every pair of arrows

(A;�) �
// (C; ) (B; �) 

oo

can be completed to a commutative square by the arrows

(A;�) (P; �)�
oo � // (B; �)

in such a way that the underlying square in C is a pullback. Moreover, if  is a
coequaliser in C, then so is �.

Proof. Build P as the pullback of  and � in C = C1. Then, since F turns pullbacks
into weak pullbacks, there is a map �:P //FP , making both � and � into coalge-
bra morphisms. The second statement follows at once by the assumption that �nite
colimits in C are stable. �

Proof of Theorem 6.2.1. Because F�Coalg is C-cocomplete, it is enough, by Lemma
A.19, to show that the �bre over 1 of this indexed category admits a terminal object.

Given that (E; ") is a generating object in F �Coalg, Proposition 6.1.5 implies the
existence of a weakly terminal F -coalgebra (G; ). The classical argument now goes
on taking the quotient of (G; ) by the maximal bisimulation on it, in order to obtain a
terminal coalgebra. I do that as follows. Let B = Span((G; ); (G; )) be the indexed
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category of spans over (G; ), i.e. bisimulations. Then, by Remark 6.1.9, B is a C-
cocomplete C-indexed category, and by Proposition 6.1.12 it has a generating object.
Applying again Proposition 6.1.5, I get a weakly terminal span (i.e. a weakly terminal
bisimulation)

(G; ) (B; �)�oo
�

// (G; ):

I now want to prove that the coequaliser

(B; �)
� //

�
// (G; ) q

// (T; �)

is a terminal F -coalgebra.

It is obvious that (T; �) is weakly terminal, since (G; ) is. On the other hand, suppose
(A;�) is an F -coalgebra and f ; g: (A;�) // (T; �) are two coalgebra morphisms; then,
by Lemma 6.2.2, the pullback s (resp. t) in C of q along f (resp. g) is a coequaliser
in C, which carries the structure of a coalgebra morphism into (A;�). One further
application of Lemma 6.2.2 to s and t yields a commutative square in F�coalg

(P; �) s 0 //

t 0
²²

�
t

²²� s
// (A;�)

whose underlying square in C is a pullback. Furthermore, the composite d = ts 0 = st 0
is a regular epi in C, hence an epimorphism in F�coalg.

Write s̃ (resp. t̃) for the composite of t 0 (resp. s 0) with the projection of the pullback
of f (resp. g) and q to G. Then, the triple ((P; �); s̃ ; t̃) is a span over (G; ); hence,
there is a morphism of spans

�: ((P; �); s̃ ; t̃) // ((B; �); �; �):

It is now easy to compute that f d = q�� = q�� = gd , hence f = g, and the proof
is complete. �

As a particular instance of Theorem 6.2.1, one can recover the classical result from
Aczel [5, p. 87].

Corollary 6.2.3 (Final Coalgebra Theorem) Any standard functor (on the category
of classes) that preserves weak pullbacks has a �nal coalgebra.

Proof. First of all, notice that preservation of weak pullbacks is equivalent to our
requirement that pullbacks are mapped to weak pullbacks. Moreover, the category of
classes has �nite limits and stable �nite colimits. As an exponentiable object, take the
class U of all small coalgebras.
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Now, consider a standard functor F on classes (in Aczel's terminology). This can
easily be seen as an indexed endofunctor, since for any two classes X and I, one has
X=I �= XI (so, the action of F can be de�ned componentwise). It is now su�cient to
observe that every F -coalgebra is the union of its small subcoalgebras, therefore the
functor is small-based in our sense. �

Remark 6.2.4 With a bit of effort, the reader can see in the present proof of Theorem
6.2.1 an abstract categorical reformulation of the classical argument given by Aczel
in his book [5]. In order for that to work, he had to assume that the functor preserves
weak pullbacks (and so did I, in my reformulation). Later, in a joint paper with
Nax Mendler [6], they gave a different construction of final coalgebras, which allowed
them to drop this assumption. A translation of that argument in my setting, would
reveal that the construction relies heavily on the exactness properties of the ambient
category of classes. Since the functors in the following examples always preserve
weak pullbacks, I prefer sticking to the original version of the result (thus making
weaker assumptions on the category C), without bothering the reader with a (presently
unnecessary) second version, which, however, I believe can be proved.

More recently, the work of Adámek et al. [8] has shown that every endofunctor on
the category of classes is small-based, thereby proving that it has a final coalgebra
(by Aczel and Mendler’s result). Their proof makes a heavy use of set theoretic
machinery, which would be interesting to analyse in the present setting.

6.2.2 Small maps

I am now going to consider on C a class of small maps. This will allow us to show
that certain polynomial functors, as well as the powerclass functor, are small-based,
and therefore we will be able to apply Theorem 6.2.1 to obtain a �nal coalgebra for
them.

From now on, C will denote a Heyting pretopos with an (indexed) natural number
object. Recall that such categories have all �nite colimits, and these are stable under
pullback (see Lemma A.12).

As I explained in Chapter 4, there are various axiomatisations for a class of small
maps, starting with that of Joyal and Moerdijk in [47]. In this Chapter, I will follow
the formulation of Awodey et al. [9] and Awodey and Warren [10]. A comparison
with the original approach by Joyal and Moerdijk and the approach in Chapter 4, will
appear in Remark 6.2.5 below.

A class S of arrows in C is called a class of small maps if it satis�es the following
axioms:

(S1) S is closed under composition and identities;
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(S2) if in a pullback square
A //

g
²²

B
f

²²

C // D

f 2 S, then g 2 S;

(S3) for every object C in C, the diagonal �C:C //C�C is in S;

(S4) given an epi e:C //D and a commutative triangle

C e // //

f ''

D

g
wwA;

if f is in S, then so is g;

(S5) if f :C //A and g:D //A are in S, then so is their copairing

[f ; g]:C +D //A:

I have chosen labels that were also used in Chapter 4, but I do not think this will lead
to any confusion.

An arrow in S will be called small, and objects X will be called small in case the
unique arrow X // 1 is small. A small subobject R of an object A is a subobject
R // //A in which R is small. A small relation between objects A and B is a subobject
R // //A�B such that its composite with the projection on A is small (notice that
this does not mean that R is a small subobject of A�B).

On a class of small maps, I also require representability of small relations by means
of a powerclass object:

(P1) for any object C in C there is an object Ps(C) and a natural correspondence
between maps I //Ps(C) and small relations between I and C.

In particular, the identity on Ps(C) determines a small relation 2C� Ps(C)�C. One
should think of Ps(C) as the object of all small subobjects of C; the relation 2C then
becomes the membership relation between elements of C and small subobjects of C.
The association C 7! Ps(C) de�nes a covariant functor (in fact, a monad) on C. I
further require the two following axioms:

(I) The natural number object N is small;
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(R) There exists a universal small map �:E //U in C, such that any other small
map f :A //B �ts in a diagram

A
f

²²

�oo

²²

// E
�

²²

B � //
q

oooo U

where both squares are pullbacks and q is epi.

It can now be proved that a class S satisfying these axioms induces a class of
small maps on each slice C=C. Moreover, the reindexing functor along a small map
f :C //D has a right adjoint �f : C=C // C=D. In particular, it follows that all small
maps are exponentiable in C (see [10]).

Remark 6.2.5 The axioms that I have chosen for the class of small maps subsume all
of the Joyal-Moerdijk axioms in [47, pp. 6{8], except for the collection axiom (A7).
In particular, the Descent Axiom (A3) can be seen to follow from axioms (S1)� (S5)
and (P1).

Conversely, the axioms of Joyal and Moerdijk imply all of the present axioms except
for (S3) and (I). The results in Section 6.3 will imply that, by adding these axioms,
a model of the weak set theory CZF0 can be obtained in the setting of [47].

The axioms given here are in a similar manner incomparable in strength with the
axioms in Chapter 4. A class of small maps as de�ned here need not satisfy the axioms
called (F4) and (F5) in the statement of Lemma 4.2.5, while a (representable) class
of small maps in the sense of Chapter 4 need not satisfy (S3) and (S4).

6.2.3 Final coalgebras in categories with small maps

From now on, I shall consider on C a class of small maps S. Using their properties, I
am able to prove the existence of the M-type for every small map f :D //C, as well
as the existence of a �nal Ps-coalgebra.

Recall that a polynomial functor Pf induced by an exponentiable map f :D //C
in a cartesian category C is indexed, see Theorem 2.1.3. In fact, it can be presented
as the composite Pf = �C�fD� of three indexed functors preserving pullbacks. It is
therefore also immediate that Pf preserves pullbacks. Of course, the indexed M-type
of f is the indexed �nal coalgebra of Pf (if necessary, see Appendix A for the de�nition
of an indexed �nal coalgebra).

Theorem 6.2.6 If f :D //C is a small map in C, then f has an (indexed) M-type.
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Proof. In order to obtain an (indexed) �nal Pf -coalgebra, I want to apply Theorem
6.2.1, and for this, what remains to be checked is that Pf is small-based. To this end,
I �rst need to �nd an exponentiable coalgebra (E; "), and then to verify condition
(6.6).

The universal small map �:E //U in C is exponentiable, as I noticed after the pre-
sentation of axiom (R). Hence, unwinding the construction preceding Lemma 6.1.10,
I obtain an exponentiable object in Pf�Coalg. Using the internal language of C, I can
describe (E; ") as follows.

The object U on which E lives is described as

U = f(u 2 U; t:Eu //Pf (Eu))g;
and E is now de�ned as

E = f(u 2 U; t:Eu //Pf (Eu); e 2 Eu)g:
The coalgebra structure ":E //P Uf E takes a triple (u; t; e) (with te = (c; r)) to
the pair (c; s:Dc //E), where the map s takes an element d 2 Dc to the triple
(u; t; r(d)).

Given a coalgebra (A;�), the canonical cocone from (E; ") to it takes the following
form. The internal category K(A;�) is given by

K(A;�)
0 = f(u 2 U; t:Eu ! Pf (Eu); m:Eu ! A) j Pf (m)t = �mg;

K(A;�)
1 = f(u; t;m; u0; t 0; m0; �:Eu ! Eu0) j (u; t;m); (u0; t 0; m0) 2 K(A;�)

0 ;
t 0� = Pf (�)t and m0� = mg:

(Notice that, in writing the formulas above, I have used the functor Pf in the internal
language of C; I can safely do that because the functor is indexed. I shall implicitly
follow the same reasoning in the proof of Theorem 6.3.4 below, in order to build an
(indexed) �nal Ps-coalgebra.)

The diagram L(A;�) is speci�ed by a coalgebra over K(A;�)
0 , but for my purposes I only

need to consider its carrier, which is

UL(A;�) = f(u; t;m; e) j (u; t;m) 2 K(A;�)
0 and e 2 Eug:

Condition (6.6) says that the colimit of this internal diagram in C is A, but this is
implied by the conjunction of the two following statements, which I am now going to
prove:

1. For all a 2 A there exists (u; t;m; e) 2 UL(A;�) such that me = a;

2. If (u0; t0; m0; e0) and (u1; t1; m1; e1) are elements of UL(A;�) such that m0e0 =
m1e1, then there exist (u; t;m; e) 2 UL(A;�) and coalgebra maps �i :Eu //Eui
(i = 0; 1) such that mi�i = m and �ie = ei .
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Condition 2 is trivial: given (u0; t0; m0; e0) and (u1; t1; m1; e1), Lemma 6.2.2 allows
one to �ll a square

(P; ) //

²²

(Eu0; t0)

m0

²²

(Eu1; t1) m1
// (A;�);

in such a way that the underlying square in C is a pullback (hence, P is a small object).
Therefore, (P; ) is isomorphic to a coalgebra (Eu; t), and, under this isomorphism,
the span

(Eu0; t0) (P; )oo // (Eu1; t1)

takes the form
(Eu0; t0) (Eu; t)�0oo

�1 // (Eu1; t1):

Moreover, since m0e0 = m1e1, there is an e 2 Eu such that �ie = ei . Then, de�ning
m as any of the two composites mi�i , the element (u; t;m; e) in UL(A;�) satis�es the
desired conditions.

As for condition 1, �x an element a 2 A. One can build a subobject hai of A inductively,
as follows:

hai0 = fag;
hain+1 =

⋃

a02hain
t(Dc) where �a0 = (c; t:Dc //A):

Then, each hain is a small object, because it is a small-indexed union of small objects.
For the same reason (since, by axiom (I), N is a small object) their union hai =⋃
n2Nhain is small, and it is a subobject of A. It is not hard to see that the coalgebra

structure � induces a coalgebra �0 on hai (in fact, hai is the smallest subcoalgebra of
(A;�) containing a, i.e. the subcoalgebra generated by a), and, up to isomorphism,
this is a coalgebra t:Eu //PfEu, with embedding m:Eu //A. Via the isomorphism
Eu �= hai, the element a becomes an element e 2 Eu such that me = a. Hence, one
gets the desired 4-tuple (u; t;m; e) in UL(A;�).

This concludes the proof of the theorem. �

Theorem 6.2.7 The powerclass functor Ps has an (indexed) �nal coalgebra.

Proof. It is easy to check that Ps is the component on 1 of an indexed functor, and
that it maps pullbacks to weak pullbacks.

Therefore, once again, I just need to verify that Ps is small-based. I proceed exactly
like in the proof of Theorem 6.2.6 above, except for the construction of the coalgebra
(hai; �0) generated by an element a 2 A in 1. Given a Ps-coalgebra (A;�), I construct
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the subcoalgebra of (A;�) generated by a as follows. First, I de�ne inductively the
subobjects

hai0 = fag;
hain+1 =

⋃

a02hain
�(a0):

Each hain is a small object, and so is their union hai =
⋃
n2Nhain. The coalgebra

structure �0 is again induced by restriction of � on hai. �

6.3 The �nal Ps-coalgebra as a model of AFA

The standing assumption in this Section is that C is a Heyting pretopos with an
(indexed) natural number object and a class S of small maps. In the last Section, I
proved that in this case the Ps-functor has a �nal coalgebra in C. Now I will explain
how this �nal coalgebra can be used to model various set theories with the Anti-
Foundation Axiom. First I work out the case for the weak constructive theory CZF0,
and then indicate how the same method can be applied to obtain models for stronger,
better known or classical set theories.

The presentation of CZF0 follows that of Aczel and Rathjen in [7]; the same theory
appears under the name BCST* in the work of Awodey and Warren in [10]. It is a
�rst-order theory whose underlying logic is intuitionistic; its non-logical symbols are a
binary relation symbol � and a constant !, to be thought of as membership and the
set of (von Neumann) natural numbers, respectively. Two more symbols will be added
for sake of readability, as I proceed to state the axioms. Notice that, as in Chapter 4,
in order to make a distinction between the membership relation of the set theory and
that induced by the powerclass functor, I shall denote the former by � and the latter
by 2.

The conventions of Chapter 4 are assumed to be in place. In particular, I use the
following abbreviations:

9x�a (: : :) : = 9x (x�a ^ : : :);
8x�a (: : :) : = 8x (x�a! : : :):

The axioms for CZF0 are (the universal closures) of the following statements:

(Extensionality) 8x (x�a$ x�b)! a = b

(Pairing) 9y 8x (x�y $ (x = a _ x = b))

(Union) 9y 8x(x�y $ 9z (x�z ^ z�a))
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(Emptyset) 9y 8x (x�y $ ?)

(Intersection) 9y 8x (x�y $ (x�a ^ x�b))

(Replacement) 8x�a 9!y �! 9b 8y (y�b $ 9x� a �)

Two more axioms will be added, but before I do so, I want to point out that all
instances of �0-separation follow from these axioms, i.e. one can deduce all instances
of

(�0-Separation) 9y 8x (x�y $ (x�a ^ �(x)))

where � is a formula in which y does not occur and all quanti�ers are bounded.
Furthermore, in view of the above axioms, I can introduce a new constant ; to denote
the empty set, and a function symbol s which maps a set x to its \successor" x [fxg.
This allows one to formulate concisely our last axioms:

(In�nity-1) ;�! ^ 8x�! (sx�!)

(In�nity-2)  (;) ^ 8x�! ( (x)!  (sx))! 8x�!  (x).

It is an old observation by Rieger that models for set theory can be obtained as
�xpoints for the powerclass functor (see [76]). The same is true in the context of
algebraic set theory (see, [19] for a similar result):

Theorem 6.3.1 Every Ps-�xpoint in C provides a model of CZF0.

Proof. Suppose there is a �xpoint E: V //PsV , with inverse I. Call y the name
of a small subobject A � V , when E(y) is its corresponding element in Ps(V ). One
interprets the formula x�y as an abbreviation of the statement x 2 E(y) in the internal
language of C. Then, the veri�cation of the axioms for CZF0 goes as follows.

Extensionality holds because two small subobjects E(x) and E(y) of V are equal if
and only if, in the internal language of C, z 2 E(x) $ z 2 E(y). The pairing of
two elements x and y represented by two arrows 1 // V , is given by I(l), where l
is the name of the (small) image of their copairing [x; y ]: 1 + 1 // V . The union
of the sets contained in a set x is interpreted by applying the multiplication of the
monad Ps to (PsE)(E(x)). The intersection of two elements x and y in V is given by
I(E(x)\E(y)), where the intersection is taken in Ps(V ). The least subobject 0 � V
is small, and its name ;: 1 // V models the empty set.

For the Replacement axiom, consider a, and suppose that for every x�a there exists
a unique y such that �. Then, the subobject fy j 9x�a �g of V is covered by E(a),
hence small. Applying I to its name, one obtains the image of �.
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Finally, the In�nity axioms follow from the axiom (I). The morphism ;: 1 // V to-
gether with the map s: V // V which takes an element x to x[fxg, yields a morphism
�:N // V . Since N is small, so is the image of �, as a subobject of V , and applying I
to its name one gets an ! in V which validates the axioms In�nity-1 and In�nity-2. �

This theorem shows that every �xpoint for the functor Ps models a very basic set
theory. Now, by demanding further properties of the �xpoint, one can deduce the
validity of more axioms. For example, in [47], it is shown how the initial Ps-algebra
(which is a �xpoint, after all) models the Axiom of Foundation. Here, I show that
a �nal Ps-coalgebra satis�es the Anti-Foundation Axiom. To formulate this axiom, I
de�ne the following notions. A (directed) graph consists of a pair of sets (n; e) such
that n � e � e. A colouring of such a graph is a function c assigning to every node
x�n a set c(x) such that

c(x) = fc(y) j (x; y)�eg:
This can be formulated solely in terms of � using the standard encoding of pairs and
functions. In ordinary set theory (with classical logic and the Foundation Axiom), the
only graphs that have a colouring are well-founded trees and these colourings are then
necessarily unique.

The Anti-Foundation Axiom says:

(AFA) Every graph has a unique colouring.

Proposition 6.3.2 If C has an (indexed) �nal Ps-coalgebra, then this is a model for
the theory CZF0+AFA.

Proof. I clearly have to check just AFA, since any �nal coalgebra is a �xpoint. To
this end, note �rst of all that, because (V; E) is an indexed �nal coalgebra, one can
think of it as a �nal Ps-coalgebra in the internal logic of C.

So, suppose one has a graph (n; e) in V . Then, n (internally) has the structure of a
Ps-coalgebra �: n //Psn, by sending a node x � n to the (small) set of nodes y � n
such that (x; y)�e. The colouring of n is now given by the unique Ps-coalgebra map
: n // V . �

By Theorem 6.2.7, it then follows at once:

Corollary 6.3.3 Every Heyting pretopos with a natural number object and class of
small maps contains a model of CZF0+AFA.

This result can be extended to theories stronger than CZF0. For example, to the
set theory CST introduced by Myhill in [62]. This theory is closely related to (in
fact, intertranslatable with) CZF0+Exp, where Exp is (the universal closure of) the
following axiom.
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(Exponentiation) 9t (f �t $ Fun(f ; x; y))

Here, the predicate Fun(f ; x; y) expresses the fact that f is a function from x
to y , and it can be formally written as the conjunction of 8a�x 9!b�y (a; b)�f and
8z�f 9a�x; b�y (z = (a; b)).

Theorem 6.3.4 Assume the class S of small maps also satis�es

(E) The functor �f preserves small maps for any f in S.

Then, C contains a model of CST+AFA.

Proof. We already saw how the �nal Ps-coalgebra (V; E) models CZF0+AFA. Now,
(E) implies that AB is small, if A and B are, so, E(y)E(x) is always small. This gives
rise to a small subobject of V , by considering the image of the morphism that sends
a function f 2 E(y)E(x) to the element in V representing its graph. The image under
I of the name of this small object is the desired exponential t. �

Another example of a stronger theory which can be obtained by imposing further
axioms for small maps is provided by IZF�, which is intuitionistic ZF without the
Foundation Axiom. It is obtained by adding to CZF0 the following axioms:

(Powerset) 9y 8 x(x�y $ 8z�x(z�a))

(Full Separation) 9y 8x(x�y $ (x�a ^ �(x)))

(Collection) 8x�a 9y �(x; y)! 9b 8x�a 9y�b �(x; y)

(In Full Separation, y is not allowed to occur in �.)

By now, the proof of the following theorem should be routine (if not, the reader
should consult [19]):

Theorem 6.3.5 Assume the class of small maps S also satis�es

(P2) if X //B belongs to S, then so does Ps(X //B);

(M) every monomorphism is small;

(C) for any two arrows p: Y //X and f :X //A where p is epi and f belongs to S,
there exists a quasi-pullback square of the form

Z
g

²²

// Y
p

// // X
f

²²

B h
// // A

where h is epi and g belongs to S.
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Then, C contains a model of IZF�+AFA.

Corollary 6.3.6 If the pretopos C is Boolean, then classical logic is also true in the
model, which will therefore validate ZF�+AFA, Zermelo-Fraenkel set theory with
Anti-Foundation instead of Foundation.

Finally, one can build a model for a non-well-founded version of Aczel's set theory
CZF, discussed in Chapter 4. The set theory CZF�+AFA is obtained by dropping
Set Induction and replacing it by AFA, and was studied by M. Rathjen in [71, 72]. It
is obtained by adding to CZF0 the axiom AFA, as well as the following:

(Strong Collection) 8x�a 9y �(x; y)! 9bB(x�a; y�b)�(x; y)

(Subset Collection) 9c 8z (8x�a 9y�b �(x; y ; z)! 9d�c B(x�a; y�d)�(x; y ; z)

Here B(x�a; y�b)� abbreviates:

8x�a 9y�b � ^ 8y�b 9x�a �:

In order for a class of small maps to give a model Subset Collection, the class has
to satisfy a rather involved axiom that will be called (F). In order to formulate it, I need
to introduce some notation. For two morphisms A //X and B //X, MX(A;B) will
denote the poset of multi-valued functions from A to B over X, i.e. jointly monic
spans in C=X,

A Poooo // B

with P //X small and the map to A epic. By pullback, any f : Y //X determines
an order preserving function

f �:MX(A;B) //MY (f �A; f �B):

Theorem 6.3.7 Assume the class of small maps S also satis�es (C) as in Theorem
6.3.5, and the following axiom:

(F) for any two small maps A //X and B //X, there exist an epi p:X 0 //X, a
small map f :C //X 0 and an element P 2 MC(f �p�A; f �p�B), such that for
any g:D //X 0 and Q 2 MD(g�p�A; g�p�B), there are morphisms x :E //D
and y :E //C, with gx = f y and x epi, such that x�Q � y �P .

Then, C contains a model of CZF�+AFA.

Proof. Any �xpoint for Ps will model Strong Collection in virtue of property (C) of
the class of small maps.
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Because of (F) the �xpoint will also model the axiom called Fullness in Chapter 4.
But Fullness is equivalent to Subset Collection over CZF0 and Strong Collection (see
[7]). �

To illustrate that these are not empty theorems, I wish to conclude this Chapter
by presenting several cases to which they can be applied. Following [47], one can �nd
several examples of categories endowed with classes of small maps satisfying some
of the discussed axioms. I cannot study them in detail, but I would at least like to
present them briey. For a more complete treatment, the reader is advised to look
at [47]. A thorough study of the properties of the resulting models is the subject for
future research.

The most obvious example is clearly the category of classes, where the notion of
smallness is precisely that of a class function having as �bres just sets. This satis�es
all the presented axioms. Along the same lines, one can consider the category of sets,
where the class of small maps consists of those functions whose �bres have cardinality
at most �, for a �xed in�nite regular cardinal �. This satis�es axioms (S1-5), (P1),
(I), (R), (M) and (C), but not (E). However, if � is also inaccessible, then (E) is
satis�ed, as well as (P2) and (F).

Consider the topos Sh(C) of sheaves over a site C, with pullbacks and a subcanon-
ical topology. Then, for an in�nite regular cardinal � greater than the number of
arrows in C, de�ne the notion of smallness (relative to �) following [47], Chapter IV.3.
This satis�es the axioms (S1-5), (P1), (I) and (R). Moreover, if � is inaccessible, it
satis�es also (P2), (M), (C).

Finally, on the e�ective topos Eff one can de�ne a class of small maps in at least
two di�erent ways. For the �rst, consider the global section functor � : Eff //Sets,
and �x a regular cardinal �. Then, say that a map f :X // Y is small if it �ts in a
quasi-pullback

P // //

g
²²

X
f

²²

Q // // Y

where P and Q are projectives and � (g) is �-small in Sets. With this de�nition, the
class of small maps satis�es all the basic axioms (S1-5), (P1), (I) and (R), as well
as (C) and (M). If � is inaccessible, it also satis�es (P2).

Alternatively, one can take the class of small maps in Eff investigated in Chapter
4. This notion of smallness satis�es all the axioms apart from (P2).
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