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Abstract

The CFSE dye dilution assay is widely used to determine the number of divisions a given CFSE labelled cell has undergone

in vitro and in vivo. In this paper, we consider how the data obtained with the use of CFSE (CFSE data) can be used to estimate

the parameters determining cell division and death. For a homogeneous cell population (i.e., a population with the parameters

for cell division and death being independent of time and the number of divisions cells have undergone), we consider a specific

biologically based bSmith–MartinQ model of cell turnover and analyze three different techniques for estimation of its

parameters: direct fitting, indirect fitting and rescaling method. We find that using only CFSE data, the duration of the division

phase (i.e., approximately the S+G2+M phase of the cell cycle) can be estimated with the use of either technique. In some

cases, the average division or cell cycle time can be estimated using the direct fitting of the model solution to the data or by

using the Gett–Hodgkin method [Gett A. and Hodgkin, P. 2000. A cellular calculus for signal integration by T cells. Nat.

Immunol. 1:239-244]. Estimation of the death rates during commitment to division (i.e., approximately the G1 phase of the cell

cycle) and during the division phase may not be feasible with the use of only CFSE data. We propose that measuring an

additional parameter, the fraction of cells in division, may allow estimation of all model parameters including the death rates

during different stages of the cell cycle.
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1. Introduction

The dynamic nature of immune responses requires

the development of appropriate experimental and
hods 298 (2005) 183–200
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theoretical tools to quantitatively understand the

division and death processes which determine the

turnover of immune cells. For example, we need to

obtain a reliable quantitative method for estimating

the division and death rates of immune cells with or

without antigenic stimulation; to understand how

these rates differ for naive and memory cells,

antigen-specific B and T lymphocytes, and other

types of cells.

The problem of estimating the turnover rate of

immune cells is not new and has been approached

with the use of BrdU and d-glucose labels allowing

to distinguish between divided and undivided cells

(for a review see Asquith and Bangham, 2003; De

Boer et al., 2003). In the past few years, BrdU assay

has been supplemented by the CarboxyFluorescein

diacetate Succinimidyl Ester (CFSE) label which

provides a more detailed information on the pro-

liferation history of labelled cells (Lyons and Parish,

1994). Specifically, CFSE dye is loaded into cells in

vitro and CFSE fluorescence in a given cell is

monitored over time. Upon division, CFSE segre-

gates equally between daughter cells so that the

intensity of cellular fluorescence decreases twofold

with each successive generation. This property of

CFSE allows accurate tracking of the number of

divisions that a given cell has undergone either in

vitro or following transfer in vivo (Weston and

Parish, 1990; Lyons and Parish, 1994; Parish, 1999;

Lyons, 2000).

Our work extends some of the earlier studies that

used CFSE data to estimate the rates of cell turnover

(Nordon et al., 1999; Gett and Hodgkin, 2000; Veiga-

Fernandes et al., 2000; Revy et al., 2001; Bernard et

al., 2003; Pilyugin et al., 2003; De Boer and Perelson,

2005). In this paper, we discuss the quantitative

information on the cell turnover that is contained

within the CFSE data. We analyze several methods

that may be used to process this information. We also

describe the limitations of the CFSE data that may

preclude a more detailed understanding of the immune

cell turnover.

In this paper, we restrict our analysis to the case of

a homogeneous cell population, i.e., a population with

the parameters determining cell division and death

being identical for all cells and independent of time or

the number of divisions cells have undergone. (In

Section 8 we review some of the limitations of this
assumption.) There are at least two major approaches

that could be used to quantify the turnover of immune

cells.

! One can formulate a general model of cell division

and death that does not provide the specific

description for division and death, and estimate

the invariant parameters related to cell turnover

(Pilyugin et al., 2003).

! Alternatively, one can construct a specific model of

cell division and death, and then estimate its

parameters.

In this paper, we focus on the second approach.

We first briefly describe a random bbirth–deathQ
model commonly used to describe turnover of

immune cells and discuss its biological limitations

(Section 3). We then formulate a more biologically

realistic bSmith–MartinQ (SM) model for cell division

and death that lacks the limitations of the earlier

random birth–death model (Section 4). We suggest

three methods that may be used to estimate the

parameters of the SM model (Section 5), discuss

their limitations, and importantly propose additional

experimental measures (such as the fraction of cells

in division) that may improve the parameter esti-

mates obtained. We then investigate the conditions

under which the average division time of CFSE

labelled cells can be estimated using the method

suggested by Gett and Hodgkin (Gett and Hodgkin,

2000, Section 6). For comparison and illustration

purposes, we apply all these different methods to a

set of CFSE data, describing proliferation of naive

CD8 T cells transferred into irradiated hosts (Section

7). All mathematical derivations are provided in the

Appendix.
2. Description of CFSE data

A given set of CFSE data contains samples of

the total number of cells X(t) and the CFSE

division profile at several time points. The CFSE

division profile includes the fraction of cells fn(t)

that have undergone n divisions by time t. The

actual number of cells that have undergone n

divisions by time t equals Xn(t)=X(t)fn(t). The

mean number of divisions and the variance in the



Table 1

A summary of definitions and parameters used in this paper

Xn(t) The number of cells undergone

n divisions by time t

X tð Þ ¼
Pl

n¼0 Xn tð Þ The total number of cells at time t

fn(t)=Xn(t)/X(t)
The fraction of cell undergone

n divisions by time t

l tð Þ ¼
Pl

n¼0 nfn tð Þ The mean number of divisions

cells have undergone at time t

r2 tð Þ ¼
Pl

n¼0 n
2fn tð Þ � l2 tð Þ The variance of the number of

divisions cells have undergone at

time t

p tð Þ ¼
Pl

n¼0 Xn tð Þ2�n The number of cells that would

give rise to the current population

if there were no death

(precursor number)

l2 tð Þ ¼
Pl

n¼0 nXn tð Þ2�n=p tð Þ The mean number of divisions of

cells in a normalized

(by a factor 2�n) population

k The rate of commitment to division

(from the A-state to the B-phase)

D The duration of division (B-phase)

dA The death rate in the A-state

dB The death rate in the B-phase

r The rate of increase/decrease of the

total population size X(t)

d The rate of decrease of the

precursor number p(t)

T=D +k�1 The average division time in the

SM model

T1 The duration of the first division

d =1�ke�dBD/(k +dA) The probability of cell’s death

during the cell cycle

k = r +k +dA An accessory parameter

P Proliferating fraction (the fraction

of cells in division)

r(a) The rate of increase of the rescaled

(by a factor a) population
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number of divisions of labelled cells at time t, l(t)
and r2(t), are given by

l tð Þ ¼
Xl
n¼0

nfn tð Þ; r2 tð Þ ¼
Xl
n¼0

n2fn tð Þ � l2 tð Þ:

ð1Þ

After n divisions, each cell has given rise to 2n

progeny. Therefore, the number of precursors p(t)

that would have generated the current cell popula-

tion in the absence of death (Gett and Hodgkin,

2000) is given by

p tð Þ ¼
Xl
n¼0

Xn tð Þ2�n: ð2Þ

3. Quantifying cell turnover using random

birth–death model

One particular model has been often used to

quantify cell turnover in vitro and in vivo (Veiga-

Fernandes et al., 2000; Bonhoeffer et al., 2000;

Revy et al., 2001; Mohri et al., 2001; Asquith et

al., 2002). In this model, cell division and death are

modeled as independent random processes, and in

this paper we refer to this model as the random

birth–death (RBD) model. The model is based on

the following assumptions: (i) the process of

division is stochastic with probability rates of cell

death d and commitment to cell division k being

constant; (ii) division occurs instantaneously (i.e.,

after a cell has divided, there is a non-zero chance

for this cell to divide again in the next short period

of time); (iii) there is no death during the division

(Table 1).

In this model, changes in the number of cells that

have undergone n divisions by time t are given by

equations

dXn tð Þ
dt

¼ 2kXn�1 tð Þ � k þ dð ÞXn tð Þ;

n ¼ 0; 1; 2; . . .l; ð3Þ

where X-1(t)=0. Assuming that all cells at t =0 are

undivided (i.e., X0(0)=X0 and Xn(0)=0 for n N0),
we find that the solution of the system (3) is

given by

Xn tð Þ ¼ 2ktð Þn

n!
e�2kt|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

distribution

X0e
k�dð Þt

h i
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

total #

: ð4Þ

Importantly, in this model both the mean and

variance of the number of divisions cells have

undergone (calculated in accord with Eq. (1))

increase linearly with time with identical slopes

equal to 2k. This prediction is unlikely to be met

for rapidly dividing cell populations for which

variance increases slower than the mean (Gett and

Hodgkin, 2000; Deenick et al., 2003, Section 7).

Therefore, strictly speaking, the RBD model should
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Fig. 1. A simplified representation of the Smith–Martin mode

(panel A), and generalized model accounting for the number of

divisions cells have undergone (panel B). See main text for more

details.
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not be used to quantify the turnover of rapidly

dividing cell populations.

We expect that for slowly dividing cell populations

the mean and variance of the number of divisions will

increase approximately at similar rates as predicted by

the RBD model. However, an alternative model in

which death can occur only during the division makes

a similar prediction (Pilyugin et al., 2003). Such

division-linked-death (DLD) model also assumes that

the probability rate of commitment to cell division k is

constant and division is instantaneous. In contrast to

the RBD model, the DLD model assumes that cells

die only during the division; the probability of cell

death during the division is a. Changes in the number

of cells that have undergone n divisions by time t in

this alternative model are given by equations (Pilyu-

gin et al., 2003)

dXn tð Þ
dt

¼ 2k 1� að ÞXn�1 tð Þ � kXn tð Þ;

n ¼ 0; 1; 2 . . .l; ð5Þ
where again X�1(t) = 0. Using the same initial

conditions as for the RBD model, we find that the

solution of the system (5) is given by

Xn tð Þ ¼ 2k 1� að Þtð Þn

n!
e�2k 1�að Þt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

distribution

X0e
k 1�2að Þt

h i
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

total #

: ð6Þ

Similarly to the RBD model, in the DLD model the

mean and variance of the number of divisions cells

have undergone increase linearly with time with equal

slopes. However, while in the RBD model this rate of

increase equals 2k and depends only on the rate of

commitment to division k, in the DLD model this rate

equals 2k(1�a) and depends on both the rate k and

probability of cell death during division a. Thus,

because of these differences in predictions of the RBD

and DLD models, we expect that in general, fitting the

two models to the CFSE data will lead to different

estimates of biologically relevant parameters such as

the average cell division time (which in both models

equals k�1 ). For example, for a turning over cell

population of a constant size (i.e., when k =d in the

RBD model and a =1/2 in the DLD model), there will

be a twofold difference in the average division time

estimated in two models (Pilyugin et al., 2003). Since

a priori it is not generally known if death occurs only

either during the recruitment into division (RDB
model) or during the division (DLD model), neither

model can be used with confidence to quantify cell

turnover for slowly dividing cell populations. In the

next section, we describe a more general Smith–

Martin model of cell division and death that lacks

these limitations of the earlier RBD model.
4. The Smith–Martin model

An example of a biologically reasonable specific

model of cell division is given by the Smith–Martin

model. Based on their quantitative study of the FLM

(fraction of labelled mitoses) curves of dividing cell

populations in vitro, Smith and Martin (1973)

formulated an elegant quantitative description for the

process of cell division that in fact is similar to the

model developed by Burns and Tannock (1970) (Fig.

1). In this (Smith–Martin or SM) model, the pro-

gression of cells through the cell cycle involves a

stochastic recruitment of cells from an A-state

(corresponding approximately to the G1 phase of the

cell cycle) into the dividing B-phase (approximately

equivalent to the S, G2, and M phases of the cycle).

The B-phase has a fixed duration D. The recruitment

of cells from the A-state into the B-phase occurs at the

fixed rate k (the waiting time in the A-state is

exponentially distributed with the parameter k). The
two parameters k and D provide a complete descrip-

tion of cell division (Cain and Chao, 1997a,b; Nordon
l
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et al., 1999). The SM model is a reasonable first

approximation for the process of cell division (for

some critical considerations of the FLM data, see

Castor, 1980; Brooks et al., 1980; Grasman, 1990).

In contrast with cell division, our understanding of

processes that regulate cell death in different phases of

the cell cycle is much poorer. We do not know if the

death rate is constant during the entire cell cycle, or if

the death rates are different for the A-state and the B-

phase, or even if the death events are restricted to

discrete checkpoints within the A-state and the B-

phase of the cell cycle. Nevertheless, as a first

approximation, we assume that the death rates in the

A-state and the B-phase are given by two constants dA
and dB, respectively (Fig. 1B).

With these assumptions we can describe the rates

of change of cell numbers in the A-state and the B-

phase having undergone different numbers of divi-

sions by a set of differential equations. These

equations are a simple extension of the model by

Cain and Chao (1997a) to keep track of the number of

divisions a cell has undergone and is similar to the

model studied by Bernard et al. (2003):

AnV tð Þ ¼ 2bn�1 t;Dð Þ � k þ dAð ÞAn tð Þ;
Bbn t; sð Þ

Bt
þ Bbn t; sð Þ

Bs
¼ � dBbn t; sð Þ; ð7Þ

where An(t) and Bn tð Þ ¼
R D
0
bn t; sð Þds are the number

of cells having undergone n divisions in the A-state

and the B-phase, respectively, and bn(t,s) is the time

density of cells that have spent time s in the B-phase
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(0 V s V D), bn(t,0)=kAn(t), and b�1(t,s)=0. As noted

previously, we assume the time- and division-inde-

pendence of the parameters k, D, dA and dB.

Analysis of the SM model, found in the Appendix

(Section A.2), shows that asymptotically

1. The total number of cells, X(t), changes exponen-

tially (at the rate r),

2. The number of precursors, p(t), declines exponen-

tially (at the rate d),

3. The number of undivided cells, X0(t), declines

exponentially (at the rate k +dA), and
4. Both the mean number of divisions, l(t), and the

variance in the number of divisions, r2(t), increase

linearly over time at rates a and b, respectively

(Fig. 2).

The rates of change of the total population size,

precursor number, the mean number of divisions and

its variance are given by (see Sections A.2.1 and

A.2.4 in the Appendix for derivations)

r ¼ 2ke� dBþrð ÞD � k þ dAð Þ; ð8Þ

d ¼ k þ dAð Þ � ke� dB�dð ÞD; ð9Þ

lV ¼ k

1þ kD
; ð10Þ

r2
� �V ¼ k

1þ kDð Þ3
; ð11Þ

where k = r +k +dA=2ke
�(r + dB)D. Note that if D =0,

then lV=(r2)V=k =2k. Thus, difference in the rates of
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increase of the mean and variance of the number of

divisions is a relative measure of the duration of the

B-phase. Also note that r and d are not independent in

the SM model, and that the decline rate of the number

of undivided cells, k +dA=k� r, does not represent an

independent parameter.
5. Estimating parameters of the SM model

The SM model involves four parameters: k, D, dA,

and dB that we would like to estimate. In this section,

we suggest three methods that can potentially be used

for such estimation.

5.1. Direct fitting

This approach is an attempt to solve system (7) and

fit the solution to the CFSE data to infer the model

parameters. The first step in this approach is to choose

the correct initial conditions. Although it is natural to

assume that all cells are initially undivided, the initial

condition must also include the number of cells A0(0)

in the A-state and the initial distribution of cells b0(s,0)

in the B-phase. While the total number of undivided

cells at t =0, X0 0ð Þ ¼ A0 0ð Þ þ
R D
0
b0 s; 0ð Þds, is gen-

erally known, the distribution of cells in the B-phase is

not. There are at least two experimental solutions to

this problem. One solution is to synchronize cells

before the experiment in the A-state. Then b0(s,0)=0,

and the analytical solution of the SMmodel in this case

is given in the Appendix by Eq. (31). Another solution

is to adoptively transfer cells, taken from one animal

and labelled in vitro, into another animal assuming that

cells are in the exponential phase of growth/decay and

that such transfer does not change the cell turnover

parameters. As we show in the Appendix (Section

A.2.2), the initial conditions for the dynamics of CFSE

labelled cells in the second animal are given by

A0 0ð Þ ¼ cX0; b0 0; sð Þ ¼ kcX0e
�dBþrð Þs; ð12Þ

where c ¼ rþdB

rþdBþk 1�e� rþdBð ÞD
� �

and X0 is the total

number of labelled cells at t=0. These initial conditions

can be used to solve the SM model numerically.

The second step is to obtain reasonable parameter

estimates and confidence intervals. While it might be

possible to do for the first type of initial conditions
(when all cells are in the A-state at t =0) our

previous analysis suggests that it is unlikely to be

done using the second type of initial conditions

(adoptive transfer) because of the degeneracy of the

SM model during the exponential phase of growth.

Indeed in the Appendix (Section A.3) we use the

rescaling method to show that during the exponential

growth phase only three parameter combinations and

not the parameters themselves determine the dynamics

of the SM model indicating degeneracy of the model

during this phase.

5.2. Indirect fitting

Instead of trying to choose the right initial

conditions, one can neglect the initial transients and

simply assume that the population has reached the

phase of exponential growth/decay. It is then impor-

tant to determine when the population has reached this

phase. As De Boer and Perelson (2005) pointed out

for the case of the RBD model (described in Section

3), this phase is approximately reached when the

mean number of divisions increases linearly with

time. Indeed, our analysis suggests that during the

phase of exponential growth/decay, in the SM model

both mean and variance of the division number should

increase linearly with time, while the total number of

cells and the precursor number should change

exponentially with time. Therefore, for the fitting

procedure only data points that lie on a straight line

should be used. For example, in Fig. 2 this phase is

reached after approximately 12 h.

Importantly, however, our analysis suggests that

during the exponential growth/decay phase, the SM

model becomes degenerate since only three parameter

combinations determine its dynamics. Thus, given the

CFSE data alone, using Eqs. (10) and (11) one can

only estimate the duration of the B-phase D and the

accessory parameter k:

D ¼ 1

a
1�

ffiffiffi
b

a

r !
; k ¼ a

ffiffiffi
a

b

r
; ð13Þ

where a =lV and b =(r2)V. While death rates dA and

dB cannot be determined using only CFSE data, we

can nevertheless calculate the probability of cell death

per cell cycle d. The probability that a cell commits to

division (i.e., leaves A-state and does not die) is k/
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(k +dA) and the probability that a cell successfully

divides and does not die is e�dB D. Then the

probability of cell death during a cell cycle is given by

d ¼ 1� ke�dBD

k þ dA
¼ 1� kerD

2 k � rð Þ ; ð14Þ

where k, D, and r are calculated from the CFSE data.

Furthermore, by assuming that death during the cell

cycle occurs only in the A-state (i.e., dB=0) or the B-

phase (i.e., dA=0), using Eqs. (8), (10), and (11) one

can also estimate the range for the parameters k, dA,
dB and the average division time T=D +k�1 where all

parameters are positive:

ka
kerD

2
; k � r

� �
; ð15Þ

dAa 0; k � r � kerD

2

� �
; ð16Þ

dBa 0;
ln 2 1� r=kð Þ½ �

D
� r

� �
; ð17Þ

Ta D þ 1

k � r
; D þ 2e�rD

k

� �
: ð18Þ

Importantly, all four parameters can be estimated if

an additional experimental measurement is available,

such as the fraction of cells in the B-phase of the cell

cycle. Approximately, this corresponds to the fraction

of cells in the S+G2+M phase of the cell cycle. The

proliferation fraction can be estimated either by

measuring the DNA content per cell (with cells in

division having more DNA than resting cells) or by a

two parameter, RNA–DNA content analysis. In

essence, commitment to division is associated with

upregulation of RNA expression followed by DNA

synthesis (Pera et al., 1977; Bohmer, 1979; Kubbies et

al., 1992; Stout and Suttles, 1992; Veiga-Fernandes et

al., 2000). As we show in the Appendix (Section

A.2.3), asymptotically the proliferation fraction P is

given by

P ¼
k e dBþrð ÞD � 1
� �

2 dB þ rð Þ þ k e dBþrð ÞD � 1ð Þ : ð19Þ

If the proliferation fraction P is measured, then

all parameters but the death rate dB are known in
Eq. (19). By solving this equation (graphically or

numerically), we estimate dB; the remaining param-

eters of the SM model can be calculated by substitut-

ing the estimated parameters into the expressions:

k ¼ k

2
e dBþrð ÞD; dA ¼ k � k � r: ð20Þ

5.3. Rescaling method

Pilyugin et al. (2003) have suggested a rescaling

method that can be used to estimate parameters of

any specific model. In this method, the number of

cells undergone n divisions at time t is multiplied

by a factor an where the rescaling parameter a is

constant. For this bnormalizedQ population the

total number of cells X t; að Þ ¼
Pl

n¼0 Xn tð Þan is

calculated. For example, for the data presented in

Table 3, at time t=3 days we rescaled the number

of cells that have undergone n divisions by a =1/2.

The rescaled numbers are 1.77d 104d (2d 1)�0, 6.10d

104d (2d 1)�1, 6.58d 104d (2d 1)�2, and 1.28d 104d

(2d 1)�3 for cells undergone 0, 1, 2, and 3

divisions, respectively. The total number of cells

of this normalized population at t =3 days is then

X(t = 3, a=1/2) =1.77d 104+6.10d 104/2+6.58d 104/

4+1.28d 104/8c6.63d 104. Calculating similarly the

total number of cells for other times while keeping a

fixed (in the example at 1), we then can determine the

rate of exponential increase of the total number of cells

X(t,a) for a given a. The rate of increase is calculated

by linear regression of the natural logarithm of the

total population size ln X(t,a) versus time (see

Fig. 4A). Doing similarly for several values of a

(for example in the range from 0 to 2 with the step

0.01), we calculate the experimental dependence of

the rate of increase of the total population size r(a)

on the rescaling factor a.

As we show in the Appendix (Section A.3), by

rescaling the SM model, we find an analytical

expression for the rate of increase r(a) as the function

of the rescaling factor a

r að Þ ¼ 2ake� r að ÞþdBð ÞD � k þ dAð Þ: ð21Þ

Now one could fit this formula to the experimen-

tally obtained dependence r(a) to estimate the

parameters of the SM model. However, similarly to

the indirect fitting, only the duration of the B-phase D
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and the range for the other parameters including the

average division time can be estimated from the CFSE

data alone (see Section A.3 in the Appendix).

Measuring an additional parameter, the fraction of

cells in the B-phase of the cell cycle, will allow

estimation of all four parameters of the SM model. For

this we rewrite Eq. (21) using the known value for the

proliferating fraction P (see Section A.3 in the

Appendix for derivations):

r að Þ ¼ 2ad
P r þ dBð Þe� r að ÞþdBð ÞD

1� Pð Þ 1� e� rþdBð ÞDð Þ

� dA þ P r þ dBð Þ
1� Pð Þ 1� e� rþdBð ÞDð Þ

� �
; ð22Þ

where r =r(1) is the rate of exponential increase of the

total population size X(t). This formula can be fitted to

the experimentally obtained dependence r(a) to obtain

estimates for the parameters D, dA and dB. Then using

Eq. (55), the remaining parameter k can be also

estimated:

k ¼ P r þ dBð Þ
1� Pð Þ 1� e� rþdBð ÞDð Þ : ð23Þ

6. Estimating the average division time: the

Gett–Hodgkin method

Instead of trying to estimate parameters of specific

models, Gett and Hodgkin (2000) proposed an

elegant and simple way to estimate the average

division time as well as the time of first division for

CFSE labelled cells. Shortly, in this method the

number of cells Xn(t) that have undergone n divisions

by time t is divided by 2n (Gett and Hodgkin, 2000).

For this bnormalizedQ population, the average number

of divisions cells have undergone is calculated using

the formula (De Boer and Perelson, 2005):

l2 tð Þ ¼
Pl

n¼0 nXn tð Þ2�nPl
n¼0 Xn tð Þ2�n : ð24Þ

Then, the average division time T of dividing cells

is estimated as the reciprocal of the slope of l2(t) and

the time of first division T1 is calculated from the

equation l2(T1)=1 (Fig. 3).
.

Although this method of estimation of the

average division time is intuitively appealing, we

have sought to determine whether the inverse of

the slope for l2(t) actually corresponds to the

average division time T=D +k�1 when we use the

SM model for cell division and death. In the

Appendix (Section A.2.4) we have shown that after

initial transient l2 increases linearly with time (see

De Boer and Perelson (2005) on how the length of

this transient can be calculated for some simple

models). The asymptotic rate of increase (l2V)
�1 is

given by

lV
2

� ��1 ¼ D þ 1

k þ dA � d
; ð25Þ

where d is the decline rate of precursors given in

Eq. (9). Given that all parameters are positive, we

immediately see that (l2V)
�1 corresponds to the true

average division time only when d =dAwhich happens

only when the death rates in the A-state and the B-

phase are equal, i.e. at dA=dB. As we show in Table 2,

for a population of constant size (i.e., r=0), the error in

estimation of T can be as large as twofold if cells spend

most of their time in the A-state (i.e., if k�1
HD) but

may be relatively small if cells spend most of their time

in the B-phase (i.e., if k�1bD ). The errors become

more pronounced for declining populations (r b0) and

less pronounced for growing populations (rN0, not

shown). Since for rapidly dividing cells, the G1 phase

of the cell cycle is relatively short (i.e.,D Nk�1), we

expect the Gett–Hodgkin method to give reasonable



Table 2

The estimates of the average division time obtained by the Gett–

Hodgkin method for different parameter combinations of the SM

model given in Eq. (25)

(l2V)
�1 dA=0 dA=dB dB=0

k�1
HD 3.80 2.00 1.91

k�1=D 2.46 2.00 1.64

k�1bD 2.00 2.00 1.95

Three parameter combinations are considered: The average recruit-

ment time is much greater than the division time (k =0.53 day�1,

D =0.1 day), recruitment time is equal to the division time

(k�1=D =1 day), and recruitment time is much shorter than the

division time (k =10 day�1, D =1.9 days). In all cases, the average

division time T =D +k�1 =2 days. We also assumed the population

of a constant size (i.e., with r =0), implying the following equality

for the parameters of the SM model: k +dA=2ke
�dBD.
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estimates for the average division time of rapidly

proliferating cell populations.
Table 3

The CFSE profile of P-14 Tg naive CD8 T cells after adoptive

transfer into irradiated hosts (Murali-Krishna and Ahmed, 2000)

t (days)

Xn(t) 0.5 1.25 3 8

n (divisions) 0 7.38 7.07 1.77 0.0

1 0.0 0.64 6.10 0.29

2 0.0 0.0 6.58 5.71

3 0.0 0.0 1.28 19.97

4 0.0 0.0 0.0 18.83

5 0.0 0.0 0.0 7.99

6+ 0.0 0.0 0.0 4.00

The numbers above equal the number of cells per spleen divided

by 104.
7. Example: proliferation of naive CD8 T cells in

irradiated hosts

In this section, we apply the methods for parameter

estimation to a set of experimental data. In doing so

we pursue two major goals. Firstly, we demonstrate

how these methods can be used to estimate parame-

ters of the SM model. Secondly, by using exper-

imental data which are bnoisyQ we also illustrate the

limitations of these methods. It is also important to

note that at present this procedure of parameter

estimation is rather illustrative since some of the

assumptions for these methods such as homogeneity

of the cell population, cannot be validated (see

Discussion).

The particular dataset that we use here has been

obtained by Murali-Krishna and Ahmed (2000) in a

study of the dynamics of CFSE labelled P-14 trans-

genic naive CD8 T cells after adoptive transfer into

irradiated hosts (Table 3). In this experiment, naive T

cells were collected from one animal, labelled with the

CFSE in vitro, and then transferred into irradiated

animals lacking T cells (T cells had been destroyed by

irradiation). Following the transfer, the labelled T cells

began to divide and their total number increased with

time. In Fig. 4 we plot the changes in the total number

of cells, X(t), the precursor number p(t), the mean
number of divisions, l(t), and the variance in the

number of divisions, r2(t), over time.

It is generally believed that in normal conditions

naive T cells are resting nondividing cells in the G0/G1

phase of the cell cycle. For direct fitting we therefore

assumed that all labelled cells were synchronized in the

A-state at t =0 (i.e., cells are approximately in the G1

phase of the cell cycle). For the fitting, we used the

analytical solution of the SM model found for this type

of initial conditions (given in the Appendix in Eq. (31))

to CFSE data. Since in the adoptive transfer experi-

ments the actual number of T cells engrafted by the

host is not generally known, we estimated this number

by calculating the intercept of the linear regression of

the logarithm of the total size vs. time (see Fig. 4A).

The estimated value A0(0)=6.1d 10
4 is approximately

equal to 10% of the transferred CD8 T cells that

agrees well with estimates on engraftment of naive

CD8 T cells into normal hosts (Blattman et al., 2002).

The estimation of parameters was done by mini-

mization of the residual sum of squares using the

Levenberg–Marquardt algorithm implemented in

Mathematica (Wolfram, 1990). The 67% confidence

intervals (CIs) were determined by a bootstrap method

with 1000 resamplings of the residuals (Efron and

Tibshirani, 1993). As shown in Table 4, for this

particular dataset, we could obtain biologically

reasonable estimates and confidence intervals for the

commitment rate k, the duration of the B-phase D and

the death rate in the A-state dA. The estimate of the

death rate in the B-phase dB had large CIs. We suggest

two explanations of this result. First, this dataset

might be too small to give reasonably good estimates

for all four parameters. Second, the model might be
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overdefined with respect to the given CFSE data and

the form of the initial conditions that we used, i.e.,

several different parameter combinations may fit the

data reasonably well. While we could not directly test

either of these explanations, in support of the second

explanation, we found that fitting Eq. (31) to the data

generated from it (i.e., from Eq. (31)) with added

noise, may lead to incorrect and imprecise parameter

estimates obtained for both death rates dA and dB even

if the introduced errors are relatively small (~5–10%,

not shown). Importantly, however, the estimates of the

duration of the B-phase and the rate of commitment to

division were generally close to the expected values

and had relatively small CIs.

It is also worthwhile to note that Bernard et al.

(2003) used the direct fitting of a similar analytical
Table 4

The estimates for the parameters of the SM model obtained by direct fittin

(Method 2), and the rescaling method (Method 3)

Parameters Direct fitting Indirect f

Method 1 Method 2

Mean 67% CIs Mean

k, day�1 1.57 (0.62, 1.49) –

D, day 1.13 (0.92, 1.25) 0.89

dA, day
�1 0.00 (0.0, 0.0) –

dB, day
�1 0.09 (0.02, 0.16) –

T, day 2.31 (2.03, 2.58) –

d 0.09 (0.01, 0.15) 0.08

For the Method 1, confidence intervals were calculated using a bootstrap m

confidence intervals are calculated using standard methods for linear regre

standard methods for linear regressions where the errors in the estimated va

confidence intervals are shown is brackets with a comma. The ranges for p

backets with a dash. The estimate of the average division time using the

T Ranges for the relevant parameters.
solution to estimate only three parameters of the SM

model while assuming some small ad hoc value for

the death rate in the A-state (Bernard et al., 2003).

Indeed, we also found that reducing the number

of parameters of the SM model (by assuming dA=0,

dB=0, or dA=dB) may allow estimation of the

remaining parameters with relatively small confidence

intervals (not shown). How making these assumptions

on the death rates affects estimates for other

parameters will be investigated elsewhere. Finally,

using the obtained estimates for the parameters using

Eq. (14) we could also estimate the probability of

cell’s death per cell cycle and CIs for it (see Table 4).

Using either indirect fitting (Method 2) or the

rescaling method (Method 3) one can only estimate

the duration of the B-phase (Table 4). For other
g of the analytical solution of the model (Method 1), indirect fitting

itting Rescaling method

Method 3

67% CIs/range Mean 67% CIs/range

(0.60–0.65)T – (0.67, 0.74)T
(0.63, 1.20) 0.97 (0.67, 1.46)

(0–0.05)T – (0–0.07)T
(0–0.10)T – (0–0.10)T
(2.42–2.56)T – (2.33–2.47)T
– 0.09 (0.08, 0.11)

ethod with 1000 resamplings of the residuals. For the Method 2 the

ssions. For the Method 3, confidence intervals are calculated using

lues for the rate of increase r(a) are also taken into account. The 67%

arameters found by indirect fitting or rescaling method are shown in

Gett–Hodgkin method is (l2V)
�1=2.39 days (2.22, 2.60).
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parameters, however, we can find the ranges where all

the model parameters are positive. Interestingly, for

this particular data set, these ranges are relatively

small and are very similar to the estimates obtained

with direct fitting. Also, the estimates for the average

division time T obtained by all three methods are also

very close to the estimate obtained using the Gett–

Hodgkin technique which gives (l2V)
�1=2.39 days

with 67% confidence intervals (2.22, 2.60). Since the

decline rate of the precursor number is small

(dTc0.1b1), the Gett–Hodgkin method gives a

reasonably good estimate of the average division time

T (see Section 6). Finally, using both indirect fitting

and rescaling method, we estimate the probability of

cell death during the cell cycle dc0.09; only the

rescaling method gave relatively small CIs for this

parameter.

Thus, we found that naive transgenic CD8 T cells

transferred into irradiated hosts proliferate with the

average division time of 2.4 days with approximately

1 day spent on actual division (i.e., in S+G2+M

phase of the cell cycle). We found that approximately

10% of cells are dying per each division with death

predominantly occurring during the division phase.

Additional data, such as the fraction of cells in

division, is required to verify the last observation.
8. Discussion

8.1. Quantifying cell turnover

The CFSE label is widely used in immunology to

quantify the number of divisions immune cells have

undergone (Lyons, 2000). In this paper, we have

analyzed how the data obtained using the CFSE label,

can be used to estimate the rates of cell division and

death. There are two basic approaches in addressing

this problem.

The first is to formulate a general model of cell

division and death where the probabilities of cell

division and cell death are general functions depend-

ent only on time since last division. Using such a

model, we have previously shown how parameters

that are independent of specific functions describing

cell division and death, can be estimated from the

CFSE data (Pilyugin et al., 2003). The main problem

with this approach, however, is that the invariant
parameters provide limited insight into the specifics of

cell division and death.

This problem can be resolved by the second

approach in which one can formulate a specific model

for cell division and death and then estimate its

parameters using CFSE data. In this paper, we

extended the model of cell division pioneered by

Smith and Martin (1973) and Burns and Tannock

(1970) to include cell death during the cell cycle and

to track the number of division cells have undergone.

We focused our analysis on the case of turnover of

homogeneous cell populations, i.e., populations with

division and death rates independent of time and the

numbers of divisions cells have undergone. However,

even in this simplest case, the problem of estimation

of parameters determining cell division and death

appears to be much harder than was previously

thought.

Given CFSE data alone, we found no general

robust method that allows estimation of all parameters

of the SM model. It is, however, possible to estimate

the duration of division D, probability of cell death

during the cell cycle d, and in some cases the average

division time T (Table 5). Measuring an additional

parameter, the fraction of cells in division P (i.e.,

fraction of cells that are in the S+G2+M phase of the

cell cycle) may allow estimation of all parameters of

the SM model (Table 6). The fraction of cells in the

S+G2+M phase of the cell cycle can be estimated by

looking at either DNA content per cell (for example,

using PI staining) or by a two parameter, RNA–DNA

content analysis (Pera et al., 1977; Bohmer, 1979;

Kubbies et al., 1992; Stout and Suttles, 1992; Veiga-

Fernandes et al., 2000).

8.2. Caveats

8.2.1. Inhomogeneity of cell populations

Importantly, the problem of estimation of the

division and death rates of CFSE labelled cells may

become even harder for inhomogeneous cell popula-

tions. In general, two types of inhomogeneity of cell

populations may occur: when the parameters determin-

ing cell division and death are dependent on (i) time or

(ii) the number of divisions a given cell has undergone.

The dependence of parameters determining cell

division and death on time may arise when factors

extrinsic to CFSE labelled cells affect their rates of



Table 5

Recommendation for the estimation of parameters of the SM model

when only CFSE data are available

(1) If the initial conditions for the population are known, use the

analytical or numerical solutions of the SM model (7) to estimate

its parameters by fitting the model to the data. Note that this

approach may give large confidence intervals for some

parameters for bnoisyQ data.
(2) Otherwise, only the duration of the B-phase D, the probability of

cell death per cell cycle d and at some conditions (see below) the

average division time T can be determined. To do so,

! estimate the instantaneous rate of increase of the total

population size r, the decline rate of the precursor number d, and

the rate of increase in the mean number of divisions

and its variance lV(t)=a and (r2)V(t)=b, respectively (see

Fig. 4A and B). From the slopes a and b, and the rate of increase

r estimate the duration of the B-phase D, the probability of

cell death per cell cycle d, and the range for the remaining

parameters k, dA, dB and the average division time T given in

Eqs. (13)– (18).

! if DcT or there is little death occurring (i.e., dTb1), then use

the Gett–Hodgkin method to estimate the average division time

T from the rate of increase of the mean number of divisions of the

normalized CFSE data using Eq. (24).

(3) In all other cases, use the rescaling method to estimate invariant

parameters s and d, where s is the average division time of

surviving cells and d is the probability of cell death during the

cell cycle. In this case, s will be an underestimate of T (see

Pilyugin et al. (2003) for more details).

Table 6

Recommendation for the estimation of parameters of the SM mode

when both CFSE data and the proliferating fraction P are available

(1) Estimate the instantaneous rate of increase of the total

population size r and the rate of increase in the mean and

variance of the number of divisions lV(t)=a and (r2)V(t)=b,
respectively (see Fig. 4). From the slopes a and b, estimate the

duration of the B-phase D and the parameter k given in Eq. (13)

Given the known value for the fraction of cells in division P,

using Eqs. (19) and (20), estimate the remaining parameters of

the SM model.

(2) Alternatively, use the rescaling method as outlined in Section 5

For this, using CFSE data, calculate the rate of increase r(a) of

the total population size X(t) rescaled by a parameter a where a

varies from 0 to 2 with some step (for example, 0.01). Then,

use the analytical expression for the rate of increase r(a) given

in Eq. (22) to estimate D, dA, dB, and then use Eq. (23) to

estimate k.
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division and death in a time-dependent fashion. For

example, adoptive transfer of CFSE labelled cells into

naive hosts generally involves some degree of local

damage that may result in temporary changes in levels

of some cytokines (or other extracellular proteins)

leading to time-dependent changes of the parameters

for cell division and death.

The dependence of parameters determining cell

division and death on the number of divisions cells

have undergone may arise when factors intrinsic to

CFSE labelled cells affect their rates of division and

death. For example, it is well established that some

cell properties such as abundance of different mole-

cules on the cell surface change as cell undergo more

divisions (Hodgkin et al., 1996; Lyons, 2000; Ma et

al., 2004; Tangye and Hodgkin, 2004). It is possible

that changes in the expression of some genes (Fas, for

example) may well lead to changes in the rates of cell

division and death depending on how many divisions

cells have undergone.

One particular type of inhomogeneity has received

more attention. It was noted, that in some experiments
where proliferation of CFSE labelled cells is followed

after stimulation in vitro, time required to complete

the first division appears to be larger than the time of

subsequent divisions (Gett and Hodgkin, 2000). Gett

and Hodgkin (2000) proposed a method of estimating

the average division time of proliferating cells and the

time of first division; some of the limitations of this

method for the estimation of both parameters have

also been investigated (De Boer and Perelson, 2005,

Section 6).

However, to our knowledge, little work has been

done in developing general methods that allow

detection of general types of inhomogeneity. The

properties of the SM and a more general model

suggest that in a homogeneous cell population mean

and variance of the number of divisions cells have

undergone, after initial transient should increase

linearly with time (Pilyugin S.S., unpublished).

Observing departures from such a linear increase

would imply inhomogeneity of the cell population.

Experimentally, inhomogeneity of dividing cells

can be detected using adoptive transfer of cells

undergone n division at time t (where both division

number and time should vary) into new hosts and

detecting CFSE profiles of transferred cells. Signifi-

cant differences in CFSE profiles generated from cells

undergone, for example, 1 and 5 divisions would

imply that population in indeed inhomogeneous. This

method, however, is clearly time and resource

consuming and may not be available to perform in

most situations. Developing more robust theoretical
l

.

.
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and experimental methods of detecting inhomogeneity

of cell populations is an important area that should be

addressed in future studies.

8.2.2. Limitations of the SM model

In our analysis we assumed that division of

lymphocytes can be well approximated by the SM

model. While it might be so to a first approximation

(Smith and Martin, 1973; Shields and Smith, 1977),

additional studies have suggested that changing some

of the assumptions of the SM model is required to

describe new data (Castor, 1980; Brooks et al., 1980;

Tyson and Hannsgen, 1985; Brooks and Riddle, 1980;

Cain and Chao, 1997a). For example, several studies

have suggested that two transition probabilities are

required to describe cell division, especially for slowly

dividing cells (Brooks et al., 1980; Brooks and Riddle,

1980). Other studies have proposed that the determin-

istic phase should include another stochastic state to

describe variation in the duration of the division phase

(Cain and Chao, 1997a). The SM model also assumes

that death rates are uniformly distributed in the A-state

and B-phase. While the assumption of the constant

death rate may be correct for the A-state, it may be not

so for the B-phase where death events may be

restricted to particular checkpoints. How changing

these assumptions may affect the parameter estimates

obtained needs to be investigated.

8.3. Previous work

There has been a number of theoretical studies

estimating the rates of cell turnover using the CFSE

label (Nordon et al., 1999; Gett and Hodgkin, 2000;

Veiga-Fernandes et al., 2000; Revy et al., 2001;

Bernard et al., 2003). While these papers employed

different models and methods for parameter estima-

tion, there was little emphasis on the problems

associated with this task. For example, Veiga-Fer-

nandes et al. (2000) and Revy et al. (2001) used a

random birth–death model to analyze survival and

proliferation of T cells after stimulation with specific

antigens. We have shown that this simple model may

give incorrect estimates for parameters determining

cell division and death (Pilyugin et al., 2003, Section

3). Nordon et al. (1999) have analyzed a particular

case of the SM model with no death during division

(i.e., with dB=0) that allowed the authors to estimate
three remaining parameters using a similar to ours

indirect fitting method. Finally, Bernard et al. (2003)

have studied a general SM model and obtained

estimates for three model parameters by direct fitting

of an analytical solution to the data assuming a fixed

(small) death rate in the A-state. We have also

observed that reducing the number of parameters of

the SM model may allow estimation of the remaining

parameters with relatively small confidence intervals

(not shown). However, since a priori we cannot make

such simplifications (without invoking additional

data), estimation of all parameters of the SM model

using CFSE data alone appears to be problematic.

8.4. Concluding remarks

Although CFSE labelling technique provides the

information on the number of divisions a given cell

has undergone, in some biologically relevant cases it

is sufficient to estimate the division but not the death

rates of CFSE labelled cells. The rescaling method

can be used to infer the invariant parameters of the

cell cycle (such as the probability of cell death during

the cell cycle and the average division time of

surviving cells) but these parameters tell us little

about the nature of cell division and death. Thus,

additional data such as the fraction of cells in division

are required if we are to estimate both the rates of cell

division and death. This requirement should even-

tually stimulate future collaborations between theo-

reticians and experimentalists.
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Appendix A

A.1. Analytical solutions of the SM model

In this section, we present the explicit solution of

the Smith–Martin model (7) with special initial

conditions. Specifically, we assume that at t =0 all
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cells are in the A-state of the 0-th generation, that is,

A0(0)=X0N0 and b0(s,0)=0 (An(0)=bn(s,0)=0 for

n N0). Biologically this may occur when all labelled

cells are synchronized in the A-state at the beginning

of the experiment.

For each generation number nz0, we use method

of characteristics and solve for Bn(t,s) in terms of

An(t) to obtain

bn t; sð Þ ¼ kAn t � sð Þexp � dBsð Þ; 0VsVD: ð26Þ

Substituting Eq. (26) into Eq. (7), we obtain the

equations for the dynamics of cells in the A-state

AnV tð Þ ¼ 2kexp � dBDð ÞAn�1 t � Dð Þ � k þ dAð ÞAn tð Þ;
ð27Þ

Given the initial conditions, the Laplace transforms

of An(t) must therefore satisfy

L An tð Þf g ¼ X02
nkne� sþdBð ÞnD

sþ k þ dAð Þnþ1
; nz0: ð28Þ

Inverting the Laplace transform in Eq. (28), we

obtain the explicit solutions for the number of cells in

the A-state for each generation

An tð Þ ¼ X0 2ke kþdA�dBð ÞD
� �n

e� kþdAð Þt t � nDð Þn

n!


 H t � nDð Þ: ð29Þ

where H(x) is the Heaviside step function (i.e.,

H(x)=0 if x b0 and H(x)=1 otherwise). The number

of cells in the B-phase in each generation is then:

Bn tð Þ ¼ X0

2nknþ1e�dBt

n! k þ dA � dBð Þnþ1

dC nþ 1;max 0; t � nþ 1ð ÞDð Þð
d k þ dA � dBð Þ;max 0; t � nDð Þ
d k þ dA � dBð ÞÞ; ð30Þ

where C nþ 1; a; bð Þ ¼
R b
a
zne�zdz is incomplete gen-

eralized gamma function. The total number of cells

Xn(t) in the n-th generation at time t can be

determined by substituting Eqs. (29) and (30) into

Xn tð Þ ¼ An tð Þ þ Bn tð Þ: ð31Þ

Note that this solution is similar to one obtained by

Bernard et al. (2003). Having the general solution
(31), we can now easily calculate the dynamics of

undivided cells X0(t):

X0 tð Þ¼
X0e

� kþdAð Þtþ kA0

kþdA�dB
e� kþdAð Þt e kþdA�dBð Þt� 1

� �
; if tbD

X0e
� kþdAð Þtþ kA0

kþdA�dB
e� kþdAð Þt e kþdA�dBð ÞD�1

� �
; otherwise

(

ð32Þ

A.2. Properties of the SM model

A.2.1. Exponential rate of increase r and decline rate

of precursors d

Summing over n in the model (7) we derive the

following equation for the change of the total number

of cells in the A-state:

AV tð Þ ¼ 2ke�dBDA t � Dð Þ � k þ dAð ÞAðtÞ: ð33Þ

Since the time-delay is fixed and Eq. (33) is linear,

we conclude that any solution of Eq. (33) is

asymptotic to an exponential function Cexp(rt) where

r is the principal eigenvalue and C is a constant

determined by the initial conditions (Bellman and

Cooke, 1963). The principal eigenvalue r is the

unique real root of the characteristic equation

r ¼ 2ke� dBþrð ÞD � k þ dAð Þ: ð34Þ

Similarly, we can normalize model (7) by dividing

the number of cells that have undergone n

divisions by 2n. Summing over n, we obtain the

following equation for AN tð Þ ¼
Pl

n¼0 An tð Þ2�n:

AV
N tð Þ ¼ ke�dBDAN t � Dð Þ � k þ dAð ÞAN tð Þ: ð35Þ

Similarly to the previous case, the solution to this

equations is given by CVexp(�dt), where d is the

unique real root of the characteristic equation:

d ¼ k þ dAð Þ � ke� dB�dð ÞD: ð36Þ

A.2.2. Asymptotic steady state distribution of cells in

the A-state and the B-phase

Using Eq. (26) we find that the time density of

cells that spent time s in the B-phase b t; sð Þ ¼
P

n

bn t; sð Þ is

b t; sð Þ ¼ kA t � sð Þexp � dBsð Þ; 0VsVD: ð37Þ
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Asymptotically A(t) enjoys the exponential growth

pattern, A(t)=C exp(rt), and therefore

b t; sð Þ ¼ kA tð Þexp � dB þ rð Þsð Þ: ð38Þ

Now if X0 cells are taken from the population in

the exponential phase of growth, are labelled and

adoptively transferred into a new host then

X0 ¼ A 0ð Þ þ
Z D

0

b 0; sð Þds

¼ C 1þ
k 1� e� dBþrð ÞD� �

dB þ r

 !
; ð39Þ

and the number of cells in the A-state and the time

density of cells in the B-phase in the new host is

A0 0ð Þ ¼ X0 r þ dBð Þ
r þ dB þ k 1� e� rþdBð ÞDð Þ ;

b0 0; sð Þ ¼ kX0 r þ dBð Þ
r þ dB þ k 1� e� rþdBð ÞDð Þ e

� dBþrð Þs: ð40Þ

A.2.3. Proliferating fraction P

Since asymptotically A(t) enjoys the exponential

growth pattern, that is, A(t)=C exp(rt), the total

number of cells in the B-phase can also be

calculated:

B tð Þ ¼
Z D

0

kA t � sð Þexp � dBsð Þds ¼ A tð Þ
Z D

0

F sð Þds;

where F(s)=ke�(r + dB)s. Since the total population

size, X(t)=A(t)+B(t), is also increasing exponen-

tially, we can calculate the constant fraction of cells

in the B-phase (i.e., in division):

P ¼
R D
0
F sð Þds

1þ
R D
0
F sð Þds

¼
k 1� e� rþdBð ÞD� �

r þ dB þ k 1� e� rþdBð ÞDð Þ ;

ð41Þ

and by substituting k ¼ k
2
e� rþdBð ÞD we obtain Eq. (19).

A.2.4. Increase of the mean number of division

We define fn
A(t)= (An(t)/A(t)), and let lA(t) and

(r2)A(t) be the mean and the variance of the
distribution generated by fn
A(t). In general, the rate

of change of fn
A(t) is given by

f An
� �V

tð Þ ¼ An tð Þ
A tð Þ

� �V

¼ 2ke�dBD An�1 t � Dð Þ
A tð Þ � An tð ÞA t � Dð Þ

A2 tð Þ

� �
;

ð42Þ

and using exponential growth assumption A(t)=

C exp(rt), we obtain

f An
� �V

tð Þ ¼ 2kexp � dB þ rð ÞDð Þ f An�1 t � Dð Þ � f An tð Þ
� �

:

ð43Þ

From Eq. (43), we obtain the equation for

lA ¼
P

n nf
A
n :

lA
� �V

tð Þ ¼ k lA t � Dð Þ � lA tð Þ
� �

þ k: ð44Þ

Eq. (44) is a neutral non-homogeneous linear

equation since its principal eigenvalue is zero, and

variation of constants yields an asymptotical solution

as a linear function of time. Letting lA(t)=at +a1,

we substitute this expression into Eq. (44) and solve

for a,

lA
� �V

tð Þ ¼ a ¼ k

1þ kD
:

A similar argument shows that (r2)A(t) also grows

linearly but at a different rate

r2
� �A� �V

tð Þ ¼ b ¼ a 1� Dað Þ2 ¼ k

1þ kDð Þ3
;

and therefore (r2)A(t)=a(1�Da)2t+a2. Using these

results it is easy to demonstrate that the rates of

increase for the mean number of divisions and its

variance of the total cell population lA+B and

(r2)A+B are the same, i.e., lV(t)=a and (r2)V(t)=b.
It can be shown that since a similar to Eq. (44)

equation holds for the average number of divisions of

the normalized population l2
AN(t), the rate of increase

of l2(t) is given by

l2ð ÞV tð Þ ¼ kN

1þ kND
; ð45Þ

where kN=k +dA�d.
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A.3. Rescaling technique

In (Pilyugin et al., 2003), we have formulated a

general model where the probability rates of cell

division and death are dependent only on the time

since the last division and described the rescaling

method for estimating the general, invariant parame-

ters of the cell cycle. The rescaling method can be also

used to estimate the parameters of particular models.

To do so we need to calculate the rate of exponential

increase of the total population size r(a) for the

specific model given that a mother cell produces 2a

daughter cells (see Pilyugin et al. (2003) for more

details). Then by generating the experimental function

r(a) from the CFSE data and by fitting the theoretical

r(a) to the experimental one, the model parameters for

cell division and death can be estimated.

For example, from a previously calculated rate of

exponential change of the total population size in the

SM model after rescaling we obtain:

r að Þ ¼ 2ake� r að ÞþdBð ÞD � k þ dAð Þ: ð46Þ

Importantly, using experimentally obtained r(a)

one can only estimate three parameter combinations in

Eq. (46). These combinations can be written as

invariant model-independent parameters:

d ¼ 1� ke�dBD

k þ dA
; s ¼ D þ 1

k þ dA
;

r2
s ¼

1

k þ dAð Þ2
; ð47Þ

where d =1� (2a*)�1(the probability that, in a single

cell cycle, the death event occurs before division),

s =(a*rV(a*))�1 (the mean generation time of surviv-

ing cells), rs
2=s2(1+ (a*)2rW(a*)s (the variance of the

generation time of surviving cells), a* is a solution of

the equation r(a*)=0, rV(a*) and rW(a*) are the first

and second derivatives of r with respect to a evaluated

at a =a* (Pilyugin et al., 2003). Rewriting Eq. (46) in

terms of invariant parameters and D, we find

r að Þ ¼ 2ae�r að ÞD 1� dð Þ � 1

s � D
: ð48Þ

By fitting Eq. (48) to the experimentally obtained

r(a), we can estimate d, s and D. Note that only the

duration of the B-phase D =s�rs can be estimated

from the CFSE data alone. Assuming that death is
restricted only to the A-state (dB=0) or the B-phase

(dA=0), we find the range for the remaining

parameters k, dA, dB and the average division time T:

ka
1

s � D
;
1� d
s � D

� �
; ð49Þ

dAa 0;
d

s � D

� �
; ð50Þ

dBa 0; � ln 1� dð Þ
D

� �
; ð51Þ

Ta s; s þ d
1� dð Þ s � Dð Þ

� �
: ð52Þ

Finally, if the proliferating fraction P is known, all

the four parameters of the SM model can be

estimated. This can be done in two ways. One is to

rewrite Eq. (19) in terms of the invariant parameters

and D

r þ dB ¼ e�rD 1� d
s � D

1� Pð Þ edBD � 1
� �

; ð53Þ

where r =r(1) (the rate of exponential increase of the

total population size given in Eq. (8)) and dB is

unknown. Solving Eq. (53) numerically, we can

estimate dB. Using the estimate of dB, we can then

estimate k and dA:

k ¼ 1� d
s � D

edBD; dA ¼ 1� 1� dð ÞedBD

s � D
: ð54Þ

Alternatively, we can express one of the parameters

of the model as the function of other parameters and

the proliferating fraction. Expressing the rate of

commitment to division k we find

k ¼ P r þ dBð Þ
1� Pð Þ 1� e� rþdBð ÞDð Þ : ð55Þ

Replacing k given in Eq. (46) with the expression

given Eq. (55) we obtain

r að Þ ¼ 2ad
P r þ dBð Þe� r að ÞþdBð ÞD

1� Pð Þ 1� e� rþdBð ÞDð Þ

� dA þ P r þ dBð Þ
1� Pð Þ 1� e� rþdBð ÞDð Þ

� �
: ð56Þ
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where r and P are known. By fitting this function

to the experimentally obtained dependence r(a) we

can estimate parameters D, dA, dB, and after

substituting the obtained values in Eq. (55) we can

also estimate k.
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