
Chapter 3

Chord Length Estimation

3.1 Introduction

Consider a random closed set W ⊂ R2 which we observe through a bounded
‘window’ B. Important characteristics of the probability distribution of a
random set are the chord length distribution (CLD) and the—perhaps more
familiar—linear contact distribution (LCD) (Stoyan et al. 1987 p. 178–188).
These characteristics can give us some insight in the ‘architectural’ features
of the random set, such as the shape, size and dispersion of its various con-
nected parts. Also, the CLD and LCD can help us when we want to test for
stationarity (translation invariance) or for isotropy (rotation invariance).

The CLD and LCD are closely related as is established in formula (3.24)
below. With this relation, estimates for the one can be transformed into
estimates for the other. For instance, in Hansen et al. (1996) an estimator
for the LCD is developed and it is noted that an estimator for the CLD can
be obtained from it. Our primary interest is in estimation of the CLD and
we shall argue that it is better to estimate the CLD and transform it into an
estimate of the LCD than to do it the other way around.

The ‘classical’ definition of a chord or an intercept (Weibel, 1979, p. 315)
is a “line segment contained fully within an object and extending between
two points on the object’s surface”.

We can informally define the chord length distribution in the direction
e as the distribution of the length of the longest line segment through the
origin in the direction e which is fully contained within W, conditionally on
the event that the origin lies inW. IfW is stationary and rotation invariant
then this distribution does not depend on the choice of the reference point
(the origin) or on the direction e. Hence, if we should want to test whether
W is isotropic, we could estimate the CLD in various directions and see if the
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72 Chapter 3. Chord Length Estimation

estimates differ. Note that our definition introduces a length bias; the origin
is more likely to fall in a ‘large’ part of W and hence the chord through
the origin will have a tendency to be unusually long. If we should want,
we could easily correct for this to obtain an ‘unweighted’ CLD (see formula
(3.3)) below. For further discussion on chord lengths cf. Serra (1982, Chapter
X), Matheron (1975, p. 53) and Stoyan et al. (1987, pp. 178–182).

The CLD has been applied in biology to study certain features of tissue,
especially to characterize lung airspace dimensions, see Rosenthal (1989),
Lum et al. (1990) and Oldmixon et al. (1994). Estimation of the CLD can
be used also for inferential purposes in the statistical analysis of random set
models (Stoyan et al. 1987, Hansen et al. 1996).

Estimation of certain characteristics of the chord length distribution can
be done from stereological estimates of the surface to volume ratio and the
volume fraction. Such stereological estimates are obtained by straightfor-
ward intersection and point counting methods (Stoyan et al. 1987 p. 180).
These methods are simple, fast and easy to deal with, but they do have their
limitations. Stereological mean value formulas can only be used to obtain
certain low-dimensional characteristics of the CLD, whereas knowledge of
the shape of the CLD may give important additional information about the
structure of the random set under consideration.

Estimation is, of course, influenced by edge effects as the random setW is
only observed in a bounded observation window B. More specifically, when a
certain point x is used as a reference point, the chord through x could extend
beyond B. A given chord is called uncensored (u.c.) when both endpoints
are in B; singly censored (s.c.) when one of its endpoints is outside B; and
doubly censored (d.c.) when both endpoints are outside B.

Estimation from spatial data in the presence of censoring is often dealt
with by means of ‘minus sampling’ which is also known as the ‘border
method’. In our situation this means that when we want to estimate the
probability that the length of a chord is less than r, we restrict attention to
those reference points which are further than r away from the boundary of
B. The resulting estimator can be termed the ‘reduced sample estimator’
(Baddeley and Gill, 1997). The obvious disadvantage of minus sampling is
that much information is discarded, especially for large values of r.

Oldmixon et al. (1994) suggest to make two separate estimates; one based
only on the uncensored chords and another one based only on the singly
censored chords. These two estimates could then be combined by taking
some convex combination of them. Olmixon et al. do not discuss to do so
optimally. Also, they discard doubly censored chords.

Estimation from censored observations belongs traditionally to the field
of survival analysis, where it has—among other things—resulted in the de-
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velopment and study of the famous Kaplan–Meier estimator. Laslett (1982a
and b) first noted the similarity of censoring in survival studies and edge
effects in spatial statistics. Subsequently, this analogy has been exploited
by Wijers (1995), van der Laan (1996,1998), Hansen et al. (1996), Badde-
ley and Gill (1997) and by ourselves in the previous chapter of this thesis.
In particular, in Hansen et al. (1996) a Kaplan–Meier type estimator was
proposed for the linear contact distribution. The unique correspondence be-
tween the LCD and the CLD suggests a transformation of the estimator of
the former to obtain an estimator of the latter. Unfortunately, doing so in-
volves a numerically unstable differentiation, which is believed to cause loss
of efficiency.

We want to use semi-parametric methods and missing data theory but
cannot do so directly. Much like we did in the previous section, we first
consider an analogous problem. We derive an NPMLE for that problem and
then show that the estimator can also be applied in the real problem. The
estimator will not be the maximum likelihood estimator in the real problem.
However, it does utilize all the available data—though not in the absolutely
most efficient way.

The organization of this chapter is as follows. First, we give a more pre-
cise definition of the chord length distribution and discuss why it is difficult
to estimate it. Then we consider an analogous, but similar problem and de-
rive the nonparametric maximum likelihood estimator. We proceed to show
that this NPMLE is consistent for the original problem. We report a mod-
est simulation experiment to try out our new estimator. Finally, we shall
consider the linear contact distribution and study its relation to the chord
length distribution.

3.2 The chord length distribution

Let W be a stationary random closed set in R2 and e a unit vector in R2.
The chord through a point ofW in the direction e is the longest line segment
through the given point with orientation e which is fully contained within
W. We are interested in estimation of the distribution of the length of the
chord through the origin, given that the origin belongs to W. Since W is
stationary, the particular choice of reference point (in this case the origin) is
irrelevant. The ‘chord length distribution’ (CLD) is an interesting feature of
the distribution of W. The data on which we shall base our estimation will
consist of n independent realizations of W which are all observed through a
fixed compact set B.

Let ξe(s, t) denote the chord in the direction e through the point (s, t) ∈
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W. The situation is clarified in figure 3.1. A formal definition of the chord

(s,t)

Figure 3.1: The chord ξ(1,0)(s, t). The shaded region is (part of) the random
set W.

length distribution is as follows. Let W =W ∩B where B is some compact
set of positive area. Define, for all positive x

W (x) = {(s, t) ∈W : |ξe(s, t)| ≤ x} (3.1)

where |ξe(s, t)| denotes the length of the chord ξe(s, t). Now define the (length
weighted) chord length distribution function as

Le(x) =
E|W (x)|
E|W | (3.2)

where the expectation is with respect to the distribution ofW and |.| denotes
area. It is easily seen that this definition does not depend on the choice of
B.

For simplicity we fix e = (1, 0) and omit e from our notation.

We call L the length weighted chord length distribution for a reason. Recall
that L may be interpreted as the distribution of the length of the chord
though the origin, given that the origin lies in W. Informally, the origin
is more likely to fall in a big part of W than in a small part. Hence L is
biased towards greater chord lengths. We can easily correct for this. The
unweighted chord length distribution is

L0(x) =

∫ x

0
1
t
dL(t)∫∞

0
1
t
dL(t)

. (3.3)
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The subscript ‘0’ indicating ‘unweighted’ should not be confused with the
subscript ‘e’ we used earlier.

Of a chord ξ(s, t) through a point (s, t) ∈ W = W ∩ B we observe only
ξ(s, t)∩B. Hence, from observation of W =W∩B we can not in general infer
W (x) as a chord through a given point in W ∩B might well extend beyond
B. However, we do observe the length of the intersection of each chord with
B and we observe how many of each chord’s endpoints are outside of B.
Define two functions

y(s, t) = |ξ(s, t) ∩B| (3.4)

δ(s, t) = # endpoints of ξ(s, t) outside of B. (3.5)

From observation of W we know, for all positive y and δ = 0, 1 or 2

A(y, δ) = {(s, t) ∈W : y(s, t) ≤ y, δ(s, t) = δ}. (3.6)

We define

F (y, δ) =
E|A(y, δ)|

E|W | , (3.7)

where again the expectation is with respect to the distribution of W. For
δ = 0, 1, 2, F (y, δ) are sub-distribution functions.

We can interpret L and F in the following way which will be very useful
in the next section.

Lemma 3.1. Let (S, T ) be uniformly distributed on W . Then

1. L is the distribution of |ξ(S, T )|;

2. F is the distribution of (y(S, T ), δ(S, T ));

3. conditionally on ξ(S, T ), (S, T ) is uniformly distributed on ξ(S, T ).

Proof The first two statements are immediate from the definitions of L and
F . To prove the third, define, for all t, Wt = {s : (s, t) ∈W}. Conditionally
on ξ(S, T ), T is degenerate. Also, conditional on T , it is clear that S is
uniformly distributed on WT . Now WT consists of one and possibly several
line segments, ξ(S, T ) being one of these. Hence, conditionally on ξ(S, T ),
(S, T ) is uniformly distributed on ξ(S, T ). �

We now turn to the statistical problem of estimating L from independent
observations. LetW1,W2, . . . ,Wn be independent and identically distributed
asW. For simplicity, let B = [0, τ ]×[0, 1] (τ > 0). Note that doubly censored
chords (δ = 2) for which neither endpoint is in B, will always have length τ .
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Define Wi = Wi ∩ B and let ξ(i, s, t) be the chord through (s, t) in Wi.
Like before,

Wi(x) = {(s, t) ∈Wi : |ξ(i, s, t)| ≤ x} (3.8)

y(i, s, t) = |ξ(i, s, t) ∩B| (3.9)

δ(i, s, t) = # endpoints of ξ(i, s, t) outside of B. (3.10)

Ai(y, δ) = {(s, t) ∈Wi : y(i, s, t) ≤ y, δ(i, s, t) = δ} (3.11)

We really need only one result about the observed chords:

Lemma 3.2. ∑
i |Ai(y, δ)|∑

i |Wi|
→ F (y, δ)

almost surely, uniformly.

Proof Pointwise convergence follows from the strong law of large numbers.
By the usual ‘Glivenko–Cantelli argument’, uniform convergence follows as
usual from the fact that F is monotone and bounded. �

3.3 Digression: A related problem

We can think of chord length estimation as a missing data problem. The
complete data consists of the Wi and {ξ(i, s, t) : (s, t) ∈Wi, i = 1, . . . n}. The
observed data are the Wi and {(y(i, s, t), δ(i, s, t)) : (s, t) ∈Wi, i = 1, . . . n}.
Application of the EM algorithm springs to mind, but we do not see how
to how to find the conditional distribution of the complete data given the
observed data, as required by that algorithm.

In this section we consider a different missing data problem which is easier
to handle as the observations will be numbers instead of functions on random
sets. However, this easier problem will bear so much resemblance to chord
length estimation that the analysis will be very useful. In fact, our findings
in this section will guide us to an estimator which we can use in the chords
problem. The reader should keep in mind that in this section there are no
random sets Wi involved. However, we shall re-use many of the symbols of
the first section to point out the similarities between the two problems. We
hope this will clarify and not confuse.

Let B = [0, τ ]× [0, 1] and let (S, T ) be a uniformly distributed point in B.
Associate with (S, T ) a random variable X which is distributed according to
L as defined in (3.2). Conditional on S and X, let R be a random variable
which is uniformly distributed on the interval [Si − Xi, Si]. Now let ξ be
the line-segment from (R, T ) to (R + X, T ). Note that, given ξ, (S, T ) is
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uniformly distributed on ξ. Define Y = |ξ ∩ B| = |[R, R + X] ∩ [0, τ ]| and
∆ is the number of endpoints of ξ that fall outside of B which is the same
as the number of endpoints of [R, R + X] that fall outside of [0, τ ]. We see
that our specific choices of B = [0, τ ] × [0, 1] and e = (1, 0) have made T
irrelevant; from (S, X, R) we can derive (Y, ∆)

Lemma 3.3. The joint distribution of Y and ∆ is given by F as defined in
(3.7).

Proof This is an immediate consequence of Lemma 3.1. �

The joint distribution of (S, X, R) is of course given by

1A(s, x, r)
ds

τ
L(dx)

dr

x
(3.12)

where A = {(s, x, r) : [r, r + x] ∩ [0, τ ] 6= ∅}.
From our description of the model we can explicitly derive the distribution

of the observed data (Y, ∆). We introduce very two useful quantities

G =

∫
[τ,∞)

τ

x
dL(x) and H =

∫
[τ,∞)

x− τ

x
dL(x) (3.13)

and note that

L(τ−) + G + H = 1 (3.14)

where L(τ−) :=
∫ τ−

0
dL(x) :=

∫
(0,τ)

dL(x).

We can write down the distribution of (Y, ∆) in terms of L restricted
to [0, τ), G and H. (Re)define functions y(s, x, r) = |[r, r + x] ∩ [0, τ ]| and
δ(s, x, r) = the number of endpoints of [r, r + x] outside [0, τ ]. Now consider
sets

S(y, 0) = {(s, x, r) : y(s, x, r) = y, δ(s, x, r) = 0}
= {(s, x, r) : x = y, 0 < r < τ − x}

S(y, 1) = {(s, x, r) : y(s, x, r) = y, δ(s, x, r) = 1} = S(y, lc) ∪ S(y, rc)

S(y, lc) = {(s, x, r) : x > y, s < y, r = y − x}
S(y, rc) = {(s, x, r) : x > y, s > τ − y, r = τ − y}
S(τ, 2) = {(s, x, r) : y(s, x, r) = τ, δ(s, x, r) = 2}

= {(s, x, r) : x > τ, τ − x < r < 0}.
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Integrating the distribution of (S, X, R) given in (3.12) over these sets we
find, for 0 ≤ y < τ ,

P (dy, 0) =

∫
A∩S(y,0)

ds

τ

dr

x
dL(x)

=

∫ ∞
x=0

∫ τ

s=0

∫ s

r=s−x

1y(x)1{0<r<τ−x}(r)
ds

τ

dr

x
dL(x)

=

∫ τ

s=0

∫ s

r=s−y

1{0<r<τ−y}(r)
ds

τ

dr

y
L(dy) (3.15)

There is no need to further evaluate this expression, but should be it noted
that it depends on L only through its restriction to [0, τ). For the distribution
of the singly censored observations we have by symmetry of right and left
censored observations

P (dy, 1) =

∫
A∩S(y,1)

ds

τ

dr

x
dL(x) = 2

∫
A∩S(y,rc)

ds

τ

dr

x
dL(x).

Hence, for 0 ≤ y < τ ,

P (dy, 1) = 2

∫ ∞
x=0

∫ τ

s=0

∫ s

r=s−x

1{x>y}(x)1{s>τ−y}(s)1{r=τ−y}(r)
ds

τ

dr

x
dL(x)

= 2

∫ ∞
x=y

∫ τ

s=τ−y

ds

x

d(τ − y)

τ
dL(x)

= 2

∫ ∞
x=y

y

xτ
dydL(x)

= 2

(∫ τ−

x=y

y

xτ
dydL(x) +

y

τ2
dyG

)
, (3.16)

where we used that a random variable U (say) is uniformly distributed on
[0, τ) if and only if τ − U has the same distribution.

The doubly censored observations are always of length τ .

P (Y = τ, ∆ = 2) =

∫
A∩S(y,2)

ds

τ

dr

x
dL(x)

=

∫ ∞
x=0

∫ τ

s=0

∫ s

r=s−x

1{x>τ}(x)1{τ−x<r<0}(r)
ds

τ

dr

x
dL(x)

=

∫ ∞
x=τ−

∫ τ

s=0

∫ 0

r=τ−x

ds

τ

dr

x
dL(x)

=

∫ ∞
x=τ−

x− τ

τ
dL(x)

= H (3.17)
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Because G can be expressed in terms of L|[0,τ) and H, we see that the
distribution of the data is fully parameterized by L|[0,τ) and H. This means
that the model L = {all distributions on R+} is not identified. We could
reduce L so that it is, but then the missing data problem will no longer
be completely nonparametric. We now give a different model, that is both
nonparametric and identified, while the distribution of the observed (Y, ∆)
remains the same.

Consider a new model L for X of all distributions on a new space [0, τ)∪
{†, ‡}. We denote L({†}) = P (X = †) = G and L({‡}) = P (X = ‡) =
H. We have the following missing data problem which is both completely
nonparametric and identified:

Draw X from L ∈ L
• if L = l ∈ [0, τ), then sample S uniformly on [0, τ ] and given S = s

sample R uniformly on [s − x, s]. Finally, set Y = [R, R + X] ∩ [0, τ ]
and ∆ equal to the number of unobserved endpoints.

• if X = †, Sample Y from 1[0,τ)(y)2y/τ2 and set ∆ = 1

• if X = ‡, set (Y, ∆) = (τ, 2)

It is easily verified that the distribution of the data (Y, ∆) is indeed given
by formulas (3.15) to (3.15). P (dy, δ) is of the form

P (dy, δ) =

∫
x∈[0,τ)∪{†,‡}

K(dy, δ; x)dL(x)

where

K(dy, δ; x) = 10(δ)

∫ τ

s=0

∫ s

r=s−x

1{0<r<τ−x}(r)
ds

τ

dr

x
δx(dy)

+ 11(δ)2
(
1(y,τ)(x)

y

xτ
+ 1{†}(x)

y

τ2

)
dy

+ 12(δ)1{‡}(x)δτ (dy)

Now suppose we have n i.i.d. copies (Si, Ti, Xi, Ri) of (S, T, X, R). Let ξi

denote the line-segment from (Ri, Ti) to (Ri + Xi, Ti) and Y = |ξi ∩ B| =
|[Ri, Ri +Xi]∩ [0, τ ]| and ∆i is the number of endpoints of ξi that fall outside
of B. Let Fn denote the empirical distribution of the (Yi, ∆i). The EM
equations are, cf. (1.17)

L̂n(dx) = Fn(dx, 0)

+

∫ x

y=0

(y/x)dL̂n(x)∫ τ

x=y
(y/x)dL̂n(x) + (y/τ)Ĝn

Fn(dy, 1)

Ĥn = Pn(∆ = 2),
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where

Ĝn = 1− L̂n(τ−)− Ĥn.

3.4 Back to the chord lengths

We now return to our original problem of estimating the chord length dis-
tribution of a random set W observed through the set B = [0, τ ] × [0, 1].
Inspired by the previous section, we propose as an estimator L̂n satisfying

L̂n(dx) =

∑
i |Ai(dx, 0)|∑

i |Wi|

+

∫ x

y=0

(y/x)dL̂n(x)∫ τ

x=y
(y/x)dL̂n(x) + (y/τ)Ĝn

∑
i |Ai(dy, 1)|∑

i |Wi|

Ĥn =

∑
i |Ai(τ, 2)|∑

i |Wi|
,

where

Ĝn = 1− L̂n(τ−)− Ĥn.

We could prove consistency of this estimator using Theorem 1.2. Such a
proof would be strikingly similar to our proof of section 2.4. Instead of em-
pirical (sub)distribution functions we have empirical averages of areas. This
is not a problem, as we have already established the uniform convergence of
these averages in lemma 3.2. We can again compare the maximum likelihood
estimator to a comparison sequence of based on a simple transformation of
the empirical distribution (empirical averages of areas) of the uncensored
chords.

Unfortunately, we expect that we will again have difficulty estimating the
chord length distribution at the point τ−. With that in mind, it might well
be worth-while to introduce some extra artificial censoring, similar to what
we did for Laslett’s problem.

3.5 A simulation

In this section we compare our estimator to a simple alternative. Recall
our definition of the chord length distribution in the direction e = (1, 0).
L(x) = E|W (x)|/E|W | where W (x) = {(s, t) ∈W =W∩B : |ξe(s, t)| ≤ x}.
It is clear that this definition does not depend on B. From observing W ∩B
we cannot in general infer |W (x)|.
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Define the line segment C = {te : −1 ≤ t ≤ 1} which, since e = (1, 0) is
just the horizontal line segment of length 2 though the origin. Let xC = {te :
−x ≤ t ≤ x}. Finally, we define ‘Minkowski’ subtraction of two sets A1 and
A2 as A1 	A2 = (Ac

1 ⊕A2)
c . We shall consider B 	 xC = [x, τ − x]× [0, 1],

for positive x ≤ τ . This set is called the erosion of B by xC.
Note that W (x) ∩ (B 	 xC) = {(s, t) ∈ W ∩ (B 	 xC) : |ξe(s, t)| ≤ x}

and that |W (x)∩ (B	 xC)| can be inferred from observing W . It is natural
to define the following ‘reduced sample’ estimator based on an i.i.d. sample
of n copies W1,W2, . . . ,Wn of W all observed through B

L̃n(x) =

∑
i |Wi(x) ∩ (B 	 xC)|∑

i |Wi ∩ (B 	 xC)| .

This estimator is ‘ratio unbiased’, meaning that it is the ratio of unbiased
estimators of the numerator and denominator appearing in the definition of
L(x). It is clearly (uniformly, almost surely) consistent.

In Figure 3.2(a) we see a realization of a Boolean model Ξ observed in
the unit square, B = [0, 1]2. The grains are circular discs with a constant
radius of 0.04. The underlying intensity of the Poisson process is 33.0.

We take the random set W of interest to be the closure of the void of
the Boolean model W = Ξc. The reason for doing this, is that we know how
to obtain a closed form expression for the chord length distribution of Ξc.
We use the so called linear contact distribution function of Ξ (Stoyan et al.,
1987)

H(x) = 1− exp(−2µRx),

where R = 0.04 is the radius and µ = 33 is the intensity. The following
equation relates the linear contact distribution function H of Ξ and the chord
length distribution L of Ξ

c
(Matheron, 1975, p. 53)

L(r) = H(r)− r
dH(r)

dr
.

We have generated 100 realizations Ξ1, Ξ2, . . . , Ξ100 of our Boolean model.
On the basis of, say, Ξk we have derived the ‘NPMLE’ estimator L̂

(k)
1 and

the reduced sample estimator L̃
(k)
1 . The subscript “1” indicates that the

estimator is based on a single observation. In Figure 3.2(b) we show L̂
(k)
1 and

L̃
(k)
1 for some value of k. In Figure 3.3 we see a comparison of the estimated

root means square errors of the two estimators. That is, the figure shows(
100∑
k=1

(L̃
(k)
1 (x)− L(x))2/100

)1/2

and

(
100∑
k=1

(L̂
(k)
1 (x)− L(x))2/100

)1/2

.
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The latter seems uniformly more efficient. We should point out that com-
paring our estimator to this very simple reduced sample estimator is not the
last word. One could surely think of more sophisticated alternatives (such
as various edge correction estimators) that would present a sterner test.

3.6 The linear contact distribution

Recall that W is a stationary random closed set in R2 and e is a unit vector
in R2. The contact segment through a point outside W in the direction e,
is the longest line-segment starting at that point that does not hit W. The
distribution of the length of this contact segment is called the linear contact
distribution. Let χe(s, t) denote the contact segment originating at (s, t) and
let |χe(s, t) denote its length. The situation is illustrated in figure 3.6.

We now formally define the linear contact distribution function. Let B
be any compact set of positive area and set W = W ∩B and W c = B \W .
Now define

V (x) = {(s, t) ∈W c : |χe(s, t)| ≤ x}. (3.18)

The linear contact distribution function is

He(x) =
E|V (x)|

E|B \W | (3.19)

The expectations are with respect to the distribution of W. This definition
does not depend on B. Again, for simplicity we take e = (1, 0) and drop it
from our notation. Also, we take B = [0, τ ] × [0, 1]. We now proceed in a
similar way as before. In fact, as we are running out of useful letters we shall
now re-define the functions y(s, t) and δ(s, t) and the sets A(s, t). Define

y(s, t) = |χ(s, t) ∩B| (3.20)

δ(s, t) = # endpoints of χ(s, t) outside of B (3.21)

to indicate a contact segment’s length and censoring type. Previously, these
From observation of W we ascertain for all positive y and δ = 0 or 1

A(y, δ) = {(s, t) ∈W c : y(s, t) ≤ y, δ(s, t) = δ}. (3.22)

We define

G(y, δ) =
E|A(y, δ)|

E|W c| , (3.23)
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Figure 3.2: (a) Realization of a Boolean model; (b) Corresponding
“NPMLE”-estimator L̂1 (solid, ragged line), Reduced sample estimator L̃1

(dotted line) and the estimand L (solid, smooth line).
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Figure 3.3: Root mean square error comparison of the NPMLE-estimator
(solid line) and reduced sample estimator (dotted line).



3.6 The linear contact distribution 85

(s,t)

Figure 3.4: The contact segment χ(1,0)(s, t). The shaded region is (part of)
the random set W.

where the expectation is with respect to the distribution ofW. This definition
should not be confused with (3.7). The sets A(y, δ) have a different meaning
here.

Note that if (S, T ) is a uniform point in W c then H is the distribution
function of |χ(S, T )| and G is the joint distribution function of y(S, T ) =
|χ(S, T ) ∩ B| and δ(S, T ), which is the number (0 or 1) of endpoints of
χ(S, T ) that fall outside of B.

Now consider the following related experiment. Let (S, T ) be uniformly
distributed on B and let X be independently distributed according to H.
Define χ to be the line-segment between (S, T ) and (S + X, T ). Define
Y = |χ ∩ B| = |[S, S + X] ∩ [0, τ ]| and let ∆ be the number of endpoints of
χ outside of B. This set-up is the familiar random censorship model. The
maximum likelihood estimator of H from observing n i.i.d. copies (Yi, ∆i)
of (Y, ∆) is the well-known Kaplan–Meier estimator. The Kaplan–Meier es-
timator is a function of the empirical distribution of the (Yi, ∆i). In the
original problem—estimation the linear contact distribution H from observ-
ing i.i.d. copies Wi of W—we replace these empirical distribution functions
with empirical ratios of areas of the form

∑
i |Ai(y, δ)|/

∑
i |B \Wi|. The re-

sulting estimator was introduced and studied in Hansen et al. (1996). There
it is also compared to a reduced sample estimator.

There is a very useful connection between the chord length distribution
and the contact distribution given in Stoyan et al. (1987 p. 180). Let Wc

denote the closure of the complement of W, which is again a stationary
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random closed set. Let L0 denote the unweighted chord length distribution
function of Wc and let H be the linear contact distribution function of W
itself. Then

H(x) =

∫ x

0

(1− L0(t))dt/m (3.24)

where m is the mean typical chord length

m =

∫
xdL0(x).

First of all we note from (3.24) that H is absolutely continuous with density
h(x) = (1− L0(x))/m. We easily deduce

L0(x) = 1− h(x)/h(0). (3.25)

Now from (3.24) it also follows that h is monotone or—equivalently—that H
is concave. Non-parametric maximum likelihood estimation of a concave dis-
tribution function from right-censored observations is studied in Huang and
Zhang (1994) and Huang and Wellner (1995). Using the NPMLE derived in
these papers instead of the Kaplan–Meier estimator (and replacing empirical
distribution functions by ratios of areas) we can improve the estimator of
Hansen et al. (1996). Replacing the Kaplan–Meier estimator with its least
concave majorant will also improve the estimator.

To estimate the chord length distribution of W we can first estimate the
density of the contact distribution of W c and then apply (3.25). However,
it seems that this estimator will not improve the chord length estimator
we obtained earlier, as density estimation is generally awkward. It is more
fruitful to work in the other direction: To estimate the contact distribution
ofW, first estimate the chord length distribution ofWc and then use (3.24).


