
B
Derivation of the external magnetic field of a

homogeneously magnetized cylinder

Here, we derive the external magnetic field of a homogeneously magnetized cylinder of
infinite length. The cylinder is magnetized due to an constant magnetic field perpendic-
ular to it. The applied field is high, so remanent magnetization can be neglected, and no
currents are present. Then, the internal and external magnetic fields, H, and inductions,
B, are found by solving the Laplace equation of the magnetic scalar potential φm [1].

∇2φm = 0 (B.1)

with:
H = −∇φm (B.2)

and:
B = µ0(−∇φm + M) (B.3)

with µ0 the permeability of free space. Because the cylinder is perpendicular to the
applied field, the potential is independent of the coordinate y, with the ŷ-direction in the
length direction of the cylinder. The general solutions of the Laplace equation are the
so-called cylindrical harmonics:

φm = A + B ln(r) +
∞

∑

n=0

{Cnr
n cos(nφ) + Dnr−n cos(nφ) + Enr

n sin(nφ) + Fnr
−n sin(nφ)}

(B.4)
Now, the constant A,B,C,D,E, F have to be found for the regions inside (φm1) and
outside (φm2) the cylinder. This is done by applying several boundary conditions.

1. The far field is parallel to cos(φ)r̂ and is not influenced by the disturbing cylinder,
which means:

lim
r→∞

H2 =
B0

µ0µ2

cos(φ)r̂ (B.5)

2. The cylinder is homogeneously magnetized, which means:

M1 = M1(H1) cos(φ)r̂ (B.6)
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3. The tangential component of H is continuous across any surface:

H1φ = H2φ (B.7)

with Hiφ = Hi · φ̂.

4. The normal component of B is continuous across the surface of the cylinder:

B1r = B2r (B.8)

with Bir = Bi · r̂.

Because the magnetic potential is uniform and cannot get infinite at any point and by
applying boundary condition 1, the external potential is written as:

φm2 =
∞

∑

n=0

{D2nr
−n cos(nφ) + F2nr−n sin(nφ)} − B0

µ0µ2

r cos(φ) (B.9)

The internal potential is only restricted by its uniformity:

φm1 =
∞

∑

n=0

{C1nr
n cos(nφ) + E1nr

n sin(nφ)} (B.10)

Now, the boundary conditions 2, 3 and 4 are applied at the cylinder surface r = a.
Only the n = 1 components have to be taken into account, because of the cos(φ) term.
Boundary condition 3 becomes:

δφm1

δφ
|r=a =

δφm2

δφ
|r=a (B.11)

or:

−C11a sin(φ) + E11a cos(φ) = −D21a
−1 sin(φ) + F21a

−1 cos(φ) +
B0

µ0µ2

a sin(φ) (B.12)

Boundary condition 4 becomes:

µ0(−
δφm1

δr
|r=a + M1 cos(φ)) = −µ0µ2

δφm2

δr
|r=a (B.13)

or:

µ0(−C11 cos(φ)−E11 sin(φ)+M1 cos(φ)) = µoµ2(D21a
−2 cos φ−F21a

−2 sin(φ))+B0 cos(φ)
(B.14)

The coefficients are found to be:

C11 =
M1

1 + µ2

− 2B0

µ0(1 + µ2)
(B.15)

D21 =
M1a

2

1 + µ2

+
B0(1 − µ2)a

2

µ0(1 + µ2)µ2

(B.16)
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E21 = 0 (B.17)

F21 = 0 (B.18)

The magnetic potential equations become:

φm1 =
µ0M1 − 2B0

µ0(1 + µ2)
r cos(φ) (B.19)

φm2 =
µ0µ2M1 + B0(1 − µ2)

µ0µ2(1 + µ2)

cos(φ)a2

r
− B0

µ0µ2

r cos(φ) (B.20)

Now, a change it made to cartesian coordinates, with z = r cos(φ) and x = r sin(φ):

φm1 =
µ0M1 − 2B0

µ0(1 + µ2)
z (B.21)

φm2 =
µ0µ2M1 + B0(1 − µ2)

µ0µ2(1 + µ2)

a2

x2 + z2
z − B0

µ0µ2

z (B.22)

The magnetic field equations become:

H1 = −δφm1

δz
ẑ = −µ0M1 − 2B0

µ0(1 + µ2)
ẑ (B.23)

H2 = −δφm2

δx
x̂ − δφm2

δz
ẑ (B.24)

=
µ0µ2M1 + B0(1 − µ2)

µ0µ2(1 + µ2)
a2(

z2 − x2

(x2 + z2)2
ẑ +

2xz

(x2 + z2)2
x̂) +

B0

µ0µ2

ẑ

and the magnetic induction:

B1 = −µ0
δφm1

δz
ẑ + µ0M1ẑ = −µ0µ2M1 − 2B0

1 + µ2

ẑ (B.25)

B2 = µ0µ2(−
δφm2

δx
x̂ − δφm2

δz
ẑ) (B.26)

µ0µ2M1 + B0(1 − µ2)

1 + µ2

a2(
z2 − x2

(x2 + z2)2
ẑ +

2xz

(x2 + z2)2
x̂) + B0ẑ

In the MR-scanner, the applied field around the iso-center is constant. During scan-
ning, only very small, negligible variations around the main field are present. In that
case, we may write M1 as proportional to B0 using the dimensionless, field dependent
parameter ξ(B0):

M1 =
ξ(B0)B0

µ0µ2

(B.27)

Now, equation B.26 can be written as:

B2 =
ξ − χ2

π(2 + χ2)
B0A

(

z2 − x2

(x2 + z2)2
ẑ +

2xz

(x2 + z2)2
x̂

)

+ B0ẑ (B.28)
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with χ2 = µ2−1 the magnetic susceptibility of the environment and A the cross-sectional
area of the cylinder. For χ2 << 1, it becomes:

B2 ≈
ξ − χ2

2π
B0A

(

z2 − x2

(x2 + z2)2
ẑ +

2xz

(x2 + z2)2
x̂

)

+ B0ẑ (B.29)

In MRI small frequency differences around the Larmor frequency are analyzed. The
frequency differences depend on the field variations induced by the disturbing cylinder
∆f = 2πγ∆B, with ∆B = |B2| − |B0| and γ the gyromagnetic ratio.

|B2| = B0

(

(

1 + (ξ−χ2)A
2π

z2
−x2

(x2+z2)2

)2

+
(

(ξ−χ2)A
2π

2xz
(x2+z2)2

)2
)

1

2

(B.30)

= B0

(

1 + (ξ−χ2)A
π

z2
−x2

(x2+z2)2
+ ( (ξ−χ2)A

2π
)2 1

(x2+z2)2

)
1

2

(B.31)

' B0

(

1 + (ξ−χ2)A
π

z2
−x2

(x2+z2)2

)
1

2

(B.32)

' B0

(

1 + (ξ−χ2)A
2π

z2
−x2

(x2+z2)2

)

(B.33)

Above, at the first approximation, it is assumed that the cross-sectional area of the
cylinder is small compared to the field-of-view of the imaging slice, which implies that
frequency differences close to the cylinder have negligible effect on the total distortion.
At the second, a Taylor-expansion of

√
1 + u ≈ 1 + u

2
− u2

8
... is used. ∆B becomes:

∆B(x, z) = B0
(ξ − χ2)A

2π

z2 − x2

(x2 + z2)2
(B.34)
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