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Two types of behavior have been previously reported in models of immune networks. The typical
behavior of simple models, which involve B cells only, is stationary behavior involving several
steady states. Finite amplitude perturbations may cause the model to switch between different
equilibria. The typical behavior of more realistic models, which involve both B cells and
antibody, consists of autonomous oscillations and/or chaos. While stationary behavior leads to
easy interpretations in terms of idiotypic memory, oscillatory behavior seems to be in better
agreement with experimental data obtained in unimmunized animals. Here we study a series of
models of the idiotypic interaction between two B cell clones. The models differ with respect to
the incorporation of antibodies, B cell maturation and compartmentalization. The most
complicated model in the series has two realistic parameter regimes in which the behavior is
respectively stationary and chaotic. The stability of the equilibrium states and the structure and
interactions of the stable and unstable manifolds of the saddle-type equilibria turn out to be
factors influencing the model's behavior. Whether or not the model is able to attain anyform of
sustained oscillatory behavior, i.e. limit cycles or chaos, seems to be determined by (global)
bifurcations involving the stable and unstable manifolds of the equilibrium states. We attempt to
determine whether such behavior should be expected to be attained from reasonable initial
conditions by incorporating an immune response to an antigen in the model. A comparison of
the behavior of the model with experimental data from the literature provides suggestions for the
parameter regime in which the immune system is operating.
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1. Introduction. Jerne (1974) suggested that the lymphocytes of the immune
system may be organized in the form of a network, with communication
between cells occurring by idiotypic interactions. In order to understand the
possible dynamic behavior of immune networks we have undertaken the
study of one of the simplest networks, which consists of two clones
activating each other by idiotypic interactions. Even though the network
hypothesis is now close to 20 years old, this simple network has not been
fully characterized. The models that we have proposed have steady states,
which we have called immune states, in which the two B cell clones keep each
other activated. These immune states may or may not be stable. In the first
paper of this series (De Boer et al., 1993), which we hereafter call Part I, we
have established that differences in the time scales of B cell and antibody
turnover destabilize the immune states inducing limit cycle behavior. In this
paper we study the effect of several other time scales involved in antibody
secretion by B cells and loss of antibody from the site of antibody
production.

The behavior of the model that we study is complicated. Our analysis,
therefore, greatly benefits from the theoretical framework that we have built
up in Part I by analysing two simplified models. This framework was
derived by a bifurcation analysis of the steady states of the simplified (or
basic) models. We have established the parameter conditions for existence
and stability of the steady states. The invariant manifold structure of the
saddle-type steady states proved to play a crucial role in the model behavior.
Having this framework established, we now study more realistic versions of
the model and compare the behavior of the model with experimental data.
Natural antibody concentrations have been described to fluctuate periodi-
cally or chaotically (Lundkvist et al., 1989; Varela et al., 1991). We will
compare the amplitude and the period of the fluctuations with those of our
model. We will also study immune responses to antigens to see whether the
attractors that we describe are attainable by external perturbation with
antigens of the network in a quiescent state.

In most of the models studied thus far, one assumes that each B cell clone
receives a constant input of virgin B cells from the bone marrow. It is
uncertain whether the assumption of a constant source is correct. From the
genetics of antibody V region recombination it seems that the potential
repertoire is much greater than the repertoire of B cells expressed in an
organism. Typical estimates of the potential repertoire are larger than 10"
specificities (Darnell et al., 1986; Berek and Milstein, 1988). Because a
mouse has only 108 B lymphocytes, probably comprising less than 10'
clones, it seems unlikely that the same B cell V region will be produced over
and over again. Thus, we will test whether or not the model's behavior
depends on a constant bone marrow source.
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2. The AB Model. In Part I we presented various forms of the antibody B cell
(AB) model. In our most complete AB model, the two-compartment AB model
with gearing-up or CABG model, we consider B cells localized in the spleen.
These cells may become activated by an anti-idiotypic antibody, upon which
they proliferate and differentiate into antibody secreting cells. This maturation
or gearing-up process takes a few days. Free antibody, produced by
differentiated activated B cells, may activate anti-idiotypic B cells, may leave
the spleen compartment and may react with anti-idiotypic antibodies in either
the spleen or the circulation to form complexes. These complexes, which are
analogous to antigenantibody complexes, are known to be removed from the
system by phagocytic cells such as macrophages. The rate of complex removal
is one of the crucial parameters of the model.

The non-dimensionalized equations of the CABG model are given below.
The derivation of these equations is explained in detail in Part I. We consider
two B cell clones, B1 and B2, that activate each other by the antibodies, A1 and
A2, which the B cells produce. The activation of B cells by an antibody is
assumed to follow a log bell-shaped activation curve:

A 0
f (A) =

+ A 0 + A

We consider two B cell populations inside the spleen:

dB1 = + (pf (A2)-1),
dT

dB2
= o- + B2(pf (A1) 1);

dT

and two antibody concentrations inside the spleen:

dA
= ö(B1g 1 A1) p.A1A 2 ),(A1 A1),

d T

dA
2 = 5(B2 g 2-A2 )- RA lA 2- ).(A 2-A2 )

d T

(1)

(2a)

(2b)

(3a)

(3b)

Further, we consider two antibody concentrations in the blood outside the
spleen:

d
= v)1(A1A1)--6;41-11A1A2,

dT
(4a)

a
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2 = 11/602 A 2)dA, t4:41A2,
dT (4b)

and two "gearing up" equations accounting for the time lag involved in B cell
maturation:

dgi
dT = Af(A2)-91),

dg2

dT = ARA1)-92).

(5a)

(5b)

The representative parameter values that we use are 0=10, (5=0.1, a =
1.48 x p = 2, p = 200, ),= 5 x 104, v =10-3 and y 0.4. The justification of
these parameter choices is described in detail in Part I.

In the companion paper we also proposed the symmetric logarithmic (SL)
coordinate system for analysing basic versions of this model. Using a similar
coordinate system for the CABG model is straightforward. First, we change to
logarithmic variables bln A, ai*mln Ai, eit-aln Ai, for i 1, 2. Second, we
exploit the symmetry of the model by defining the differences and the sums of
the log concentrations. Thus, we define bd bt ad;.--_--

and a4+ al, so that bd= 0 whenever =1)1% and ad =0 whenever 4=
The gearing up variables g1 and g 2 vary between zero and one, and are not
resealed. Thus, we obtain for the activation function:

ea

a
(6)

for the B cells:

dbd - p(f(edt) _peas)),
dT

db,
a(e F e 2)+ p(f(eal)+ 2;

for the antibodies:

dad (5(g ebl (eal eal)+ A(eai eal
dT

(7a)

(7b)

(8a)

b*le a* a*i )+ + 2);das = "6(g + g2e 2 2) ,u(e + Ate e (8b)dT

b'25, hsabl'+ b, cif ce;

bt

0f(ea)=
0-i +ea

. .
= (7(e e

b2)

dT

2ebl

2 i -a.2

=

= g 421)
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for the peripheral antibody concentrations:

dd
= v2(eaI 1)- a- me

dT

dci*

d T

and for the gearing up variables:

dgi
dT

= y(f(eal)gi),

d
gd T

(9a)

(9b)

(10a)

(10b)

where br (bd+ bs)12, (bsbd)12, (ad+ as)12 and aI (as ad)/2.

3. Steady States. All equilibria that we have described in Part I for the basic
model also exist in the CABG model. B cell proliferation is in equilibrium when
f(h)',:-. 1/p, where the field, h, is either A1 or A2, see equations (2a) and (b). Thus,
using the approximation off (h) that we have introduced in Part I, one derives
that the equilibrium antibody concentrations A1 and A2 are approximately
[0(p 1)] 1 and 0(p-1). For p= 2 we obtain AL 0 or , for i= 1, 2.
This gives us the four activated states MM, HM, MH and HH, where the state
mnemonics are based on the level of concentration of the populations, i.e. M
stands for moderate and H stands for high. (Either the B cell or antibody
population level can be used, because at steady state high B cell concentrations
imply high antibody concentrations and vice versa.) The virgin state ZZ, for
zero antibody concentrations, is the state B1 = B2 = a, Al= A2=0 and hence
f(A1)=f(A2)=0 and A1 =A2=G1 =G2=0.

Figure 1 illustrates the similarity between the basic AB model (called the AB
model) and the CABG model with respect to both the steady states and the
structure and interactions of some of the stable and unstable manifolds of the
saddle-type steady states. The figure shows the original and the SL coordinate
system. For the inverse spleen residence time A=10 and the source rate o-= 0 we
show in Figs la and c the B cell nullclines. As was discussed in Part I these
nullclines can be drawn because, for a =0, the nontrivial B cell nullclines
depend on antibody only. The nullclines in Figs la and c are very similar to
those of the basic AB model presented in Figs 2e and f of Part I. In Fig. 1, i.e. for
A=10, the immune states, HM and MH, are stable. The symmetric MM and
HH states are usually unstable. The stable ZZ state does not appear in Fig. 1

= v).(eal- al 1)-6 peal;

= Y(ffral)g2);

A 0-1

b'12` 4E:-
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because the axes are logarithmic. The unstable manifolds of the symmetric MM
and HH states are also very similar to those of the basic models. In Figs lb and
d we show that the one-dimensional unstable manifold of the HH state is
normal to the hyperplane of symmetry Al= A, or ad = 0, and asymptotically
approaches the stable immune states (for = 10). The one-dimensional
unstable manifold of the MM state lies on the hyperplane of symmetry, and one
side asymptotically approaches the HH state, while the other side asymptoti-
cally approaches the virgin ZZ state.
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Figure I. The steady states of the CABG model in the original and the SL
coordinate system. The boxes (11.- ) denote equilibria: black means stable, open
means unstable. Parameters: ). = 10. 0=10, p = 2, a 1.48 x 10-3, =0.1, p= 20,
y = 0.4 and v = 10 -3. (a) and (c) The nullclines. The heavy lines denote the B'2 =0
and b; nullclines. The light lines denote the B',= 0 and b'd nullclines. (b) and (d) The
unstable manifolds of the MM and the HH state. The arrows indicate the direction

of movement on the saddle insets and outsets.
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4. The Basic AB Model. We study the AB model in a series of steps. Thus,
after we have analysed the basic AB model of Part I we increase the complexity
of the model by first adding gearing up and then adding two compartments.
The basic AB model is obtained from the CABG model by setting ),= 0 and

o- so that there is effectively only one compartment, the spleen, and no
gearing up. For these parameter values A 1= A 2 = 0. Further, G1-- (A 2) and
G2 (A see Part I.

4.1. Limit cycles and chaos. An overview of the dynamic behavior of the
basic AB model is shown in Fig. 2, where we vary the complex formation
parameter 0 15 (for (5= 0.1). For these parameters the immune states are
unstable when p < 12.6. At p 12.6 the immune states undergo a subcritical
Hopf-bifurcation. see Fig. 6 of Part I. The dots in Figs 2a and b are values of bd
attained at a Poincaré section. After a long enough initial integration that
should allow (fast) transients to "die out", we recorded 20 values of hd at the
intersection trajectories with the Poincaré plane defined by ad =O. Thus, the
Poincare section is a plane of symmetry. To include both periodic and chaotic
solutions, this diagram was obtained using simulation forward in time and
using zero-order continuation starting at a previous orbit. After 20 intersection
points are recorded at one parameter value, a small change in the parameter p
is made and the system is allowed to approach a new attractor before the
intersections with the Poincaré plane are recorded again. We select the section
hyperplane at the plane of symmetry ad = 0, because oscillatory and chaotic
trajectories typically cross this plane transversely repeatedly. We expect that
the basic elements of the bifurcation structure are captured in the diagram, but
because the numerics here are relatively coarse, some fine details may have

Figure 2. Bifurcation diagram of the basic AB model with respect to the parameter
p. For each value of p we plot 20 bd values attained at a Poincare section at ad=0.
Parameters: 6=0.1. 0=10, p=2 and a =1.48 x 10-3. (a) 0<p 1; (b) 0

,

(b)

It
0.25 0.5 0.75 5 0 3.75 7.5 11.25 15
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been missed at this resolution. In selected cases below we have performed more
careful continuations and stability calculations of limit cycles. In the chaotic
regime we have checked for and located representative examples of type I
intermittency.

Visual inspection of Fig. 2b seems to suggest four regions of behavior. In fact,
there are only three regions, i.e. this visual observation is misleading. In the first
region, i.e. 0 p < 3.7, we have an apparently chaotic attractor that seems to be
born via a period doubling cascade. In the second region, i.e. 3.7 p < 14, we
also have an apparently chaotic attractor (and complicated limit cycles in its
periodic windows). The texture of this region is much lighter (and is even white
for 3.75 < p < 6, because our zero-order continuation has difficulties following
the attractor). Below we will demonstrate, however, that the apparently
chaotic attractor persists throughout this second region. The fact that the zero-
order continuation has these difficulties could be an indication of changes in the
structure of the basin of attraction of the apparently chaotic attractor. This is
studied in further detail below. In the third region, i.e. p> 14, the apparently
chaotic attractor has disappeared, and we find no further orbits intersecting the
Poincaré plane.

In this third region the oscillatory/chaotic behavior disappears around
p = 14 due to the subcritical Hopf bifurcation at p 12.6 after a small region of
hysteresis. Apparently, the unstable limit cycles (and their stable manifolds)
which are born at the subcritical Hopf bifurcation provide the basin boundary
separating the stable HM and MH states and the apparent chaotic attractor in
the interval of hysteresis, i.e. 12.6 <p < 14. Note that in regions one and two, i.e.
before the HM and MH states are stabilized through this subcritical Hopf
bifurcation, the apparently chaotic attractor coexists with the stable ZZ state.

The basin of attraction of the sustained activated behavior of regions one and
two is probably determined by the stable manifold of the MM state forming a
separatrix between the trajectories that eventually approach the virgin state
and those that do not. In the basic AB model the stable manifold of the M M
state is a three-dimensional surface, since the M M state has three stable
eigenvalues: one pair of complex eigenvalues and one real eigenvalue. Such a
three-dimensional surface in four-dimensional space is too complex to visualize
and analyse further. An alternative indication of changes in the structure and
location of this three-dimensional surface is provided by the one-dimensional
unstable manifold of the HH state. In the companion paper we presented
global bifurcations involving the one-dimensional unstable manifold of the HH
state and the stable manifold of the MM state. At the bifurcation points a
heteroclinic connection was formed between the MM and HH state. Since the
unstable manifold of the HH state is just one-dimensional it lends itself for
further analysis and we use it as an indicator of the high-dimensional stable
manifold of the MM state, and through that, of the basins of attraction.



IMMUNE NETWORK BEHAVIOR-II 789

In Fig. 3 we show that for p 3 we have a global bifurcation involving the
unstable manifold of the HH state. This is shown in both the original and in the
SL coordinate system. For p 3, the one-dimensional unstable manifold of the
HH state asymptotically approaches the apparently chaotic attractor (or some
complex oscillation within a periodic window lying close to it in phase space).
In Figs 3a and c we illustrate for p= 3 how this outset initially approaches the
neighborhood of the MM state, and then asymptotically approaches a chaotic
attractor winding around the immune states. For p 3.1 (Figs 3b and d) the
outset of the HH state spirals around the MM state and ultimately approaches
the virgin state. For 3 < p < 3.1 we again expect to find a global bifurcation
point where the HH and the MM states are involved in a heteroclinic
connection.

Similar to using the one-dimensional unstable manifold of the HH state as an
indicator of the basin of attraction, we have also studied the two-dimensional
unstable manifolds of the HM and MH states. In this region, i.e. for p 12.6,
the largest eigenvalues of these asymmetric states consist of a complex pair with
a positive real part. The two other eigenvalues are real and negative. The
unstable manifold corresponding to these states is therefore two-dimensional.
Using SCIGMA (Taylor et al., 1990) such planar manifolds can be studied by
judiciously selecting a number of initial conditions on an ellipse surrounding
the steady state on the local unstable eigenspace. We found that for p 3.6 all of
these trajectories asymptotically approach the chaotic attractor. Thus, in this
region the unstable manifold of the asymmetric state asymptotically
approaches the chaotic attractor. Conversely, for p 3.7 the unstable manifold
of HM and MH does not asymptotically approach a single attractor: typically,
some trajectories on it will approach the virgin ZZ state, while other very
nearby trajectories on it will asymptotically approach the chaotic attractor, or
stable limit cycles in its periodic windows (e.g. for p = 6). Thus, around p= 3.7
we have a global bifurcation involving the unstable manifold of the asymmetric
HM and MH states.

We believe that these two global bifurcations, i.e. the heteroclinic connection
between the HH and the MM state at p3 and the bifurcation involving the
unstable manifold of the HM and MH states at p 3.6, significantly affect the
size and structure of the basins of attraction in the model, since zero-order
continuation may often "miss- the chaotic attractor. This accounts for the
"lighter texture" of the chaotic regime for 3.7 < p < 14 in Fig. 2b. Note that both
global bifurcations probably involve the stable manifold of the MM state.

In Figs 3e and f, for p = 3.7 (i.e. around the bifurcation point), we show two
trajectories on the two-dimensional unstable manifold of the HM state. One
trajectory seems to approach the apparently chaotic attractor, whereas the
other can be seen to approach the ZZ state. In Fig. 3f we show a blow up of
Fig. 3e around the MM state. Because both trajectories appear to approach the

?.

?-
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Figure 3. The unstable manifolds of the HH and the HM states of the basic AB
model. The manifolds first approach the MM state spiraling and then turn either
towards higher or lower antibody values. Parameters: 6 =0.1. 0= 10, p = 2 and
a = 1.48 x 10 3. In panels (a)-(d) the HH state is indicated by a square. Panels (a)
and (b) and (c) and (d) differ only in the coordinate system. (a) and (c)p = 3: the HH
outset asymptotically approaches the chaotic attractor. (b) and (d) = 3.1: the HH
outset asymptotically approaches the virgin state. In panels (e) and (f) the MM state
is indicated by a square. (e) p = 3.7: one trajectory on the 20 unstable manifold of the
HM state approaches the chaotic attractor, another asymptotically approaches the

virgin state. (f ) A blow up of panel (e) around the MM state.
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neighborhood of the MM state, it is conceivable that this bifurcation also
involves the stable manifold of the MM state. The diversity of the ultimate fate
of very nearby trajectories on the unstable manifolds of HM and MH strongly
suggests a fractal basin boundary between the chaotic attractor and the ZZ
state, and further suggests that the HM and MH steady states lie on this
complex boundary. We are currently trying to elucidate the geometry of this
boundary.

Examining the two regions where we find sustained behavior, we observe in
Fig. 2 that starting at p = 0 the model has a symmetric limit cycle that first
increases, and then decreases in amplitude. We call a limit cycle symmetric
when the two halves at each side of the lines of symmetry ad= 0 and bd = 0 are
mirror images. For each population this means that its behavior during one
half of the period is the same as the behavior of the other population during the
other half of the period. This is sometimes referred to as "ponies on a merry-go-
round" (Aronson et al., 1991). At p 0.178 the symmetric cycle goes through a
pitchfork bifurcation, giving rise to two asymmetric cycles that are mirror
images of each other. The asymmetric cycles undergo a period doubling
cascade starting at p 0.18. The fact that we find period doublings only after
the symmetry breaking is in agreement with the arguments in Swift and
Wiesenfeld (1984). This period doubling cascade apparently leads to chaos,
with the classical periodic windows for some parameter values in the chaotic
regime (see e.g. 0.23 < p p< 0.3, and Fig. 4d).

In Figs 4ae we provide some samples of the model behavior taken from the
overview in Fig. 2 before the global bifurcation involving the unstable manifold
of the HH state at p = 3.7. Similar examples in the original coordinate system
can be found in De Boer and Perelson (1991). In Fig. 4a we show the two
asymmetric limit cycles born in the pitchfork bifurcation at p = 0.178 in a B cell,
i.e. bd and bs phase space. After the period doubling cascade, i.e. for p = 0.2, we
find an apparently chaotic attractor as shown in Fig. 4b. In the next panels of
Fig. 4 we show the model behavior in the antibody phase space and we show
the B cell nullclines. We observed intermittency at p = 0.2235 (Fig. 4c). The
intermittency is of type I (Pomeau and Manneville, 1980) and is analysed in
further detail in Fig. 5. In Fig. 4d we show one of two asymmetric limit cycles
that exists in a periodic window at p = 0.25. In Fig. 4e we illustrate for p = 2
how the chaotic attractor resembles the Lorenz "butterfly" (Lorenz, 1963;
Sparrow, 1982). This resemblance is due to the similarity in the framework of
the two models. Both have a plane of symmetry separating two equilibria that
switch from being a sink to being a source at a Hopf bifurcation.

In the second region, i.e. for 3.7 < p < 14. we also find chaos with periodic
windows. Figure 4f focuses on the region pz.- 12.6, where the immune state
changes stability by the subcritical Hopf bifurcation (at which an unstable limit
cycle is born towards higher values of p). In this region we observe hysteresis
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Figure 4. Illustrative phase portraits of the basic AB model. Parameters: o = 0.1,
0=10. p= 2 and a = 1.48 x 10 -3. Panels (a) and (b) display the model behavior in a
ha vs b, phase space. Panels (c)(f) display the model behavior in an ad vs a, phase
space. The light lines in panels (c)(f ) are the bd = 0 and b',= 0 nullclines (for o-= 0).

(a) p l8: the light and the heavy trajectory depict two asymmetric stable limit
cycles. With respect to the plane of symmetry the limit cycles are mirror images. (b)
p= 0.2: chaotic behavior. (c) p = 0.2235: intermittency. the trajectory makes many
turns around one of two (unstable) limit cycles until it crosses to the other. (d)
p= 0.25: a periodic window in which we show one of two asymmetric limit cycles. (e)
p = 2: chaotic behavior around the immune states. This resembles qualitatively the
"mask" underlying the Lorenz attractor. (f p = 13: hysteresis, the chaotic attractor

co-exists with two stable immune states (and a stable virgin state).
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Figure 5. Intermittency in the basic AB model. Parameters: 0 p 0.25, = 0 . 1 .

0=10, p =2 and a= 1.48 x I 0 ' . (a) A turning point at p 0.22376 in a
continuation of the limit cycle shown in Fig. 4d. The heavy dots denote stable limit
cycles, the light dots unstable ones. (b) A Poincare map for =0.223, showing
values of I), and a, attained at the hyperplane ad = O. The slight curvature is

characteristic for the "slowing down" of intermittency.

bd

because the apparently chaotic attractor co-exists with two stable immune
states (and, as always, one stable virgin state). The unstable limit cycles around
the immune states. and their stable manifolds, define the basins of attraction of
the immune states. Increasing p increases the amplitude of the unstable limit
cycles (De Boer et al., 1990). Around p 14.2 the chaotic attractor disappears.
We suspect that its death is due to a global interaction with the chaotic
attractor involving the growing unstable saddle-type limit cycles and their
stable and unstable manifolds. This is supported by the observation of long
"chaotic" transients, with unpredictable winding patterns around the neigh-
borhood of the two limit cycles, which, for p 14.2, eventually settle into one of
the immune states or approach the virgin state.

4.2. An example of intermittency. Figure 5a represents the continuation of
the asymmetric limit cycle shown in Fig. 4d towards the regime where
intermittency was computationally observed. Indeed, a turning point bifurca-
tion of limit cycles is observed for p 0.22376. above which the behavior is
periodic, but below which it is type I intermittent (Pomeau and Manneville,
1980). This is illustrated in Fig. 5b by the typical curvature of the Poincare map
taken close to the turning point. Thus, for p = 0.223, i.e. at a point where the
limit cycles have "just" disappeared, we plot values of bd and as attained at a
large number of intersections of one trajectory with the Poincare plane defined

by ad 0. Iterates on the Poincaré map "slow down" when they approach this
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region of phase space. These repeated similar oscillations represent the

quiescent regions between "bursts".

4.3. Oscillations in the absence of a source. A new and important feature of
attractor in the region 6 < < 14.1 is that the model's behavior has become
qualitatively independent of the source, a. of novel B cells from the bone
marrow. Thus, if we set a = 0 we obtain very similar behavior, i.e. oscillations,
chaos and a subcritical Hopf bifurcation with hysteresis. From an immunologi-
cal point of view this is significant because it is not clear that the bone marrow
will regularly produce the same idiotype again (see also the Discussion in Part
I). It is not clear, however, whether or not this behavior with a = 0 will be
observable in experiments because the basin of attraction of the attractor often

appears to be relatively small. Of course, in so many dimensions it is impossible
to visualize the basins of attraction, and therefore they cannot be shown. Using
zero-order continuation (making small steps in p) it is difficult to remain on the
attractor. This can be taken to mean that many physically realistic initial
conditions might not lie in its basin of attraction. This will be further discussed

below.
We conclude that in this parameter region the basic AB model (i.e. with = 0

and -;--*oc ) displays chaotic behavior with all of its classic phenomena (i.e.
period doublings, periodic windows, intermittency). The model also exhibits a

small region of hysteresis where chaotic behavior co-exists with stable immune
steady states. Additionally, for p > 6, the oscillatory/chaotic behavior of the
model persists even if the bone marrow production is set to zero, i.e. a=0.
Lastly, the stationary states of the basic AB model are stable for p > 12.6 (see

Part I).

4.4. Antigens and memory. Mapping the various basins of attraction in high
dimensional models is practically impossible. Nevertheless, we have some
indications of bifurcations involving the stable manifold of the MM state which

may influence the attainability of the attractors. To study this further we tried
to see where "realistic" initial conditions would be attracted to. If certain co-
existing attractors frequently attract the trajectories starting from more
realistic initial conditions, we may conclude that the corresponding behaviors
are more likely to be exhibited by the immune system.

In order to be able to define realistic initial conditions we will study an
immune response to a simple, non-growing antigen. Thus, consider a
molecular antigen. P (e.g. a protein), recognized by B1 cells and A, antibodies.

We propose the same scaling for the antigen concentration as for the antibodies

(see Part I). i.e. P =1 is the maximally stimulatory concentration. Assume that

the antigen is removed from the system by the formation of antigenantibody

).
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complexes. Incorporation of the antigen leads to new equations for the
activation of B, cells because the field h now consists of A, plus P:

h 0
f(h1= (11)

+h 0+h.

dB1
a- + B1(pf (h) 1),

d T
(12)

where h= A, + P. Furthermore, we need an additional term in the antibody
equation for the A1 antibodies because they may form antigenantibody
complexes:

dA, = 6(B1f(h) A 11 pA KA IP.
dT

(13)

where K is the non-dimensional rate at which antigenantibody complexes are
removed. For the antigen we propose the simple equation:

dP =--apP KA ,P. (14)
d T

where Op is the normal turnover of the antigen. We make the turnover of
antigen very small, i.e. Op= 0.01, in order to have prolonged activation of the
system and to let antigen removal be specific. The anti2en is introduced at a
dose at which it is maximally stimulatory, i.e. P(0 )= 1. and the system is

assumed to be in the virgin state, i.e. B1 = 8,= a and A1= A 2 = 0. This activates
the system and leads to the elimination of the antigen by the A, antibody.
[Similar behavior is obtained when the antigen dose slightly deviates from

P(0 ) = 1.] The question that we ask is: when the network in its virgin state is
stimulated with a maximally stimulatory dose of antigen, does the system
remain activated or does it return to the virgin state? This can easily be
determined by the antibody concentrations, which approach zero if the system
returns to the virgin state but remain of the order one when the system remains
activated. Note that the long-term solution of equation (14) is zero and,
therefore, all the steady states, and their stability, and all the long-term
behavior of the system is exactly the same as before.

We have studied this model for K = Ø 2. 10 and 10. For these values of
K the system returns to the virgin state following the elimination of the antigen
whenever p> 3.08. For p 3.08 the system attains sustained oscillatory/chao-
tic behavior (not shown). Since the critical value of p 3 is located around the
heteroclinic connection between the HH and the MM states, we conclude that
the fate of the unstable manifold of the HH state provides an indication of the
basin of attraction of the sustained behavior.

0-1

3
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Further, we might argue that because the critical value of p 3.08
corresponds more closely to the bifurcation involving the unstable manifold of
the HH state (around p 3) than to that involving the unstable manifolds of the
FIM and MH states (around p 3.7), the former bifurcation is more
informative in predicting whether or not the sustained behavior is attained
following stimulation with an antigen. Thus, we conjecture that the
oscillatory/chaotic behavior found in the window 3.7 < p <14 is unlikely to be
attained by an antigen-driven immune response. The same seems to be true for
the stable immune states found for p> 12.6. They apparently have so -small" a
basin of attraction that they are unlikely to account for the memory of an
encounter with an antigen. This will be discussed further below when we study
the CABG model.

5. The AB Model with Gearing Up (ABG Model). Activated B cells produce
antibodies and proliferate. The two processes correspond to two different
stages of B cell differentiation. Typically a resting B cell when activated first
enlarges and then goes through several rounds of cell division before it
produces significant quantities of antibodies (Andersson et al. 1977). Even
though B cells producing natural IgM antibodies are not involved in extensive
clonal amplification (Coutinho et al., 1990), we still expect a delay between
stimulation and antibody secretion. We model the fact that antibody
production follows B cell activation with a time lag by using the gearing up
function proposed by Segel and Perelson (1989).

We first incorporate gearing up into the basic AB model for which 2= 0,
Al= A, =0. The resulting model consists of six ODEs and we call it the AB
model with gearing up or the ABG model. As is easy to see from equations (3)
and (5), including gearing up does not affect the number of steady states found
in the basic AB model.

We examine the effect of gearing up on the stability of the immune states in
Fig. 6. The heavy line in Fie. 6a depicts the two-parameter continuation in p
and 7 of the Hopf bifurcation that we found for the immune state at p= 12.6 and
6=0.1. The immune state is stable above the heavy line and unstable below it
(as is indicated by the shading). As p decreases towards p= 12.6, the two-
parameter curve turns toward 7 . This shows how the ABG model reduces
to the basic AB model. The minimum value of 7 attained in the continuation is
7 = 4.2. The value 7= 0.4, which is our empirical estimate for the rate of the
gearing up process, is indicated by a horizontal line. For this value of -" the
immune states are unstable. In Fig. 6b we show several representative two-
parameter continuations of the Hopf bifurcation for various values of the
antibody lifetime, i.e. for 6= 0.01, 0.1, 0.2, 0.6 and 1. respectively. As indicated
in Fig. 6b, for our estimate 7= 0.4 we expect the immune state to be unstable for
almost all values of p. The immune state is only stable when 5 is (unrealistically)

--t
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Figure 6. The gearing up AB model. A two-parameter diagram of the Hopf
bifurcation, varying p and as bifurcation parameters. Parameters: 0 = 10, p 2.
a= 1.48 x 10-3, 6=0.1 and ).= v=0. The horizontal line, 0.4. represents a
reasonable value of the gearing up delay. That line falls well within the unstable
regime. (a) A continuation for 6=0.1. We have shaded the area in which the
immune states are stable. (b) The heavy line is (5=0.1. The light lines are

continuations for 6=0.01, 0.2. 0.6 and 6= I.

large and p is (unrealistically) small. We conclude that gearing up has a
destabilizing effect on the immune steady states, especially in the realistically
large p parameter regime.

In Fig. 7 we provide an overview of the dynamic behavior of the gearing up
AB model as a function of the rate of complex elimination p using Poincare
sections similar to those presented in Fig. 2. For each value of p we plot the
value of bd attained at a Poincaré section defined by the plane of symmetry,
ad = 0. We study the model in the unstable regime by setting -; = 0.4 and S= 0.1.
In this parameter region the only stable state is the virgin ZZ state.

For low values of p the behavior of the ABG model is very similar to that of
the basic AB model, see Fig. 7a. Starting at p= 0 we see a symmetric limit cycle
growing and decreasing in amplitude, going through a symmetry breaking
bifurcation at pO.5l. The two asymmetric cycles are mirror images with
respect to the planes of symmetry ad =0 and bd = 0. The asymmetric cycles go
through a cascade of period doublings around p 0.55. The Feigenbaum
cascade develops into chaotic behavior with periodic windows. Surprisingly,
we find chaotic and periodic windows co-existing with the symmetric limit
cycle even before the symmetry breaking, i.e. before p -,, 0.51. This is another
region with hysteresis. Since the basin of attraction of the chaotic attractor in
this region seems to be very small, this need not be very significant.

Similar to what was shown in Fig. 2, and in Fig. 6 of Part I, we find a region in
which we are unable to continue the model's oscillatory behavior. In this region
all trajectories seem to approach the virgin state asymptotically. For the ABG
model this region is 3.99 <p< 11. The left boundary of the region is again
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Figure 7. Bifurcation diagram of the gearing up AB model with respect to the
parameter p. For each value ofp we plot 20 I), values attained at a Poincare section
at ad=0. Parameters: =0.l. -,.= 0.4. 0=10. p= 2 and = 1.48 x 10 -3. (a)() <p 1:

(h) <p-,20: (c)

related to global bifurcations involving the stable manifold of the MM state.
We studied the outsets of the HH state and the asymmetric HM and MH states
for an indication of bifurcations involving the inset of the MM state. Although
the bifurcation diagrams of the basic AB model (Fig. 2) and the ABG model
(Fig. 7) look similar, the global bifurcations in which the unstable manifolds of
the HH state and of the asymmetric states are involved are different. For
3.99 <p < 11.5 these unstable manifolds apparently have a common fate in the
ABG model. For each value of p, the three different unstable manifolds
asymptotically approach the same attractor (i.e. a steady state, a limit cycle or
an apparently chaotic attractor). Thus, when one of them is involved in a global
bifurcation, so apparently are the others. Since at the bifurcation point p--t- 3.99
all three unstable manifolds asymptotically approach the virgin state, it seems

10

bd

7 .5

(a)

bd

7.5
terrxrcTay

;4. :'
5

10

Ii

2. 5

(b)

5 10 15 20

5

2.5

Og o £200.



IMMUNE NETWORK BEHAVIOR-II 799

likely that the large amplitude attractor itself disappears here. (Note that in the
AB model the attractor persists in this parameter range and that the unstable
manifolds of the HH and the asymmetric HM and MH states are involved in
different bifurcations at different values of p . )

Thus, for p 3.98 the one-dimensional unstable manifold of the HH state
asymptotically approaches an attractor on which there is large amplitude time-
dependent behavior. For p > 3.98 it asymptotically approaches the virgin state
(not shown). At the same value of p we also found a bifurcation involving the
two-dimensional unstable manifold of the asymmetric states: for p 3.98 all
trajectories on this hyperplane approach the large amplitude time-dependent
behavior. For 3.99 < 11.5 all trajectories on the unstable manifolds of the
HM and MH states seem to approach the virgin state. Since the unstable
manifold of the HH state first spirals around the MM state for p 3.98, we
expect a heteroclinic connection between the HH and the MM states close to
this value of p. Something similar is probably true for the unstable manifold of
the asymmetric states (cf. Fig. 3c).

Around p 11.5 the structure of the unstable manifolds of the HM and MH
states becomes similar to the structure described in the AB model: some
trajectories on it will approach the virgin ZZ state. while other very nearby
trajectories will asymptotically approach a chaotic attractor (or stable limit
cycles in its periodic windows). Thus, at this bifurcation point the apparently
chaotic attractor is formed again. Since the formation of the attractor probably
also involves the stable manifold of the MM state, we expect another global
bifurcation (i.e. a heteroclinic connection) between the unstable manifolds of
MH and HM states and the stable manifold of the MM state around p 11.5.
Beyond this bifurcation point we are again able to continue the attractor by our
zero-order continuation (see Fig. 7).

Apart from the difference in the unstable manifolds of the HH and the MH
and HM states, an important difference between the gearing up AB model (for
y = 0.4) and the basic AB model (for ) is the absence of a Hopf bifurcation
in the ABG model. For our parameters the immune states are not stable in the
ABG model. In the parameter range where the immune state was stable in the
basic AB model without gearing up (i.e. for p > 12.6) we now find limit cycles,
see Figs 7b and c. In this region the limit cycles are stable but are difficult to
attain (see below). In the region 10 20 we observe a symmetry breaking
bifurcation around p = 15.7 (see Fig. 7h) and a cascade of period doublings
around p = 11.3 and p 10.9, where the behavior becomes chaotic. We seem to
lose the chaotic attractor just after the Feigenbaum cascade. In the region
20 < p 200 the behavior is a symmetric limit cycle with a small window of
period doublings around p = 30, see Fig. 7c.

Similar to that described for the basic AB model, the limit cycles are robust to
setting a = 0 once the attractor has reappeared, i.e. for p ?: 11.5. Other points of

-4.-
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immunological interest are that the period of the limit cycle decreases if we
increase p (not shown) and that the oscillations decrease in amplitude (see
Fig. 7c). For high values of complex elimination around our estimate p = 200,
the limit cycle has a period of 6 days. The 2-week periods reported by
Lundkvist et al. (1989) and Varela et al. (1991) are obtained when p 40.
However, because the limit cycles are found beyond the heteroclinic
connection between the HH and the MM state, the behavior is difficult to
attain starting from realistic initial conditions (see below) and is not expected
to be observed frequently.

6. The CABG ModelA Two-compartment AB Model with Gearing Up. In
this section we study the full eight-equation CABG model developed in Part I,
in which we assume that all of the B cells of interest are localized in the spleen
and that some of the antibodies secreted by these cells enter the bloodstream
where they can form complexes. Because the antibody circulates, it can also
reenter the spleen and effect the local antibody concentrations in that organ. To
study the CABG model we set 7 = 0.4. our default value for the gearing-up
process, we assume > 0 and study the behavior of the model as a function of ).
(the dimensionless inverse residence time for antibodies in the spleen ).

6.1. Stability of the immune states. For (5 = p= 10 and continuing ). as a
bifurcation parameter we find two Hopf bifurcations of the immune states, i.e. a
"low Hopf" at A = 0.8 and a "high Hopf" at A = 249. In Fig. 8a we continue the
two Hopf bifurcations in a two-parameter diagram, varying p and ),

simultaneously. The two Hopf bifurcations enclose an area that we have
shaded to indicate the stability of the immune states. For low values of i.e. for
a long residence time in the spleen, this model reduces to the one-compartment
model analysed in Fig. 7. In this region, i.e. ). < 1, we again observe that for

0.4 and any value of the rate of complex turnover, p, the immune states are
unstable. However, for larger values of 2 the immune states are stable for a large
range of values of the residence time in the spleen. Although the stable region is
determined by both p and 2, the effect of ). is clearly stronger. This suggests that
the crucial time-scale determining the stability of the immune states is the
residence time in the spleen, 2. Similar conclusions have been reached before
with a two-compartment AB model lacking gearing up (Perelson and
Weisbuch, 1992).

The residence time T of the antibody in the spleen is inversely related to 2, i.e.
= (r dB)- where dB is the rate of B cell turnover (see Part I). Thus, the results

of Fig. 8a can be roughly summarized by stating that the immune states are
unstable when the residence time is short, i.e. ).> 100 or r < 0.5 hr, and when
the residence time is long, i.e. ). < 1 or r > 2 days. Using the subscripts S, M and
L to denote short, moderate and long, we have three categories of residence

).
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Figure 8. The CA BG model. Two parameter bifurcation diagrams. varying p and
as bifurcation parameters. Parameters: 6 = 0.1, 0 = 10, p = 2, a = 1.48 x
and v = 10 -3. In panel (a) we show a continuation of the two Hopf bifurcations. We
have shaded the region in which the immune states are stable. In panel (b) we
indicate the approximate location of the heteroclinic connection between the HH
and MM states (involving the unstable manifold of the former and the stable
manifold of the latter). We have shaded the region in which the unstable manifold of
the HH state does not approach the virgin state. Instead, it may approach one of the
stable immune states, a limit cycle or a chaotic attractor. In panel (c) the lines of
panels (a.b) are combined to show the region of attainable stable states (shaded by
stripes) and the regions of attainable oscillatory chaotic behavior (shaded by a
dotted pattern). Panel (d) is similar to (c) but shows, in heavy lines, the four sections
through parameter space depicted in Fig. 9. The C and r symbols indicate the

parameter regimes explained in the text.

times. rs, rm and rt., for which we find different behavior. Thus, stable immune
states are found for moderate residence times, i.e. for 0.5 hr < rst < 2 days. The
residence time of the IgM antibody in the spleen has not been measured and is
difficult to estimate. Whether or not the immune states are biologically
expected to be stable therefore remains undetermined.

6.2. Attainability. The stability of activated states is not the only issue of
immunological importance. We have shown above, for the basic AB model,
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that stable activated states and/or sustained oscillatory or chaotic behavior
may have such a small basin of attraction that they are not likely to be attained
by stimulating an initially quiescent immune system. We argued above that the
basin of attraction of the behavior corresponding to sustained activation is
most likely to be related to the high-dimensional stable manifold of the MM
state. Further, because of heteroclinic connections between the inset of the M M
state and the outsets of the HH and the HM and MH states, these three
unstable manifolds may be used as an indicator of changes in the basin of
attraction of the sustained behavior. Indeed, we found that the outset of the
HH state provides an indication of the size of the basin of attraction of the
sustained oscillatory behavior. Thus, for the CABG model the lines in Fig. 8b
depict the global bifurcation in the unstable manifold of the HH state for

= 0.1. We have shaded the area where this unstable manifold asymptotically
approaches the immune states (when they are stable) or when it asymptotically
approaches the limit cycle or the chaotic attractor (when the immune states are
unstable). In the remaining white area the unstable manifold asymptotically
approaches the virgin ZZ state. The overall picture of the bifurcation involving
outset of the HH state is very similar to that shown in Fig. 3. Thus, spiraling in
the general neighborhood of the MM state the manifold turns either towards
higher values of as or towards lower values of as.

In Fig. 8c we combine the diagrams of Fig. 8a and b. Since we only want to
consider regions with behavior that is "attainable from reasonable initial
conditions", we have only shaded those regions in which the unstable manifold
of the HH state does not approach the virgin state. We use two types of shading
to differentiate between the regions in which the attainable behavior is
stationary and those in which it is oscillatory chaotic. Thus, with a striped
pattern we indicate the region of attainable stationary behavior and with a
dotted pattern we denote the regions with attainable oscillatory/chaotic
behavior.

The striped area is confined to the rm regime. Here. the stability of the CABG
model qualitatively corresponds to that of our simplest B model. This suggests
that our previous results on stable immunological memory (De Boer, 1988; De
Boer and Hogeweg, 1989b,c; Weisbuch et al., 1990) would be valid if the
residence time of the antibody in the spleen falls in this reasonably large region.
0.5 hr < < 2 days. Note that the limits of this region are determined by both
stability and attainability. We will discuss below that even in this "attainable"
regime the system need not attain the one steady state that corresponds to
immunological memory.

6.3. Behavior in attainable regimes. The dotted areas have a vertical
boundary that is located at roughly p = 10. The lifetime 1 dc of complexes is
inversely related to p, i.e. p= r cic cli3 (see Part I). Thus, based upon the lifetime
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of the complexes, we distinguish two parameter regimes. We shall call the
lifetime 1/dr of the complexes C and denote the long and short lifetime CL and
cs, respectively. A long lifetime CL being defined by p = r dr/dB < 10 or
2 days and a short lifetime cs being defined by p = dr/dB > 10 or 1/dr
< 2 days. In the dotted areas of attainable oscillatory chaotic behavior we have
performed four Poincare map continuations. The location of these continua-
tions in the parameter space is indicated by the four straight lines in Fig. 8d.
The marks (a)(d) along these lines in Fig. 8d correspond to the four panels of
Fig. 9. The C and T symbols in the margin indicate the different parameter
regimes.

In the CL regime, where complexes are long-lived, there are two regions, i.e.
rsCL and TLCL, where the attainable behavior is oscillatory or chaotic. The
behavior in the two regions is very different. In Fig. 9a we plot for the rsCL
region hd values attained at the plane ad = 0 for 2 = 1000 and several values of
0 p 2. The behavior resembles that of the basic AB model (Fig. 2) and that
of the ABG model for p 10 (Fig. 7). We see a symmetric cycle going through a
symmetry breaking and a period doubling cascade. Then the behaviour
becomes chaotic. We lose the chaotic attractor at p 1, which is around the
global bifurcation in the unstable manifold of the HH state (see Fig. 8d at

1000 and p 1).

The behavior in the rLCL region, e.g. for ).= 1. is very different because we
typically find two asymmetric limit cycles winding around one of the immune
states (not shown). This behavior is very similar to that shown in Figs 7e and 7f
of Part I for the parameter region p = 0 and 0.89 < 6 < 0.98. In the CABG model
the corresponding parameter region is also located at small values of p but the
region is much larger. It thus appears that for p =0, setting ). 1 in the CABG
model has a similar effect to setting 6 1 in the basic AB model. In both cases
the lifetimes of the B cells and the antibodies in the spleen are approximately
equal. Since these cycles do not cross the plane ad = 0 we show in Fig. 9b a
continuation of Poincaré sections at the plane as= 0. As shown in Fig. 9b, we
found limit cycle behavior in the range 0 < p 0.16. The upper limit of this
range is determined by a supercritical Hopf bifurcation at 1 and p = 0.16
(see Fig. 8d). Here two asymmetric cycles are born. Decreasing p increases the
amplitude of the two asymmetric limit cycles until they "glue" (see Part I). A
symmetric cycle is observed that undergoes a symmetry breaking bifurcation
and period doublings. In this TLCL region the behavior remains periodic.

For short lifetimes of complexes, i.e. in the TLCS regime, we find the third
region of attainable oscillatory chaotic behavior. This is the narrow zone
defined by 2 1 and p > 10. The straight lines marked by (c) and (d) in Fig. 8d
show the location of the two Poincare continuations that we performed in this
region. The behavior of the CABG model in this region resembles the novel
behavior obtained with the gearing up model for high values of p. High values
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Figure 9. Bifurcation diagram of the CABG model varying p or ). as a bifurcation
parameter. For each value of the parameter we plot 20 I), values attained at a
Poincare section at ad = (a). (c) and (d) or a,= 0 (b). Parameters: 0 = 10, p= 2.

= 1.48 x 10 -3. =0.4 and v = 10. (a ) For ). = 1000 we vary 0 p 1.5. We lose
the attractor at p = 1.02. which is around the bifurcation involving the unstable
manifold of the HH state at p I. tb For 1 we vary 0 p 0.2. We find stable
limit cycles that are born at the supercritical Hopf bifurcation at p = 0.16. (c) For
).= 1 we vary 0 500. We loose the attractor at p = 13.4 which is beyond the
subcritical Hopf bifurcation at p = 14.9. Thus, there is hysteresis for 13.4 < p< 14.9.
(d) For p = 200 we vary 0 5. We lose the attractor at p= 3.5 which is beyond the
subcritical Hopf bifurcation at 3.36. Thus, there is hysteresis for 3.36 < ).< 3.5.
At the bottom end, the attractor persists to = 0. In the inset we show one
parameter continuations of the immune states and of the limit cycles that are born at
the Hopf bifurcations which these states are involved in. Heavy lines and dots
denote stable steady states and stable limit cycles, respectively. Each dot represents
the maximum value of bd attained during a limit cycle. Light lines and dots denote

unstable states and cycles.
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of p mean that the antibody is rapidly eliminated by the formation of
complexes. This has a number of effects. First, the shape of the chaotic attractor
and the limit cycles in its periodic windows is different. The attractors are very
flat in the as = ln A, + ln A2 direction. This means that the antibody
concentrations are strongly correlated, i.e. any rise in A, is counterbalanced by
an immediate decline in A2. Additionally, the B cells and the gearing up
functions hardly change in time and remain near the equilibrium value of the
immune states (not shown). Second, in the antibody phase space the cycles do
not wind around the immune states but tend to remain below the line as= 0 (see
Fig. 10). Third, for p =200 typical periods of limit cycles in the CABG model
are of the order a few days to a week. Thus. the oscillatory chaotic behavior has
a short time scale in the cs regime. We will discuss the immunological
implications of this in the section on experimental data.

The two Poincare continuations in the rLCs regime are shown in Figs 9c and
d (plotting bd values attained at ad= 0 planes). In Fig. 9c, for = 1, 0 p 500,
we see a large region of chaotic behavior in which the variation in bd is small, i.e.

0.1 < bd < I. This means that the amplitude of the B cell populations is very
small. In Fig. 9d, for 0 5, p 200. we see a symmetry breaking (at

0.367) and a period doubling cascade (starting at ). 0.428) that evolves
into chaos. We loose the attractor around 3.5. which is just above the Hopf
bifurcation at = 3.36. Thus, we have a small region of hysteresis where the
chaotic attractor co-exists with stable immune states and a stable virgin state
(cf. Fig. 4f).

We have studied the death of the attractor around ;.= 3.5 by continuing with
AUTO (Doedel, 1981), the unstable limit cycles that are born at the subcritical
Hopf bifurcations in the immune states at ).= 3.36 (see the inset of Fig. 9d). In
this diagram the two straight lines form the one parameter continuations of the
HM and MH states. The Hopf bifurcations correspond to the points where
these lines switch stability. In the inset heavy lines and dots denote stable
steady states and stable limit cycles, respectively. (In fact, the heavy dots in the
regions 0 < p < 0.43 are so fat that they appear as a heavy line.) Each dot
represents the maximum value of hd attained during a limit cycle. Light lines
and dots denote unstable states and cycles.

Thus, the light dots that appear above the two Hopf bifurcations denote the
two unstable limit cycles that are born there. The asymmetric cycles increase in
amplitude with increasing ). until a turning point bifurcation at ). 3.95.
Beyond this turning point. i.e. for lower values of the asymmetric cycles
remain unstable until a bifurcation point at i 0.428. The latter bifurcation is
the period doubling that we also found in the Poincaré sections of Fig. 9d. We
have also continued the stable limit cycle branch of the period doubling
bifurcation (see the inset). This branch rapidly becomes unstable due to
another period doubling. We have seen above that this leads to chaos.
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Figure 10. Symmetry breaking, period doublings and chaotic behavior in the
CABG model. Parameters: 0=10. p= = 1.48 x 10- 3. 6= 0.1. p 200. 7=0.4
and v=10-3. (a) i.=0.3: symmetric limit cycle (period 8.4 days). (b) ).= 0.38:
asymmetric limit cycle (period 8.6 days). (c) = 0.45: noisy periodicity. (d) ;.= 0.5:

(apparent) chaos.

Continuing the asymmetric limit cycles beyond the first period doubling
bifurcation, i.e. towards smaller values of )., the two asymmetric cycles merge at
the pitch-fork (symmetry breaking) bifurcation of 0.367. The stable branch
of the symmetric limit cycle of the pitch-fork bifurcation is continued towards

0. The unstable branch is continued for a few steps, as is indicated in the
inset by a few light dots.

The unstable limit cycles that are born at the two Hopf bifurcations, along
with their stable manifolds probably form the basin boundary of the apparently
chaotic attractor. We lose the attractor around 23.5. This may again be
related to a global interaction involving the stable and unstable manifolds of
the growing unstable saddle-type limit cycles. Although we enter the region
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where the outset of the HH state asymptotically approaches the virgin state at
0.8 we are able to continue the attractor in this region.

Specific examples of the flat limit cycles in the TLCs regime (here for p = 200)
are shown in Fig. 10. A symmetric limit cycle from the ).< 0.367 regime is
shown in Fig. 10a. One of the asymmetric cycles that are born at the (pitch-
fork) symmetry breaking bifurcation around ;.= 0.367 is shown in Fig. 10b.
The two asymmetric cycles remain below both immune states. Following the
period doubling around ).= 0.43 they develop noisy periodicity around 2 = 0.45
(Fig. 10c). Full blown chaos is observed for ; 0.48 (Figs 9d and 10d).

Finally, we have checked the rsCs regime in which the unstable manifold of
the HH state asymptotically approaches the virgin state. (See the non-shaded
area in the top right-hand corner of Fig. 8c.) In this region we find long
transients that are seemingly chaotic. However, all trajectories that we have
computed eventually approach the virgin ZZ state.

6.4. Antigens and memory. Studying basins of attraction is even harder in
the CABG model than it is in the basic AB model. As before, we restrict our
attention to studying where typical initial conditions involving stimulation
with an antigen will ultimately go. We now consider an antigen, P. that
circulates between the periphery and the spleen. Similar to the notation for
antibodies, we let P be the peripheral antigen concentration and P be the
antigen concentration in the spleen. In the two compartment model P is
recognized by B1 cells and the A, antibody, whereas P is recognized by the A1
antibody. The antigen is removed from the system by the formation of
antigen-antibody complexes in the spleen and in the periphery. For the
activation of the B1 cells we use equations (11) and (12) and the gearing up
equation:

dG
1 =-(f(h)-G1),

dT
(15)

where h= A2 + P. The antibody equations now both contain a new term
corresponding to the loss of antigen-antibody complexes. i.e.:

dA
1

dT
= (5(B 1G 1- A 1)- ;JAI -pA,A2-KA1P. (16)

dA1

dT
=v).(A1-A1)-6A-1-pAl2.12-KA1P; (17)

where K is the rate at which antigen-antibody complexes are removed. The
antigen, assumed to be non-growing, is governed by the equations:

Z.,
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dP
dT= --opP-4(PP)KA1P,

=
d T

Op.13 1').(P 13) KA1.15;

(18)

(19)

where öp is the rate of antigen loss due to non-specific removal mechanisms.
For Op>0, the long-term behavior does not involve the antigen (since it
asymptotically disappears by turnover) and therefore ultimately the dynamics,
and the stability properties of steady states, are the same as before. Thus, the
antigen only affects where a particular trajectory will go. We introduce the
antigen in the periphery at a maximally stimulatory dose, i.e. P(0) = 1, = 0,
with the system in the virgin ZZ state. i.e. B1 = B2= a and Al= A2 = Al= A,=
0. This activates the system and we ask whether or not the system remains
activated after the antigen is removed.

The model is studied for various values of K, p and ). in Fig. 11. We have
shaded the region where the system remains activated after stimulation, i.e.
where it does not return to the virgin state following the elimination of the
antigen. We discretize parameter space by sampling the behavior for p = 10 -2,

10-1, , 101.5, 102 and for ;.= 10 -2, 10-15, 10 -1, 10. 104. We
first repeat the situation without the antigen. Thus, Fig. I la is a discretized
version of Fig. 8b, where we have shaded the region in which the unstable
manifold of the HH state does not approach the virgin state. In Figs I lbcf. for
three values of K, we have shaded the regions where the system does not return
to the virgin state following the elimination of the antigen. The similarity
between Fig. lla and Figs Ilbd suggests that the unstable manifold of the HH
state is related to the attainability of sustained behavior (following stimulation
with the antigen). Thus, the asymptotic fate of the unstable manifold of the HH
state seems to be the same as that of the network stimulated with the antigen.
The shaded regions of Fig. I I bd are largely contained in the region shaded in
Fig. 1 la (except for 2 = 10 0.3 and = 10' 3). Our simulations,
therefore, suggest that the CABG model is only expected to attain sustained
activation in the parameter region where the outset of the HH state does not
approach the virgin state. Above, we reached the same conclusion for the basic
AB model.

Depending on the location in the vs p parameter space, the behavior that is
attained in Fig. 11 is either (1) a stationary state in the rm regime, (2) a cycle
around one immune state in the r1C1 regime, (3) an oscillation around both
immune states or (4) chaos in the TSCL and TICS regimes. Behavior (1) and (2)
may account for a type of immunological memory, because the system switches
from the virgin state to a state in which one of the clones is kept immune. We

dP
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Figure 11. Attainability of sustained behavior of the CABG model after antigen
stimulation. As a function of p and ). [on a logarithmic scale (base 10)] we shade the
region in which the system does not ultimately approach the virgin state. Instead, it
may approach one of the activated states of the system. be it either a stable immune
state, a stable limit cycle or a chaotic attractor. Parameters: 0=10, p =2,
a= 1.48 x 10-3. = 0.4 and v = 10 -3. In panel (a) no antigen stimulation was
included and we show the ultimate fate of the unstable manifold of the HH state (this
is the same as the shaded region in Fig. 8b). In panels (b-d) we introduce the
antigen, P,0)= I. in the virgin ZZ state for (b) K= 10 -3. (c) = 10 and (d)

= 10.

refer to our previous work for a more detailed description of this form of
idiotypic memory (De Boer, 1988; De Boer and Hogeweg, 1989b; Weisbuch et
al., 1990). However, closer inspection of the behavior attained in Fig. 11
reveals that the immune state that is attained following the elimination of the
antigen need not be the correct one. Thus. following the stimulation of clone 1
with the antigen P we frequently attain the MH state where clone 1 is
suppressed and clone 2 is immune. This is due to transient fluctuations (i.e.
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"pre-chaotic" transients) during the immune response to the antigen that bring
the system in the "wrong" basin of attraction. The attainment of different
attractors has also been described for the B model (Weisbuch et al. 1990) and
has been explained analytically in terms of parameter conditions (Neumann
and Weisbuch, 1991). For the CABG model determining which attractors are
attained is much more complicated and requires new studies.

For behavior (3) and (4) the system as a whole remains activated but each
clone alternates from a suppressed to an immune state. Such an activated state
can account for memory but no longer distinguishes between tolerance and
immunity. Finally, note that for i.t> 316 stimulation with the antigen never
gives rise to sustained activation. Thus, whenever complexes are rapidly
removed, the network does not easily account for memory.

6.5. Comparison to experimental data. The natural serum IgM antibody
levels of idiotypic and anti-idiotypic antibodies have been measured in
unimmunized mice (Lundkvist et al.. 1989; Varela et al., 1991). In order to
obtain time series data the mice were bled periodically and antibody
concentrations in the sample measured. (Repeated measurements of antibody
concentrations in the spleen are much more difficult.) Since absolute
concentrations are difficult to be determined, Lundkvist et al. report data in
which the concentration at day zero is arbitrarily set to 100%. The
concentrations in all subsequent samples are scaled accordingly.

The data showed that idiotypic antibody concentrations fluctuate on a short
time scale (i.e. of the order 2 weeks) and that the amplitude of the fluctuations
was small (i.e. two- to three-fold). Looking at the data reported by Lundkvist et
al. (1989) for correlations in the concentration changes of idiotypicanti-
idiotypic pairs, we have been able to show (unpublished result) that the
increase in concentration of one antibody correlates with the decrease of the
anti-idiotypic antibody (z2 = 7.2, p< 0.01, n = 36, i.e. six mice with six weekly
samples). Although there is too little data to be conclusive, Lundkvist et al.
(1989) and Varela et al. (1991) suggest that the concentration fluctuations are
compatible with the existence of chaotic dynamical behavior. Treatment of the
mice with very low doses of either idiotypic or anti-idiotypic antibodies
resulted in the inhibition of the fluctuations for months.

The behavior of our model seems to be in general accordance with these
experimental results. First, our model gives oscillatory and chaotic behavior.
Second, the model is indeed capable of predicting a period of two cycles per
month and an amplitude of two- to three-fold variations in peripheral antibody
concentrations. Third, one might speculate that the small basins of attraction
explain why one can inhibit the oscillatory behavior with small doses of anti-
idiotypic antibodies.

In order to test this correspondence between experimental and theoretical
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results more rigorously we performed similar experiments with the CABG
model in the chaotic TLCs regime, i.e. ; = 1 and p = 200 (Fig. 12). In panels (a)
and (b) of Fig. 12 we show a time series of the peripheral antibody
concentrations a 1 and ci 2 in pg/m1 on a logarithmic (Fig. 12a ) and a linear scale
(Fig. 12b). First, the concentrations that we observe are of the order 1 pg/ml.
Since total serum IgM concentrations are typically of the order 1 mg ml (Eisen,
1980), the concentration of each idiotype seems to be quite large. We argued in
the discussion of Part I that such high concentrations may be a consequence of
our parameter choices. Second. we observe small short-term fluctuations on a
time scale of a few days, and large long-term oscillations on a time scale of
weeks. Third. the amplitude of the oscillations in the linear plot seems roughly
five-fold around an average value of 1 pg ml. Both the amplitude and
frequency of the oscillations agree with the experimental data (Lundkvist et al.,
1989; Varela et al., 1991).

Finally, we simulated the experiment performed by Lundkvist et al. (1989) in
which a small amount of one of the two antibodies is introduced. In Figs 12c
and d we show the effect of introducing 10 pg of anti-idiotypic antibody at day
zero. (Lower doses tend to have no effect in the model.) Otherwise, the initial
conditions are identical to those in panels (a ) and (c). The linear plot in Fig. 12d
shows that such a perturbation of the system would manifest itself in
experimental measurements as the absence of anti-idiotypic fluctuations for
about 50 days and as a slowly declining concentration of the anti-idiotypic
antibody that was administered at day zero. The experimental data are in
agreement with the former observation, but at variance with the latter.

7. Discussion. In this paper we have studied the dynamics and bifurcation
behavior of three different AB models: the basic AB model with antibodies and
B cells, the gearing up or ABG model in which a delay in the antibody secretion
due to the B cell maturation is included and finally the CABG model in which
spleen and blood compartments are distinguished. The typical behavior of the
basic AB model is the attainment of a stationary state, or oscillations and chaos
on a time scale of several months. We have suggested that the stationary states
are unlikely to be attained because they have a small basin of attraction. In the
gearing up AB model the immune states are not stable for the parameter
regimes we believe to be realistic and the typical behavior of the model is
oscillatory, either limit cycles or chaos. The time-scale of the oscillations is fast
when the lifetime of the complexes is less than 1 day. However, in this short
complex lifetime cs regime the limit cycles seem to have a small basin of
attraction and are unlikely to be attained.

The CABG model has a variety of types of different behavior for different
parameter regimes. The immune states are stable and attainable for a large
range of antibody residence times, r, in the spleen, i.e. for 0.5 hr < r < 2 days.
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Outside this region we find oscillations. We have defined ts and tit_ as the
regimes in which I' <0.5 hr and r > 2 days, respectively, and cs and CI, as the
regimes in which the lifetime of complexes 1 dc is <2 days and >2 days,
respectively. Thus, we find attainable oscillatory chaotic behavior with a time
scale of several months in the rsc regime. We find attainable oscillations
around one immune state, which was typical of our simplest B model, in the
tLC-1, regime. Finally, in the tLC's regime we find attainable oscillations and
chaos on a time scale of days to weeks.
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Unfortunately, the residence time of the antibody in the spleen and the
lifetime of idiotypic complexes. i.e. our parameters i. and p, which are so crucial
for the model behavior, are very difficult to measure experimentally. Our
original estimates of the two parameters may be inaccurate. Fitting the
theoretical results obtained in this paper to the limited experimental data
(Lundk vist et al., 1989; Varela et al., 1991 ) may give us some clues as to the
parameter values. Since these data suggest oscillations with a time scale of
weeks, our theory would predict that p should be of the order 100. The lifetime
of the complexes would then be of the order 5 hr, which is quite feasible.
Speculating even further, we could argue that since the oscillatory/chaotic
behavior was found (and re-established) experimentally, the attractor should
be attainable. Combining this with the constraint that the immune states are
unstable, we speculate that this corresponds to the TL regime. Thus, the average
residence time of antibodies in the spleen, r, should be of the order 1-2 days.
This is longer than the suggested residence time for cells brought into the spleen
(Sprent, 1989).

The speculation that the empirical data correspond to our ri_Cs regime
should be taken with extreme care because the CABG model still contains
enormous simplifications. One major concern is the fact that we study the
interaction of only one idiotype with only one anti-idiotype. The immune
network with which the experimental data are obtained probably consists of
thousands to millions of connected idiotypes. The loss of stability of such a
system may be a distributed property of the network due to interaction between
many populations (Gardner and Ashby. 1970: May, 1972; De Boer and
Hogeweg. 1989a) and need not be related to a local Hopf bifurcation of an
immune state.

Our models are also unrealistic in other regards that may effect the stability
of the immune states. The symmetric activation function that we have used is
characteristic of bivalent antibodies (Perelson and DeLisi, 1980). Crosslinking
of receptors by 10-valent IgM can give rise to crosslinking curves that are not
symmetric (Perelson. 1981). An improvement of our models would be to better
account for the chemistry involved in IgM binding and crosslinking. Also, it is
clear that antibodyantibody complexes that form in solution may be of
different sizes. This is an additional complication that we have yet to consider.
Lastly. we have not explicitly considered the roles of antigen processing,
antigen presentation and T cells.

The symmetric logarithmic (SL) coordinate system that we have employed
here has proved useful for defining Poincaré sections at the plane of symmetry.
A comparison of the trajectories plotted in the original and in the SL
coordinate system (e.g. Fig. 3) shows that this difference appears as merely a
rotation of the state space. Conversely, we observed in Part I that the
interpretation of the nullclines of the SL coordinate system is not intuitive.
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Since the SL coordinate system has not revealed any new insights, it might have
been better to present all figures in the original coordinate system. Thus. we
could have computed the Poincare sections in the SL coordinate system, but
represented their results in the original coordinate system.

One of the most interesting new results found for the CABG model is that for
high rates of complex removal, p, sustained oscillatory/chaotic behavior
persists, even if a, the source of cells from the bone marrow, is zero. This may be
particularly important for models in which instead of a continuous source of
cells of established clones there is a stochastic source of novel clones (De Boer
and Perelson, 1991). Stewart and Varela (1989, 1990) have also searched for
conditions for which oscillatory chaotic behavior could be sustained in the
absence of a continuous bone marrow source. They suggested that a necessary
condition is that each idiotype should recognize itself, i.e. should have a low
affinity for binding itself. Although such antibodies have been described (Kang
and Köhler, 1986), it seems much simpler to change to the parameter regime
with higher rates of complex removal. This has the second advantage of the
close correspondence between the model behavior (see Fig. 12) and the
experimental data (Lundkvist et al., 1989; Varela et al., 1991 ).
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(I.K.). It was also supported by the Santa Fe Institute through their
Theoretical Immunology Program and by the Los Alamos National Labora-
tory Center for Nonlinear Studies.

APPENDIX. NUMERICAL METHODS

Bifurcation diagrams were computed using AUTO (Doedel, 1981). which is a special purpose
software package for numerical bifurcation analysis. Nullclines. invariant manifolds and
trajectories were computed by GRIND (De Boer, 1983 ). Limit cycles were continued using
AUTO and by a shooting method, with the variational equations integrated using ODESSA
(Leis and Kramer. 1988). Equilibrium states in the graphs were obtained by NewtonRaphson
iteration implemented in GRIND. The accurate Poincare section of the intermittency was
obtained with SCIGM A (Taylor et al.. 1990). The rough Poincare sections shown in bifurcation
diagrams were obtained by checking the Poincare variable at each small time step of the
integrator. Once a crossing of the section was detected the values of the variables at the section

were estimated by a first-order linearization. This turned out to be sufficiently accurate for our
graphical representations. Our procedure for generating multiple Poincaré sections consists of

the following steps. (1 ) Start close to an orbit and integrate the system for a long time (i.e.
typically 5000 time steps) in order to attain an orbit. (2) Restart at the orbit attained and record
10 crossings of the Poincaré section. (3) Restart at the last point, but interchange the variables
with subscript 1 and 2. in order to test whether another asymmetric attractor exists. Record
another 10 crossings of the Poincare section. (4 ) Make a small change in the bifurcation
parameter (i.e. typically 1%). (5) Go back to step (I). We realize that this procedure may give an

incomplete sample of the model's behavior, because not all forms of behavior need to be attained.
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