Derivation of the external magnetic field of a
homogeneously magnetized cylinder

Here, we derive the external magnetic field of a homogeneously magnetized cylinder of
infinite length. The cylinder is magnetized due to an constant magnetic field perpendic-
ular to it. The applied field is high, so remanent magnetization can be neglected, and no
currents are present. Then, the internal and external magnetic fields, H, and inductions,
B, are found by solving the Laplace equation of the magnetic scalar potential ¢,, [1].

V2, =0 (B.1)

with:
H=-V¢, (B.2)

and:
B = jiy(=Vé, + M) (B.3)

with po the permeability of free space. Because the cylinder is perpendicular to the
applied field, the potential is independent of the coordinate y, with the y-direction in the
length direction of the cylinder. The general solutions of the Laplace equation are the
so-called cylindrical harmonics:

¢m = A+ Bln(r) + Z{C’nr” cos(ng) + D,r~" cos(ng) + E,r" sin(ng) + F,r " sin(ng)}
n=0
(B.4)
Now, the constant A, B,C, D, E, F' have to be found for the regions inside (¢,,;) and
outside (¢p,2) the cylinder. This is done by applying several boundary conditions.

1. The far field is parallel to cos(¢)7 and is not influenced by the disturbing cylinder,
which means:

B
lim H2 = 0
r—00 e

cos(¢)r (B.5)

2. The cylinder is homogeneously magnetized, which means:

M1 = Ml(Hl)COS(QZﬁ)f (B6)
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3. The tangential component of H is continuous across any surface:
Hyy = Hyy (B.7)
with Hiy = H; - 6.
4. The normal component of B is continuous across the surface of the cylinder:
By, = By, (B.8)
with B;. = B, - 7.

Because the magnetic potential is uniform and cannot get infinite at any point and by
applying boundary condition 1, the external potential is written as:

- B
Bz = Z{Dgnr_” cos(ng) + Fa,r " sin(ng)} — ——r cos(¢) (B.9)
0 Hofb2
The internal potential is only restricted by its uniformity:

o0

Sm1 = 3 _{Crar" cos(ne) + By sin(ne)} (B.10)

n=0

Now, the boundary conditions 2, 3 and 4 are applied at the cylinder surface r = a.
Only the n = 1 components have to be taken into account, because of the cos(¢) term.
Boundary condition 3 becomes:

5¢m1 | — 5¢m2 |
5¢ r=a 5¢ r=a

(B.11)

or:

Bo asin(¢) (B.12)

—Chasin(¢) + Ejjacos(¢) = —Doyja™! sin(¢) + Fya™t cos(¢) + o
ol2

Boundary condition 4 becomes:

S OPm
fo(— or : |r=a + M1 cos(®)) = —piopiz (57“2 |r=a (B.13)
or:
po(—Ch1 cos(@) — By sin(@) + M, cos(¢)) = popia(Dara™? cos ¢ — Fyra 2 sin(e)) + By cos(¢)
(B.14)
The coefficients are found to be:
M 2B
Cp=—— 0 (B.15)
L4 pg o1+ p2)
M, a? By(1 — 2
Dy 2 ol — iz)a (B.16)

Cl4 e ol p2)p
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Fy =0 (B.18)
The magnetic potential equations become:

[,L()Ml — 2B0

P = po(1 + p2)

r cos(¢) (B.19)

popia My + Bo(1 — po) cos(@)a? By
ma = — T COS B.20
Pm popa(1 + p2) r Hofb2 (9) ( )

Now, a change it made to cartesian coordinates, with z = r cos(¢) and = = rsin(¢):

poMy — 2By

m z B.21
o po(1 + p12) ( )
M, + By(1 — 2 B
b pop2 My + Bo(1 — o) 2@ - 0, (B.22)
fopa(1 + p2) 2?42 Hofte
The magnetic field equations become:
ODm1 . M, — 2By .
H, = —%miy__felhim 25, (B.23)
0z fio(1 + pi2)
6¢m2 ~ 5¢m2 ~
H, = — — B.24
2 or 52 - ( )
M + By(1 — R 2 B
popiath = ol MQ)GQ( Zz 56222"_ 2 &32’2 5 %) + -2
popz(1 + p2) (x> + 222 (224 2%) fopt
and the magnetic induction:
0Pm1 5 popoMy — 2By
B, = — Mz =— B.25
1 o=~ Z 4 polyz 1+ 11 z ( )
5¢m2 A 5¢m2 ~
B, = — — B.26
2 fopa( or xr 52 z) ( )
/1,0/1,2M1 -+ B()(l — /1,2) 2 2’2 — IQ N 2z “ N
B
1+ o ¢ ((:c2+22)2z+ ($2+Z2)2x)+ 0

In the MR-scanner, the applied field around the iso-center is constant. During scan-
ning, only very small, negligible variations around the main field are present. In that
case, we may write M; as proportional to By using the dimensionless, field dependent
parameter &£(By):

a, =SB0 B (B.27)
Fo 2

Now, equation B.26 can be written as:

E— X2 22 —x? 2xz R R
=2 _B,A B B.28
2 (2 + x2) 0 (2% + z2)22 + (x4 22)235 + Bz ( )
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with xo = pug — 1 the magnetic susceptibility of the environment and A the cross-sectional
area of the cylinder. For yo << 1, it becomes:

_ 2 .2 2
B, ~ ¢ XQBOA<<Z O £)+Boé (B.29)

or x? + 22)? (2% 4 22)?

In MRI small frequency differences around the Larmor frequency are analyzed. The
frequency differences depend on the field variations induced by the disturbing cylinder
Af =2myAB, with AB = |Bs| — |Bg| and ~ the gyromagnetic ratio.

1

2 2\ 2
IBs| = By ((1 + %(;;;522)2) " ((5—;;2)14 (mffﬁz)z) ) (B.30)

1
= By (1+ 8284 e, 4 (G ) (B.31)
1

~ B, <1+(5 x2)A (25;522)2)2 (B.32)
~ B, (1+ )l (;5;:22)2) (B.33)

Above, at the first approximation, it is assumed that the cross-sectional area of the
cylinder is small compared to the field-of-view of the imaging slice, which implies that
frequency differences close to the cylinder have negligible effect on the total distortion.
At the second, a Taylor-expansion of V1 +u=~1+ 5 — —2 . is used. AB becomes:

(5 X2) A 2 =1’

AB(z,z) = 2m (2% 4 22)2

(B.34)
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