
Chapter 3

LP-Based
Branch-and-Bound

3.1 Introduction

We have seen in Section 2.3 how to design branch-and-bound algorithms for
optimisation problems. In this thesis our focus is not on optimisation problems
in general, but on specific problems that are the subject of Part II. Each problem
discussed in Part II of this thesis can be formulated as a mixed integer linear
programming problem. A mixed integer linear programming problem can be
defined as follows. Given a matrix A ∈ Zm×n, vectors c, l,u ∈ Zn and b ∈ Zm,
and a subset of the column indices J ⊆ {1, . . . , n}, find

max z(x) = cTx (3.1a)
subject to Ax = b, (3.1b)

l ≤ x ≤ u, (3.1c)
xJ integer. (3.1d)

The special case with J = {1, . . . , n} is called a (pure) integer linear program-
ming problem. If in an integer linear program all variables are allowed to take
values zero or one only, then it is called a zero-one integer linear programming
problem. Let

P = {x ∈ Rn | Ax = b, l ≤ x ≤ u},

and

X = P ∩ {x ∈ Rn | xJ integer}.

Problem (3.1) is equivalent to

max{z(x) | x ∈ X},

19



20 CHAPTER 3. LP-BASED BRANCH-AND-BOUND

which is an instance of an optimisation problem in the sense of Definition 2.1.
The LP relaxation of problem 3.1 is obtained by removing the constraints (3.1d),
which yields the problem

max{z(x) | x ∈ P}. (3.2)

In this chapter we will study branch-and-bound algorithms that take advantage
of the fact that LP relaxations can be solved efficiently. In case the entire
formulation can be stored in the main memory of the computer, one can apply
the basic LP-based branch-and-bound algorithm. However, it may occur that
A is given implicitly, and in this case m and n can even be exponential in the
size of a reasonable encoding of the problem data. Sometimes we are still able
to handle such problems using some modification of the basic LP-based branch-
and-bound algorithm. These modifications lead to so-called branch-and-cut,
branch-and-price, and branch-price-and-cut algorithms, corresponding to the
cases in which only a subset of the constraints, a subset of the variables, and
both a subset of the constraints and of the variables are kept in main memory,
respectively.

The area of integer linear programming was pioneered by Gomory [53] who
developed his famous cutting plane algorithm for integer linear programming
problems in the nineteen fifties. Two of the first branch-and-bound algorithms
for integer linear programming were developed by Land and Doig [74] and
Dakin [32] in the early nineteen sixties. Since that time, many articles, books
and conferences have been devoted to the subject. Among the books on inte-
ger programming we mention Papadimitriou and Steiglitz [94], Schrijver [104],
Nemhauser and Wolsey [88], and Wolsey [125]. Recent surveys of branch-
and-bound algorithms for integer programming are by Jünger, Reinelt and
Thienel [67] and Johnson, Nemhauser, and Savelsbergh [66]. Together with
the papers by Padberg and Rinaldi [92] and Linderoth and Savelsbergh [79],
these references are the main source of the ideas that led to the algorithms
in this chapter. Recently, approaches to integer linear programming that are
different from LP-based branch-and-bound have been reported on by Aardal,
Weismantel and Wolsey [3].

The advances of the theory and the developments in computer hardware and
software during the past four decades have resulted in algorithms that are able
to solve relevant integer programming problems in practice to optimality. This
makes linear integer programming an important subject to study.

Several software packages that allow for the implementation of customised
branch-and-cut, branch-and-price, and branch-price-and-cut algorithms exist.
Here we mention MINTO [84] and ABACUS [110]. In order to have full freedom
of algorithmic design we have implemented our own framework for branch-and-
cut, branch-and-price, and branch-price-and-cut, which we use in all computa-
tional experiments that are reported on in this thesis. The goal of this chapter
is to give the reader the opportunity to find out what we actually implemented,
without having to make a guess based upon the literature we refer to.

The remainder of this chapter is organised as follows. We describe a basic
LP-based branch-and-bound algorithm in Section 3.2. We describe our version



3.2. AN LP-BASED BRANCH-AND-BOUND ALGORITHM 21

of the branch-and-cut, branch-and-price, and branch-price-and-cut algorithms
in Sections 3.3, 3.4, and 3.5, respectively.

3.2 An LP-Based Branch-and-Bound Algorithm

Here we refine the branch-and-bound algorithm from Section 2.3 for linear in-
teger programming. The relaxations solved in a node of the branch-and-bound
tree are given in Section 3.2.1. Sometimes it is possible to improve the linear
formulation of the problem in a part of the branch-and-bound tree by tightening
the bounds on the variables. This is discussed in Sections 3.2.2 and 3.2.3. We
proceed by describing branching schemes that can be employed in Sections 3.2.4
and 3.2.5.

3.2.1 LP Relaxations

Consider iteration i of the branch-and-bound algorithm. The LP relaxation we
solve in iteration i of the branch-and-bound algorithm is uniquely determined
by its lower and upper bounds on the variables, which we will denote by li and
ui, respectively. Let

P i = {x ∈ Rn | Ax = b, li ≤ x ≤ ui},
and

Xi = {x ∈ P i | xJ integer}.
The LP relaxation that we solve in iteration i, denoted by LPi, is given by

max{z(x) | x ∈ P i}, (3.3)

which is a linear program with bounded variables as discussed in Section 2.4.
In the root node v1 we take l1 = l and u1 = u to obtain the LP relaxation (3.2)
of the original problem (3.1).

Note that the matrix A is a constant. In an implementation of the LP-
based branch-and-bound algorithm this can be exploited by maintaining only
one LP formulation of the problem. When formulating LPi in iteration i of the
branch-and-bound algorithm, we do this by imposing the bounds li,ui in this
formulation.

Next, we keep track of the basis associated with the optimal solution to the
LP relaxation that we solve in each node of the branch-and-bound tree. How
we do this is explained in more detail in Section 3.2.2. Recall the construction
of the branch-and-bound tree from Section 2.3. Consider iteration i > 1 of
the branch-and-bound algorithm. The optimal basis B ⊆ {1, . . . , n} associated
with the parent of node vi in the branch-and-bound tree defines a dual solution
π = (cTBA

−1
B )T . Furthermore LPi is derived from the LP relaxation associated

with the parent of node vi in the branch-and-bound tree by modifying only
a small number of variable bounds. Therefore π is dual feasible to LPi, and
we can expect π to be close to optimal. This is exploited by solving the LPi

starting from π using the dual simplex algorithm.



22 CHAPTER 3. LP-BASED BRANCH-AND-BOUND

3.2.2 Tightening Variable Bounds and Setting Variables

Suppose we have at our disposal a vector x∗ ∈ X with z(x∗) = z∗. Consider
iteration i of the branch-and-bound algorithm in which LPi was feasible, and
suppose we have solved it to optimality. Recall that our branch-and-bound
algorithm is correct as long as we do not discard any solution that is better than
our current best solution from the remaining search-space (or, more precisely,
if we maintain condition (2.3) as invariant). We can exploit the information
obtained from the optimal solution of LPi to tighten the bounds li and ui. The
improved bounds are based on the value z∗ and the reduced cost of non-basic
variables in an optimal LP solution.

Let (xLP,π) be an optimal primal-dual pair to LPi, where π = (cTBA
−1
B )T for

some basis B ⊆ {1, . . . , n}. Further, let zLP = z(xLP ), and let L,U ⊆ {1, . . . , n}
be the sets of variable indices with cπL < 0 and cπU > 0. The reduced cost cπj
can be interpreted as the change of the objective function per unit change of
variable xj . From the reduced cost optimality conditions (see Theorem 2.2) it
follows that xj = uj if cπj > 0 and xj = lj if cπj < 0. Using these observations
and the difference in objective function between the optimal LP solution and
x∗ we can compute a new lower bound for xj if cπj > 0, and a new upper bound

for xj if cπj < 0. These improved bounds are given by l̃
i
, ũi ∈ Qn, where

l̃ij =


max(lij , u

i
j + d(z∗ − zLP)/cπj e), if j ∈ U ∩ J ,

max(lij , u
i
j + (z∗ − zLP)/cπj ), if j ∈ U \ J ,

lij otherwise,

and

ũij =


min(uij , l

i
j + b(z∗ − zLP)/cπj c), if j ∈ L ∩ J ,

min(iij , l
i
j + (z∗ − zLP)/cπj ), if j ∈ L \ J ,

uij , otherwise.

The following proposition proves the correctness of the improved bounds.

Proposition 3.1. All xIP ∈ Xi with z(xIP) ≥ z∗ satisfy l̃
i ≤ xIP ≤ ũi.

Proof. Let xLP,π, zLP, L, U be as in the construction of z∗, i, l̃
i
, ũi. Assume

that there exists a vector xIP ∈ Xi with z(xIP) ≥ z∗. Since xIP ∈ Xi ⊆ P i we
have AxIP = b, so by Proposition 2.1 we can write

z(xIP) = πTb+ (cπL)TxIP
L + (cπU )TxIP

U ,

and since xLP ∈ P i we can write

z(xLP) = πT b+ (cπL)TxLP
L + (cπU )TxLP

U

= πT b+ (cπL)T liL + (cπU )TuiU .



3.2. AN LP-BASED BRANCH-AND-BOUND ALGORITHM 23

Observe that xIP ∈ Pi implies xIP
L ≥ liL and xIP

U ≤ uiU , so xIP
L − liL ≥ 0 and

xIP
U −uiU ≤ 0. Now, choose j ∈ U arbitrarily. Note that xIP ∈ Xi ⊆ P i directly

gives xIP
j ≥ lij . Moreover,

z∗ − zLP ≤ z(xIP)− z(xLP)

= (cπL)T (xIP
L − liL) + (cπU )T (xIP

U − uiU )

≤ cπj (xIP
j − uij).

Hence,

xIP
j ≥ uij + (z∗ − zLP)/cπj .

If j ∈ U \ J this proves that xIP
j ≥ l̃ij . Otherwise, j ∈ U ∩ J , and xIP

j ≥ l̃ij by

integrality of xIP
j . Because j was chosen arbitrarily we have xIP ≥ l̃i. The proof

that xIP ≤ ũi is derived similarly starting from an arbitrarily chosen index
j ∈ L.

Denote the sub-tree of the branch-and-bound tree that is rooted at node
vi by Tvi . We can tighten the bounds on the variables after solving the LP
in iteration i by replacing the bounds li,ui by l̃

i
, ũi. By Proposition 3.1 we

do not discard any solution satisfying the integrality conditions that is better
than the current best solution x∗ in doing so, which means that we maintain
condition (2.3) as invariant. The improved bounds are used in all iterations of
the branch-and-bound algorithm that are associated with a node in the branch-
and-bound tree in the sub-tree rooted at node vi, the node in the branch-and-
bound tree associated with iteration i. In our implementation of LP-based
branch-and-bound we do not tighten the bounds on continuous variables.

When a variable index j ∈ {1, . . . , n} satisfies lij = uij we say that xj is
set to lij = uij in iteration i (node vi). When a variable is set in the root
node of the branch-and-bound tree, it is called fixed. If lij < uij , we say that
that xj is free in iteration i (node vi). Variable setting based on reduced cost
belongs to the folklore and is used by many authors to improve the formulation
of zero-one integer programming problems (for example by Crowder, Johnson,
and Padberg [31] and Padberg and Rinaldi [92]). The version in Proposition 3.1
is similar to the one mentioned by Wolsey [125, Exercise 7.8.7].

Note that the new bounds are a function of π, zLP, and z∗. As a consequence,
each time that we find a new primal solution in the branch-and-bound algorithm
we can re-compute the bounds. Suppose we find an improved primal solution in
iteration k. An original feature of our implementation of the branch-and-bound
algorithm is that we re-compute the bounds in all nodes vi of the branch-and-
bound tree with i ∈ {1, . . . , k} that are on a path from the root node to a node
vk′ with k′ > k. In order to be able to do this, we store a tree T ′ that mirrors
the branch-and-bound tree. Each node wi in T ′ corresponds to some iteration
i of the branch-and-bound algorithm, and with wi we store its parent p(wi) in
T ′, and the values of π, zLP, and z∗ for which we last computed the bounds



24 CHAPTER 3. LP-BASED BRANCH-AND-BOUND

in wi, and the bounds that we can actually improve in node wi. The values of
π are stored implicitly by storing only the differences of the optimal LP basis
between node wi and node p(wi).

The actual re-computation of bounds is done in a lazy fashion as follows. In
iteration k of the branch-and-bound algorithm, we compute the path P from w1

to wk in T ′ using the parent pointers. Next, we traverse P from w1 to wk, and
keep track of the final basis in each node using the differences, and of the best
available bounds on each variable using the improved bounds that are stored
in the nodes on P . Consider some node wi in this traversal. If the value of z∗

that is stored in wi is less than the actual value, we re-compute the bounds in
wi. If any of the bounds stored in node wi contradicts with bounds stored in a
node wj that preceded wi in the traversal, we have found a proof that Xk = ∅
and we fathom node wk. If any of the bounds stored in node wi is implied by
a bound stored in a node wj that preceded wi in the traversion, we remove it
from node wi.

Consider an execution of the branch-and-bound algorithm and let η denote
the number of times we improve on the primal bound. For wi ∈ T ′ let J ′ denote
the non-basic variables in the final basis of node wi. Assuming that n � m,
the time spent in the re-computation of bounds of node wi is dominated by the
re-computation of the reduced cost from the final basis of node wi, which is of
the order

O(η|supp(AJ ′)|). (3.4)

In a typical execution of the branch-and-bound algorithm, we improve on the
value of z∗ only a few times. Moreover, in our applications we use branch-and-
cut and branch-and-price algorithms that call sophisticated and often time-
consuming subroutines in each iteration of the branch-and-bound algorithm.
These observations imply that the bound (3.4) is dominated by the running
time of the other computations performed in iteration i of the branch-and-
bound algorithm in our applications. We believe that the benefit of having
strengthened formulations is worth the extra terms (3.4) in the running time of
the branch-and-bound algorithm, as the improved formulations help in reducing
the size of the branch-and-bound tree.

3.2.3 GUB Constraints and Tightening Variable Bounds

Assume that row i of the constraints (3.1b) is of the form

x(Ji) = 1,

where the variables xJi are required to be non-negative and integer. In this
case row i is called a generalised upper bound (GUB) constraint. A GUB con-
straint models the situation in which we have to choose one option from a set
of mutually exclusive options. GUB constraints were introduced by Beale and
Tomlin [17]. In any feasible integer solution exactly one j ∈ Ji has xj = 1.



3.2. AN LP-BASED BRANCH-AND-BOUND ALGORITHM 25

Whenever we have a formulation in which some of the constraints are GUB
constraints, we can exploit this by strengthening the bounds on those variables
that are in a GUB constraint using a slightly stronger argument than the one
presented in Section 3.2.2 (see also Strijk, Verweij, and Aardal [107]). Let
I ′ ⊆ {1, . . . ,m} be the set of row indices corresponding to GUB constraints.
The conflict graph induced by the GUB constraints is the graph G = (V,E),
where the node set V contains all variable indices that are involved in one or
more GUB constraints and the edge set E contains all pairs of variable indices
that are involved in at least one common GUB constraint, i.e.,

V =
⋃
i∈I′ Ji, and

E = {{j, k} ⊆ V | j, k ∈ Ji, i ∈ I ′}.

For a variable index j ∈ V , we denote by N(j) the set of variable indices k that
are adjacent to j in G, i.e., N(j) = {k | {j, k} ∈ E}.

The stronger arguments can be applied to all variables that are involved
in at least one GUB constraint. For j ∈ V , whenever xj has value one, the
GUB constraints imply that xN(j) = 0, and whenever xj has value zero the
GUB constraints imply that for at least one k ∈ N(j) xk has value one. The
strengthened argument for modifying the upper bound on xj takes into account
the reduced cost of the variables xN(j), and the strengthened argument for
modifying the lower bound on xj takes into account the reduced cost of the
variables xk and xN(k) for some properly chosen k ∈ N(j).

Let z∗ again denote the value of the best known solution in X. Consider
iteration i in which (3.3) is feasible and let (xLP,π) be an optimal primal-dual
pair to (3.3) in iteration i where π = (cTBA

−1
B )T for some basis B ⊆ {1, . . . , n}.

Let zLP = z(xLP ), and let L,U ⊆ {1, . . . , n} be the maximal sets of variable
indices with cπL < 0 and cπU > 0. The strengthened bounds l̃

i
, ũi ∈ {0, 1}V are

defined as

l̃ij =

{
max(0, 1 + d(z∗ − zLP)/min{−c̃πk | k ∈ N(j)}e), if j ∈ U ,
0, otherwise,

and

ũij =

{
min(1, b(z∗ − zLP)/c̃πj c), if j ∈ L,
1, otherwise,

where for each j ∈ V \ U

c̃πj = cπj − cπ(N(j) ∩ U).

Proposition 3.2. All xIP ∈ Xi with z(xIP) ≥ z∗ satisfy l̃
i ≤ xIP

V ≤ ũi.

Proof. Let xLP,π, zLP, L, U be as in the construction of z∗, i, l̃
i
, ũi. Assume

that there exists a vector xIP ∈ Xi with z(xIP) ≥ z∗. As in Proposition 3.1 we



26 CHAPTER 3. LP-BASED BRANCH-AND-BOUND

can write

z(xIP) = πTb+ (cπL)TxIP
L + (cπU )TxIP

U , and

z(xLP) = πTb+ (cπL)T liL + (cπU )TuiU .

Observe that xIP ∈ Pi implies xIP
L ≥ 0 and xIP

U ≤ 1, so xIP
U − 1 ≤ 0. Now,

choose j ∈ L∩V arbitrarily. Either xIP
j = 0 or xIP

j = 1. In the case that xIP
j = 0

we directly have xIP
j ≤ ũij since ũij ≥ 0. So assume that xIP

j = 1. It follows that
xIP
N(j) = 0. But then,

z∗ − zLP ≤ z(xIP)− z(xLP)

= (cπL)T (xIP
L − liL) + (cπU )T (xIP

U − uiU )

≤ (cπL∩V )TxIP
L∩V + (cπU∩V )T (xIP

U∩V − 1)

≤ cπj xIP
j + (cπU∩N(j))

T (xIP
U∩N(j) − 1)

= cπj − cπ(U ∩N(j)).

Since cπj − cπ(U ∩N(j)) < 0, we find

(z∗ − zLP)/(cπj − cπ(U ∩N(j))) ≥ 1.

Hence xIP
j ≤ ũij . Because j was chosen arbitrarily we have xIP

V ≤ ũi.
The proof that xIP

V ≥ l̃
i

is derived similarly starting from an arbitrarily
chosen index j ∈ U ∩ V , assuming that xIP

j = 0, and using the observation that
xIP
j = 0 implies xIP

k = 1 for some index k ∈ N(j), which in turn implies that
xIP
N(k) = 0.

The strengthened criteria for setting variables based on reduced cost can be
taken into account in an implementation that stores the reduced cost of the
variables in an array by replacing cπj by min{−c̃πk | k ∈ N(j)} for all j ∈ U and
by c̃πj for all j ∈ L in this array. Having done this the strengthened bounds can
be computed as in Section 3.2.2. The extra time needed for pre-processing the
array is O(|E|).

3.2.4 Branching Schemes

Here we describe branching schemes for LP-based branch-and-bound. After we
have solved the LP relaxation (3.3) in iteration k, and we have found an optimal
solution xk ∈ P k but xk /∈ Xk, we have to replace P k by two sets P k1 and P k2 .

Branching on Variables

The most common branching scheme in LP-based branch-and-bound is to select
j ∈ J such that xkj is fractional and to define P k1 and P k2 as

P k1 = P k ∩ {x ∈ Rn | xj ≤ bxkj c}, and P k2 = P k ∩ {x ∈ Rn | xj ≥ dxkj e}.



3.2. AN LP-BASED BRANCH-AND-BOUND ALGORITHM 27

This scheme was first proposed by Dakin [32] and is called variable branching.
Its correctness follows from the observation that every solution x ∈ X satisfies
xj ≤ bxkj c or xj ≥ dxkj e.

The choice of the index j can be made in different ways. One way is to
make a decision based on xk, possibly in combination with c and x∗. An
example of such a scheme, which we will refer to as Padberg-Rinaldi branching
because of its strong resemblance with the branching rule proposed by Padberg
and Rinaldi [92], is as follows. The goal here is to find an index j such that
the fractional part of xkj is close to 1

2 and |cj | is large. For each j ∈ J , let
fj = xkj − bxkj c be the fractional part of xkj . First, we determine the values
L,U ∈ [0, 1] such that

L = max
j∈J
{fj | fj ≤ 1

2}, and U = min
j∈J
{fj | fj ≥ 1

2}.

Next, given a parameter α ∈ [0, 1] we determine the set of variable indices

J ′ = {j ∈ J | (1− α)L ≤ fj ≤ U + α(1− U)}.

The set J ′ contains the variables that are sufficiently close to 1
2 to be taken into

account. From the set J ′, we choose an index j that maximises |cj | as the one to
define P k1 and P k2 as before. In our implementation we have α = 1

2 as suggested
by Padberg and Rinaldi.

Branching on GUB Constraints

Let xk ∈ P k be as above, and let J i = supp(ai) denote the support of row i
of the constraint matrix. Suppose that row i is a GUB constraint and that xkJi
has fractional components. Partition J i into two non-empty disjoint sets J i1, J i2.
Observe that any x ∈ X satisfies x(J i1) = 0 or x(J i2) = 0. Hence, we can define
P k1 and P k2 by

P k1 = P k ∩ {x ∈ Rn | xJi1 ≤ 0}, and P k2 = P k ∩ {x ∈ Rn | xJi2 ≤ 0}.

The branching scheme defined this way is called GUB branching and is due to
Beale and Tomlin [17]. GUB branching is generally believed to yield a more
balanced branch-and-bound tree of smaller height, and hence of smaller size.

Before we can apply GUB branching, we need a way to choose the sets J i1
and J i2. The most common way to do this is by using an ordering of the variables
in J that is specified as input to the branch-and-bound algorithm. Then J is
partitioned in such a way that the elements of J i1 and J i2 appear consecutively
in the specified order. If we have such an ordering then J is called a special
ordered set (more details can be found in Nemhauser and Wolsey [88]).

We follow a different approach, which is motivated by the observation that
the problems from Part II do not exhibit a special ordering. Our aim is to
choose J i1 and J i2 such that xk(J i1) and xk(J i2) are close to 1

2 . We do this by
considering the problem

max
S
{xk(S)|S ⊆ J,xk(S) ≤ 1

2}, (3.5)



28 CHAPTER 3. LP-BASED BRANCH-AND-BOUND

which is an instance of the subset-sum problem. A strongly polynomial time
approximation scheme for the subset-sum problem was given by Ibarra and
Kim [61]. We use their algorithm to find J i1 such that (1 − 1

1000 )xk(S∗) ≤
xk(J i1) ≤ 1

2 , where S∗ denotes an optimal solution to (3.5), and take J i2 = J \J i1.
Note that the sets J i1, J i2 constructed this way will be non-empty if xkJ has
fractional components. The precision of 1

1000 in the calculation of J i1 is arbitrary
but seems to work well in our implementation.

3.2.5 Branching Decisions using Pseudo-Cost

Now that we have seen different branching schemes, we discuss how to choose
between the options, that is, how to compare different branching decisions with
each other and how to decide on which one to apply. We do this by using degra-
dation estimates, that is, estimates on the degradation of the objective function
that are caused by enforcing the branching decision. Degradation estimates
have been studied by Driebeek [43], Tomlin [111], Bénichou, Gauthier, Girodet,
Hentges, Ribière, and Vincent [18], Gauthier and Ribière [49], and most recently
by Linderoth and Savelsbergh [79].

Focus on iteration k of the branch-and-bound algorithm and let xk ∈ P k be
as in Section 3.2.4. Observe that all branching decisions of Section 3.2.4 are of
the form

P k1 = P k ∩D1, and P k2 = P k ∩D2,

where Db ⊆ Rn enforces the altered variable bounds for each b ∈ {1, 2}. In
the following, we call Db a branch (b ∈ {1, 2}), and a pair (D1, D2) a branching
option. Our goal is to decide which branching option to apply. Once we decided
to branch using a pair of branches (D1, D2) we will refer to it as a branching
decision.

So we have a fractional xk, and after applying the ideas of Section 3.2.4 we
find ourselves with a set of branching options from which we have to choose
the one we will enforce. Denote the set of branching options by D, and let
D = {(D1

1 , D
1
2), . . . , (DN

1 , D
N
2 )}. Later in this section we will discuss in detail

how to obtain the set D. We may assume that xk /∈ Di
b for all choices of (i, b).

For each D = Di
b a measure of the distance from xk to D can be defined as

f(D) =


xkj − ũj , if D = {x ∈ Rn | xj ≤ ũj},
l̃j − xkj , if D = {x ∈ Rn | xj ≥ l̃j},
xk(J ′), if D = {x ∈ Rn | xJ ′ ≤ 0}.

Note that 0 < f(Di
b) < 1 for all (i, b) ∈ {1, . . . , N} × {1, 2} if we select all

branching options as in Section 3.2.4. The per-unit degradation of the objective
function caused by enforcing Di

b is called the pseudo-cost of Di
b, and is given by

pib =
max{z(x) | x ∈ P k} −max{z(x) | x ∈ P k ∩Di

b}
f(Di

b)



3.2. AN LP-BASED BRANCH-AND-BOUND ALGORITHM 29

for each (i, b) ∈ {1, . . . , N}× {1, 2}. Actually computing the pseudo-cost for all
branches is time consuming, and is not believed to result in improved running
times.

It is reported by Gauthier and Ribiére, and more recently by Linderoth and
Savelsbergh that, although the pseudo-cost of each variable are different in each
iteration of the branch-and-bound algorithm, the order of magnitude of the
pseudo-cost of each variable is the same in all but a few iterations. Therefore,
instead of calculating the true pseudo-costs, we maintain estimates p̃ib of pib
for all Di

b that have been of interest during the execution of the branch-and-
bound algorithm. For each variable xj with j ∈ J we store the values of the
estimates p̃i1 and p̃i2 of the degradation of the branches {x ∈ Rn | xj ≤ ũj} and
{x ∈ Rn | xj ≥ l̃j}. For each J ′ ⊆ J that was obtained by partitioning the index
set of a GUB constraint we store the value of the estimate p̃ib corresponding to
the branch Di

b = {x ∈ Rn | xJ ′ ≤ 0} in a hash table H : 2J → R using open
addressing [29].

We follow the ideas of Linderoth and Savelsbergh in that we do allow our
algorithm to spend some time to compute good initial estimates. These initial
estimates are calculated using the dual simplex algorithm with an iteration limit
L(d) that is a function of the depth d of node vk in the branch-and-bound tree,
i.e.,

L(d) = max
{⌈ Tγ

2dN

⌉
, 3
}
,

where T denotes the maximum amount of time we are willing to spend on level
d of the tree (in seconds), and γ is an estimate of the number of simplex itera-
tions performed per second. In our implementation T is four minutes and γ is
determined after solving the LP in the root node. We maintain the degradation
estimates during the execution of the algorithm by letting p̃ib be the average over
all observed degradations caused by enforcing Di

b that led to feasible relaxations
(discarding the initial estimate). The average degradation of a branch D can
be maintained in O(1 + TD) time for each time that we branched on D, where
TD indicates the time needed to access the stored pseudo-cost of D. If D is a
variable branch then TD = O(1), and if D is a GUB branch that affects uJ ′ for
some set J ′ ⊆ J then TD is a random variable and E[TD] = O(|J ′|).

The actual branching decision is made as follows. For each Di
b we estimate

a degradation

dib = p̃ibf(Di
b).

We choose to branch on (Di∗

1 , D
i∗

2 ) ∈ D determined by

i∗ = arg max
i∈{1,...,N}

{α1 min(di1, d
i
2) + α2 max(di1, d

i
2)},

where in our implementation (α1, α2) equals (2, 1) as suggested by Linderoth and
Savelsbergh. We have only one exception to this rule, namely, if di

∗

1 = di
∗

2 = 0
then we use the Padberg-Rinaldi scheme. In this case all pseudo-costs are zero,
and hence provide a poor criterion for comparing branching options.



30 CHAPTER 3. LP-BASED BRANCH-AND-BOUND

To complete the description of our branching scheme, we have to specify
how we obtain the set of branching options D. We do this by including in D all
branching options that are derived from fractional variables xj with j ∈ J . In
addition, we add to D a selected number of branching options that are derived
from GUB constraints. One might be tempted to include in D a branching
option derived from each GUB constraint that has fractional variables. However,
if the number of GUB constraints in the formulation is relatively large then such
a scheme would waste too much time in selecting GUB constraints for branching,
eliminating the potential benefit obtained from branch selection by pseudo-cost.

Instead we use the following approach, which takes into account that GUB
constraints may be added in later stages of the algorithm (this can occur in a
branch-and-cut algorithm). Let I1 ⊆ {1, . . . ,m} denote the set of row-indices
of GUB constraints, so for each i ∈ I1 row i has the form

x(J i) = 1,

xJi ≥ 0, and J i ⊆ J . For each i ∈ I1 we keep track of the average pseudo-cost
pib of branches Di

b obtained by partitioning J i, that we use as a heuristic forecast
of the pseudo-cost of the GUB branches obtained from row i in this iteration
of the branch-and-bound algorithm (although the partitioning of J i, and hence
the resulting branching decision, might be totally different). We pre-select all
GUB constraints that have at least four fractional variables in their support.
Let I2 ⊆ I1 be the set of row indices corresponding to GUB constraints such
that xJi has at least four fractional components for all i ∈ I2. Let I3 ⊆ I2 be the
set of row indices corresponding to GUB constraints from which we did derive
a branching option, and let I4 = I2 \ I3 be the set of row indices corresponding
to GUB constraints from which we did not derive a branching option yet. For
the rows indexed by I3 we already have a heuristic forecast of the pseudo-cost
of the branching decisions obtained from them, and for the rows indexed by
I4 we have not. From I3, we select the K(d) constraints with highest average
pseudo-cost, and add those to I4. Here, K(d) is again a function of the depth d
of node vk in the branch-and-bound tree, and is given by

K(d) = max
{⌈ m

2d−1

⌉
, 10
}
.

For each i ∈ I4 we partition J i as in the normal GUB branching procedure and
add the resulting pair of branches to D if the partition results in two sets J i1, J i2
that each contain at least two fractional variables.

3.2.6 Logical Implications

Whenever we tighten variable bounds either by branching on them or by using
reduced cost criteria, we try to tighten more bounds by searching for logical
implications of the improved bounds. This is done using the structure of the
problem at hand, so we do not go into detail here.

Consider iteration k of the branch-and-bound algorithm and let xk ∈ P k be
as before. After enforcing the improved bounds obtained by calculating logical



3.3. BRANCH-AND-CUT 31

implications we obtain a relaxation

max{z(x) | x ∈ P̃ k}

for some P̃ k ⊂ P k. It may occur that xk /∈ P̃ k. If this is the case then we iterate
by resolving the strengthened LP, and proceed again with the strengthening of
variable bounds.

3.3 Branch-and-Cut

In this section we refine the LP-based branch-and-bound algorithm from Sec-
tion 3.2 in such a way that it is no longer necessary to include all constraints
in the LP formulation that is solved. The resulting refinement is known as a
branch-and-cut algorithm, and allows us to use formulations with a large or
possibly exponential number of constraints. Formulations with an exponential
number of constraints are of interest because for some problems it is the only
way to formulate them, and for other problems such formulations are signifi-
cantly stronger than formulations of polynomial size. In both cases we need a
cutting plane algorithm to solve the linear program, explained in Section 3.3.1,
that iteratively adds violated valid inequalities to the LP formulation. The cut-
ting plane algorithm relies on problem-specific subroutines that are known as
separation algorithms. Some implementational issues that arise when dynami-
cally adding constraints are discussed in Section 3.3.2. In Sections 3.3.3–3.3.5
we review some known classes of valid inequalities together with their separation
algorithms, which we will use in Part II.

3.3.1 Valid Inequalities and The Cutting Plane Algorithm

Let P ⊆ Rn, and (π, π0) ∈ Rn × R. The inequality πTx ≤ π0 is valid for P if

P ⊆ {x ∈ Rn | πTx ≤ π0}.

Now, let P be a polyhedron in Rn and let πTx ≤ π0 be a valid inequality for
P . The set

F = P ∩ {x ∈ Rn | πTx = π0}

is called a face of P . The valid inequality πTx ≤ π0 is said to define F . We
say that F is a proper face of P if F 6= ∅ and F 6= P . A proper face is called
a facet if it is not contained in any other proper face of P . Facet-defining valid
inequalities are the strongest among all valid inequalities as they cannot be
redundant (see e.g. Wolsey [125]). Recent surveys devoted to the subject of
valid inequalities are by Aardal and van Hoesel [1] and by Marchand, Martin,
Weismantel and Wolsey [82].

Recall the formulation of the mixed integer programming problem from Sec-
tion 3.1. Let Π ⊆ Rn×R be such that each (π, π0) ∈ Π defines a valid inequality
for conv(X). Then, the linear program

max{z(x) | x ∈ P , πTx ≤ π0 for all (π, π0) ∈ Π} (3.6)



32 CHAPTER 3. LP-BASED BRANCH-AND-BOUND

cuttingPlaneSolver(z, A, b, l,u, separation, α1, α2)
{

Π̄ := ∅; i := 0;
do { i := i+ 1;

solve LP max{z(x) | Ax = b, l ≤ x ≤ u,πTx ≤ π0 ∀(π, π0) ∈ Π̄};
if LP infeasible return infeasible;
let x∗ be an optimal solution of LP; zi := z(x∗);
improve bounds and calculate logical implications, thus refining LP;
if x∗ violates new bounds {

resolve LP;
if LP infeasible return infeasible;
let x∗ be an optimal solution; zi := z(x∗);

}
Π′ := separation(x∗); Π̄ := Π̄ ∪ Π′;
ξ := max(π,π0)∈Π′ π0 − πTx∗;

} while (i > 1 implies zi−1 − zi ≥ α1) and ξ ≥ α2 and Π′ 6= ∅;
return x∗;

}

Algorithm 3.1: The Cutting Plane Algorithm

is a relaxation of the mixed integer programming problem (3.1). Hence, if we
can solve (3.6) efficiently, then we can incorporate it in an LP-based branch-
and-bound algorithm.

The cutting plane algorithm to solve (3.6) works in iterations (starting from
1), and maintains a set Π̄ ⊆ Π. Initially, the set Π̄ is empty. In iteration i, we
solve the linear program

max{z(x) | x ∈ P,πTx ≤ π0 for all (π, π0) ∈ Π̄}. (3.7)

If this problem is infeasible then the cutting plane algorithm reports so and ter-
minates. Otherwise, let x∗ denote the optimal solution to (3.7), and let zi denote
the value of z(x∗). We first try to improve the bounds using Proposition 3.1. If
this succeeds we try to improve more bounds using logical implications as de-
scribed in Section 3.2.6. If any of these implications are not satisfied by x∗, we
resolve the LP. If the LP becomes infeasible, then we report so and terminate.
Otherwise we update zi and x∗. The cutting plane algorithm then calls the
separation algorithm with x∗ as input, which returns a set Π′ ⊆ Π such that
for each (π, π0) ∈ Π′ the valid inequality πTx ≤ π0 is violated by x∗. Let

ξ = max
(π,π0)∈Π′

π0 − πTx∗

denote the maximum violation of any valid inequality defined by a pair (π, π0) ∈
Π′. If Π′ is empty, or if i > 1, zi−1 − zi < α1 and ξ < α2, then the cutting
plane algorithm terminates and reports x∗ as solution. Otherwise, it adds Π′



3.3. BRANCH-AND-CUT 33

to Π̄ and proceeds with the next iteration. The parameters (α1, α2) are used to
avoid a phenomenon that is called tailing-off (see e.g. Padberg and Rinaldi [92]
and Jünger et al. [67]) of the cutting plane algorithm. Tailing-off occurs when
the separation routines find cuts that do not add much to the strength of the
formulation. If this is the case we are basically wasting precious CPU time. In
our implementation we have (α1, α2) = ( 1

100 ,
1
10 ). Pseudo-code for the cutting

plane algorithm can be found in Algorithm 3.1.

3.3.2 Initialising LP Relaxations and Constraint Pools

When one uses a cutting plane algorithm to solve the LP relaxation in each
iteration, the question arises what constraints to keep in the LP formulation
that is maintained by the branch-and-bound algorithm. One possible answer
would be to keep all constraints that are generated by the separation routines
in the formulation. However, this would result in an LP formulation that keeps
growing over the execution of the branch-and-cut algorithm. Therefore the
linear programs would take longer and longer to solve, which is undesirable..
Keeping all constraints in the formulation is not what we will do.

Focus on any iteration i > 1, and let vj be the parent of node vi in the
branch-and-bound tree. Denote the optimal solution to LPj by xj . Padberg
and Rinaldi [92] initialise the formulation in each iteration i > 1 with the
constraints of the matrix A, and the constraints generated by the separation
routines that were satisfied with equality by xj , This is the approach we fol-
low. Note that all constraints with a non-basic slack variable are satisfied with
equality. Initialising the LP formulation associated with iteration i is then ac-
complished by eliminating valid inequalities from LPi−1 that are not satisfied
with equality by xj , and adding those valid inequalities present in LPj that are
satisfied with equality and have a non-basic slack variable, next to imposing the
bounds given in Section 3.2.1. The information about the status of the slack
variables of valid inequalities that are added to the LP formulation is handled
in the same way as the information about optimal the basis in Section 3.2.2.

A second issue that arises when one uses the cutting plane algorithm and
one initialises the LP formulations as above is the following. It might be ad-
vantageous to cache constraints that are produced by the separation algorithm
by storing them in a constraint pool, and then checking the constraint pool for
violated valid inequalities before calling the separation algorithm. Checking the
constraint pool for violated valid inequalities is called pool separation and is im-
plemented by computing an inner product πTx for each valid inequality (π, π0)
in the constraint pool and comparing the result with π0. If a constraint in the
pool is violated in some iteration of the branch-and-cut algorithm, it is reported
as violated and not checked again for the remainder of this iteration. As sep-
aration algorithms often solve non-trivial combinatorial optimisation problems,
this can indeed be advantageous. However, the size of a constraint pool typi-
cally grows over the execution of the algorithm, causing the pool separation to
take longer and longer as the branch-and-cut algorithm proceeds.

Consider any iteration of the branch-and-cut algorithm and denote the set



34 CHAPTER 3. LP-BASED BRANCH-AND-BOUND

of valid inequalities in the constraint pool by

Π̄ = {(πi)Tx ≤ πi0 | i ∈ {1, . . . , |Π̄|}}.

To avoid the pool separation from stalling our branch-and-cut algorithm, we
delete constraints from the constraint pool at certain times. For i ∈ {1, . . . , |Π̄|}
we keep track of the number of iterations of the branch-and-bound algorithm
ki1 that the inequality (πi)Tx ≤ πi0 was in the pool since it was last inserted,
and the number of iterations ki2 in which it was actually reported as violated
during this period of time. The valid inequality (πi)Tx ≤ πi0 is kept in the
pool at least as long as ki1 ≤ α1 for some parameter α1. However, as soon as
ki1 > α1 and ki2/k

i
1 < α2 we delete it. The advantage of this scheme is that the

number of iterations that a constraint stays in the pool is linear in the number of
iterations in which it is actually reported as violated. In our implementation we
have (α1, α2) = (32, 1

5 ). In this way a constraint is kept for at least 32 iterations
and dropped as soon as it was not violated in at least 20% of the iterations that
it was in the pool, which appears to be a reasonable choice of parameters.

3.3.3 Cover Inequalities for Knapsack Sets

Suppose we are given a set of items N , a vector a ∈ NN that gives the size of
each item in N , and a knapsack of size b ∈ N. Let

P = {x ∈ [0, 1]N | aTx ≤ b}.

The set

X = P ∩ {0, 1}N

contains all incidence vectors of subsets of N that fit in the knapsack and is
called a knapsack set. Knapsack sets are of interest to us because they appear
as a relaxation of the problem we discuss in Chapter 6. The set conv(X) is
the knapsack polytope, which has been studied since the mid-seventies by Pad-
berg [90], Balas [8], Wolsey [122], Hammer, Johnson, and Peled [58], Crowder,
Johnson and Padberg [31], and Weismantel [120]. Here we follow the exposition
of Wolsey [125].

A cover is a set C ⊆ N such that a(C) > b. Let C be a cover. A cover
inequality is an inequality of the form

x(C) ≤ |C| − 1, (3.8)

Cover inequalities are valid inequalities for the knapsack polytope. We say that
C is minimal if every proper subset C ′ ⊂ C has a(C ′) ≤ b. A minimal cover
inequality is facet-defining if C = N .

A Greedy Heuristic for Searching Cover Inequalities

Suppose we are given a fractional solution x∗ ∈ P . To find a cover inequality
we follow the approach presented by Crowder, Johnson and Padberg [31]. Let



3.3. BRANCH-AND-CUT 35

B ⊆ N be the fractional support of x∗, and let U ⊆ N \B be the maximal set
of items with x∗U = 1. To separate a violated cover inequality, we focus on the
set of items B with respect to a knapsack of size b′ = b− a(U). Note that the
cover inequality (3.8) is equivalent to

|C| − x(C) ≥ 1.

Hence, there exists a cover C ⊆ B with respect to a knapsack of size b′ that
induces a violated cover inequality in x∗ if and only if there exists a set C ⊆ B
with a(C) > b′ that satisfies

|C| − x∗(C) < 1,

which is the case if

C∗ = arg min
C⊆B

{∑
i∈C(1− x∗i ) | a(C) > b′

}
satisfies |C∗| − x∗(C∗) < 1.

The cover is computed using a greedy heuristic that first sorts the items
in B in non-decreasing order of (1 − x∗i )/ai. Let B = {i1, . . . , i|B|} be the
resulting ordering. The greedy algorithm proceeds with two stages. In the first
stage it finds a cover, and in the second stage it turns it into a minimal cover.
Finding a cover is done by determining the smallest index k such that the items
{i1, . . . , ik} are a cover with respect to a knapsack of size b′, i.e., such that
a({i1, . . . , ik}) > b′. Let k be this smallest index, and let C = {i1, . . . , ik}. The
second stage works in iterations, numbered j− 1, . . . , 1. In iteration l, we check
whether C \ {il} has a(C \ {il}) > b′ and if so, we replace C by C \ {il}. Upon
termination of the second stage the set C is a minimal cover, and the heuristic
returns it. The heuristic can be implemented in O(|B| log |B|) time.

The cover C that is returned by the heuristic need not be violated. Whether
it is violated or not, we will try to strengthen it using the lifting algorithm that
is the subject of the next section. If a cover inequality is violated after lifting,
we report it.

3.3.4 Lifted Cover Inequalities for Knapsack Sets

Padberg [90], and Wolsey [122, 123] studied sequential lifting of valid inequal-
ities. Sequential lifting of valid inequalities for zero-one integer programming
problems relies on the following theorem (see also Nemhauser and Wolsey [88,
Chapter II.2, Propositions 1.1 and 1.2]):

Theorem 3.3. Let S ⊆ {0, 1}n. For k ∈ {0, 1}, let Sk = S∩{x ∈ Rn | x1 = k}.

(i) Suppose

n∑
j=2

πjxj ≤ π0 (3.9)



36 CHAPTER 3. LP-BASED BRANCH-AND-BOUND

is valid for S0. If S1 = ∅, then x1 ≤ 0 is valid for S. If S1 6= ∅, then

n∑
j=1

πjxj ≤ π0 (3.10)

is valid for S for any π1 ≤ π0 −maxx∈S1{
∑n
j=2 πjxj}. If (3.9) defines a

face of conv(S0) of dimension k, and π1 is chosen maximal, then (3.10)
defines a face of conv(S) of dimension k + 1.

(ii) Suppose that (3.9) is valid for S1. If S0 = ∅, then x1 ≥ 1 is valid for S.
If S0 6= ∅, then

n∑
j=1

πjxj ≤ π0 + π1 (3.11)

is valid for S for any π1 ≥ maxx∈S0{
∑n
j=2 πjxj} − π0. If (3.9) defines a

face of conv(S1) of dimension k, and π1 is chosen minimal, then (3.11)
defines a face of conv(S) of dimension k + 1.

Theorem 3.3 is a special case of the theorem given by Wolsey [123, Theo-
rem 1] for general integer programming problems.

Consider again the sets P and X defined by a set of items N , a vector a ∈ NN
that gives the size of each item, and a knapsack of size b as in Section 3.3.3.
Suppose we are given a fractional solution x∗ ∈ P and that we have found a
cover inequality

x(C) ≤ |C| − 1 (3.12)

that is valid for the set{
x ∈ {0, 1}N |

∑
j∈C ajxj ≤ b− a(U)

}
,

using the separation algorithm described in Section 3.3.3, where U is again the
maximal set of items such that x∗U = 1. Van Roy and Wolsey [113] give an
algorithm that iteratively applies Theorem 3.3 starting from (3.12) to obtain a
lifted cover inequality of the form

x(C) +
∑
j∈D

αjxj ≤ |C| − 1 +
∑
j∈U

αj(1− xj),

where C,D and U are mutually disjoint sets of items. In each iteration, one coef-
ficient αj is computed using a dynamic-programming algorithm for the knapsack
problem (see e.g. Nemhauser and Wolsey [88, Chapter II.6, Proposition 1.6]).
Gu, Nemhauser and Savelsbergh [57] discuss modern implementations of these
techniques.



3.3. BRANCH-AND-CUT 37

3.3.5 Mod-k Inequalities for Integer Programming

Suppose we are given natural numbers m,n, a matrix A ∈ Zm×n, and a vector
b ∈ Zm. Let

P = {x ∈ Rn | Ax ≤ b},

and let

X = P ∩ Zn.

A Chvátal-Gomory cut is a valid inequality for conv(X) of the form

λTAx ≤ bλT bc, (3.13)

where λ ∈ Rm+ satisfies λTA ∈ Zn. If λ ∈ {0, 1/k, . . . , (k − 1)/k}m for any
k ≥ 2, then the Chvátal-Gomory cut defined by λ is called a mod-k cut. Let
λ ∈ {0, 1/k, . . . , (k − 1)/k}m. Given x∗ ∈ P , the violation achieved by x∗ of
the mod-k cut defined by λ is given by

λTAx∗ − bλTbc.

Since λTAx ≤ λT b is satisfied by x∗, the maximal violation of a mod-k cut
that can be obtained by x∗ is (k − 1)/k. Mod-k cuts for which x∗ achieves
this violation are called maximally violated by x∗. The separation of mod-2
cuts was studied by Caprara and Fischetti [22]. The separation of mod-k cuts
as treated in this section is by Caprara, Fischetti, and Letchford [23, 24]. The
study of mod-k cuts is motivated by the fact that several well-known classes of
valid inequalities for which no efficient separation algorithms were known, can
be interpreted as mod-k cuts. This includes the class of comb inequalities of the
travelling salesman problem.

Suppose we are given a fractional solution x∗ ∈ P . There exists a mod-k
cut that is violated by x∗ if and only if there exists λ ∈ {0, 1/k, . . . , (k−1)/k}m
with

λTAx∗ − bλTbc > 0 and λTA ∈ Zn,

which is the case if and only if

ζ = maxλ
{
λTAx∗−bλT bc | λTA ∈ Zn,λ ∈ {0, 1/k, . . . , (k−1)/k}m

}
(3.14)

satisfies ζ > 0. Let s∗ = b − Ax∗ denote the slack of x∗. By substituting
Ax∗ = b − s∗, λT b − bλT bc = θ/k, and λ = 1

kµ in (3.14) and observing that
λTb− bλT bc = θ/k if and only if bTµ ≡ θ (mod k) and that λTA ∈ Zn if and
only if ATµ ≡ 0 (mod k), we obtain the equivalent formulation

ζ =
1
k

max(µ,θ) θ − (s∗)Tµ (3.15a)

subject to ATµ ≡ 0 (mod k), (3.15b)

bTµ ≡ θ (mod k), (3.15c)

(µ, θ) ∈ {0, . . . , k − 1}m+1. (3.15d)



38 CHAPTER 3. LP-BASED BRANCH-AND-BOUND

Caprara et al. show that (3.15) is NP-hard using a reduction from the max-
imum cut problem. Furthermore, they show that the problem is polynomially
solvable if we restrict ourselves to maximally violated mod-k inequalities. If
(µ∗, θ∗) is an optimal solution to (3.15), then λ = 1

kµ
∗ defines a mod-k cut

that is violated by x∗ if ζ > 0, and ζ is the violation obtained by x∗. Let
I = {i ∈ {1, . . . ,m} | s∗i = 0} denote the set of row indices that have a slack
equal to zero with respect to x∗. From the objective function of (3.15) it is
immediately clear that (µ∗, θ∗) defines a maximally violated mod-k cut if and
only if θ∗ = k − 1 and µ∗i = 0 for all i with s∗i > 0. From this it follows that
a maximally violated mod-k exists if and only if the following system of mod-k
congruences has a solution:

ATI µ ≡ 0 (mod k), (3.16a)

bTI µ ≡ k − 1 (mod k), (3.16b)

µ ∈ {0, . . . , k − 1}I . (3.16c)

Determining feasibility of (3.16) and finding a solution to it if it is feasible can be
done in O(mnmin(m,n)) time if k is prime using standard Gaussian elimination
in GF (k). Moreover, they show that the existence of a maximally violated mod-
k cut for any non-prime value of k implies the existence of a maximally violated
mod-l cut for every prime factor l of k. Therefore, we can restrict our attention
to the separation of maximally violated mod-k cuts for which k is prime.

In our implementation the system of mod-k congruences (3.16) is solved
by computing an LU -factorisation (see e.g. Chvátal [28]) of a sub-matrix
of (3.16a)–(3.16b) that has full rank using arithmetic in GF (k) (see e.g. Cor-
men et al. [29]), and checking the solution against the remaining constraints.
To preserve the sparsity of the matrix we use a greedy heuristic that selects the
next pivot from the sparsest remaining non-zero row. Our implementation is
preliminary in that there are more sophisticated heuristics to preserve sparsity,
and in that we compute the factorisation from scratch over and over again.

3.4 Branch-and-Price

Now that we have seen how to adapt the LP-based branch-and-bound algorithm
for integer linear programming formulations with a large number of constraints,
we consider how to adapt the LP-based branch-and-bound algorithm in such
a way that it is no longer necessary to include all variables in the formulation
that is passed to the LP solver. This allows us to use formulations that have a
large, or even exponential number of variables. Problems that give rise to such
formulations have been studied since the nineteen eighties. These studies include
the ones by Desrosiers, Soumis, and Desrochers [40], Desrochers, Desrosiers,
and Solomon [38], Barnhart, Johnson, Nemhauser, Savelsbergh, and Vance [14],
Vanderbeck and Wolsey [115], and Vanderbeck [114].



3.4. BRANCH-AND-PRICE 39

3.4.1 LP Column Generation

Suppose we are given a matrix

A =
(
aI0
aI\I0

)
∈ Zm×n,

and a vector

b =
(
bI0
bI\I0

)
∈ Zm,

where m,n are natural numbers, and I0 ⊆ I = {1, . . . ,m} are sets of row indices.
Consider the linear programming problem

max{z(x) = cTx | aI0x = bI0 ,x ∈ conv(X)}, (3.17)

where c ∈ Zn is the cost vector, and X is defined by the sub-matrix aI\I0 of A
and bound vectors l,u ∈ Zn as follows:

P = {x ∈ Rn | aI\I0x = bI\I0 , l ≤ x ≤ u}

and

X = P ∩ Zn.

We will reformulate (3.17) using Dantzig-Wolfe decomposition [36] to obtain
a formulation with a possibly exponential number of variables. Suppose that
aI\I0 has a block-diagonal structure, and let I1, . . . , Ik ⊆ I \ I0 and J1, . . . , Jk ⊆
{1, . . . , n} be a partitioning of the row and variable indices of aI\I0 , respectively,
such that

A =


A1 A2 . . . Ak

AI1J1

AI2J2

. . .
AIkJk

 , (3.18)

where Ai = AI0Ji . For each i ∈ {1, . . . , k}, let

Pi = {x ∈ RJi | AIiJix = bIi , lJi ≤ x ≤ uJi},

and

Xi = Pi ∩ ZJi .

To simplify the following discussion, assume that Xi is finite for each i ∈
{1, . . . , k}.

Note that any fractional solution x ∈ conv(X) satisfies xJi ∈ conv(Xi), so
xJi can be expressed as a convex combination of the elements of Xi:

xJi =
∑
x′∈Xi

x′λx′ , with λ(Xi) = 1, and λ ≥ 0.



40 CHAPTER 3. LP-BASED BRANCH-AND-BOUND

Now substituting for xJi in (3.17) yields an alternative linear programming
formulation to (3.17) with a large but finite number of λ-variables:

z∗(l,u) = max
k∑
i=1

∑
x∈Xi

(cTJix)λx (3.19a)

subject to
k∑
i=1

∑
x∈Xi

(Aix)λx = bI0 , (3.19b)

λ(Xi) = 1, ∀i ∈ {1, . . . , k}, (3.19c)
λ ≥ 0. (3.19d)

The linear programming problem (3.19) is referred to as the master problem
that we want to solve. The subscript (l,u) is added to the optimal value z∗ to
stress the implicit dependence on the lower and upper bounds l and u.

Due to the large number of λ-variables it is difficult in general to solve (3.19)
directly. Instead, we assume that we have at our disposal a relatively small
subset X̄i ⊆ Xi for each i ∈ {1, . . . , k}. In that case we can solve the following
restricted master problem:

max
k∑
i=1

∑
x∈X̄i

(cTJix)λx (3.20a)

subject to
k∑
i=1

∑
x∈X̄i

(Aix)λx = bI0 , (3.20b)

λ(X̄i) = 1, ∀i ∈ {1, . . . , k}, (3.20c)
λX̄i ≥ 0, ∀i ∈ {1, . . . , k}. (3.20d)

Suppose that the restricted master problem is feasible and that we have an
optimal primal-dual pair (λ, (π,µ)) to it, where π ∈ RI0 is associated with
the constraints (3.20b), and µ ∈ Rk is associated with the constraints (3.20c).
Obviously λ is a feasible solution to the master problem, and (λ, (π,µ)) is an
optimal primal-dual pair to the master problem if it satisfies the reduced cost
optimality conditions of Theorem 2.2. This is the case if for all i ∈ {1, . . . , k},
for all x ∈ Xi, we have

cTJix− π
TAix− µi ≤ 0,

which is the case if

ζi = max{(cπJi)
Tx | x ∈ Xi} (3.21)

satisfies ζi ≤ µi, where cπ ∈ Rn is defined by cπJi = cJi − (πTAi)T for all
i ∈ {1, . . . , k}. Problem (3.21) is called pricing problem i. If ζi > µi for some
i ∈ {1, . . . , k}, then the corresponding optimal solution x∗ to pricing problem
i is added to X̄i, and the master problem is resolved. A column generation



3.4. BRANCH-AND-PRICE 41

algorithm iteratively solves a restricted master problem, and pricing problems
for all i ∈ {1, . . . , k}, adding λ-variables that violate the reduced cost optimality
conditions of the master to the restricted master, until an optimal primal-dual
pair to the master problem is found.

3.4.2 IP Column Generation

Now that we have seen how to apply Dantzig-Wolfe decomposition and column
generation to linear programming problems, we will show how to adapt the
LP-based branch-and-bound algorithm to integer linear programming problems
that have a similar structure. For simplicity we concentrate on linear integer
programming formulations that do not contain continuous variables. Consider
the integer linear programming problem

max{z(x) = cTx | aI0x = bI0 ,x ∈ X}, (3.22)

where b, c, A and I0 are as in the previous section, and X is again defined in
terms of aI\I0 , bI\I0 , l and u by

P = {x ∈ Rn | aI\I0x = bI\I0 , l ≤ x ≤ u}

and

X = P ∩ Zn.

Note that (3.17) is an LP relaxation of (3.22).
Assuming that A is of the form (3.18) and after applying Dantzig-Wolfe

decomposition to (3.22) we obtain the following equivalent integer linear pro-
gramming formulation with a large but finite number of λ-variables:

max
k∑
i=1

∑
x∈Xi

(cTJix)λx (3.23a)

subject to
k∑
i=1

∑
x∈Xi

(Aix)λx = bI0 , (3.23b)

λ(Xi) = 1, ∀i ∈ {1, . . . , k}, (3.23c)

λXi ∈ {0, 1}Xi , ∀i ∈ {1, . . . , k}, (3.23d)

where Xi ⊆ ZJi , and Ai are defined as before. Problem (3.23) is called the
IP master problem, and in the context of IP column generation its LP relax-
ation (3.19) is called the LP master problem.

A branch-and-price algorithm for solving (3.22) is derived from the LP-based
branch-and-bound algorithm as follows. The algorithm maintains a restricted
LP master problem, that we assume to be feasible. The situation that the
restricted LP master problem is infeasible is discussed in Section 3.4.4. As
before, with each iteration j of the branch-and-price algorithm we associate a



42 CHAPTER 3. LP-BASED BRANCH-AND-BOUND

unique set of bounds lj ,uj ∈ Zn. In iteration j, the branch-and-price algorithm
solves the LP master problem obtained from (3.17) by imposing the bounds
lj ,uj instead of l,u. This is done by column generation. The formulation is
obtained by imposing an upper bound of zero on all variables λx for which
ljJi 6≤ xJi or xJi 6≤ u

j
Ji

, where xJi ∈ X̄i, i ∈ {1, . . . , k}. The resulting pricing
problems are of the form

ζi = max{(cπJi)
Tx | x ∈ Xi}, (3.24)

where for all i ∈ {1, . . . , k}

Xi = Pi ∩ ZJi ,

and

Pi = {x ∈ RJi | aIix = bIi , l
j
Ji
≤ x ≤ ujJi}.

If the pricing problems (3.24) are easy to solve, then we can use the column
generation algorithm from Section 3.4.1 to solve the LP master problem in each
iteration of the branch-and-bound algorithm. However, it may very well be that
the pricing problems (3.24) are NP-hard combinatorial optimisation problems.
This is the case, for example, in Chapter 7 of this thesis, where we apply Dantzig-
Wolfe decomposition to a vehicle routing problem, and the pricing problems are
the problems of how to route and load the individual vehicles. Under such
circumstances it would be rather optimistic to believe that we can solve the
LP master problems to optimality by column generation even for medium size
problems, as this would require us to solve numerous NP-hard pricing problems
in each iteration of the branch-and-price algorithm.

If we have an efficient heuristic for finding good feasible solutions to the
pricing problems, we can use this heuristic to generate new columns instead
of spending a lot of time in optimising the pricing problems. However, this
approach gives us a new problem, namely, that a restricted LP master problem
itself is not a relaxation of the IP master problem (3.23). The value of the
restricted LP master problem is only an upper bound for the value of the IP
master problem if the optimal LP solution to the restricted LP master problem
is also optimal to the LP master problem. This is not necessarily the case when
we generate columns by solving the pricing problems using primal heuristics as
suggested above.

A solution to this problem was observed by Vanderbeck and Wolsey [115],
and was successfully applied by Vanderbeck [114]. Focus on iteration j ≥ 1 of
the branch-and-price algorithm. Suppose we have solved a restricted master LP
associated with iteration j that was feasible, and let (π,µ) ∈ RI1×Rk be a dual
solution corresponding to an optimal basis B. Vanderbeck and Wolsey observe
that if we have

ζ̄i ≥ max{(cπJi)
Tx | x ∈ Xi}, (3.25)



3.4. BRANCH-AND-PRICE 43

columnGenerationSolver(c′, A′, b′, l,u,pricing) // c′, A′ given implicitly,
{ // returns λ∗, z̄ ≥ z∗(l,u)

let X be a subset of the column indices of A′; // e.g. X := ∅;
do { solve LP z := max{(c′X)TλX | A′XλX = b′,λX ≥ 0}

if LP infeasible {
(X, feasible) := makeFeasible(A′, b′, l,u,X, pricing)
if feasible {

solve LP z := max{(c′X)TλX | A′XλX = b′,λX ≥ 0}; }
else { return infeasible; }

}
let π be an optimal LP dual;
(X ′, ζ, optimal) := pricing(π, l,u);

z̄ := min(z̄, (b′)T (π + (0, ζ)T ));
X := X ∪X ′;

} while X ′ 6= ∅ and ζ 6= 0;
if optimal or ζ = 0 { z̄ := z; }
let λ∗X be an optimal LP solution;
return (λ∗X , z̄);

}

Algorithm 3.2: Solving LP by Column Generation in Branch-and-Price

where Xi is defined as before for all i ∈ {1, . . . , k}, then the vector (π,µ+ ζ̄) is a
feasible solution to the dual linear program of the LP master problem associated
with iteration j. From this, by Theorem 2.3 it follows that

z∗(lj ,uj) ≤ b
Tπ + 1T (µ+ ζ̄),

and that λ∗ and (π,µ) are optimal solutions to the primal and dual LP master
problem, respectively, if ζ̄ = 0. Note that a value of ζ̄ can be obtained by solving
relaxations of the pricing problems, instead of the pricing problems themselves.

The IP master problem (3.23) can be restated as

max (c′)Tλ (3.26a)
subject to A′λ = b, (3.26b)

λ ≥ 0, integer. (3.26c)

Pseudo-code of the LP column generation algorithm that we employ in our
branch-and-price code is given in Algorithm 3.2. Note that A′ and c′ are given
implicitly, i.e., in such a way that we can compute A′x and c′x for each x ∈⋃k
i=1Xi once we have x. The pricing problems depend on the original problem

and are problem specific. Therefore, the column generation algorithm assumes
as input a function pricing that it uses to solve the pricing problems. This
function is of the form

pricing : Rm+k × Rn × Rn → 2
⋃k
i=1 Xi × Rk × {0, 1},



44 CHAPTER 3. LP-BASED BRANCH-AND-BOUND

and maps each triple (π, l,u) to a triple (X ′, ζ, f), where π is an optimal dual
to the restricted LP master, l,u are bounds, X ′ is a set of column indices
that correspond to λ variables that violated the reduced cost optimality criteria
of the LP master problem, ζ is an upper bound on the value of the pricing
problems, and f = 1 if the pricing problems were solved to optimality, and f = 0
otherwise. Furthermore, the algorithm makes use of a function makeFeasible.
Given a subset of the column indices X ′, bound vectors l,u, and the pricing
function, makeFeasible determines whether there exists a set of column indices
X ′′ ⊇ X ′ such that A′X′′ = b′ is feasible. The function makeFeasible returns a
pair (X ′′, f), where f is 1 if A′X′′ = b′ and 0 otherwise.

3.4.3 The Branching Scheme

After we have solved the LP relaxation in some iteration i of the branch-and-
price algorithm, we have at our disposal a vector λ∗ that is a feasible solution
to the LP master problem, and what we want to have is a feasible solution to
our original problem (3.22). It is undesirable to branch on the λ-variables, as
this changes the structure of the pricing problems in all nodes that are not the
root node of the branch-and-bound tree. Indeed, we would have to prevent x
for which λx has been set to either zero or one to be regenerated by a pricing
problem. For the same reason we do not set λ-variables based on reduced cost
criteria.

Several alternative branching schemes are reported in the literature. Here,
we discuss a scheme that is known as branching on original variables (see e.g.
Barnart et al. [14]). In this scheme, we compute x∗ ∈ Rn given by

x∗ =
k∑
i=1

∑
x∈Xi

xλ∗x,

which is the same solution as λ∗ but restated in terms of the variables of the
original integer programming problem (3.22). If x∗ ∈ Zn, we are done. Oth-
erwise we can select an index j∗ ∈ {1, . . . , n} such that x∗j∗ is fractional and
partition the feasible region by enforcing lower and upper bounds (li, ũi) on
one branch and (̃l

i
,ui) on the other branch, where l̃

i
, ũi ∈ Zn are given by

l̃ij =

{
dx∗j e, if j = j∗,
lij otherwise,

and ũij =

{
bx∗j c, if j = j∗,
uij otherwise.

In our implementation the index j∗ is selected using the Padberg-Rinaldi rule
(see Section 3.2.4).

We end this section by remarking that for the correctness of the branch-and-
price algorithm it is necessary to branch if x∗ is integer but one does not have
a proof that x∗ is optimal. This can be done in a similar way as above.



3.4. BRANCH-AND-PRICE 45

makeFeasible(A′, b′, l,u, X,pricing) // returns (X̃, f): f = 1 iff
{ // A′

X̃
λX̃ = b′,λX̃ ≥ 0 is feasible

c := 0; // implicitly used by pricing
do { solve z := max{−s | A′XλX + b′s = b′,λ ≥ 0, s ≥ 0};

if z = 0 { return (X, 1); }
let π be an optimal dual solution;
(X ′, ζ) := pricing(π, l,u); // solve to optimality
X := X ∪X ′;

} while X 6= ∅ and ζ 6= 0;
return (X, 0);

}

Algorithm 3.3: Searching a Feasible Set of Columns

3.4.4 Infeasible Nodes

Consider iteration i > 1 of the branch-and-price algorithm, and observe that
there is no reason to assume that the restricted LP master problem is feasible
after we impose the bounds (li,ui). Moreover, the infeasibility of the restricted
LP master problem does not imply the infeasibility of the LP master problem
associated with iteration i as it contains only a subset of the λ-variables. It
follows that our branch-and-price algorithm is not correct unless we have a way
of either proving that the LP master problem associated with iteration i is
infeasible, or finding a feasible solution to it.

A possible solution here is to use the so-called “big M” method that is used
for finding an initial feasible basis in linear programming. In this method one
adds slack variables that have a symbolic cost coefficient that is interpreted as
a large negative value (and usually denoted by M). Unfortunately, this would
require us to write subroutines for solving the pricing problems that can handle
symbolic values, which is undesirable. A solution suggested by Barnhart et
al. [14] is to use slack variables with real-valued negative cost coefficients instead.
For such a scheme to be correct one needs a lower bound on the cost of the slack
variables that suffices to prove infeasibility. Moreover, this lower bound should
be of such a small magnitude in absolute value that the pricing algorithms can
manipulate the resulting dual solutions without numerical problems.

If the objective function is zero, then any negative cost coefficient suffices
to prove infeasibility. This way, one obtains a well defined two-phase approach
for LP column generation that is similar to the two-phase approach that is used
for linear programming (see e.g. Chvátal [28, Chapter 8]). Suppose we have an
infeasible restricted LP master problem of the form

max (c′X)TλX (3.27a)
subject to A′XλX = b′, (3.27b)

λX ≥ 0. (3.27c)



46 CHAPTER 3. LP-BASED BRANCH-AND-BOUND

To find a feasible solution to (3.27), we construct an auxiliary master linear
program by replacing the cost vector c by the zero vector and adding a single
artificial variable s ∈ R with cost −1, and column b′:

max z(λ, s) = −s (3.28a)
subject to A′λ+ b′s = b′, (3.28b)

λ ≥ 0, s ≥ 0. (3.28c)

Note that (λ, s) := (0, 1) is a feasible solution to (3.28) with value −1. Now,
if λ∗ is a feasible solution to (3.27) then (λ∗, 0) is a feasible solution to (3.28)
with value 0. Conversely, if (λ∗, s∗) is a feasible solution to (3.28) with value 0
then s∗ = 0, so λ∗ is a feasible solution to (3.27). Pseudo-code for a procedure
that solves (3.28) by column generation to either prove infeasibility of the LP
master problem, or to find a set of column indices X that defines a feasible LP
master problem can be found in Algorithm 3.3. Note that in order to prove that
the LP master problem associated with iteration i is infeasible, it is necessary
to solve the pricing problems to optimality.

3.5 Branch-Price-and-Cut

Consider again the integer linear programming problem

max{z(x) = cTx | aI0x = bI0 ,x ∈ X}, (3.29)

where b, c, A and I0 are as in the previous section, and X is again defined in
terms of aI\I0 , bI\I0 , l and u by

P = {x ∈ Rn | aI\I0x = bI\I0 , l ≤ x ≤ u}

and

X = P ∩ Zn.

Assume that A is of the form (3.18). We again apply Dantzig-Wolfe de-
composition, but this time we leave xJ1 aside and only reformulate xJi for
i ∈ {2, . . . , k}. In this way we obtain the following equivalent integer linear
programming problem with a large but finite number of λ-variables:

max cTJ1
xJ1 +

k∑
i=2

∑
x∈Xi

(cTJix)λx (3.30a)

subject to A1xJ1 +
k∑
i=2

∑
x∈Xi

(Aix)λx = bI0 , (3.30b)

lJ1 ≤ xJ1 ≤ uJ1 , xJ1 integer, (3.30c)
λ(Xi) = 1, ∀i ∈ {2, . . . , k}, (3.30d)

λXi ∈ {0, 1}Xi , ∀i ∈ {2, . . . , k}, (3.30e)



3.5. BRANCH-PRICE-AND-CUT 47

where Xi ⊆ ZJi , and Ai are defined as before. The resulting model can be
solved using the branch-and-price algorithm of the previous section, allowing
for branching on the xJ1-variables as described in Section 3.2.4, and branching
on the original xJi-variables for i ∈ {2, . . . , k} as described in Section 3.4.3.

If we have one or more classes of valid inequalities for conv(X1) at our dis-
posal, then we can add these to strengthen the LP formulation in each iteration
of the branch-and-price algorithm. Furthermore, one may apply variable setting
based on reduced cost criteria to the xJ1 -variables whenever we have a proof
that the bound obtained from the restricted LP master problem is valid for the
LP master problem. We will call the resulting algorithm a branch-price-and-cut
algorithm. A branch-price-and-cut algorithm applies a combined cutting plane
and column generation algorithm to solve the LP relaxations in each iteration.
In our implementation we alternate between rounds of column generation and
separation until the termination criteria of both the column generation algo-
rithm and the cutting plane algorithm have been satisfied in two consecutive
rounds.




