
Chapter 4

The Bombing Model

4.1 Introduction

Many images found in microscopy, materials science and biology can be de-
scribed by means of a random set. Perhaps the best known model is the
Boolean model formalizing a configuration of independent, randomly placed
particles. It is formed by replacing the points of a Poisson process by ran-
dom closed sets. The points of the Poisson process are sometimes called the
germs, the associated random sets the grains or particles. If the process is
defined on the plane and the grains are discs, then it is also know as the
‘bombing model’. Notwithstanding the strong independence assumptions,
inference for Boolean models is far from trivial (Molchanov, 1997). The dif-
ficulty lies in the occlusion arising from the fact that only the union of all
particles is observed, not the individual germ–grain pairs.

One may distinguish between two types of parameters of a Boolean model:
aggregate (or macroscopic) parameters and individual (or microscopic) ones
(Molchanov, 1997). Typical examples of aggregate parameters are the area
fraction and the set-covariance, which can be easily estimated by their ob-
served image counterparts. The resulting estimators are unbiased, and ex-
pressions for the variance can be obtained from Robbins’ theorem (e.g.,
Stoyan et al. 1987). Under mild ergodicity assumptions they are strongly
consistent (Molchanov, 1997) as the observation window expands to the en-
tire plane. Aggregate functionals such as the contact distribution and pair
correlation function are of interest when fitting the Boolean model to a data
image. Usually, estimation is hampered by edge effects, but minus sam-
pling ideas (Ripley, 1988, Stoyan et al. 1987) are generally applicable as are
Horvitz–Thompson style estimators including the Kaplan–Meier (Baddeley
and Gill, 1995) and Hanisch style estimators (Hanisch, 1984). Unbiased-
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ness follows from the Campbell–Mecke theorem (Stoyan et al. 1987) and
asymptotic results are available (Molchanov, 1997).

Individual parameters, including the intensity of the germ process, are
much harder to estimate. Minimum contrast methods (Dupač, 1980, Serra,
1982) for the intensity are based on minimizing the distance between an
estimated aggregate parameter (e.g. the contact distribution) and an ap-
proximation expressed in terms of the intensity. Some asymptotic results are
available, but the expressions for the asymptotic variance are too complicated
to be useful in practice. An alternative is the method of moments based on
coverage fraction, mean area and boundary length, and the Euler–Poincaré
characteristic. This method is computationally easy but leads to a biased
estimator (Weil, 1988). In the tangent point approach, the Euler–Poincaré
characteristic is replaced by the specific connectivity number, resulting in
easier asymptotics (Molchanov and Stoyan, 1994). Further details can be
found in (Molchanov, 1977) and the references therein.

In this chapter we shall take a likelihood based approach using Monte
Carlo methods to perform the necessary computations. To do so, we need to
be able to sample from the conditional distribution of a Boolean model given
an observation of the union of its particles. In the next section we show that
this distribution is straightforward if the grains are balls. However, due to an
intractable normalizing constant, direct sampling is not possible. In section
4.3, we use ‘coupling from the past’ (Propp and Wilson, 1996) to design an
algorithm yielding exact or perfect samples. We discussed coupling from the
past in section 1.5.1 of this thesis. Also, we provide a simple modification of
our CFTP algorithm which speeds it up considerably.

Section 4.4 is devoted to two approaches to maximum likelihood estima-
tion through simulation. The first method is based on a Monte Carlo approx-
imation of the likelihood ratio with respect to a fixed parameter value (Geyer,
1998). The other approach is a stochastic version of the EM-algorithm (StEM
algorithm, cf. section 1.5.2) (Celeux and Diebolt, 1986). This iterative algo-
rithm works as follows. We start by choosing some initial parameter value.
At each E-step one or more samples are drawn from the conditional distri-
bution, under the current parameter value, of the complete data given the
observed data. These samples are used to estimate the conditional expec-
tation of the likelihood, given the data. This estimated likelihood is then
maximized in the M-step to obtain a new parameter value. Repeating these
steps a sequence of parameter values is obtained. In fact, under certain con-
ditions, this sequence is an ergodic Markov chain on the parameter space.
The stochastic EM (StEM) estimator is defined to be a sample, or an aver-
age of samples, from the stationary distribution of this Markov chain. See
(Nielsen, 1997a and b) for asymptotic results. A drawback of the algorithm is
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that it is not clear when the chain has reached stationarity. However, we can
make the algorithm ‘perfect’ by applying coupling from the past to obtain
perfect samples from the ‘StEM’ chain’s stationary distribution. This issue
was explored in section 1.5.3.

In section 4.5 we present results of a modest simulation experiment we
conducted to compare the two methods.

In section 4.6 we note that our simulation algorithm can be applied to
sample from any point process for which the so-called Papangelou conditional
intensity is bounded away from zero. In this sense, our work is complemen-
tary to an algorithm of Kendall and Møller (1999) to sample from point
processes for which the Papangelou conditional intensity is bounded away
from infinity. We also present a generalization of the algorithm of Kendall
and Møller making it faster.

Between them, the two algorithms will enable us to sample from a very
wide variety of point processes. Especially sampling from Boolean models
under certain constraints could be of considerable practical use. A typical
example comes from the oil industry (Chessa, 1995), where a Boolean model
is employed to represent the reservoir geometry. If it is known from test
drilling or geological surveying that the reservoir has certain characteristics,
simulation studies into its further properties then amount to sampling from
a Boolean model conditional on these characteristics.

4.2 The conditional Boolean model

Suppose a realization of a Boolean model is observed with the aim to es-
timate the intensity of the underlying point process of germs. Since the
conditional distribution of the germs given the observed union of particles
involves an intractable normalizing constant depending on the intensity pa-
rameter of interest, direct maximum likelihood estimation seems very hard.
However, in certain situations, it is possible to sample from the conditional
distribution, so that Monte Carlo-based maximum likelihood estimation is a
viable alternative.

In this chapter, we focus our attention on the case where the particles are
(random) balls. Then, the location of a germ is identified upon observation of
any part of the boundary of its associated ball. The remaining, not directly
identifiable germs turn out to be distributed as a Poisson process conditioned
to satisfy a coverage condition. The following makes this claim more precise.

Definition 4.1. A Boolean model of balls is defined as follows. Let X be a
stationary Poisson process with intensity λ > 0 on Rd, and B = B(0, 1) the
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d-dimensional closed unit ball centered at the origin. Then, writing A⊕B =
{a + b : a ∈ A, b ∈ B}, the random set

B(X) = ∪xi∈X(xi ⊕ rB)

is a Boolean model of balls with radius r > 0 on Rd.

For d = 2, the process of Definition 4.1 is sometimes referred to as the
bombing model . The underlying points X are called the germs. The set B
is called the primary grain. More general Boolean models are obtained by
letting the germs be scattered according to a non-stationary Poisson process
or letting the grains be arbitrary random closed sets.

Our goal in this chapter is to perform statistical inference for the intensity
parameter λ based on an observation of B(X) in a compact sampling window
W with non-empty interior. Because B is symmetric about the origin we have
for all x ∈ R2

x ∈W ⊕B ⇔ x⊕B ∩W 6= ∅,
and hence

B(X ∩ (W ⊕ rB)) ∩W = B(X) ∩W

So inference may be based on the conditional distribution of the germ process
X ∩ (W ⊕ rB) given the data Y = B(X) ∩W .

The unconditional distribution of X ∩ (W ⊕ rB) is absolutely continu-
ous with respect to that of a unit rate Poisson process on (W ⊕ rB) with
Radon-Nikodym derivative at a configuration x given by exp{(1 − λ)|W ⊕
rB|}λn(x). This density is defined on the space of all finite, unordered sets
x = {x1, . . . , xn} of points in W ⊕ rB. Here |W ⊕ rB| denotes the area of
the set W ⊕ rB, and n(x) is the number of points in configuration x.

We return to the conditional distribution of X∩W⊕rB given Y = B(X)∩
W . Since the primary grains are balls, the location of a germ is identified
whenever a part of its associated grain’s boundary is exposed. Therefore,
the conditional distribution of X ∩ (W ⊕ rB) can be decomposed into a
deterministic ‘exposed boundary’ part Xb and a stochastic ‘interior’ X i of
germs that cannot be uniquely identified. Indeed we write X ∩ (W ⊕ rB) =
X i∪Xb. The conditional distribution given Y of the exposed boundary part
Xb is of course degenerate at some configuration xb. The distribution of the
unobserved germs X i is only slightly more complicated.

Define

C = Y \ B(Xb) (4.1)

D = {y ∈W ⊕ rB : (y ⊕ rB) ∩W ⊆ Y }. (4.2)
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In words, C is the part of Y which is not covered by exposed grains, and
must therefore be covered by the interior grains. The set D describes the
locations where interior points may fall such that their associated grains are
not outside of Y .

Lemma 4.1. The conditional distribution of X i given Y is that of a Poisson
process on D with intensity λ, conditional on coverage of C.

We write πλ for this conditional distribution of X i given Y . Its density is

fλ(x
i) =

1{xicovers C}e
(1−λ)|D| λn(xi)

Pλ(C is covered)
(4.3)

where Pλ(·) denotes the distribution of a Poisson process with intensity λ on
D.

Proof The Janossy density (Daley and Vere–Jones, 1988) at any xi ∪ xb

satisfying B(xi ∪ xb) ∩W = Y is given by

e−|W⊕rB|

(n(xi) + n(xb))!
p(xi ∪ xb) =

e−|W⊕rB|

(n(xi) + n(xb))!
e(1−λ)|W⊕rB|λn(xi)+n(xb)

=
e−λ|W⊕rB|

(n(xi) + n(xb))!
λn(xi) λn(xb).

Hence, the Radon–Nikodym density is proportional to λn(xi) for any xi ⊆ D
covering C. Since xi ⊆ D, it is natural to replace the reference distribution
of a unit rate Poisson process on W ⊕ rB by that of a unit rate Poisson
process on D. Noting that the probability of covering C by balls centered at
the points of a Poisson process on D with intensity λ equals

Pλ(C is covered) =
∞∑

n=0

e−λ|D|

n!
λn

∫
D
· · ·
∫
D

1{{e1,...,en}covers C}(e)de1 . . .den

it follows that the normalizing constant is e(1−λ)|D|

Pλ(C is covered)
. �

The covering probability Pλ(C is covered) is typically impossible to compute,
see Hall (1988) on covering problems. Because of this, direct sampling from
πλ is also impossible. An alternative is of course rejection sampling: simply
generating independent Poisson processes of intensity λ until one of them
satisfies the covering condition. Unfortunately, depending on λ and C the
probability of success, Pλ(C is covered), may be too small.

It is important for us to note that Pλ(C is covered) is strictly increasing
in λ. This follows from the fact that a Poisson process of intensity κ > λ
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can be written as the independent superposition of Poisson processes with
intensity λ and κ−λ respectively. So we see that if we choose κ large enough
we can quite easily obtain a sample from πκ. In the next section we use this
fact to construct a method to sample from πλ by thinning a sample from πκ

for an arbitrary κ > λ.

4.3 Coupling from the past for the conditional

Boolean model

Recall that an ordinary stationary Poisson point process of intensity λ > 0 on
a compact set S arises as the stationary distribution of a spatial birth-and-
death process (Preston 1977). We start with any finite collection of points
on S. Then each point is deleted after an exponential lifetime with rate 1.
Also, after exponential waiting times with mean 1/λ new points are added
which are uniformly distributed on S. The sequence of point configurations
thus obtained converges weakly to a Poisson point process on S of intensity
λ. Lantuéjoul (1997) demonstrates that similarly we can obtain a Poisson
process point process, conditioned on a certain event E of positive probability,
as the limit of a birth and death process. Informally, if whenever a point is
added or deleted according to the scheme described above, we make sure
never to enforce a transition violating E , the stationary distribution of the
resulting process is the conditional version of the Poisson process.

In our case, S = D and E is the event that C is covered. Let X(t) be
a birth and death process with birth rate λ and individual death rate 1. A
birth is understood to be the addition of a uniform point on D. Let X(t−)
denote the configuration at time t− just before t. If a point zi is born at time
t it is added: X(t) = X(t−) ∪ {x}. If x ∈ X(t−) dies at time t it is removed
only if that does not cause part of C to become uncovered, that is if

B(x, r) ∩ C ⊆ B(X(t−) \ {x}) ∩ C. (4.4)

If x cannot be removed, then it is granted an extra exponential lifetime after
which its removal is reconsidered. Following the terminology in (Kendall and
Thönnes, 1999) x is then called perpetuated .

Following Lantuéjoul (1997) it would not be difficult to show that the
stationary distribution of X(t) is indeed πλ. However, X(t) is not the birth
and death process we shall use to sample from πλ. We want to apply coupling
from the past (section 1.5.1) to obtain perfect samples from πλ but X(t) does
not appear amenable to this approach.

The difficulty is that for perfect sampling from the stationary distribution
of a Markov chain it is convenient if the state-space admits a partial order
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and there exist maximal and minimal elements majorizing and minorizing
all other elements with respect to this partial order. The state space of X(t)
consists of all finite collections of points on D. The obvious (partial) ordering
of this space is the inclusion ordering, but then there is certainly no maximal
state, because D itself is infinite.

We shall construct a different birth-and-death process on a state space
consisting of all subsets of a finite (but random) set of points which also
converges to πλ. We shall be able to apply coupling from the past to this
process.

It should be remarked that for the special case where E is the event that
a certain finite collection of points is covered, a perfect sampling algorithm is
available due to Kendall and Thönnes (1998). Unfortunately, their method
does not seem to extend to our situation: coverage of a uncountable set.
However, some of the ideas in (Kendall and Thönnes, 1998) play a role in
our construction also.

As noted previously, rejection sampling from (4.3) is possible for large
intensity parameters. Using this observation, the first step in our algorithm
to sample from a given πλ is to choose a κ > λ and to generate a sample,
say D = {z1, z2, . . . , zn} ⊂ D, from πκ. D will serve as maximal state. All
configurations obtained when running the birth-and-death processes will be
subsets of this finite set D. Now D is thinned, independently retaining each
point with probability λ/κ.

The key result is the following.

Proposition 4.1. Let D have distribution πκ and define E0 to be the in-
dependent thinning of D with retention probability λ/κ. Conditionally on
coverage of C, E0 is distributed according to πλ (cf. (4.3)).

Proof Note that the conditional distribution of E0 given coverage of C is
concentrated almost surely on configurations of points of D. For any such
configuration x, the Janossy density is given by

jn(x)

=
∞∑

n=0

e−|D|

n!

∫
. . .

∫
Dn

fκ(x ∪ {y1, . . . , yn})
(

λ

κ

)n(x)(
1− λ

κ

)n

dy1 . . .dyn

=
∞∑

n=0

e−|D|

n!
ακe

(1−κ)|D|λn(x)

[
κ(1− λ

κ
)

]n

|D|n = ακλ
n(x)e−λ|D|,

where α−1
κ = Pκ(C is covered) is the probability that balls of radius r around

the points of a Poisson process with intensity κ cover C. The claim follows
upon normalization and comparison to (4.3). �
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We shall construct a coupling-from-the-past (CFTP) algorithm that se-
lects a configuration Z between E0 and D (E0 ⊆ Z ⊆ D) such that Z is
distributed according to πλ.

First we construct a spatial birth-and-death process E = {E(t), t ≥ 0},
such that E(t) ⊆ D = {z1, z2, . . . , zn} for all t. We set E(0) = E0. The
dynamics of the process are such that each point is removed from E(·) after
an exponentially distributed lifetime with mean 1. Whenever a point is
removed, it is added again after an exponentially distributed waiting time of
mean (κ − λ)/lambda. All life– and waiting times are independent of each
other and everything else. Points zi ∈ E(0) are treated as if they were added
at time 0, those zi /∈ E(0) as removed at time 0.

Lemma 4.2. Conditionally on D, the spatial birth-and-death process E(t),
t ≥ 0, is irreducible, homogeneous, and positive recurrent. Moreover, E(t) is
in equilibrium and time-reversible.

In particular E(t) is distributed as E(0) = E0 for all t ≤ 0.

Proof As E(·) is defined conditionally on D0 = {z1, z2, . . . , zn}, at any
time there are only a finite number of points. Clearly, the transition rates do
not change in time, hence E(·) is homogeneous. Moreover, any state x ⊆ D
can be reached from any other state x′ (say) by successively deleting the
points in x′ followed by addition of the points in x. Therefore, the birth-and-
death process is well-defined and possesses a stationary distribution (Parzen,
1962, Chapter 7). Moreover, since the state space is finite, not all stationary
probabilities can be zero, hence they are all positive and the E(·) is positive
recurrent.

The process E(·) is in equilibrium and time reversible because it satisfies
‘detailed balance’ with respect to the distribution (given D) of E(0) = E0

λ

κ− λ
P (E0 = x|D) = P (E0 = x ∪ {zi}|D),

where zi 6∈ x ⊆ D. �

We now define a spatial birth-and-death process Z(t), t ≥ 0, as a con-
ditional version of E(·) in the spirit of Lantuéjoul (1997). The equilibrium
distribution of Z(·) will be πλ.

Start with Z(0) being any subset of D0. The dynamics of the process
are such that a point zi might be removed from Z(·) after an exponentially
distributed lifetime of mean 1. The point zi is actually removed only if

B(zi, r) ∩ C ⊆ B(Z(t−) \ {zi}) ∩ C. (4.5)
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If zi cannot be removed, then it is granted an extra exponential lifetime
with mean 1 after which its removal is reconsidered. Whenever a point is
removed, it is added again after an exponentially distributed waiting time of
mean (κ − λ)/λ. All life– and waiting times are independent of each other
and everything else. Points zi ∈ Z(0) are treated as if they were added at
time 0, those zi /∈ Z(0) as removed at time 0.

Proposition 4.2. Conditionally on D, the spatial birth-and-death process
Z(t), t ≥ 0, is homogeneous, and has a single positive recurrent class con-
sisting of those subsets z of D for which B(z) covers C. It tends in distribution
to πλ as t→∞.

Proof We work conditionally on D = {z1, z2, . . . , zn}. First note that
almost surely B(Z(t)) will cover C for some t ≥ 0. The transition mechanism
ensures that B(Z(s)) ⊇ C for all s ≥ t. Moreover, the class C of configura-
tions z ⊆ D whose associated Boolean model covers C is irreducible, since
any state z can be reached from any other state z′ by successively adding all
points of D \ z′, then deleting those of D \ z. Thus Z(·) is well-defined, with
a stationary distribution concentrated on C (Parzen, 1962). Again, since the
state space is finite, not all stationary probabilities can be zero, hence they
are all positive and the C is positive recurrent.

Consider a move at time t of Z(·) from a configuration x∪zi ⊆ D to x, for
which both B(x) and B(x ∪ zi) cover C and zi 6∈ x. The birth rate of Z(·) is
the same as the birth rate of E(·). The death rate for both perpetuated and
non-perpetuated points is 1, as it is for E, provided the coverage condition
is not violated. Thus, the detailed balance conditions for E(·) and Z(·)
coincide on C, from which it follows that Z(t) tends to the distribution of
E(0) restricted to C as t→∞. Using lemma 4.1 the result follows. �

We shall now describe how to apply coupling from the past to obtain a
sample from the stationary distribution of Z(·). We already have a maximal
state D.

Fix a time −T < 0. By lemma 4.2, E(·) is time-reversible, hence can
easily be extended backwards from E(0) until time −T . E(·) on the interval
[−T, 0] will be the minimal state.

It is straightforward to define a coupled process Z−T (t), −T ≤ t ≤ 0
which has the same dynamics as Z(·) while E(t) ⊆ Z(t) ⊆ D. First set
Z−T (−T ) = E(−T ). Now with each zi ∈ D associate a unit rate Poisson
process Ξi on the set {−T ≤ t ≤ 0 : zi /∈ E(t)}. These Ξi will govern possible
deaths of perpetuated points. At the (forward) birth in the process E(·) at
time t of a point zi, add zi to Z(t−) (if not already present). At the (forward)
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death in the process E(·) at time t of a point zi, remove zi from Z(t−) but
only if (cf. 4.5)

B(zi, r) ∩ C ⊆ B(Z−T (t−) \ {zi}) ∩ C. (4.6)

If zi cannot be removed at time t, then its removal is reconsidered at the
next event time after t of the process Ξi.

Lemma 4.3. Z−T (0) tends in distribution to πλ as T →∞.

Proof Z−T (·) has the same dynamics and hence the same stochastic prop-
erties as the process Z(·) considered in the beginning of this section. Hence,
this lemma follows directly from Proposition 4.2. �

To check if Z−T (0) has reached equilibrium—so to say—we need processes
L−T (·) and U−T (·) such that (cf. Kendall and Møller (1999) formulas (3.5)
to (3.7))

1. (‘sandwiching’) E(t) ⊆ L−T (t) ⊆ U−T (t) ⊆ D0 for all −T ≤ t ≤ 0;

2. (‘funneling’) L−T (t) ⊆ L−S(t) ⊆ U−S(t) ⊆ U−T (t), for all −S ≤ −T ≤
t ≤ 0;

3. (‘coalescing’) if, for some s, L−T (s) = U−T (s) then L−T (t) = U−T (t),
for all t ≥ s.

Moreover, we need that L−T (0) = U−T (0) almost surely for finite (preferably
small) T . If the above inclusions hold and the latter event occurs then we
can conclude that L−T (0) = U−T (0) is a perfect sample from πλ. This is
roughly the content of Theorem 4.1 below.

Now the construction of the processes L−T (·) and U−T (·) is very similar
to that of Z−T (·). The only difference is that removal (if present) of a point
zi at time t from L−T (t−) is enforced only if

B(zi, r) ∩ C ⊆ B(U−T (t−) \ {zi}) ∩ C. (4.7)

and the same removal from U−T (t−) is enforced only if

B(zi, r) ∩ C ⊆ B(L−T (t−) \ {zi}) ∩ C. (4.8)

The—at first perhaps mystifying—fact that these processes pay attention
to each other is necessary to ensure the above inclusions. This ‘cross-over’
trick has also been applied by Häggström and Nelander (1998) and Kendall
(1997).

Summarizing, we propose the following algorithm.
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Algorithm 4.1. Generate a random sample D from πκ for some κ > λ and
delete each point independently with probability 1−(λ/κ) to obtain E(0). Set
T = 1 and write [T

2
] for the integer part of T

2
.

• extend E(·) backwards on [−T,−[T
2
]) with birth rate λ/(κ−λ) and death

rate 1;

• extend independent unit rate Poisson processes Ξi backwards on {−T ≤
t < [T

2
] : Ei(t) = 0};

• set L−T (−T ) = E(−T ) and U−T (−T ) = D;

• at a birth transition E(t+) = E(t)∪{zi}, add zi to L−T (t) and U−T (t).

• at a death transition E(t+) = E(t) \ {zi} or an event time of Ξi

– delete (if present) zi from L−T (t) provided that does not cause the
Boolean model associated with U−T (t) to uncover part of C, i.e. zi

may be deleted only if (4.8) holds;

– delete (if present) zi from U−T (t) provided that does not cause the
Boolean model associated with L−T (t) to uncover part of C, i.e. zi

may be deleted only if (4.7) holds;

• if L−T (0) = U−T (0) exit; otherwise double T and repeat.

Algorithm 4.1 is designed in so that the inclusion relations 1, 2 and 3
hold.

Lemma 4.4. The processes E(t), L−T (t), U−T (t) (t ≤ 0) and D satisfy the
inclusion relations 1, 2 and 3.

Proof By definition, E(−T ) − L−T (−T ) ⊆ U−T (−T ) = D, hence the
sandwiching property holds for t = −T . Also D is a supset of all other sets.
Since births in E(·) are reciprocated in L−T (·) and U−T (·), the inclusion
relationship is preserved under birth transitions. Next, consider the death
at some time t ∈ [−T, 0], say E(t+) = E(t) \ {zi} or an event time t of
Ξi. Suppose that E(t) ⊆ L−T (t) ⊆ U−T (t). Since Ξi is restricted to the set
{t ≤ 0 : Ei(t) = 0}, E(t+) is a subset of L−T (t+) and U−T (t+). Furthermore,
if zi dies in the upper process,

B(zi, r) ∩ C ⊆ B(L−T (t) \ {zi}) ∩ C ⊆ B(U−T (t) \ {zi}) ∩ C

and consequently zi also dies in the lower process.



98 Chapter 4. The Bombing Model

Turning to the funneling property, we have to show that L−T (t) ⊆ L−S(t)
and that U−S(t) ⊆ U−T (t). Now, by definition E(−S) = L−S(−S). Since
the dynamics of algorithm 4.1 preserve inclusion, it follows that L−T (−T ) =
E(−T ) ⊆ L−S(−T ) and, more generally, L−T (t) ⊆ L−S(t) for any t ≥ −T .
Regarding the upper process, U−T (−T ) = D ⊇ U−S(−T ). Applying once
more the fact that the algorithm preserves the inclusion ordering yields
U−T (t) ⊇ U−S(t) for any t ≥ −T .

Finally, suppose that the upper and lower processes meet at some time
s ≤ 0. Then, as they are coupled by the same E– and Ξi-processes, they
proceed as one. �
We are now ready to state the main result of this section.

Theorem 4.1. Algorithm 4.1 almost surely terminates in finite time; its
output has density fλ(·) (cf. (4.3)) with respect to a unit rate Boolean model
on D.

Proof Note that P (E(0) = D|D) =
(

λ
κ

)n(D)
, hence

P (E(0) = D) = E

[(
λ

κ

)n(D)
]

where n(D) is Poisson distributed with mean κ|D|. Consequently, the event
{E(0) = D} has strictly positive probability. By lemma 4.1, E(−T ) = D
will occur for some T almost surely. Hence, using Lemma 4.4, the algorithm
terminates almost surely in finite time.

As stated by Lemma 4.3 Z−T (0) tends in distribution to πλ as T → ∞.
Moreover, using the fact that Algorithm 4.1 preserves the inclusions ordering,
L−T (t) ⊆ Z−T (t) ⊆ U−T (t) for all −T ≤ t ≤ 0.

Suppose T0 is a (random) time such that L−T0(0) = U−T0(0). It follows
that Z−T (0) = L−T0(0) = U−T0(0) for all−T ≤ T0. Hence, L−T0(0) = U−T0(0)
is a sample from πλ.

This completes the proof. �

To conclude this section we present a modification of algorithm 4.1, which
not only speeds it up but also facilitates and even makes possible some in-
teresting estimation methods. These estimation methods will be discussed
in the following section.

First, we note that the algorithm typically takes a long time to terminate
when the difference between the dominating pattern D and its thinning E0

is large. For example, suppose we want to sample from π1 while rejection
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sampling only allows us to sample from π100 to obtain D. This is clearly
a ‘hard’ problem. E0 would on average contain only one hundredth of the
points of D so the algorithm has many configurations between D and E(0)
to choose from—so to speak.

The idea is to first use algorithm 4.1 to reduce D ∼ π100 to a sample,
say X99, from π99. Then use algorithm 4.1 again with D = X99 to obtain a
sample X98 from π98. Repeating this, we obtain a nested sequence of samples
X99 ⊇ X98, · · · ⊇ X1 from π99, π98, . . . , π1.

This will be much faster than trying to sample from π1 straight away.
In fact, for small steps of λ it might well happen that D and E0 coincide,
in which case there is clearly no need to run the algorithm. Also, it might
happen that there is no pattern X with E0 ⊆ X ⊂ D which meets the
coverage requirement. Again, there would be no need to run the algorithm
at because the output must be D itself.

With an estimation method called ‘perfect stochastic EM’ (section 1.5.3)
in mind, we now present an algorithm that produces a nested continuum of
samples {Xλ ∼ πλ : λ ≤ λ ≤ λ} for any two values 0 < λ ≤ λ. By ‘nested’
we mean that Xλ ⊂ Xλ′ if λ ≤ λ′. The idea is to slowly thin an initial sample
form πλ, removing one point at a time.

We suppose (without any loss of generality) that it is feasible to sample from
πλ. Denote λ = λ(0). Let Xλ(0) = {x1, . . . , xn} be a sample from πλ(0). Now
associate with each xi a standard uniform random variable U1

i ; all the U1
i

being independent. Define

E1
λ = {xi ∈ Xλ(0) : U1

i < λ/λ(0)} λ ≤ λ(1)

Note that for each λ, E1
λ is a thinning of Xλ(0) with retention probability

λ/λ(0). Conceptually, we could—for every λ—run algorithm 4.1 with D =
Xλ(0) and E0 = E1

λ to obtain a sample from πλ.
Define λ(1) = λ(0) maxi U

1
i . Then E1

λ = Xλ(0) for all λ(1) < λ ≤ λ(0),
while E1

λ(1) = Xλ(0) \ {xi} for some i.
Now set

Xλ = Xλ(0) λ(1) < λ ≤ λ(0).

It is clear that these Xλ are distributed according to πλ; application of algo-
rithm 4.1 with D = Xλ(0) and E0 = E1

λ must output Xλ(0) because D = E0.
Next, run algorithm 4.1 with D = Xλ(0) and E0 = E1

λ(1) = Xλ(0) \ {xi} to

obtain a sample Xλ(1) from πλ(1). Note that when E1
λ(1) does not cover, the

algorithm must output Xλ(0) and hence need not be run.
Now repeat the entire procedure, starting with Xλ(1) instead of Xλ(0). We

must associate new uniform random variables U2
i with the points of Xλ(1) and
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define new thinnings

E2
λ = {xi ∈ Xλ(1) : U2

i < λ/λ(1)} λ ≤ λ(1)

Note that the distributions of E1
λ and E2

λ are the same for all λ ≤ λ(1).
Hence we are indeed starting afresh.

Repeating again and again in this manner, we obtain a sequence λ(0) >
λ(1) > λ(2) . . . and after n repetitions we have a nested continuum of samples
{Xλ ∼ πλ : λ(n) ≤ λ ≤ λ(0) = λ}.

Define N to be the smallest number such that λ(N) < λ. It is not difficult
to see that N is almost surely finite. Hence the above method provides,
almost surely in finite time, nested samples from πλ for all λ between λ and
λ.

4.4 Maximum likelihood

In general, direct maximum likelihood estimation of the intensity parameter
in a Boolean model (Definition 4.1) seems very hard. In this section, we will
describe two alternative techniques.

4.4.1 MCMC approach

Suppose a Boolean model B(X) of discs with radius r is observed though
a non-empty compact set W . We write Y = B(X) ∩ W . The goal is to
estimate the intensity parameter λ of the underlying Poisson germ process
X. Although the likelihood of Y is known, it involves a normalizing constant
which we cannot compute. A solution is to use the approach in (Geyer and
Thompson, 1992, Geyer, 1998) and consider the likelihood ratio

p(Y |λ)

p(Y |κ)
= e(κ−λ)|W⊕rB| c(λ|Y )

c(κ|Y )

with respect to a fixed parameter κ > 0. Note that the normalizing constant
c(λ|Y ) = E

[
λn(X)1{B(X)∩W=Y }

]
where the expectation is taken with respect

to a unit rate Poisson process. Note that

c(λ|Y )

c(κ|Y )
= Eκ

[(
λ

κ

)n(X)
∣∣∣∣∣B(X) = Y

]
.

Hence the log likelihood ratio can be rewritten as

`(λ) = log
p(Y |λ)

p(Y |κ)
= (κ− λ)|W ⊕ rB|+ log Eκ

[(
λ

κ

)n(X)
∣∣∣∣∣B(X) ∩W = Y

]
.

(4.9)
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The expectation can be estimated by an average over independent realiza-
tions of the conditional distribution of X given B(X) ∩ W = Y (under
parameter κ) (see section 4.3).

The approximation works well if the reference value κ is not too far from
the true value. To try to make sure of this, we could use a pilot estimate
as κ. Alternatively, we can take a sequence of different parameter values
λ < λ1 <, . . . , < λn < κ. Noting that

`(λ) = log
p(Y |λ)

p(Y |λ1)
+ log

p(Y |λ1)

p(Y |λ2)
+ · · ·+ log

p(Y |λn−1)

p(Y |λn)
+ log

p(Y |λn)

p(Y |κ)

we need samples from πλ(i) for i = 1, 2, . . . , n. We could (perhaps should)
produce these samples independently, but we can also start with a sample
from πλ(n) and then successively work our way down. When sampling from
πλ(i) we can then take the sample from πλ(i+1) as dominating state D.

4.4.2 EM

The EM-algorithm (Dempster et al. 1977) is an iterative technique to ap-
proximately solve the likelihood equations for missing data problems by al-
ternating expectation and maximization steps. In general, let X be the unob-
served (complete) data, and Y the observed data obtained by a many-to-one
mapping Y = Y (X) and assume that X has a density p(x; λ) depending on a
parameter λ > 0. Starting from any initial value λ(0), construct a sequence
λ(0), λ(1), . . . by repeating the following.

Expectation-step compute as the conditional expectation under λ(k) of
the complete data log-likelihood, given the observed data

Eλ(k) [log p(λ; X) | Y ] ; (4.10)

Maximization-step find λ(k + 1) by maximizing (4.10) with respect to λ.

In our set-up, Y = B(X) ∩W and p(x; λ) is the Poisson(λ) density. The
(complete data) log-likelihood is linear in the sufficient statistic n(X). Hence
the expectation and maximization steps amount to computing the conditional
expectation under λ(k) of the complete data maximum likelihood estimator
given the observed data, that is

λ(k + 1) = Eλ(k)

[
n(X)

|W ⊕ rB| | Y
]

= Eλ(k)

[
n(X i) + n(Xb)

|W ⊕ rB| | Y
]

(4.11)
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We cannot compute (4.11), as required by the EM-algorithm. However,
since we can sample from the conditional distribution of X given Y , we
can use Monte Carlo methods to approximate it. Suppose that at the k-th
iteration step we use m samples to do so. The average of these estimates
Eλ(k)[n(X)/|W ⊕ rB| | Y ]. This estimate is the next parameter value, λ(k +
1). At the next iteration we need a new set of m independent samples under
λ(k + 1). This algorithm is known as the Monte Carlo EM or, if m = 1,
the stochastic EM-algorithm (StEM). We discussed this algorithm in section
1.5.2.

We now specialize to StEM, i.e. the case m = 1. Usually, the algorithm is
run for a great number of steps to allow it to approach equilibrium (burn-in).
After that, the chain is continued for many more iterations and its steps are
averaged to bring down the variance of the estimator. Since the discovery
of CFTP, the arbitrary burn-in is unsatisfactory. Here we demonstrate how
we can use CFTP to generate a StEM chain that is actually guaranteed to
be in equilibrium. We need one mild assumption, namely that the true λ is
known to be less than some finite λ. The complete data maximum likelihood
estimator is slightly modified to become n(X)/|W ⊕ rB| ∧ λ.

We might as well (and do) assume that λ is so big that we can easily
sample from πλ. Of course λ will be our ‘maximal state’. As n(X i) is
obviously bounded below by |C|/(πr2), there is a very natural minimal state:

λ =
|C|/(πr2) + n(Xb)

|W ⊕ rB| .

Thus we may restrict the parameter space to [λ, λ].

Using the sampling scheme described at the end of section 4.3 we can
obtain nested samples Xλ for all λ ∈ [λ, λ]. With such a collection of samples
we can define a random transition maps (cf. section 1.5.1) H : [λ, λ]→ [λ, λ]
by

H(λ) =
n(Xλ) + n(Xb)

|W ⊕ rB| ∧ λ.

Since the Xλ are nested, n(Xλ) is (‘surely’) monotone increasing as a function
of λ and hence so is H. Coupling-from-the-past works as follows here. Fix an
integer −T < 0. For t = −T + 1,−T + 2, . . . , 0 generate independent copies
Nt of N . Define an upper chain U−T = {U−T (t) : t = −T, . . . , 0} by setting
U−T (t) = Ht(U−T (t− 1)) and U−T (−T ) = λ. Similarly, define a lower chain
L−T by L−T (t) = Ht(L−T (t− 1)) and L−T (−T ) = λ.

At time 0, check if U−T (0) = L−T (0). If so terminate; if not repeat,
starting at time −2T and re-using the {Ht : t = −T + 1, . . . , 0}.
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Figure 4.1: (a) Realization of a Poisson point process of intensity 75 on the
set [0, 1]2 ⊕ rB. There are 101 points. With each point a circle with radius
0.1 is associated. (b) The observed Boolean model Y = B(X) ∩ [0, 1]2

4.5 An example

In Figure 4.1 (a) we have a realization of a Boolean model of discs of radius
.10 as observed through the set [0, 1]2 ⊕ (0.1)B (B is the unit disc). The
intensity of the underlying germ process is 75. There were 101 points in
the set [0, 1]2 ⊕ (0.1)B, of which 56 could be identified from observing the
Boolean model through [0, 1]2 as depicted in Figure 4.1 (b). Figure 4.2 shows
the region D where the interior points ‘live’ and the region C to be covered.

We have applied the Monte Carlo likelihood ratio approach and the StEM
algorithm to the data in Figure 4.1 (b). First, we estimated the log likelihood
ratio (4.9) with respect to κ = 80 for λ ∈ [50, 100]. The estimate, shown in
Figure 4.3, is based on 50 independent samples from π80. To obtain such a
sample we first generated a dominating pattern D. This was done by rejection
sampling, where we gently increased the intensity until success. The first,
rejection sampling attempts were done at intensity 80. After 50 failures, the
intensity was increased by 10/|[0, 1]2 ⊕ (0.1)B|. Generally, success occurred
at intensities around 110.

From figure 4.3 the log likelihood ratio is readily maximized. We find 69
as an estimate of the true intensity (75).

Of course the choice κ = 80 as reference value for the log likelihood ratio
is quite arbitrary. Instead, we could have used some pilot estimate.
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Figure 4.2: (a) The set D where the interior points ‘live’. (b) the set C which
must be covered by the Boolean model associated with the interior points.

50 60 70 80 90 100

-5
-4

-3
-2

-1
0

1

Figure 4.3: Estimated log likelihood ratio as a function of λ with respect to
κ = 80.
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Figure 4.4: The upper and lower processes in the perfect stochastic EM
algorithm, starting at times -1, -2 and -4. After the upper and lower processes
have coalesced, the (then stationary) chain is continued.

A run of the perfect StEM algorithm is shown in figure 4.4. We see upper
and lower processes U−1(t) and L−1(t) and U−2(t) and L−2(t) which have
not met at time zero, and processes U−4(t) and L−4(t) which have. We have
chosen to start the upper processes at λ = 100, pretending that we know for
a fact that the true intensity is below 100. Note how quickly the algorithm
has terminated. The value at time zero (after termination) is 61. We could
now continue to run the StEM chain starting at 61 at time zero and average
the result to bring down the variance.

We should mention that it took us longer to generate Figure 4.4 than
Figure 4.3. Although fewer samples were needed for the former, they were
of lower intensity (40) than the samples required for the latter (80).

An advantage of the likelihood ratio approach is that it allows us to do
much more than just estimate the intensity. Indeed, it is easy to estimate
the expectation and variance of any function φ of the complete data. We use
importance sampling ideas (Geyer, 1994). To this end, 50 independent sam-
ples were generated from the conditional distribution of interior points with
at intensities κi = 60.0 + 10i (i = 0, 1, 2, 3). Hence, in all, 200 independent
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Figure 4.5: The solid line denotes a Monte Carlo estimate of Eλn(X i) as
a function of λ. The dashed lines show the (pointwise) estimated standard
deviation.

samples were generated. An estimate for Eλφ given by

s

∑50
j=1 φ(Xi,j)(

λ
κi

)n(Xi,j)∑50
j=1(

λ
κi

)n(Xi,j)
+ (1− s)

∑50
j=1 φ(Xi+1,j)(

λ
κi+1

)n(Xi=1,j)∑50
j=1(

λ
κi+1

)n(Xi=1,j)

if λ = sκi + (1 − s)κi+1, 0 ≤ s < 1, and where Xi,j is the jth sample from
πκi.

In our case, the expectation of n(X i) may be the most interesting. In
Figure 4.5 we provide Monte Carlo estimates of the expected number of
interior points under πλ, as a function of λ, together with the (pointwise)
standard deviation envelopes.

4.6 Sampling from general point processes

In a recent paper Kendall and Møller (1999) presented two perfect sampling
algorithms for so-called hereditary (or more precisely: locally stable) point
processes. One based on spatial birth-and-death processes and the other a
Metropolis–Hastings algorithm. In this section we show that our algorithm
4.1 will generally allow us to sample from what one might call anti-hereditary
point processes. We show that the modification we applied to algorithm 4.1
can also be used in this more general setup. Finally, we show that there
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exists a similar modification of the birth-and-death algorithm of Kendall and
Møller.

Following the notation and setup of Kendall and Møller (1999), let (S,B, λ)
be a measure space. For us, λ will always be the uniform measure on
S. Consider the ‘Carter–Prenter exponential space’ Ω of all finite collec-
tions of elements of S with its natural sigma-algebra F generated by sets
{x ∈ Ω : n(x ∩B) = n} (B ∈ B).

In particular we can take S to be a compact set in R2 and let dλ = λds,
where ds is Lebesgue measure on S. Let Poλ denote the probability measure
on (Ω,F) corresponding to a Poisson process of intensity λ on S. The Poisson
process of intensity λ is of course absolutely continuous with respect to the
Poisson process of intensity 1. The density is pλ : Ω→ [0,∞) given by

pλ(x) = e(1−S)|S|λn(x) (4.12)

Consider a point process X on S, whose distribution πλ on (Ω,F) is
absolutely continuous with respect to Poλ with density f : Ω→ [0,∞)

dπλ = fdPoλ (4.13)

In the previous sections we considered the special case S = D and

f(x) =
1{x covers C}(x)∫

1{x covers C}(x)dPoλ(x)
.

Defining

fλ(x) = f(x)e(1−λ)|S|λn(x) (4.14)

we have
dπλ = fλdPo1.

Now consider the problem of obtaining a sample from πλ. If f is bounded
by, say, M we can apply rejection sampling. First we take a sample X ∼ Poλ

and a uniform random variable U on [0, M ]. We ‘accept’ X as a sample
from πλ if U ≤ f(X) and otherwise we repeat the procedure. Unfortunately,
it often happens that the acceptance probability is so small that this sam-
pling method would take forever. We shall now investigate various other
approaches.

We consider two cases:

hereditary There is a constant K > 0 such that

f(x ∪ {ξ}) ≤ Kf(x), ∀x ∈ Ω, ξ ∈ S (ξ /∈ x) (4.15)
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To be precise, the hereditary property usually (Kendall and Møller 1999,
Geyer 1999) means: if x ⊆ y then f(x) > 0 implies f(y) > 0. Condi-
tion (4.15) is really a ‘local stability condition’ which implies the hereditary
property. The ratio f(x ∪ {ξ})/f(x) is sometimes called the ‘Papangelou
conditional intensity’ and is denoted `∗(x; ξ). Perfect sampling for locally
stable point processes was considered by Kendall and Møller (1999).

anti-hereditary There is a constant K > 0 such that

f(x) ≤ Kf(x ∪ {ξ}), ∀x ∈ Ω, ξ ∈ S (ξ /∈ x) (4.16)

Straightforward rejection sampling is feasible in the hereditary case when
λ is small. In fact, it works trivially for λ = 0 when we would (almost)
always obtain the empty configuration. In the anti-hereditary case rejection
sampling typically is feasible when λ is large. Therefore we shall assume
throughout that we can easily obtain a sample from πκ when we choose κ
large enough.

4.6.1 spatial birth-and-death processes

We now discuss so-called spatial birth-and-death (b&d) processes as they
were introduced by Preston (1975). We closely follow a brief review in
Kendall and Møller (1999).

A spatial birth-and-death process Xt (t ≥ 0) is a random process taking
its values in Ω, the collection of finite sets of points of S. The process
is Markov and (hardly surprising) it has two kinds of transitions: births
(addition of a point) and deaths (deletion of a point). Now suppose X(·)
has ‘birth rate’ b and death ‘rate’ d. These are non-negative functions on
Ω×S, while b must satisfy B(x) =

∫
b(x, ξ)dλ(ξ) <∞. The birth rate b(x, ξ)

determines the rate at which X(·) jumps from a state x to x ∪ {ξ} and the
death rate d(x, ξ) determines the rate at which it jumps from x ∪ {ξ} to x.
More precisely, the dynamics of X(·) are as follows.

Suppose that Xt = x = {x1, . . . , xn}. Let E0, E1, . . . , En denote indepen-
dent exponential random variables with respective means 1/B(x), 1/d(x \
{x1}, x1), . . . , 1/d(x \ {xn}, xn). The first transition after time t happens at
time t + E, where E is the minimum of E0, . . . , En. If E = E0 then the
transition is a birth and a point ξ is added. The point ξ is selected according
to the density b(x, ξ)/B(x). If E = Ei, i 6= 0, the transition is a death and
the point xi is removed.

The following important lemma is from Preston (1975)
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Lemma 4.5. If there exists a density g : Ω→ [0,∞) satisfying the so-called
detailed balance equations

g(x)b(x, ξ) = g(x ∪ {ξ})d(x, ξ) > 0, whenever g(x ∪ {ξ}) > 0,
(4.17)

then Xt is time reversible and it has g as density of its unique stationary
distribution.

Suppose that we have—as we do—a density f and wish to construct a b&d
process with f as its equilibrium, then we can take b(x, ξ) = f(x∪{ξ})/f(x)
and d(x, ξ) = 1 or alternatively b(x, ξ) = 1 and d(x, ξ) = f(x)/f(x∪{ξ}). Of
course these birth and death rates should be well-defined, and in this light
conditions (4.15) and (4.16) above are not surprising.

4.6.2 the anti-hereditary case

Suppose we have a sample from an anti-hereditary point process with distri-
bution πκ. In this section we show how to obtain a sample from πλ for any
λ ≤ κ by means of thinning. This section generalizes our earlier work on
sampling from the bombing model under a covering condition. The following
lemma is a generalization of Proposition 4.1.

Lemma 4.6. Suppose condition (4.16) holds. Let κ > λ > 0. Suppose Y is
a sample from πκ and let Y ′ be an independent thinning of Y with retention
probability λ/κ. Then∫

y

f(x)

f(x ∪ y)
P (Y ′ = x|Y = x ∪ y)πκ(x ∪ dy) = e−|S|fλ(x)

(4.18)

Proof By condition (4.16) we have that f(x)/f(x ∪ y) is bounded. Now
it follows from (4.14) that

fκ(x ∪ y) = f(x ∪ y)e(1−κ)|S|κn(x)+n(y)

and

f(x) = fλ(x)e(λ−1)|S|λ−n(x).
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Hence∫
y

f(x)

f(x ∪ y)
P (Y ′ = x|Y = x ∪ y)πκ(x ∪ dy)

=
∞∑

n=0

e−|S|

n!

∫
· · ·
∫

Sn

f(x)

f(x ∪ {y1, . . . , yn})

(
λ

κ

)n(x)(
1− λ

κ

)n

× fκ(x ∪ {y1, . . . , yn})dy1 . . .dyn

=
∞∑

n=0

e−|S|

n!

∫
· · ·
∫

Sn

fλ(x)

f(x ∪ {y1, . . . , yn})
e(λ−1)|S|λ−n(x)

(
λ

κ

)n(x)(
1− λ

κ

)n

× f(x ∪ {y1, . . . , yn})e(1−κ)|S|κn(x)+ndy1 . . . dyn

= fλ(x)e−|S|e(λ−κ)|S|
∞∑

n=0

1

n!
κn

(
1− λ

κ

)n

|S|n

= fλ(x)e−|S|

�

Suppose we have a sample D = y = {y1, . . . , yn} from πκ and require a
sample from πλ for some λ < κ. Consider a spatial b&d process, X(t), t ≥ 0,
on the powerset of y (denoted P(y)) with birthrate b(x, ξ) = 1{ξ∈y\x}λ/(κ−λ)
and death rate d(x, ξ) = f(x)/f(x ∪ {ξ}). Let D′ denote an independent
thinning of D with retention probability λ/κ. We have the following identity,
for all x ⊂ x ∪ {ξ} ⊆ y

λ

κ− λ

f(x)

f(y)
P (D′ = x|D = y) =

f(x)

f(x ∪ {ξ})
f(x ∪ {ξ})

f(y)
P (D′ = x∪{ξ}|D = y),

In other words, X(t) satisfies detailed balance with respect to

f(x)

f(y)
P (D′ = x|D = y)

which is therefore the stationary distribution of X(t), conditionally on D =
y. Since D is distributed according to πκ it follows from lemma 4.6 that
unconditionally the stationary distribution of X(t) is πλ.

Now consider another spatial birth and death process, E(t), t ≥ 0, on
P(y) with birth rate b(x, ξ) = 1{ξ∈y\x}λ/(κ − λ) and death rate K. Let E0

be an independent thinning of D with retention probability

λ/(K(κ− λ))

1 + λ/(K(κ− λ))
.
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This time we have, for all x ⊂ x ∪ {ξ} ⊆ y

λ

κ− λ
P (E0 = x|D = y) = KP (E0 = x ∪ {ξ}|D = y),

We see that E(t) satisfies detailed balance with respect to the conditional
distribution of E0 given D. It follows that E(t) is time-reversible and in
equilibrium if we set E(0) = E0.

X(t) and E(t) have identical birth rates while by (4.16) the death rate
of E(t) is greater than that of X(t). Setting X(0) = E(0) it is possible
to generate coupled realizations of X(t) and E(t) such that E(t) ⊆ X(t)
for all t. This works as follows. Suppose X(t) = x and E(t) = e, e ⊆
x ⊆ y. Then associate with every point of xi ∈ x an exponential lifetime
Li with mean 1/K and a uniform random variable Ui on [0, K]. Associate
with all points yi ∈ y \ e an exponential waiting time Wi with mean (κ −
λ)/λ. The first transition after time t takes place at time t + m where
m = min(L1, . . . , Ln(x), W1, . . . , Wn(y)−n(e)). If m = Li then the point xi

is removed (if present) from the E process and xi is removed from the X
process, but only if Ui ≤ f(x \ {xi})/f(x). If m = Wi the point ei is added
to the E process and (if not already present) to the X process.

We now explain how we can apply coupling-from-the-past (CFTP) to
obtain a perfect sample from the πλ, the stationary distribution of X(t).
Fix a time −T < 0 in the past. Since the E process is time reversible, we
can extend it from E(0) = E0 into the past until time −T . Now define a
process X−T on [−T, 0] starting at X−T (−T ) = E(−T ). We can arrange it
so that X−T is a birth and death process with the same dynamics as X, while
E(t) ⊆ X−T (t) ⊆ D for all t ∈ [−T, 0]. Because X−T has the same dynamics
as X, it follows that X−T (0) tends in distribution to πλ as T →∞.

To check if X−T (0) has reached equilibrium—so to say—we need a ‘lower
bound process’ L−T (·) with L−T (−T ) = E(−T ) and an ‘upper bound process’
U−T (·) with U−T (−T ) = D such that (cf. Kendall and Møller (1999) formulas
(3.5) to (3.7))

1. (‘sandwiching’) E(t) ⊆ L−T (t) ⊆ X−T (t) ⊆ U−T (t) ⊆ D for all −T ≤
t ≤ 0;

2. (‘funneling’) L−T (t) ⊆ L−S(t) ⊆ X−S(t) ⊆ U−S(t) ⊆ U−T (t), for all
−S ≤ −T ≤ t ≤ 0;

3. (‘coalescing’) if, for some s, L−T (s) = U−T (s) then L−T (t) = U−T (t),
for all t ≥ s.

Moreover, we need that the event {L−T (0) = U−T (0)} almost surely occurs
for finite T . If the above 3 inclusion properties hold and the latter event
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occurs then we can conclude that L−T (0) = U−T (0) is a perfect sample from
πλ. This is roughly the content of Theorem 3.1 of Kendall and Møller (1999).
The difference is that they consider a varying ‘maximal state’ D(t) but a fixed
minimal state E(t) = ∅, whereas we consider a fixed maximal state D(t) = D,
but a varying minimal state.

In practice, the CFTP algorithm would consist of successively choosing
increasing T and running E(t), L−T (t) and U−T (t) for t ∈ [−T, 0] until
L−T (0) = U−T (0).

The algorithm takes a long time to terminate when the difference between
D and E(0) is large. This occurs typically if the difference between κ and λ is
large. Therefore it is a good idea to choose a decreasing sequence κ = λ(0) >
λ(1) > · · · > λ(n) = λ and successively sample from πλ(0), πλ(1), . . . , πλ(n). At
each step we can use the sample obtained in the previous step as dominating
pattern D. In fact, in section 4.3 we showed how to choose the λ(i) in such
a way that the difference between D and E(0) is never more than a single
point. This allowed us to obtain samples from πλ for all λ in a given interval.

4.6.3 the hereditary case

Recall our definition of an hereditary point process at (4.15). Kendall and
Møller (1999) give two algorithms to obtain samples from a hereditary point
process with distribution πλ, one of which is based on birth-and-death pro-
cesses. They construct a b&d process X(t) with πλ as its stationary dis-
tribution and a dominating process D(t) which is in equilibrium and time
reversible. In fact, D(t) is at all times t a spatial Poisson process of inten-
sity Kλ. Kendall and Møller give a coupling of D(t) and X(t) such that
X(t) ⊆ D(t) for all t. They then demonstrate a coupling-from-the-past algo-
rithm with D(t) (t ∈ [−T, 0]) as a (variable) maximal state and E(t) = ∅ as
a trivial minimal state. The sample from πλ which the algorithm produces
lies between D(0) and E = ∅. When λ is large the difference between D(0)
and E will typically be large. If this is the case, then the algorithm will take
very long to terminate because it has many different configurations to choose
from.

We give a generalization of the work of Kendall and Møller which allows
us to take as a fixed minimal state a sample E ∼ πκ for an arbitrary κ <
λ. The maximal state D(t) will be a birth-and-death process which has
the superposition of E and a Poisson process of intensity K(λ − κ) as its
equilibrium distribution. Noting that the empty set is trivially a sample
from π0 we see that our generalization reduces to the Kendall and Møller
algorithm when we take κ = 0.

The use of the generalization is that it will allow us to choose an increasing
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sequence 0 = λ(0) < λ(1) < · · · < λ(n) = λ and successively sample from
πλ(0), πλ(1), . . . , πλ(n). At each step we can use the sample obtained in the
previous step as minimal pattern E to which we add a Poisson point process
of intensity K(λ(i + 1) − λ(i)) to obtain the maximal pattern D(0). If we
choose the steps from λ(i) to λ(i + 1) small enough, then the difference
between D(0) and E will always be small too.

The next lemma shows how we can obtain a sample from πλ by adding
points to a sample from πκ for an arbitrary κ < λ.

Lemma 4.7. Suppose condition (4.15) holds. Let 0 ≤ κ < λ. Then for all
x ∈ Ω ∑

y⊆x

f(x)

f(y)
fκ(y)pλ−κ(x \ y) = fλ(x). (4.19)

Proof This lemma basically follows from the superposition property of
Poisson processes. By condition (4.15) we have that f(x)/f(y) is bounded.
Now it follows from (4.14) that

fκ(y) = f(y)e(1−κ)|S|κn(y)

and
f(x) = fλ(x)e(λ−1)|S|λ−n(x).

Hence∑
y⊆x

f(x)

f(y)
pλ−κ(x \ y)fκ(y)

=
∑
y⊆x

fλ(x)

f(y)
e(λ−1)|S|λ−n(x)e−(λ−κ)|S|(λ− κ)n(x\y)f(y)e(1−κ)|S|κn(y)

= fλ(x)λ−n(x)
∑
y⊆x

(λ− κ)n(x)−n(y)κn(y)

= fλ(x).

�

Suppose we have a sample E = y = {y1, . . . , yn} from πκ for some κ < λ.
Now consider a spatial birth-and-death process X(t), t ≥ 0 on the space
{y ∪ x : x ∈ Ω} with birth rate b(y ∪ x, ξ) = (λ− κ)f(y ∪ x ∪ {ξ})/f(y ∪ x)
and death rate d(y ∪ x, ξ) = 1. One easily checks that

(λ− κ)
f(y ∪ x ∪ {ξ})

f(y ∪ x)

f(y ∪ x)

f(y)
pλ−κ(x) = 1

f(y ∪ x ∪ {ξ})
f(y)

pλ−κ(x ∪ {ξ}).
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So X(t) satisfies detailed balance with respect to

f(y ∪ x)

f(y)
pλ−κ(x),

which is therefore the density of the stationary distribution of X(t), con-
ditionally on E = y. Hence, by lemma 4.7 the unconditional stationary
distribution of X(t) is πλ.

Consider another b&d process, D(t), t ≥ 0, on {y ∪ x : x ∈ Ω} with
birthrate b(y ∪ x, ξ) = K(λ − κ) and death rate d(y ∪ x, ξ) = 1. Let D0 be
the union of y and be a sample from PoK(λ−κ). We have for all x ∈ Ω

K(λ− κ)pK(λ−κ)(x) = 1pK(λ−κ)(x ∪ {ξ}).

Hence if we set D(0) = D0 then D(t) is time reversible and in equilibrium.
X(t) and D(t) have the same death rates, while by (4.15) the birth rate

of D(t) is greater than the birth rate of X(t). Setting X(0) = D(0) it is
not difficult to couple D(t) and X(t) such that X(t) ⊆ D(t) for all t. This
could be done much like we indicated in the previous subsection for the anti-
hereditary case. In fact, a detailed description of the coupling is given in
Kendall and Møller (1999) for the particular—but in no sense special—case
κ = 0. They also explain how to apply CFTP to obtain a perfect sample
from the stationary distribution of X(t).


