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Chapter 5

Coinduction in categories

In the preceeding Chapters, I have been exploiting the connections between the three
concepts in the following picture.
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They all concern basic notions (the set theory CZF, Martin-L�of type theory, locally
cartesian closed pretoposes) extended with additional structure (REA, W-types and
the existence of certain initial algebras, respectively) to incorporate inductive de�ni-
tions. The idea of Federico De Marchi and me was to investigate a possible \non-
well-founded" or \coinductive" analogue to this picture.

The question we asked ourselves is whether a set theory like CZF with the Anti-
Foundation Axiom instead of the Axiom of Foundation, has similar strong relations
with categories or type theories equipped with coinductive types, as does CZF +
REA with categories and type theories with inductive types. Categories with what I
have called M-types (see Chapter 2) seem the appropriate analogue to investigate.
Where W-types are the initial algebras for polynomial functors, M-types are their �nal
coalgebras. As we have seen in the Chapter 1, W-types frequently consist of well-
founded trees, while M-types consist of general (\non-well-founded"1) trees. Type
theory with coinductive types (M-types) instead of W-types was introduced by Federico
De Marchi in [26], and the relation between categories with M-types and type theory
with coinductive types was investigated there.

1The phrase \non-well-founded" is a bit confusing: it does not mean \not well-founded". It means
rather something like \not necessarily well-founded". The function of the word \non-well-founded"
is more to warn the reader that one is thinking of arbitrary trees and is not restricting oneself to the
well-founded case.
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A result by Lindstr�om [52] connected type theory and non-well-founded set theory:
she discovered how one can model non-well-founded set theory in Martin-L�of type
theory with one universe. Somewhat surprisingly, she did not need any kind of coin-
ductive types. A similar phenomenon will arise in the next Chapter where I will discuss
models of non-well-founded set theory in categories. On this point, the analogy with
the inductive (well-founded) picture does not seem to be perfect: categorical or type-
theoretic W-types are necessary to build interpretations of well-founded set theory in
[2] and [61].

In this Chapter, I will be more concerned with categories possessing M-types in
themselves. In particular, I will prove existence results for M-types and closure prop-
erties of categories with M-types (glueing, coalgebras for a cartesian comonad and
(pre)sheaves). In some cases, the results for categories with M-types are better than
the ones for �W -pretoposes, on which they occasionally shed some light. As dis-
cussed, these closure properties have proved most important in topos theory and led
to the formulation of various independence results. Hopefully, these closure proper-
ties of categories with M-types will prove helpful in investigating non-well-founded set
theories and type theories.

This Chapter reports joint work with Federico De Marchi, and has been submitted
for publication.

5.1 Preliminaries

Throughout this Chapter, E will denote a locally cartesian closed pretopos with a
natural number object.

Recall from Chapter 1 that one associates to a morphism f :B //A in E , a poly-
nomial functor Pf : E // E , which is de�ned as

Pf (X) = �a2AXBa

or, more formally, as

Pf (X) = �A(A�X p1 //A)(B
f //A);

where the exponential is taken in the slice category E=A. The �nal coalgebra for Pf
is called the M-type for f , whenever it exists, and denoted by Mf . The intuition is
that f represents a signature, with the elements a in A representing term constructors
of arity Ba. The elements of the M-type are then (possibly in�nite) terms over this
signature. Another intuition is that they are trees where nodes are labelled by elements
a in A and edges by elements b in B, in such a way that f �1(a) enumerates the edges
into a node labelled by a.

One says that E has M-types, if �nal coalgebras exist for every polynomial functor.
A �M-pretopos will be a locally cartesian closed pretopos with a natural number object
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and M-types. It is the purpose of this Chapter to prove the closure of �M-pretoposes
under slicing, formation of coalgebras for a cartesian comonad and (pre)sheaves.

As already pointed out, by Lambek's lemma (Lemma A.14), the Pf -coalgebra
structure map of an M-type Mf for a morphism f :B //A,

�f :Mf //Pf (Mf )

is an isomorphism, and therefore has a section, denoted by supf (or just sup, when
f is understood). Furthermore, because there is a natural transformation �:Pf //A,
where A is the constant functor sending objects to A and morphisms to the identity on
A, whose component on an object X sends (a; t) 2 Pf (X) to a 2 A, � also determines
a root map

Mf
�f // Pf (Mf ) �

// A;

which, by an abuse of notation, will again be denoted by �. I will also abuse terminol-
ogy by calling the components �X of the natural transformation \root maps". I am
con�dent that this will not generate any confusion.

Given a pullback diagram in E

B0

f 0
²²

�
// B
f

²²

A0 �
// A;

one can think of � as a morphism of signatures, since the �bre over each a0 2 A0 is
isomorphic to the �bre over �(a0) 2 A. It is therefore reasonable to expect, in such a
situation, an induced morphism between Mf 0 and Mf , when these exist.

In fact, as already pointed out in [60], such a pullback square induces a natural
transformation �̃:Pf 0 //Pf such that

��̃ = ��: (5.1)

Post-composition with �̃ turns any Pf 0-coalgebra into one for Pf . In particular, this
happens for Mf 0, thus inducing a unique coalgebra homomorphism as in

Mf 0
�! //

�f 0
²²

Mf

�f

²²

Pf 0(Mf 0)

e�
²²

Pf (Mf 0) Pf (�!)
// Pf (Mf ):

(5.2)

Notice that, by (5.1), the morphism �! preserves the root maps.

5.1. PRELIMINARIES 85



Benno van den Berg Predicative topos theory and models for constructive set theory

Again, extensive use will be made of the language of paths. Recall the observation
made in Chapter 2, that the notion of path can be de�ned in the internal logic of E
for any Pf -coalgebra

X 
//PfX:

The idea is that a �nite sequence of odd length hx0; b0; x1; b1; : : : ; xni is called a path
in (X; ), if every xi is in X, every bi is in B and for every i < n one has

xi+1 = (xi)(bi): (5.3)

More precisely, if (xi) = (ai ; ti), then one is asking that f (bi) = ai and xi+1 = ti(bi).
An element x 2 X is called a child of y 2 X, when there is a path hy ; b; xi.

In the particular case when X is the �nal coalgebra Mf , a path hm0; b0; : : : ; mni in
this sense coincides precisely with a path in the usual sense in the non-well-founded
tree m0. I will therefore say that such a path lies in m0, and by extension, a path
hx0; b0; : : : ; xni lies in x0 2 X for any coalgebra (X; ). All paths in a coalgebra (X; )
are collected into a subobject

Paths() � (X + B + 1)N:

Any morphism of coalgebras �: (X; ) // (Y; �) induces a morphism

��: Paths() // Paths(�) (5.4)

between the objects of paths in the respective coalgebras. A path hx0; b0; : : : ; xni is
sent by �� to h�(x0); b0; : : : ; �(xn)i. Furthermore, given a path � = hy0; b0; : : : ; yni
in Y and an x0 such that �(x0) = y0, there is a unique path � starting with x0 such
that ��(�) = � . (Proof: de�ne xi+1 inductively for every i < n using (5.3) and put
� = hx0; b0; : : : ; xni.)

In fact, in order to introduce the concept of path, one needs even less than a
coalgebra: it is su�cient to have a common environment in which to read equation
(5.3). Given a map f :B //A in E , consider the category Pf �prtclg of Pf -proto-
coalgebras. Its objects are pairs of maps

(;m) = X 
// Y Pf (X);oomoo (5.5)

where m is monic. An arrow between (;m) and ( 0; m0) is a pair of maps (�; �)
making the following commute:

X


//

�
²²

Y
�

²²

Pf (X)oomoo

Pf (�)
²²

X 0 0
// Y 0 Pf (X 0):oo

m0
oo

Notice that there is an obvious inclusion functor

I:Pf �coalg //Pf �prtclg; (5.6)
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mapping a coalgebra :X //Pf (X) to the pair (; idPfX). Proto-coalgebras do not
seem to be very interesting in themselves, but they will be very helpful for studying
M-types.

For a proto-coalgebra as in (5.5), one can introduce the notion of a path in the
following way. I shall call an element x 2 X branching if (x) lies in the image of m.
Then, I call a sequence of odd length � = hx0; b0; x1; b1; : : : ; xni a path if it satis�es
the properties:

1. xi 2 X is branching for all i < n

2. bi 2 Bai for all i < n

3. ti(bi) = xi+1 for all i < n

where (ai ; ti) is the (unique) element in PfX such that (xi) = m(ai ; ti). An element
x 2 X is called coherent, if all paths starting with x end with a branching element.
So, all coherent elements are automatically branching, and their children, identi�ed
through m, are themselves coherent. So the object Coh() of coherent elements has
a Pf -coalgebra structure. In fact, this is the biggest coalgebra which one can embed
in (;m), i.e. a coreection of the latter for the inclusion functor I of (5.6).

Proposition 5.1.1 The assignment (;m) Â //Coh() mapping any Pf -proto-coal-
gebra to the object of coherent elements in it, determines a right adjoint Coh to the
functor I:Pf �coalg //Pf �prtclg.

Proof. Consider a proto-coalgebra

X


// Y Pf (X);oomoo

and build the object Coh() of coherent elements in X. Because any coherent element
x 2 Coh() is also branching, one can �nd a (necessarily unique) pair (a; t) such that
(x) = m(a; t). By de�ning �(x) = (a; t), I equip Coh() with a Pf -coalgebra
structure (notice that, x being coherent, so are the elements in the image of t). The
coalgebra (Coh(); �) clearly �ts in a commutative diagram

Coh() // i //

�
²²

X


²²

Pf (Coh()) //

Pf i
// Pf (X) //

m
// Y:
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Let now (X 0; �0) be any other Pf -coalgebra. Then, given a coalgebra morphism

X 0
�

//

�0
²²

Coh()
�

²²

Pf (X 0)
Pf �

// Pf (Coh());

the pair (i�;mPf (i�)) clearly determines a proto-coalgebra morphism from I(X 0; �0)
to (;m). Conversely, any proto-coalgebra morphism

X 0
�0

//

�
²²

Pf (X 0)
�

²²

Pf (X 0)
Pf (�)

²²

X 
// Y Pf (X)oo

m
oo

has the property that �(x 0) is branching for any x 0 2 X 0. Using an opportune extension
to proto-coalgebras of the morphism �� described in (5.4) above, one can then easily
check that elements in the image of � are coherent. Hence, � factors through the
object Coh(), inducing a coalgebra morphism from (X 0; �0) to (Coh(); �).

It is now easy to check that the two constructions are mutually inverse, thereby de-
scribing the desired adjunction. �

A particular subcategory of proto-coalgebras arises when one has another endo-
functor F on E and an injective natural transformation m:Pf // //F . In this case, any
F -coalgebra �:X //FX can easily be turned into the Pf -proto-coalgebra (�;mX).
This determines a functor m̂:F�coalg //Pf �prtclg, which is clearly faithful.

Proposition 5.1.2 The adjunction I aCoh of Proposition 5.1.1 restricts to an adjunc-
tion m� aCoh m̂, if m�:Pf �coalg //F�coalg takes �:X //PfX to (X;mX�).

Proof. Consider a Pf -coalgebra (Z; ) and an F -coalgebra (X;�). Then, a sim-
ple diagram chase, using the naturality of m, shows that F -coalgebra morphisms
from m�(Z; ) to (X;�) correspond bijectively to morphisms of proto-coalgebras from
I(Z; ) to m̂(X;�), hence by Proposition 5.1.1 to Pf -coalgebra homomorphisms from
(Z; ) to Coh(m̂(X;�)). �

5.2 Existence results for M-types

The crucial point in showing that �M-pretoposes are closed under the various con-
structions I am going to consider, will always be that of showing existence of M-types.
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The machinery to do so will be set up in this Section. But the results are not just useful
for that. They are, I think, valuable in themselves and raise interesting questions.

Traditionally, one can recover non-well-founded trees from well-founded ones,
whenever the signature has one speci�ed constant. In fact, the constant allows for
the de�nition of truncation functions, which cut a tree at a certain depth and replace
all the term constructors at that level by that speci�ed constant. The way to recover
non-well-founded trees is then to consider sequences of trees (tn)n>0 such that each
tn is the truncation at depth n of tm for all m > n. Each such sequence is viewed as
the sequence of approximations of a non-well-founded tree.

Recall that the context is that of a �-pretopos E with nno. In this context, I call
a map f :B //A pointed , when the signature it represents has a speci�ed constant
symbol, i.e. if there exists a global element ?: 1 //A such that the following is a
pullback:

0 //

²²

B
f

²²

1 ? // A:

The next two statements make clear that, instead of starting with well-founded
trees, i.e. with the W-type for f , one can build these approximations from any �xpoint
of Pf .

Lemma 5.2.1 If for some pointed f in E , Pf has a �xpoint, then it also has a �nal
coalgebra.

Proof. Assume X is an algebra whose structure map sup:PfX //X is an isomor-
phism. Observe, �rst of all, that X has a global element

?: 1 //X; (5.7)

namely sup?(t), where ? is the point of f and t is the unique map B? = 0 //X.

De�ne, by induction, the following truncation functions trn:X //X:

tr0 = ?
trn+1 = sup � Pf (trn) � sup�1

Using these maps, one can de�ne an object M, consisting of sequences (�n 2 X)n>0

with the property:
�n = trn(�m) for all n < m:

Now, one de�nes a morphism � :M //PfM as follows. Given a sequence � = (�n) 2
M, observe that �(�n) is independent of n and is some element a 2 A. Hence, each
�n is of the form supa(tn) for some tn:Ba //X, and I de�ne t:Ba //M by putting
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t(b)n = tn+1(b) for every b 2 Ba; then �(�) = (a; t). Thus, M has the structure of
a Pf -coalgebra, and I claim it is the terminal one.

To show this, given another coalgebra �: Y //Pf Y , I wish to de�ne a map of coal-
gebras p̂: Y //M. This means de�ning maps p̂n: Y //X for every n > 0, with the
property that p̂n = trnp̂m for all n < m. Intuitively, p̂n maps a state of Y to its \un-
folding up to level n", which I can mimic in X. Formally, they are de�ned inductively
by

p̂0 = ?
p̂n+1 = sup � Pf (p̂n) � �:

It is now easy to show, by induction on n, that p̂n = trnp̂m for all m > n. For
n = 0, both sides of the equation become the constant map ?. Supposing the
equation holds for a �xed n and any m > n, then for n + 1 and any m > n one has
p̂n+1 = supPf (p̂n)� = supPf (trnp̂m)� = supPf (trn)sup�1supPf (p̂m)� = trn+1p̂m+1:

I leave to the reader the veri�cation that p̂ is the unique Pf -coalgebra morphism from
Y to M. �

Theorem 5.2.2 If �xpoints exist in E for all Pf (with f pointed), then E has M-types.

Proof. Let f :B //A be a map. I freely add a point to the signature represented by
f , by considering the composite

f?:B f // A // i // A+ 1 (5.8)

(with the point j = ?: 1 //A+ 1). Notice that the obvious pullback

B id //

f
²²

B
f?

²²

A //

i
// A+ 1

determines a (monic) natural transformation i!:Pf //Pf? by (5.2); hence, by Proposi-
tion 5.1.2, the functor (i!)�:Pf �coalg //Pf?�coalg has a right adjoint. Now observe
that Pf? has a �xpoint, by assumption, hence a �nal coalgebra by Lemma 5.2.1. This
will be preserved by the right adjoint of (i!)�, hence Pf has a �nal coalgebra. �

This proof gives a categorical counterpart of the standard set-theoretic construc-
tion: add a dummy constant to the signature, build in�nite trees by sequences of
approximations, then select the actual M-type by taking those in�nite trees which
involve only term constructors from the original signature. This last passage is per-
formed by the coreection functor of Proposition 5.1.2, since branching elements are
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trees in the M-type of f? whose root is not ?, and coherent ones are trees with no
occurrence of ? at any point.

From this last theorem, one readily deduces the following result, �rst pointed out
by Abbott, Altenkirch and Ghani [1].

Corollary 5.2.3 Every �W -pretopos is a �M-pretopos.

Proof. Since the W-type associated to a (pointed) map f is a �xpoint for Pf , E also
has all M-types by the previous theorem. �

Remark 5.2.4 This result shows that there is a substantial class of examples of �M-
pretoposes. It is an open problem to �nd a non-syntactic example of a �M-pretopos
that is not a �W -pretopos.

In Chapter 2, we have seen some examples of categories which have M-types, but
are not �M-pretoposes; for instance, the category of modest sets, or that of assem-
blies (or !-sets). The only reason these categories are not examples of �M-pretoposes
is that they fail to be exact. However, notice that exactness is not necessary for the
proofs. In fact, regularity would be su�cient to establish all the closure properties.

Although Theorem 5.2.2 is clearly helpful in proving that categories have M-types,
it is even more so, when combined with the following observation.

Lemma 5.2.5 Any pre�xpoint �:PfX //X, that is, an algebra whose structure map
is monic, has a subalgebra that is a �xpoint.

Proof. Any pre�xpoint �:PfX //X can be seen as a Pf -proto-coalgebra

X id // X PfX:oo�oo

Its coreection Coh(id; �), de�ned in Proposition 5.1.1, is a Pf -coalgebra : Y //Pf Y
(in fact, the largest) �tting in the following commutative square:

Y // i //


²²

X

Pf Y //

Pf i
// PfX:

OO
�

OO

Now, consider the image under the functor I:Pf �coalg //Pf �prtclg of the coalgebra
Pf ():Pf Y //P 2

f Y . The morphism of proto-coalgebras

Pf Y
Pf  //

�Pf i
²²

P 2
f Y

�Pf (�)P 2
f i

²²

P 2
f Yooidoo

Pf (�)P 2
f i

²²

X
id

// X PfXoo
�

oo
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transposes through the adjunction I aCoh to a morphism �: (Pf Y; Pf ) // (Y; ),
which is a right inverse of : (Y; ) // (Pf Y; Pf ) by the universal property of (Y; ).
Hence, I have � = Pf (�) = id, proving that  and � are mutually inverse. �

Putting together Theorem 5.2.2 and Lemma 5.2.5, one gets at once the following:

Corollary 5.2.6 If E has pre�xpoints for every polynomial functor, then E has M-types.

As an application of the techniques in this Section, I present the following result,
which is to be compared with the one by Santocanale in [78]. An immediate corollary
of his Theorem 4.5 is that M-types exist in every locally cartesian closed pretopos with
a natural number object, for maps of the form f :B //A where A is a �nite sum of
copies of 1. Notice that such an object A has decidable equality, i.e. the diagonal
�:A //A � A has a complement in the subobject lattice of A � A. I extend the
statement above to all maps whose codomain has decidable equality.

Proposition 5.2.7 When f :B //A is a morphism in E whose codomain A has de-
cidable equality, then the M-type for f exists.

Proof. Without loss of generality, one may assume that f is pointed; in fact, if one
replaces A by A? = A+ 1 and f by f? as in (5.8), then A? also has decidable equality,
and the existence of an M-type for the composite f? implies that of an M-type for
f (see the proof of Theorem 5.2.2). Then, by Lemma 5.2.5 and Lemma 5.2.1, it is
enough to show that Pf has a pre�xpoint.

Let S be the object of all �nite sequences of the form

ha0; b0; a1; b1; : : : ; ani
where f (bi) = ai for all i < n. (Like paths in a coalgebra, this object S can be
constructed using the internal logic of E .) Now, let V be the object of all decidable
subobjects of S (these can be considered as functions S // 1 + 1). De�ne the map
m:Pf V // V taking a pair (a; t:Ba // V ) to the subobject P of S de�ned by the
following clauses:

1. ha0i 2 P i� a0 = a.

2. ha0; b0i � � 2 P i� a0 = a and � 2 t(b0).

(Here, � is the symbol for concatenation.) P is obviously decidable, so m is well-
de�ned. To see that it is monic, suppose P = m(a; t) and P 0 = m(a0; t 0) are equal.
Then,

hai 2 P =) hai 2 P 0 =) a = a0;
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and, for every b 2 Ba and � 2 S,

� 2 t(b) () ha; bi � � 2 P
() ha; bi � � 2 P 0
() � 2 t 0(b);

so t = t 0 and m is monic. Hence, (V;m) is a pre�xpoint for Pf and the proof is
�nished. �

It is an interesting question whether this result can be generalised even further.
However, it is my feeling that not all M-types can be proved to exist in general.
Unfortunately, the lack of examples of �-pretoposes with natural number object, but
without W-types makes it hard to give counterexamples.

Remark 5.2.8 To obtain a concrete description of the M-type for a map f with a
codomain with decidable equality, one should start with the objects S and V con-
structed in the proof of Proposition 5.2.7. Then one should deduce a �xpoint V 0 from
V , as in Corollary 5.2.6. This means selecting the coherent elements of V , and these
turn out to be those decidable subobjects P of S satisfying the following properties:

1. hai 2 P for a unique a 2 A;

2. if ha0; b0; : : : ; ani 2 P , then there exists a unique an+1 for any bn 2 Ban such
that ha0; b0; : : : ; an; bn; an+1i 2 P .

Next, one should turn this �xpoint into the M-type for f (as in Lemma 5.2.1), but this
step is redundant, since the choice of V is such that V 0 already is the desired M-type.

5.3 Closure properties

After these preliminaries, I establish closure of �M-pretoposes under slicing, coalgebras
for a cartesian comonad, presheaves and sheaves.

5.3.1 M-types and slicing

I start by considering preservation of the �M-pretopos structure under slicing. Let I
be an object in a �-pretopos with nno E . Then, it is well-known that the slice category
E=I has again the same structure, and the reindexing functor x�: E=I // E=J for any
map x : J // I in E preserves it. So, I can focus on showing the existence of M-types
in E=I. Their preservation under reindexing immediately follows from some results on
indexed categories (see Lemma A.19 and Lemma A.21). Therefore, I shall concentrate
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on the existence of M-types in slice categories, proving a \local existence" result, from
which I derive a global statement.

Let us consider a map
B f //

�
ÁÁ

>>
>>

>>
>>

A

�
¡¡¢¢

¢¢
¢¢

¢

I

(5.9)

in E=I. I shall denote by Pf the polynomial functor determined by f (or, more precisely,
by �f ) in E , and by P If the polynomial endofunctor determined in E=I. The functor
Pf : E // E can be extended to a functor Pf : E // E=I; in fact, PfX lives over A via
the root map, and the composite ��:PfX // I de�nes the desired extension.

Lemma 5.3.1 There is an injective natural transformation of endofunctors on E=I
c :P If //Pf �I:

Proof. For an object �:X // I in E=I and i 2 I:
P If (X �

//I)i = f(a; t:Ba //X) j�(a) = i ; 8b 2 Ba:�t(b) = ig
and

Pf (�I(X
�

//I)) = f(a; t:Ba //X) j�(a) = ig:
The �rst in clearly contained in the second. Naturality is readily checked. �

Using the map c of Lemma 5.3.1, one can build an M-type for f in E=I, whenever
Mf exists in E .

Theorem 5.3.2 Let E be a locally cartesian closed pretopos with a natural number
object and I an object in E . Consider a map f :B //A over I, such that the functor
Pf : E // E has a �nal coalgebra. Then, f has an M-type in E=I.
Proof. Let �f :Mf //PfMf be the M-type associated to f in E . Mf can be consid-
ered as an object over I, by taking the composite � of the root map �:Mf //A with
the map �:A // I, and (Mf ; �f ) then becomes the �nal Pf �I-coalgebra, as one can
easily check. The adjunction determined by the natural transformation c :P If //Pf �I

as in Proposition 5.1.2 takes the �nal Pf �I-coalgebra (Mf ; �f ) to its coreection MI
f ,

and because right adjoints preserve limits, this is the �nal P If -coalgebra. �

Remark 5.3.3 The injective natural transformation c of Lemma 5.3.1 identi�es as
branching elements in Pf �I those obtained by applying a term constructor in A to
elements living in its same �bre over I.
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The coreection process used to build MI
f out of the M-type (Mf ; �f ), helps to

understand which elements of the latter do actually belong to the former. Trees in
MI
f are coherent for the notion of branching determined by P If , hence, not only the

children of the root node live in its same �bre over I, but all the children of the children
do too, and so on. In other words, MI

f consists of those trees in Mf all nodes of which
live in the same �bre over I. As such, the object MI

f can also be described as the
equaliser

MI
f

// // Mf
hid;�i! //

hid;��i &&MMMMMMM Mf�I;

Mf � I
�

77ooooooo

where � is the map coinductively de�ned as

�(supat; i) = sup(a;i)(�ht; ii):

As an immediate consequence of Theorem 5.3.2, one gets the following:

Corollary 5.3.4 For any given object I of a �M-pretopos E , the slice category E=I is
again a �M-pretopos.

Remark 5.3.5 This last result could have also been proved directly by combining
Corollary 5.2.6 and Lemma 5.3.1. However, the proof of Theorem 5.3.2 shows that
the construction is actually simpler. More speci�cally, notice that, in this case, one
obtains the M-type for a map f directly after the coreection, and it is not necessary
to add any dummy variable, nor to build sequences of approximations.

5.3.2 M-types and coalgebras

In this Section, I turn my attention to the construction of categories of coalgebras for
a cartesian comonad (G; �; �). See [55], Chapter VI, for the de�nition of a comonad
and a coalgebra for a comonad. By a cartesian comonad, I mean here that the functor
G is cartesian. As for the slicing case, I already know that most of the structure of a
�M-pretopos is preserved by taking coalgebras for G:

Theorem 5.3.6 If E is a locally cartesian closed pretopos with natural number object,
then so is EG for a cartesian comonad G = (G; �; �) on E .

Proof. Theorem 4.2.1 on page 173 of [44] gives us that EG is cartesian, in fact lo-
cally cartesian closed, and that it has a natural number object. The two additional
requirements of having �nite disjoint sums and being exact are easily veri�ed, using in
particular that the forgetful functor U: EG // E creates �nite limits. �
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The aim of this Subsection is to prove that EG inherits M-types from E , in case they
exist in that category. The question whether �W -pretoposes are closed under taking
coalgebras for a cartesian comonad, is still open.

Given a morphism f of coalgebras, this induces a polynomial functor Pf : EG // EG,
while its underlying map Uf determines the endofunctor PUf on E . The two are related
as follows:

Proposition 5.3.7 Let f : (B; �) // (A;�) be a map of G-coalgebras. Then, there is
an injective natural transformation

E
i�G

²²

PUf // E
G

²²EG Pf
// EG;

whose mate under the adjunction U aG, I shall denote by

j :UPf // PUfU: EG // E : (5.10)

Proof. Recall from [44] that there is the following natural isomorphism

EG=(A;�) �= (E=A)G0; (5.11)

where G 0 is a cartesian comonad on E=A, which is computed on an object t:X //A
in E=A by taking the following pullback:

G 0X
G0t

²²

// // GX
Gt

²²

A //
�

// GA:

(5.12)

Notice that both horizontal arrows in this pullback are monic, because �A is a retraction
of the G-coalgebra �.

Through the isomorphism (5.11), the object A�GX //A corresponds to G 0(p1:A�
X ! A), whereas f corresponds to some map f 0 in (E=A)G0. Therefore the object
Pf (GX) (i.e. the source of the exponential (A�GX //A)f in the category EG=(A;�))
corresponds to the exponential (G 0p1)f 0. Since U 0: (E=A)G0 // E=A preserves products
because G 0 does, there is the following chain of natural bijections:

Y // G 0(pU 0f 01 )
U 0Y // pU 0f 01

U 0Y � U 0f 0 // p1

U 0(Y � f 0) // p1

Y � f 0 // (G 0p1)
Y // (G 0p1)f 0:
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So one deduces (G 0p1)f 0 �= G 0(pU 0f 01 ) = G 0(pUf1 ). The latter �ts in the following
pullback square, which is an instance of (5.12):

G 0((A�X ! A)Uf )

²²

//
iX // G((A�X ! A)Uf )

²²

A //
�

// GA:

Now notice that the top-right entry of the diagram is exactly GPUf (X), hence the
map i therein de�nes the X-th component of a natural transformation of the desired
form. �

I am now ready to formulate a local existence result for M-types in categories of
coalgebras.

Theorem 5.3.8 Let f : (B; �) // (A;�) be a map of G-coalgebras. If the underlying
map Uf has an M-type in E , then the functor Pf : EG // EG has a �nal coalgebra in
EG.

Proof. The natural transformation i of Proposition 5.3.7 allows one to turn any PUf -
coalgebra into a Pf -proto-coalgebra. In particular, for the M-type � :M = MUf //PUfM
in E , one obtains the proto-coalgebra

GM G� // GPUfM PfGM;oo
iMoo

whose coreection Coh(M) = Coh(G�; iM) is �nal in Pf�coalg. To see this, consider
another coalgebra (X; ) (therefore, X is a G-coalgebra, and :X //PfX is a G-
coalgebra homomorphism). To give a morphism of Pf -coalgebras from (X; ) to
Coh(M) is the same, through I aCoh, as giving a map  :X //GM in EG which is
a morphism of Pf -proto-coalgebras, i.e. that makes the following commute:

X


//

 
²²

PfX
Pf  

²²

GM G�
// GPUfM PfGM:oo

iM
oo

This transposes, through U aG, to the following diagram in E , where j is the natural
transformation de�ned in (5.10):

UX
U

//

b 
²²

UPfX
jX // PUfUX

PUf b 
²²

M �
// PUfM:

But �nality of M implies that there is precisely one such  ̂ for any coalgebra (X; ),
hence �nality is proved. �
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Corollary 5.3.9 If E is a �M-pretopos and G = (G; �; �) is a cartesian comonad on E ,
then the category EG of (Eilenberg-Moore) coalgebras for G is again a �M-pretopos.

Remark 5.3.10 Notice that Corollary 5.3.9 could also be deduced by Corollary 5.2.6,
in conjunction with Proposition 5.3.7. However, analogously to what happens in
the slicing case, Theorem 5.3.8 shows that one does not need to perform the whole
construction, since the coreflection step gives directly the final coalgebra.

Remark 5.3.11 In particular, this result shows stability of �M-pretoposes under the
glueing construction, since this is a special case of taking coalgebras for a cartesian
comonad (see [44]).

5.3.3 M-types and presheaves

In this Section, I concern myself with the formation of presheaves for an internal
category in a �M-pretopos. My aim is to show that the resulting category is again a
�M-pretopos.

So consider an internal category C in a �M-pretopos E , with object of objects C0

(see Appendix A for the de�nition of an internal category). By using the fact that the
category of presheaves Psh(C) is the category of coalgebras for a cartesian comonad
on the slice category E=C0 (see for instance [44], Example A.4.2.4 (b)), I get at once

Proposition 5.3.12 The presheaf category Psh(C) is a �M-pretopos.

Unwinding the proof, it is possible to give a concrete description of the M-type in
presheaf categories, along the lines of the description of W-types in [61]. I will just
give the description and leave the veri�cations to the reader.

First of all, I need to introduce the functor j � j: Psh(C) // E which takes a presheaf
A to its \underlying set" jAj = f(a; C) j a 2 A(C)g. This is just the composite of
the forgetful functor U: Psh(C) // E=C0 with �C0: E=C0 // E .

Let f :B //A be a morphism of presheaves. Then, the \�bre" Ba of f over
a 2 A(C) for an object C in C is a presheaf, whose action on D is described in the
internal language of E as

Ba(D) = f(�; b) j �:D //C; a � � = f (b)g
and restriction along a morphism �:D0 //D is de�ned as

(�; b) � � = (��; b � �):

Now the presheaf morphism f also induces a map

f 0: �(a;C)2jAjjBaj // jAj
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whose �bre over (a; C) is precisely jBaj. Consider the M-type Mf 0 in E : the M-type
M for f in presheaves will be built by selecting the right elements from this M-type.

Elements T 2 Mf 0 are of the form

T = sup(a;C)t;

where (a; C) 2 jAj and t:Ba //Mf 0. Mf 0 can be considered as an object in E=C0,
when one maps such a T to C. Write N (C) for the �bre over C 2 C0. N actually
possesses the structure of a presheaf, because for any T 2 N (C) and �:C 0 //C,

T � � = supa0;C0t�̃;

where a0 = a �� and �̃ is the obvious morphism jBa0 j // jBaj, de�ned by sending (�; b)
to (��; b).

Out of this presheaf N , one has to select the coherent elements (the trees called
natural in [60]). Call a tree S composable, when all subtrees T = sup(a;C)t of S
satisfy

t(�; b) 2 N (dom(�)):

Call S coherent or natural, when all subtrees T = sup(a;C)t of S in addition satisfy
that

t(�; b) �  = t(�; b � ):

These notions can be de�ned using the language of paths. LetM be the subobject of
N consisting of the coherent elements. It is a presheaf, and, as the reader can verify,
the M-type for f in presheaves. So, in e�ect, I have proved:

Theorem 5.3.13 Consider a map f :B //A in Psh(C). If the induced map f 0 has an
M-type in E , then f has an M-type in Psh(C).

5.3.4 M-types and sheaves

In this Section, I wish to show that �M-pretoposes are closed under taking sheaves.
I approach this question in the following manner: I show that �M-pretoposes are
closed under reective subcategories with cartesian reector (by the way, the question
whether the corresponding result for �W -pretoposes holds, is still open). It is well-
known that in topos theory categories of sheaves are such subcategories of the category
of presheaves. Within a predicative metatheory, the construction of a shea��cation
functor, a cartesian left adjoint for the inclusion of sheaves in presheaves, runs into
some problems. Solutions have been proposed in [61] and [15]. Here, I will simply
assume that this problem can be solved. Then closure of �M-pretoposes under sheaves
follows from closure under reective subcategories, because I have just shown that
�M-pretoposes are closed under taking presheaves for an internal site.
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On cartesian reectors and the universal closure operators they induce, the reader
should consult [44], Sections A4.3 and A4.4. Very briey, the story is like this. A cate-
gory D is a reective subcategory of a cartesian category E , when the inclusion functor
i :D //E has a left adjoint L such that Li �= 1. Now the inclusion is automatically
full and faithful.

When the reector L is cartesian, as I will always assume, it induces an operator
on the subobject lattice of any object X. The operator sends a subobject

m:X 0 // // X

to the left side of the pullback square

c(X 0)
²²

²²

// iLX 0
²²

iLm
²²

X �X
// iLX:

This operation is order-preserving, idempotent (c(c(X 0)) = c(X 0)) and inationary
(X 0 � c(X 0)) and commutes with pullback along arbitrary morphisms. Such operators
are called universal closure operators. In topos theory, every universal closure operator
derives from a cartesian reector, but in the context of �-pretoposes that is probably
not the case.

The objects in E that come from D can be characterised in terms of the closure
operator c as follows. Call a mono

m:X 0 // // X

dense, when its closure c(X 0) is the maximal object X � X. An object Y in E is from
D in case any triangle

X 0 f 0 //

²²

m
²²

Y

X
f

>>

with m a dense mono, can be �lled uniquely by a map f . These objects are, not
accidentally, called the sheaves for the closure operator c . Objects Y for which such
triangles have at most one �lling are called separated with respect to c . Also the
separated objects form a reective subcategory of E .

It is well-known that in this setting D is a locally cartesian closed pretopos with
a natural number object. Parts of this result, especially that D is an lccc, can be
found in [44] in the aforementioned Sections: I will also need that i preserves the lccc
structure, which can also be found there. The same is true for the separated objects:
they are also an lccc (not a pretopos, though), where the inclusion also preserves the
lccc structure.
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Theorem 5.3.14 Let f :B //A be a morphism in E .

1. When f is a morphism of separated objects, Mf is separated.

2. When f is a morphism of sheaves, Mf is a sheaf.

Proof. I will give the argument for sheaves, but the proof is the same in both cases.
Let M = Mf be the M-type in E associated to f , and obtain the sheaf LM by applying
the reector to M. The object Pf (LM) is also a sheaf, because the inclusion preserves
the lccc structure. Because of the universal property of L the diagram

M
�M //

�
²²

iLM

²²

Pf (M)
Pf (�M)

// Pf (iLM) �= iPf (LM)

can be �lled. Therefore iLM has the structure of Pf -coalgebra in such a way that
�M is a Pf -coalgebra morphism. By �nality of M, there is a Pf -coalgebra morphism
r : iLM //M such that r�M = 1. So �Mr�M = �M = 1�M and the universal property
of �M immediately gives that also �Mr = 1. So M �= iLM and M is a sheaf. �

Remark 5.3.15 In both cases, it would have been enough to require that the codo-
main of f is a sheaf (respectively separated). This essentially because the sheaves and
separated objects both form exponential ideals in E .

Remark 5.3.16 In case the universal closure operator is not known to derive from a
cartesian reector, it is still possible to show that the M-type M = Mf for a morphism
f :B //A with separated codomain is separated. For that purpose, write x =c x 0 for
x; x 0 2 X, when (x; x 0) 2 c(�:X //X �X). An object X is then separated, when

x =c x 0 ) x = x 0

(see [44], Lemma 4.3.6). To show that M is separated, consider

B = f(supa(t); supa0(t 0)) 2 M �M j supa(t) =c supa0(t 0)g:
B has the structure of a Pf -coalgebra in such a way that composing B � M � M
with either of the two projections yields a Pf -coalgebra morphism. In other words,
B has the structure of a bisimulation on M. This is true, simply because whenever
supa(t) =c supa0(t 0), then a =c a0, and hence a = a0, because A is separated. And
because one therefore also has that tb =c t 0b for every b 2 Ba.

But because of �nality of M, all bisimulations on M are contained in the diagonal
of M. Hence

supa(t) =c supa0(t 0)) supa(t) = supa0(t 0) (5.13)

and M is separated.
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Remark 5.3.17 As a corollary, one obtains that the subcategory of separated objects
for a universal closure operator on a �W -pretopos E has W-types. E has M-types by
Corollary 5.2.3, and for morphisms f between separated objects, these M-types are
separated by the preceeding remark. But since W-types are subobjects of M-types (see
Lemma 2.1.4), and separated objects are easily seen to be closed under subobjects,
the W-types associated to such morphisms are separated as well. Another way of
showing this fact is by directly proving (5.13) by induction.

Theorem 5.3.14 now directly shows:

Theorem 5.3.18 If D is a reective subcategory of a �M-pretopos E with cartesian
reector, D is also a �M-pretopos.

Corollary 5.3.19 f C is an internal site in a �M-pretopos E such that the inclusion of
internal sheaves in presheaves has a cartesian left adjoint (a \shea��cation functor"),
then the category Sh(C) of internal sheaves for the site C in E is a �M-pretopos.
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