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Chapter 4

Algebraic set theory and CZF

This Chapter is meant to make good on the claim that �W -pretoposes form a natural
context for models of constructive-predicative set theories, like CZF.

Aczel's set theory CZF is introduced in the �rst Section. CZF provides not only a
setting in which one can practice Bishop-style constructive mathematics in manner very
similar to ordinary mathematics, but it also has a precise justi�cation as a constructive
theory. In [2] (see also [3] and [4]), Aczel interpreted his theory in Martin-L�of type
theory with W-types and one universe, a theory which is indisputably constructive,
and, in this sense, CZF has the best possible credentials for deserving the epithet
\constructive".1

The connection with �W -pretoposes goes via algebraic set theory. Algebraic set
theory is a exible categorical framework for studying set theories of very di�erent
stripes. How this theory can be used to model CZF in �W -pretoposes is the subject
of Moerdijk and Palmgren's article [61]. This will be recapitulated in Section 2.

In Section 3, I explain how a recent model of CZF discovered independently by
Streicher and Lubarsky falls within this framework. The model is then further in-
vestigated and shown to validate some interesting principles incompatible with either
classical logic or the powerset axiom.

4.1 Introduction to CZF

This Section provides an introduction to Aczel's set theory CZF. A good reference
for CZF is [7].

Like ordinary formal set theory, CZF is a �rst-order theory with one non-logical
symbol �. But unlike ordinary set theory, its underlying logic is intuitionistic. To

1For the interpretation to work, the universe need not be closed under W-types. And one needs
only one W-type, which is then used to build a universe of well-founded sets.
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formulate its axioms, I will use the following abbreviations:

9x�a (: : :) : = 9x (x�a ^ : : :);
8x�a (: : :) : = 8x (x�a! : : :):

Recall that a formula is called bounded when all the quanti�ers it contains are of one
of these two forms. Finally, I write B(x�a; y�b)� to mean:

8x�a 9y�b � ^ 8y�b 9x�a �:
Its axioms are the (universal closures of) the following formulas, in which � is

arbitrary, unless otherwise stated.

(Extensionality) 8x (x�a$ x�b)! a = b

(Pairing) 9y 8x (x�y $ (x = a _ x = b))

(Union) 9y 8x (x�y $ 9z (x�z ^ z�a))

(Set Induction) 8x (8y�x �(y)! �(x))! 8x �(x)

(In�nity) 9a (9 x x�a ^ 8x�a 9y�a x�y)

(�0-Separation) 9y 8x (x�y $ (�(x)^x�a)) for all bounded formulas � not contain-
ing v as a free variable

(Strong Collection) 8x�a 9y �(x; y)! 9bB(x�a; y�b)�(x; y)

(Subset Collection) 9c 8z (8x�a 9y�b �(x; y ; z)! 9d�c B(x�a; y�d)�(x; y ; z))

Set Induction is constructive version of the Axiom of Foundation (or Regularity
Axiom). Such a reformulation is in order, because the axiom as usually stated implies
the Law of Excluded Middle. Strong Collection can be considered as a strengthening
of the Replacement Axiom. The Subset Collection Axiom has a more palatable for-
mulation (equivalent to it over the other axioms), called Fullness. Write mv(a; b) for
the class of all multi-valued functions from a set a to a set b, i.e. relations R such
that 8x�a 9y�b (a; b)�R (pairs of sets can be coded by the standard trick).

(Fullness) 9z (z � mv(a; b) ^ 8x�mv(a; b)9c�z (c � x))

Using this formulation, it is also easier to see that Subset Collection implies Exponen-
tiation, the statement that the functions from a set a to a set b form a set.

In order to have a fully satisfactory theory of inductively de�ned sets in CZF, Aczel
proposed to extend CZF with the Regular Extension Axiom.2 A set A is called regular ,

2The extension is a good one in that the Regular Extension Axiom is validated by the interpretation
of CZF in Martin-L�of type theory with W-types and one universe closed under W-types. This is a
stronger type theory than the one needed for CZF proper, but still indisputably constructive.
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when it is transitive, and for every R�mv(a; A), where a�A, there is a bounding set
b�A such that B(x�a; y�b) (x; y)�R. The Regular Extension Axiom (REA for short)
says:

(REA) 8x 9r (x�r ^ r is regular)

For instance, this allows one to prove that, working inside CZF, the category of sets
has W-types (see [7]). In fact:

Theorem 4.1.1 The category of sets and functions of CZF+REA is a �W -pretopos.

4.2 Introduction to algebraic set theory

Algebraic set theory, as introduced by Joyal and Moerdijk in their book [47], is a
exible categorical framework for studying formal set theories. The idea is that a
uniform categorical approach should be applicable to set theories with very di�erent
avours: classical or constructive, predicative or impredicative, well-founded or non-
well-founded, etcetera.

The approach relies on the notion of a small map. In a category, whose objects and
morphisms are thought of as general classes and functional relations (possibly of the
size of a class) or general sets and functions, certain morphisms are singled out because
their �bres possess a special set-theoretic property, typically that of being relatively
small in some precise sense. One could think of being a set as opposed to being a
proper class, �nite as opposed to in�nite, countable as opposed to uncountable, but
also of being a small type as opposed to a type outside a particular type-theoretic
universe.

The exibility of the approach resides in the fact that the axioms for the class of
small maps are not �xed once and for all: these are determined by the particular set
theory or set-theoretic notion one is interested in. This is something we will actually
see, because in this thesis, two di�erent sets of axioms will be introduced. But in this
Chapter the axioms for the class of small maps I will work with are those of Moerdijk
and Palmgren in [61]. This choice is determined by two things: my interest in the
predicative-constructive set theory CZF and my wish to see the category of setoids
as a natural example.3

This Section recaps de�nitions and results from [61].

Let S be a class of maps in an ambient category E , which I assume to be a
�W -pretopos.

3For di�erent axiom systems, see [47], [9] and other references at the \Algebraic Set Theory"
website: http://www.phil.cmu.edu/projects/ast/. And also Chapter 6.
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De�nition 4.2.1 S is called stable if it satis�es the following axioms:

(S1) (Pullback stability) In a pullback square

D //

g
²²

C
f

²²

B p
// A

(4.1)

g belongs to S, whenever f does.

(S2) (Descent) If in a pullback diagram as in (4.1), p is epi, then f belongs to S,
whenever g does.

(S3) (Sum) If two maps f :B //A and f 0:B0 //A0 belong to S, then so does f +
f 0:A+ A0 //B + B0.

These axioms express that maps belong to S by virtue of the properties of their �bres.

De�nition 4.2.2 A class S is called a locally full subcategory , if it is stable and also
satis�es the following axiom:

(S4) In a commuting triangle

C
g

//

h
ÂÂ

??
??

??
? B

f
ÄÄÄÄ

ÄÄ
ÄÄ

Ä

A
where f belongs to S, g belongs to S if and only if h does.

Remark 4.2.3 If (S1) holds and all identities belong to S, (S4) is equivalent to the
conjunction of the following two statements:

(S4a) Maps in S are closed under composition.

(S4b) If f :X // Y belongs to S, the diagonal X //X�Y X in E=Y also belongs to
S.

When thinking in terms of type constructors, this means that (S4) expresses that
smallness is closed under dependent sums and (extensional) equality types. I will
actually require the class of small maps to be closed under all type constructors,
hence the next de�nition.

For any object X in E , I write SX for the full subcategory of E=X whose objects
belong to S. An object X is called small, when the unique map X // 1 is small.
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De�nition 4.2.4 A locally full subcategory S in a �W -pretopos E is called a class of
small maps, if for any object X of E , SX is a �W -pretopos, and the inclusion functor

SX // // E=X
preserves the structure of a �W -pretopos.

Lemma 4.2.5 (See [61], Lemma 3.4.) A locally full subcategory S in a �W -pretopos
E is class of small maps i� it has the following �ve properties:

(F1) 1X 2 S for every object X in E .

(F2) 0 //X is in S, and if Y //X and Z //X are in S then so is Y + Z //X.

(F3) For an exact diagram in E=X,

R
//

//

ÂÂ
??

??
??

??
Y // //

²²

Y=R

}}{{
{{

{{
{{

X

if R //X and Y //X belong to S then so does Y=R //X.

(F4) For any Y //X and Z //X in S, their exponent (Z //X)(Y // X) in E=X
belongs to S.

(F5) For a commutative diagram

B f //

ÂÂ
@@

@@
@@

@ A

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

X

with all maps in S, the W-type WX(f ) taken in E=X (which is a map in E with
codomain X) belongs to S.

De�nition 4.2.6 A stable class (locally full subcategory, class of small maps) S is
called representable, if there is a map �:E //U in S such that any map f :B //A
in S �ts into a double pullback diagram of the form

B
f

²²

B0 //

²²

oo E
�

²²

A A0p
oooo // U

where p is epi, as indicated.
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Representability formulates the existence of a weak version of a universe. The
map � in the de�nition of representability is often called the universal small map, even
though it is not unique (not even up to isomorphism). In the internal logic of E ,
representability means that a map f :B //A belongs to S i� it holds that

8a 2 A9u 2 U:Ba �= Eu:

In particular, it means that one can talk about \being small" in the internal logic of
E .

The axioms for a class of small maps that I have given so far form the basic
de�nition. The de�nition can be extended by adding various choice or collection
principles. There is the collection axiom (CA) in the sense of Joyal and Moerdijk in
[47]:

(CA) For any small map f :A //X and epi C //A, there exists a quasi-pullback of
the form

B //

g
²²

C // // A
f

²²

Y // // X
where Y //X is epi and g:B // Y is small.

As discussed in [61], the collection axiom can be reformulated using the notion of
a collection map. Informally, a map g:D //C in E is a collection map, whenever it
is true (in the internal logic of E), that for any map f :F //Dc covering some �bre
of g, there is another �bre Dc 0 covering Dc via a map p:Dc 0 //Dc which factors
through f .

De�nition 4.2.7 A morphism g:D //C in E is a collection map, when for any map
T //C and any epi E //T �C D there is a diagram of the form

D

²²

D �C T 0

²²

oo // E // // T �C D
²²

// D

²²

C T 0oo // // T // C

where the middle square is a quasi-pullback with an epi on the bottom, while the two
outer squares are pullbacks. A map g:D //C over A is a collection map over A, if
it is a collection map in E=A.

Observe that a collection map is a categorical notion, and does not refer to or depend
on a class of small maps.

Proposition 4.2.8 (See [61], Proposition 4.5.) A map D //C is a collection map
over C if, and only if, it is a choice map.
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In case the class of small maps is representable, the collection axiom is equivalent to
stating that the universal small map �:E //U is a collection map. (This is imprecise,
but in a harmless way: if one universal small map is a collection map, they all are.)

In [61], Moerdijk and Palmgren work with a much stronger axiom: what they call
the axiom of multiple choice (AMC). Internally it says that for any small set B there
is a collection map D //C where D and C are small, and C is inhabited, together
with a map D //B making D //B � C into a surjection.

De�nition 4.2.9 A class of small maps S satis�es the axiom of multiple choice
(AMC), i� for any map B //A in S, there exists an epi A0 //A and a quasi-pullback
of the form

D

²²

// B

²²

C // // A0 // // A

where D //C is a small collection map over A0 and C //A0 is a small epi.

Proposition 4.2.10 (See [61], Proposition 4.3.) The axiom of multiple choice implies
the collection axiom.

The idea of Moerdijk and Palmgren in [61] is to generalise Aczel's interpretation of
CZF into Martin-L�of type theory with W-types and one universe, to an interpretation
of CZF into any �W -pretopos E with a representable class of small maps, where one
expects to recover Aczel's syntactic construction in case E is Setoids. In that light
one should see the following two results:

Theorem 4.2.11 (See [61], Section 12.) When intensional Martin-L�of type theory is
equipped with W-types and one universe, the category of setoids is equipped with a
representable class of small maps satisfying (AMC).

Theorem 4.2.12 (See [61], Theorem 7.1.) Let E be a �W -pretopos equipped with
a representable class of small maps S satisfying (AMC). Then E contains a model of
the set theory CZF + REA.

4.3 A realisability model of CZF

To illustrate the framework of algebraic set theory, I will show here how the models of
CZF obtained by Streicher in [80] and by Lubarsky in [53] �t into it. Actually, I will
show that the models are the same.
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Using category theory and some known results on the e�ective topos, it will be
an easy exercise to establish the validity of a lot of constructivist principles in the
model. Their collective consistency is new. Finally, I show that CZF is consistent with
a general uniformity principle:

8x 9y�a �(x; y)! 9y�a 8x �(x; y);

which appears to be new.4

Our ambient category E is the e�ective topos RT = Eff . Recall that a set is
called subcountable, when it is covered by a subset of the natural numbers. Since the
e�ective topos is a topos with nno N, the notion also makes sense in the internal logic
of the e�ective topos: Y is subcountable, when

9X 2 PN 9g:X // Y : g is a surjection:

Also recall that the e�ective topos is the exact completion of its subcategory of
projectives, the partitioned assemblies, as discussed in the previous Chapter.

Lemma 4.3.1 The following are equivalent for a morphism f :A //B in Eff .

1. In the internal logic of Eff it is true that all �bres of f are subcountable.

2. The morphism f �ts into a diagram of the following shape

Y � N
##FFFFFFFFF Xoooo // //

g
²²

A
f

²²

Y // // B;

where the square is a quasi-pullback.

3. The morphism f �ts into a diagram of the following shape

Q� N
##FF

FF
FF

FF
F Poooo // //

g
²²

A
f

²²

Q // // B;

where the square is a quasi-pullback, P is a ::-closed subobject of Q� N and
g is a choice map between partitioned assemblies.

4The model, and my results, are obviously related to earlier work by Friedman in [29], but especially
his unpublished work as reported in Myhill's paper [62]. I must confess I �nd it hard to get a clear picture
of Friedman's work and therefore I am having di�culties in establishing its precise relation to mine.
Still, I think I can safely say that the set theories studied there are weaker that CZF in not containing
Subset Collection, there is no result on the regular extension axiom or the presentation axiom, and the
relationship to subcountable morphisms in the e�ective topos.

74 CHAPTER 4. ALGEBRAIC SET THEORY AND CZF



Predicative topos theory and models for constructive set theory Benno van den Berg

Proof. The equivalence of 1 and 2 is a standard exercise in translating internal logic
into diagrammatic language, and vice versa. That 3 implies 2 is trivial.

2) 3: Because every object is covered by a partitioned assembly, X can be covered
by a partitioned assembly Q. Now Q � N is also a partitioned assembly, since N is
a partitioned assembly and partioned assemblies are closed under products. Now the
subobject Z = Q �Y X of Q � N can be covered by a ::-closed subobject P of
Q� N. The idea is easy: the subobject Z � Q� N can be identi�ed with a function
Z:Q� N //PN such that there is a realiser for

` Z(q; n)! [q] ^ [n]:

Then form P = f (q; n) j n1 2 Z(q; n0) g, which is a partitioned assembly with [(q; n)] =
n, and actually a ::-closed subobject of Q� N. P covers Z, clearly. The diagram

Z // // Q� N

P

OOOO

;;

;;wwwwwwww

does not commute, but composing with the projection Q � N //Q it does. (What
I am basically using here is Shanin's Principle, a principle valid in the internal logic of
Eff , see [65], Proposition 1.7.) Finally, g:P � Q� N //Q, as a morphism between
partitioned assemblies, is a choice map. �

Let S be the class of maps having any of the equivalent properties in this lemma.
This class of maps was already identi�ed by Joyal and Moerdijk in [47] and baptised
\quasi-modest", but I prefer simply \subcountable". Joyal and Moerdijk prove many
useful properties of these subcountable morphisms, but they are not put to any use
in [47]. Here I will show that it leads to a model of CZF, actually the same one as
contained in both [80] and [53].

First I want to prove that S is a class of small maps. To do so, it will be useful
to introduce the the category of bases over a partitioned assembly X. When X is a
partitioned assembly, consider the full subcategory BaseX of Eff =X consisting of the
::-closed subobjects of X�N //X. The point is that BaseX has the structure of a
weak �W -pretopos, and the inclusion of BaseX in Pasm=X preserves this structure.
(These are not exactly trivial, but entirely innocent generalisations of things we have
seen before.)

Lemma 4.3.2 The inclusion (BaseX)ex � (Pasm=X)ex = Eff =X is an inclusion of
�W -pretoposes.

Proof. I will skip numbers of uninteresting details: the inclusion is exact, by con-
struction. That it preserves sums is easy to see. The inclusion of BaseX in Pasm=X
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preserves weak �, so the inclusion (BaseX)ex � (Pasm=X)ex , preserves � by con-
struction (of genuine � in the exact completion out of weak � in the original category).
Then it also preserves polynomial functors Pf and hence also W-types by yet another
application of Theorem 2.1.5, because subcountables are closed under subobjects. �

Proposition 4.3.3 The class S of subcountable maps is a class of small maps in Eff .

Proof. That S is a locally full subcategory can be found in [47]. Now I use Lemma
4.2.5 to see that is a class of small maps.

That it satis�es (F1) and (F2) is trivial (and can also be found in [47]). It also satis�es
(F3); actually, it is easy to see that in any triangle where the top is epi

B // //

g
ÂÂ

??
??

??
? C

f
ÄÄÄÄ

ÄÄ
ÄÄ

Ä

A

and g is in S, f is also in S.

To check (F4), assume Y //X and Z //X are in S. Both �t into quasi-pullback
squares

P // //

²²

Y

²²

Q // // X

R // //

²²

Z

²²

S // // X;

where P //Q and R //S are morphisms in BaseR and BaseS, respectively, hence
choice maps. Actually, one may assume Q = S and Q //X = S //X. Then
(P //Q)(R // Q) is in (BaseQ)ex , hence in SQ. But (Y //X)(Z // X) is a sub-
quotient of this, hence in SX.

To check (F5), suppose f �ts into a commutative diagram

B f //

ÂÂ
@@

@@
@@

@ A

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

X

where all arrows are in S. Now X can be covered by a partitioned assembly Y via a
map

Y
p

// // X;
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in such a way that in Eff /Y, we have a quasi-pullback diagram

B0
g

²²

// // p�B
p�f

²²

A0 // // p�A;

where B0 // Y and A0 // Y are in BaseX 0. By the previous lemma, Wg is in (BaseX 0)ex ,
hence in SX 0. By (the proof of) Theorem 3.2.2, Wp�f �= p�Wf is a subquotient of Wg,
hence also subcountable. Then by stability of W-types and axiom (S2), Wf is also
subcountable. �

But the class S has more properties:

Lemma 4.3.4 The class S also has the following properties:

(R) The class S is representable.

(F) All the monos belong to S.

(Q) In any triangle where the top is epi

B // //

g
ÂÂ

??
??

??
? C

f
ÄÄÄÄ

ÄÄ
ÄÄ

Ä

A

and g is in S, f is also in S.

(AMC) The class S satis�es AMC.

Proof. Properties (R), (F), (Q) are all proved in [47]. That it satis�es (AMC) is
trivial: every f 2 S �ts into a quasi-pullback diagram

X // //

g
²²

A
f

²²

Y // // B;

where g:X // Y is a small choice map, hence a small collection map over Y (see
Proposition 4.2.8). �

Since S is representable and also satis�es (AMC), we know by Theorem 4.2.12
that the e�ective topos contains a model V of CZF + REA based on the class of
subcountable maps. In the remainder of this Chapter, I will study this model V . In
e�ect, I will show that it validates the following list of principles. Since the set of
natural numbers ! is de�nable in CZF, I will freely use this symbol when formulating
these principles. I will also use 0 and the successor operation s.
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Theorem 4.3.5 The following principles are valid in the model V :

(Full Separation) 9y 8x (x�y $ (�(x)^ x�a)) for all formulas � not containing v as
a free variable.

(All sets subcountable) All sets are subcountable.

(Non-existence of P!) The powerset of the set of natural numbers does not exist.

(Axiom of Countable Choice) 8i �! 9x  (i ; x)! 9a; f :! // a 8i �!  (i ; f (i)).

(Axiom of Relativised Dependent Choice) �(x0)^8x (�(x)! 9y ( (x; y)^�(y)))!
9a 9f :! // a (f (0) = x0 ^ 8i 2 ! �(f (i); f (si))).

(Presentation Axiom) Every set is the surjective image of a base (see below).

(Markov's Principle) 8n�! [�(n) _ :�(n)]! [::9n 2 ! �(n)! 9n�! �(n)].

(Independence of Premisses) (:� ! 9x  )! 9x (:� !  ).

(Church's Thesis) 8n�! 9m�! �(n;m)! 9e�! 8n�! 9m; p�! [T (e; n; p)^U(p;m)^
�(n;m)] for every formula �(u; v), where T and U are the set-theoretic predi-
cates which numeralwise represent, respectively, Kleene's T and result-extraction
predicate U.

(Uniformity Principle) 8x 9y�a �(x; y)! 9y�a 8x �(x; y).

(Unzerlegbarkeit) 8x (�(x) _ :�(x))! 8x � _ 8x :�.

Most of these principles also hold in the realisability models of Rathjen [70], except
for the subcountability of all sets, and the general Uniformity Principle. In order to
show all of this, I need to give a concrete description. In our case that is somewhat
easier than in [61], since the axiom (Q) is valid here.

On Eff , one can de�ne the powerclass functor Ps . The idea is that Ps(X) is the
set of all subcountable subsets of X. This one can easily construct in terms of the
universal small map �:E //U:

Ps(X) = fR 2 PX j 9u 2 U:R �= Eu g:
Ps is obviously a subfunctor of the powerobject functor P (which exists in any topos),
and inherits an elementhood relation 2X� Ps(X)�X from P.

The model for CZF is the initial algebra for the functor Ps , which happens to
exist. This means that it is a �xpoint V and there are mutually inverse mappings
I:Ps(V ) // V and E: V //Ps(V ). The internal elementhood relation � on V is
de�ned in terms of 2 as follows:

x�y , x 2 E(y):
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One can see that the model V exists by slightly modifying the work of Moerdijk
and Palmgren in [61]. Call a map �:E //U a weak representation for a class of
small maps S, when a morphism belongs to S, if and only if, there is a diagram of the
following form:

B
f

²²

B0 //

²²

oo E
�

²²

A A0p
oooo // U

where the left square is a quasi-pullback, and the right square is a genuine pullback.
This expresses that every small map is locally a quotient of �. Moerdijk and Palmgren
show how the initial Ps-algebra can be constructed from �.

Our class of small maps has a weak representation of a relatively easy form:

2N // //

�
²²

2N
²²P::(N) // // P(N):

Therefore � is a morphism between assemblies, where P::(N) = rPN, i.e. the set
of all subsets A of the natural numbers, where A is realised by any natural number,
and 2N= f(n; A) j n 2 Ag, where (n; A) is realised simply by n.

According to Moerdijk and Palmgren, the initial Ps-algebra can be constructed by
�rst taking the W-type associated to � and then dividing out, internally, by bisimula-
tion:

supA(t) � supA0(t 0) , 8a 2 A 9a0 2 A0: ta � t 0a0 and 8a0 2 A0 9a 2 A: ta � t 0a0:
The W-type associated to � can be calculated in the category of assemblies, and is
the following. The underlying set consists of well-founded trees where the edges are
labelled by natural numbers, in such a way that the edges into a �xed node are labelled
by distinct natural numbers. The decorations (realisers) of such trees supA(t) are
those n 2 N such that n � a # for all a 2 A and n � a is a decoration of t(a).

Now I have to translate the bisimulation relation in terms of realisers. When using
the abbreviation:

m ` x � supA(t) , j0m 2 A and j1m ` x � t(j0m);

it becomes:

n ` supA(t) � supA0(t 0) , 8a 2 A: j0n � a # and j0n � a ` ta � supA0(t 0) and
8a0 2 A0: j1n � a0 # and j1n � a0 ` t 0a0 � supA(t):

Using the Recursion Theorem, it is not hard to see that this de�nes a subobject � of
W� �W�, in fact, an equivalence relation on W�. The quotient in Eff is V , which is
therefore W�, with � as equality.
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Using the description of Ps as a quotient of P� in [47], one can see that:

Ps(X;=) = f(A � N; t:A //X)g;
where n ` (A; t) = (A0; t 0), when n realises the statement that t and t 0 they have the
same image, i.e.:

8a 2 A 9a0 2 A0: ta = t 0a0 and 8a0 2 A0 9a 2 A: ta = t 0a0:

I and E map (A; t) to supA(t) and vice versa, whereas the internal elementhood
relation is de�ned by:

m ` x � supA(t) , j0m 2 A and j1m ` x = t(j0m);

which was not just an abbreviation.

Proposition 4.3.6 As an object of the e�ective topos, V is uniform, i.e. there is a
natural number n such that:

n ` x = x

for all x 2 V .

Proof. It is clear that W� is uniform (a solution for f = �n:f decorates every tree),
and V , as its quotient, is therefore also uniform. �

Corollary 4.3.7 The following clauses recursively de�ne what it means that a certain
statement is realised by a natural number n in the model V :

n ` x � supA(t) , j0n 2 A and j1n ` x = t(j0n):
n ` supA(t) = supA0(t 0) , 8a 2 A: j0n � a # and j0n � a ` ta � supA0(t 0)) and

8a0 2 A0: j0n � a0 # and j1n � a0 ` t 0a0 � supA(t):
n ` � ^  , j0n ` � and j1n `  :
n ` � _  , n = h0; mi and m ` �, or n = h1; mi and m `  :
n ` �!  , For all m ` �; n �m # and n �m `  :

n ` :� , There is no m such that m ` �:
n ` 9x �(x) , n ` �(a) for some a 2 V:
n ` 8x �(x) , n ` �(a) for all a 2 V:

Therefore the model is the same as the one introduced by Lubarsky in [53]. One
could use these clauses to verify that all the principles that are listed in Theorem 4.3.5
are valid, but that is not what I recommend. Instead, it is easier to use that V is
�xpoint for Ps , together with properties of the class of subcountable maps S and of
the e�ective topos.

Proof of Theorem 4.3.5.
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(Full Separation) The model V satis�es full separation, because all monos belong
to S. In more detail, assume w 2 V and �(x) is a set-theoretic property.
W = E(w) is a small subset of V , and since monos are small, so is V = fx 2
W j�(x)g. Then take v = I(V ).

(All sets subcountable) Before we check the principle that all sets are subcountable
in V , let us �rst see how the natural numbers are interpreted in V . The empty
set ; is interpreted by I(0), where 0 � V is the least subobject of V , which is
small. s(x) = I(x [fxg) de�nes an operation on V , therefore there is a mapping
i :N // V . This is actually an inclusion, and its image is small (because N is).
So if one writes ! = I(N), then this interprets the natural numbers.

If x is an arbitrary element in V , E(x) is small, so (internally in Eff ) �ts into a
diagram like this:

A // //

q
²²²²

N

E(x):

One embeds the graph of q in V , by de�ning a morphism T :A // V , as follows:

T (a) = (i(a); q(a)) 2 V;
where I implicitly use the standard coding of pairs of sets. Since A is small, T
can also be considered as an element of Ps(V ). Now t = I(T ) is inside V a
function that maps a subset of the natural numbers to x .

(Non-existence of P!) The principle that all sets are subcountable immediately im-
plies the non-existence of P!, using Cantor's Diagonal Argument.

(Axiom of Countable Choice), (Axiom of Relativised Dependent Choice) The Prin-
ciple of Relativised Dependent Choice V inherits from the e�ective topos Eff .

(Presentation Axiom) Recall that a set b in CZF is called a base, when every sur-
jection q: x // b has a section. To see that every set is the surjective image of
a base, notice that in V every set is the surjective image of a ::-closed subset
of !, and these are internally projective in Eff .

(Markov's Principle), (Independence of Premisses) These hold in V , because these
principles are valid in Eff .

(Church's Thesis) This is a bit harder: see below for an argument.

(Uniformity Principle), (Unzerlegbarkeit) To see that the uniformity principle holds,
observe that a realiser for a statement of the form 8x 9y�a (: : :) speci�es an y�a
that works uniformly for all x . Unzerlegbarkeit follows from the uniformity prin-
ciple, using a = f0; 1g.
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�

Remark 4.3.8 It may be good to point out that not only does P! not exist in the
model, neither does Px when x consists of only one element, say x = f;g. For if it
would, so would (Px)!, by Subset Collection. But it is not hard to see that (Px)!

can be reworked into the powerset of !.

Relationship with work of Streicher 4.3.9 In [80], Streicher builds a model of CZF
which in my terms can be understood as follows. He starts from a well-known map
�:E //U in the category Asm of assemblies. Here U is the set of all modest sets,
with a modest set u realised by any natural number, and a �bre Eu in assemblies being
precisely the modest set u. He proceeds to build the W-type associated to �, takes it
as a universe of sets, and then interprets equality as bisimulation. One cannot literally
quotient by bisimulation, for which one could pass to the e�ective topos.

When considering � as a morphism in the e�ective topos, it is not hard to see that
it is in fact a \weak representation" for the class of subcountable morphisms S: for
all �bres of \my" weak representation � also occur as �bres of �, and all �bres of �
are quotients of �bres of �. Therefore the model is again the initial Ps-algebra for
the class of subcountable morphisms S in the e�ective topos, by the work of Moerdijk
and Palmgren.

Relationship with work of McCarty 4.3.10 In his PhD thesis [58], McCarty intro-
duced a realisability model U for the constructive, but impredicative set theory IZF.
U is very similar to the model V I have been investigating, but its exact relation is not
immediately obvious. In [48], the authors Kouwenhoven-Gentil and Van Oosten show
how also McCarty's model U is the initial Pt-algebra for a class of small maps T in
the e�ective topos. As S � T , and hence Ps � Pt , U is also a Ps-algebra, so it is
clear that V embeds into U. Actually, V consists of those x 2 U that U believes to
be hereditarily subcountable.

To see this, write

A = fx 2 U jU j= x is hereditarily subcountableg:
A is a Ps-subalgebra of U, and it will be isomorphic to V , once one proves that is
initial. It is obviously a �xpoint, so it su�ces to show that it is well-founded (see [48]).
So let B � A be a Ps-subalgebra of A, and de�ne

W = fx 2 U j x 2 A) x 2 Bg:
It is not hard to see that this is a Pt-subalgebra of U, so W = U and A = B.

This also shows concerning Church's Thesis, that, as it is valid in McCarty's model U
and it concerns only sets that also exist in V , it is also valid in V . The same applies
to what is called Extended Church's Thesis.
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