
Chapter 2

Laslett’s line segments

2.1 Introduction

Almost to decades ago a study was to be made into the hazards of nuclear fuel
waste disposal in underground excavations in selected plutonic rock masses
of the Canadian Shield. Experiments had to be done related to thermal
heating and hydraulic conductivity along fractures in the rock. As part of this
research the construction was planned of an underground research laboratory
within the granitic rock of the Lac du Bonnet batholith in southeastern
Manitoba. For more information we refer to Stone et al. (1984). Figure 1.1
in the introduction to this thesis shows part of a map from that report of
roughly 160 by 160 meters of fractures in the rock at the Lac du Bonnet site.

This particular data set enters the statistical literature with Chung (1989a
and b). The statistical problem is to estimate from figure 1.1 the distribution
of the lengths of the fractures. Estimation of the length distribution of line
segments observed through a bounded window is sometimes called Laslett’s
line segment problem after Laslett (1982a and b).

We are not sure if the underground laboratory was ever built, but quite
apart from the original motivation the estimation problem presents a very
interesting statistical challenge. We encounter three main difficulties. First,
we have to deal with censoring, since most of the fractures are only partly
observed as the rock is only partly exposed due to vegetation, soil and water.
Secondly, the sample of (partly) observed cracks is biased, because longer
cracks stand a better chance of being observed than shorter ones. Thirdly,
the area of exposed rock where we observe the cracks is not convex. This
means that we might observe several fragments of a single crack. A single
glance at Figure 1.1 will convince the reader that it would be very difficult
to assess if two observed fragments belong to the same underlying fracture.
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32 Chapter 2. Laslett’s line segments

The first two problems, censoring and length bias, have been studied
rather extensively Laslett (1982a and b), van der Laan (1993), Gill (1994)
and Wijers (1995). The third difficulty, non-convexity of the observation
window, is treated here for the first time. Also, in the above contributions
the assumption is made that the locations of the fractures are distributed
according to a Poisson process. We will obtain our results under far more
general ergodicity assumptions.

A line segment process can be modeled as a marked point process, where
the points indicate the locations of the segments and the marks their lengths
and orientations. Assuming that the locations are scattered as a Poisson
process greatly facilitates any statistical analysis because then, conditional on
their number, the segments are independent. We will argue that an analysis
under the Poisson assumption is still relevant when that assumption is not
fulfilled. We feel that this is an important point and we do not want it to
be snowed under by details. Therefore we give a general—albeit somewhat
heuristic—discussion in the next section, which will then serve as a blueprint
for the remainder of the chapter.

The reader will search in vain for the actual estimate of the length distri-
bution of the Canadian fractures. As this thesis is on its way to the printer,
we have not yet implemented our estimator and extracted the necessary data
from Figure 1.1.

2.1.1 Inference for ergodic point processes

Consider a point process (see section 1.3) Φ = {(Ti, Xi)} on R × X with
intensity measure

dΛλ,F (t, x) = λdtdF (x),

where F is known to belong to some class F .
We think of Φ as a marked point process on R with marks Xi in a mark

space X . For instance, the Ti could be the locations of cars parked along a
street and the Xi could be their make. For another example, the Xi could
determine the length of a line segment starting at Ti. Evidently, this is a
very general set up and in fact our restriction to Ti taking values in R is not
at all necessary for our discussion.

We are primarily interested in estimating the mark distribution F0 which
is supposed to be in some collection F . The ‘nuisance’ parameter λ is also
assumed to be unknown to us.

We do not observe Φ entirely. Suppose that of points (Ti, Xi) outside a
set W ⊆ R×X we observe nothing, while if (Ti, Xi) ∈ W we only observe the
result of some known function Yi = g(Ti, Xi). The mapping g may depend
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on W . For instance, if the (Ti, Xi) represent line segments [Ti, Ti +Xi] then
Yi = g(Ti, Xi) could be |[Ti, Ti + Xi] ∩ [0, 1]|, the length of the intersection
with the unit interval. Then W = {(t, x) : [t, t+ x] ∩ [0, 1] 6= ∅}.

We now define a new ‘point process’ of observations

Ψ = {Yi} = {g(Ti, Xi) : (Ti, Xi) ∈W}.

It is convenient to think of the Yi as a point process because the observed
data will often be of similar structure as the incompletely observed model Φ.

Now suppose that Φ is Poisson (cf. section 1.3 on Poisson point processes).
Then the intensity λdtdF (x) completely determines the distribution of Φ.
The distribution of Ψ is also determined and can be described as follows.

Define, for all F ∈ F

µF =

∫ ∫
W

dtdF (x),

and assume it to be finite. The reader should mistake µF for the mean of F .
Now,

1. let N be distributed as a Poisson random variable with mean λµF ;

2. conditional on N = n draw an i.i.d. sample (Ti, Xi) of size n from the
‘normalized intensity’ measure

1W (t, x)
1

µF
dtdF (x); (2.1)

3. compute Yi = g(Xi, Ti);

4. identify samples Y1, . . . , Yn that are equal up to ordering.

It is easy to write down the likelihood for the pair (λ, F ) at the data
(N, Y1, . . . , YN).

e−λµF

N !
(λµF )N

N∏
i=1

∫∫
(t,x)∈g−1(Yi)∩W

1

µF
dtdF (x)N !.

We find the profile likelihood for estimating F by first fixing F and replacing
λ by its maximum likelihood estimator N/µF . We find

e−NNN

N∏
i=1

∫∫
(t,x)∈g−1(Yi)∩W

1

µF
dtdF (x).
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This profile likelihood can be interpreted as the likelihood of a missing data
problem (see section 1.4.4.) To make this clear we re-parameterize the prob-
lem. Define for all x

W (x) = {t ∈ R : (t, x) ∈W}.

Also define for all F ∈ F a transformation

dVF (x) =
|W (x)|
µF

dF (x). (2.2)

For later use we have the inverse transformation

dFV (x) =

(∫
x′

1

|W (x′)|dV (x′)

)−1 1

|W (x)|dV (x). (2.3)

so that FVF = F . Define V = {VF , F ∈ F}.
We can rewrite the distribution of (T,X) as

1W (t, x)
dt

|W (x)|dV (x). (2.4)

Our missing data problem takes the form

1. Sample X from V ∈ V

2. Given X = x sample T from the uniform distribution on W (x)

3. Set Y = g(T,X)

In line with section 1.4.4 we can also describe the situation as follows.
Defining a Markov kernel

K(dy; x) =

∫
W (x)

δg(t,x)(dy)
dt

|W (x)| ,

we have that

KV (dy) =

∫
K(dy; x)dV (x)

is the distribution of Y = g(T,X). The model for the observations Yi is thus

KV = {KV : V ∈ V}.

Conditionally on N = n, the maximum likelihood estimator V̂n satisfies∫
log

dKV

dKV̂n
dPn ≥ 0 ∀V ∈ V.
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Suppose that F0 is the ‘true’ parameter. The MLE V̂n is of course supposed
to estimate V0 = VF0 (cf. (2.2)). We define F̂n = FV̂n (cf. (2.3)) as the MLE
of F0.

Now if the model V—and hence KV—is convex, we can attempt to use
Theorem 1.2 to prove the convergence of KV̂n to KV0. To conclude con-
vergence of V̂n to V0 we of course need to have identifiability: If V 6= V ′

then KV 6= KV ′. Ultimately, convergence of V̂n to V0 hopefully implies that
F̂n = FV̂n tends to FVF0

= F0.
To use Theorem 1.2 we need a sequence Vn such that KVn tends to KV0

and prove ∫
dKVn

dKV̂n
d(Pn −KVn)→ 0. (2.5)

Such a proof, and indeed the choice of Vn, will rely on the fact that Pn
converges to KV0.

But what if Φ is not Poisson? Then we can no longer condition on the number
of observations and treat them as an i.i.d. sample. We cannot write down
the likelihood and maximize it. Also, the above asymptotics involving the
number of observations tending to infinity become meaningless.

In spite of all this, we propose to use exactly the same estimator. Though
no longer the maximum likelihood estimator, one still expects it to have nice
properties. We explain.

First, some notation. We can consider Ψ as a random set of points but
also as a random measure. By Ψ(A) we mean the number of points of Ψ that
fall in some measurable set A. In fact, we write Ψ(A) =

∫
A

dΨ(y). Upon
normalization, we obtain a random probability measure

Ψ(dy)

Ψ(g−1(W ))
.

Now we can define a ‘maximum likelihood estimator’ V̂ as satisfying∫ (
log

dKV

dKV̂

)
d

Ψ(y)

Ψ(g−1(W ))
≥ 0 ∀V ∈ V,

and we define F̂ = FV̂ . Of course, all this is just notation; the estimator
we just defined coincides exactly with the maximum likelihood estimator we
defined earlier for the case where Φ is Poisson.

We will study the asymptotics of the present estimator as more and more
of the underlying process Φ is revealed. Suppose we have a sequence W =
W1 ⊆W2 ⊆, . . . . Define

Ψi = {gi(Ti, Xi) : (Ti, Xi) ∈ Wi}.
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Note that the gi may depend on Wi. Since we defined W = W1 we have
Ψ = Ψ1.

Define

µi,F =

∫ ∫
Wi

dtdF (x),

and
Wi(x) = {t ∈ R : (t, x) ∈Wi}.

Similarly to (2.2) and (2.3), define

dVi,F (x) =
|Wi(x)|
µi,F

dF (x) (2.6)

and

dFi,V (x) =

(∫
x′

1

|Wi(x′)|
dV (x′)

)−1
1

|Wi(x)|dV (x). (2.7)

Define
Vi = {Vi,F , F ∈ F}.

Finally, define a Markov kernel

Ki(dy; x) =

∫
Wi(x)

δgi(t,x)(dy)
dt

|Wi(x)| .

We now have a sequence of statistical experiments: observation of Ψi. The
model for the distribution of the data under the Poisson assumption changes
with each experiment as the mapping gi may depend on the ‘window’ Wi.
Thus we have a sequence of models

KiVi = {KiV : V ∈ Vi} = {KiVi,F : F ∈ F}.

We can define a sequence of estimators V̂i by requiring∫ (
log

dKiV

dKiV̂i

)
d

Ψi(y)

Ψi(g
−1
i (Wi))

≥ 0 ∀V ∈ Vi.

We set F̂i = Fi,V̂i
We would like to use the ideas behind theorem 1.2 to prove that the F̂i

tend to F0. However, first we must try to use ergodic properties of Φ and
the sequence Wi to show that for all F ∈ F there exist V∞,F and K∞V∞,F
such that

Vi,F → V∞,F and KiVi,F → K∞V∞,F . (2.8)
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These convergences are established for Laslett’s problem in section 2.5.3.
There it is also made clear in which sense they hold.

Next, we need a sequence Vi such that KiVi tends to K∞V∞,F0. Then we
show that ∫ (

dKiVi

dKiV̂i

)
d

(
Ψi(y)

Ψi(g−1(W ))
−KiVi

)
→ 0. (2.9)

From this we can conclude that KiV̂i converges to K∞V∞,F0. Identifiability

will then imply that also V̂i tends to V∞,F0. This will (at least for Laslett’s

problem) imply that F̂i = Fi,V̂i tends to F∞,V∞,F0
= F0.

For the convergence of (2.9), we will need that

Ψi(dy)

Ψi(g−1(W ))
→ K∞V∞,F0(dy).

For Laslett’s problem this is shown in section 2.5.3.

2.1.2 Laslett’s line segment problem

A line segment process is conveniently modeled by a marked point-process in
the plane, where the points indicate the location of, say, the left endpoints
and the marks indicate orientation and length. We consider a point process
Φ = {(~Si, Xi,Θi)} on R2×R+×(−π/2, π/2). We could call R+×(−π/2, π/2)

the mark-space. Take the ~Si to be left endpoints of the line segments and
let Xi and Θi be their lengths and orientations. Let us use square brackets,
writing [s, x, ϑ], to denote a line segment in R2, rather than a point in R2 ×
R+ × (−π/2, π/2).

Suppose that Φ is stationary (with respect to shifts on R2). Also, suppose
that each segment’s length and orientation are independent, in the sense that
Φ has an intensity measure of the form λd~sdF (x)dK(ϑ), where λ > 0 and F
and K are distribution functions on R+ and (−π/2, π/2), respectively. Let
µ denote the mean of F , and suppose that it is finite. Note that by giving
this intensity we have not completely described the distribution of Φ.

Now we assume that K is known. Our goal is nonparametric estimation
of the length distribution F . This means that F belongs to a model, say F ,
which consists of all probability distributions on the R+. Lok (1994) considers
just the opposite situation: she assumes F to be known, and estimates K. If
both F and K are unknown we could alternate estimation of F as presented
here and estimation of K as presented by Lok (1994).

As a technical aside we point out the following. For reasons of mathe-
matical convenience we decided to let the orientations range in (−π/2, π/2),
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excluding vertical line segments with orientation π/2. However, there is no
loss of generality in doing so, because we can choose the orientation of the
entire process so that K does not have a jump at π/2.

We have defined a stationary line segment process and stated our aim to
estimate the distribution of the lengths of the line segments. We now describe
the data that are available to us. Let W ⊂ R2 be a random closed set and
let B be the unit square; B = [0, 1] × [0, 1]. Suppose we can only observe
the intersections of the line segments with W = W ∩ B. In the Canadian
dataset, c.f. Figure 1.1, B corresponds to the 160 × 160 meters square area
and W is the irregular black region through which we observe the fractures.

After we come up with an estimator of F , shall study its asymptotic
properties. In spatial statistics basically two types of asymptotics are usually
considered (Cressie (1991) p. 100). The first is ‘infill’ asymptotics where
the observation region is kept fixed, but within that region the number of
observations increases. The other is ‘increasing-domain’ asymptotics, where
the observation region is expanded. In fact, we shall define Bn = [0, n]×[0, n]
and consider observation of the line segment process Φ through W ∩ Bn as
n tends to infinity. When doing so, we shall have to impose some ergodicity
assumptions on Φ and W.

2.1.3 Some history

We now present a brief overview of the work that has already been done by
other authors. Much effort has been put into the one dimensional case where
line segments are scattered according to a Poisson process on the real line and
the segments are observed (without occlusion) through an interval. Laslett
(1982 a) showed how the EM algorithm can be used to obtain the (sieved)
nonparametric maximum likelihood estimator. Wijers (1995b) has shown it
to be consistent. Gill (1994), van der Laan (1995) and Wijers (1995a) have
(jointly) established its asymptotic normality and efficiency. Many of the
methods that have been developed for the one-dimensional case carry over
to the two dimensional case, as long as the observation window is convex.
The trick is to subdivide the plane into parallel strips of infinitesimal width
and doing so in every direction. Then through each strip we observe—as it
were—a one-dimensional line segment process and then we integrate over all
strips and all directions. We shall perform such calculations later on. At
that time this approach will be made more precise.

Two things should be noted about assuming Φ to be Poisson andW to be
convex. First, the Poisson assumption allows us to condition on the number of
observations, after which we have an i.i.d. sample and we can apply standard
estimation techniques. Secondly, the fact that the observation window W is
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convex ensures that we can not observe more than one fragment of a single
underlying line segment.

2.1.4 Scope of our contribution

We study the two dimensional line segment process observed through a non-
convex window. This is prompted by the fact that the exposed rock surface
of the Canadian data is obviously non-convex.

If the observation window is non-convex we might observe several frag-
ments of a single line segment. It may occur, as it does with the Canadian
data, that it is near impossible to decide if two fragments belong to the same
fracture. As a consequence the observed fragments may be dependent in a
way unknown to us.

In this situation it is of no use to assume that the segments are scattered
as a Poisson process. Even if we could condition on the number of different
segments that are observed, the fragments are not necessarily distributed as
an i.i.d. sample.

However, we propose that the statistician analyze the data “as if” the
observed fragments are scattered according to a Poisson process. In this
simpler situation we find the non-parametric maximum likelihood estimator
of the length distribution of the fractures. We shall show consistency of the
estimator without using the Poisson assumption.

Under the Poisson assumption the estimator may well be efficient, though
we have not tried to prove this. Without the Poisson assumption, it will
certainly not be efficient because we effectively ignore dependencies among
the data, thus throwing away information. However, we feel confident that
this loss of information is minor.

2.2 A re-parameterization

Above we briefly explained how to extend the one-dimensional case to the
two-dimensional case. We now demonstrate in detail how this works. The
main step is to re-parameterize the location of each line segment relative to
the unique line in the plane on which the segment lies.

Recall that we are studying a point-process Φ = {(~Si, Xi,Θi)} on R2 ×
R+ × (−π/2, π/2), with finite intensity λd~sdF (x)dK(ϑ). The ~Si denote left
endpoints of line segments of length Xi and orientation Θi. It is straight-
forward to represent the locations of the left endpoints relative to rotated
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coordinate axes. Define two functions

t1(s1, s2, ϑ) = s1 cos(ϑ) + s2 sin(ϑ)

t2(s1, s2, ϑ) = −s1 sin(ϑ) + s2 cos(ϑ).

For fixed ϑ this map represents (s1, s2) ∈ R2, with respect to the coordinate
axes tilted counter-clockwise over an angle ϑ, cf. Figure 2.1. Now consider the

t

t

s

s

2

2

1

1

θ

Figure 2.1: Re-parameterization of locations.

map that assigns (t1(s1, s2, ϑ), t2(s1, s2, ϑ), x, ϑ) to (s1, s2, x, ϑ). The image

of Φ under this mapping is a new point-process Φ′ = {(~Ti, Xi,Θi)} on R2 ×
R+ × (−π/2, π/2) with intensity

λd~tdF (x)dK(ϑ).

This follows since Lebesgue measure is invariant under rotation.
Write `(d, ϑ) for the line with orientation ϑ at (signed) distance d from

the origin. In our new parameterization, a line segment [~t, x, ϑ] lies exactly
on the line `(t2, ϑ).
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Denote W(d, ϑ) =W ∩ `(d, ϑ). Let us assume that W(d, ϑ) is always the
union of at most a countable number of intervals: W(d, ϑ) = ∪mW(d, ϑ,m).
The situation is depicted in Figure 2.2.

θ
d

l  (d, θ)

Figure 2.2: The line `(d, ϑ) intersecting (part of) the random set W (grey)
producing closed intervals W(d, ϑ,m) (bold).

Since W is non-convex, the intersection of a line segment [~t, x, ϑ] withW
might consist of several fragments. In other words, we may have a non-empty
intersection of [~t, x, ϑ] with W(t2, ϑ,m) for several values of m. Conversely,
every fragment corresponds to a line segment [~t, x, ϑ] and a positive number
m. Our use of the words ‘fragment’ and ‘segment’ will have always precisely
this meaning.

Consider countably many identical copies of Φ′ = {(~Ti, Xi,Θi)}, one for
each m. The result, Φ′′ = Φ′×N is a stationary point-process on R2×R+×
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(−π/2, π/2)×N with intensity

λd~tdF (x)dK(ϑ)dC(m),

where C denotes counting measure on N. This new point-process Φ′′ can
represent any fragment that could possible arise from the line segments of
Φ′. A fragment [~t, x, ϑ,m] is the intersection of a line segment [~t, x, ϑ] with
W(t2, ϑ,m). Of course such an intersection may very well be empty.

We must now deal with further edge effects because we observe the line
segments only through the intersection ofW with the unit square B = [0, 1]×
[0, 1]. For all (d, ϑ,m) ∈ R× (−π/2, π/2)× N let

W (d, ϑ,m) =W(d, ϑ,m) ∩B

Define

D = {(~t, x, ϑ,m) ∈ R2 × R+ × (−π/2, π/2)× N : W (t2, ϑ,m) 6= ∅}.

Only points in D can correspond to fragments that could be observed through
W .

We define two functions on D, t : D → R and l : D → R+, as follows. Let
t(~t, x, ϑ,m) be the distance from the left endpoint of the line segment [~t, x, ϑ]
to the left endpoint of W (t2, ϑ,m), which we take negative if the first is to
the left of the latter. Let l(~t, x, ϑ,m) be the (strictly positive) length of the
interval W (t2, ϑ,m).

Now consider the map that assigns (t(~t, x, ϑ,m), x, l(~t, x, ϑ,m)) to each
‘potential fragment’ (~t, x, ϑ,m) ∈ D. The image under this map of Φ′′ ∩ D
is a new point-process Ψ = {(Ti, Xi, Li)} on R × R+ × R+. The points of
Ψ can be interpreted as segments [Ti, Ti + Xi] on the real line which can be
observed through intervals [0, Li]. These intersections [Ti, Ti + Xi] ∩ [0, Li]
are the observed fragments.

We have now accomplished what we set out to do; we are now in the one-
dimensional case. Wijers (1995) studied the case where the Li are constant
almost surely and the Ti follow a homogeneous Poisson process. We shall
be able to make much use of his methods. However, we wish to stress that
the Poisson assumption certainly does not hold here because some of the
[Ti, Ti +Xi] are actually different representations of the same line segment!

We now demonstrate that the intensity of Ψ is given by

λdtdF (x)dν(l)

where

dν(l) =

∫
ϑ

∫
t

∑
m

δl(t,ϑ,m)(dl)dtdK(ϑ).
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Here δl(t,ϑ,m)(dl) is Dirac measure putting point mass at l(t, ϑ,m).

We must show that dt1dν(l) is the image measure of d~tdK(ϑ)dC(m) under
the transformation, described above, that turned Φ′′ ∩ D into Ψ. First we
point out that t(.) does not depend on x and that l(.) does not depend on
either t1 or x. Abusing notation we write

t(~t, x, ϑ,m) = t(~t, ϑ,m).

l(~t, x, ϑ,m) = l(t2, ϑ,m).

Next, we notice that t(~t, x, ϑ,m) = t1 + t(0, t2, x, ϑ,m). It now follows that∫
~t

∫
ϑ

∑
m

1{a<t(~t,x,ϑ,m)≤b}1{c<l(~t,x,ϑ,m)≤d}d~tdK(ϑ)

=

∫
t1

∫
t2

∫
ϑ

∑
m

1{a<t1+t(0,t2,ϑ,m)≤b}1{c<l(t2,ϑ,m)≤d}dt1dt2dK(ϑ)

=

∫ b

a

dt1

∫
t2

∫
ϑ

∑
m

(1{c<l(t2,ϑ,m)≤d}dK(ϑ)dt2

=

∫ b

a

dt1

∫ d

c

dν(l).

The measure ν on R+ can be interpreted geometrically. Recall that we
defined `(d, ϑ) to be a line with orientation ϑ at (signed) distance d from the
origin. We define a random line L as follows. First, consider a circle B(c, r)
with center c and radius R such that W ⊂ C(c, R). Next, draw a random
variable Θ from K and a random variable D from the uniform distribution
on [−R,R]. Finally, define L to be the line at an angle Θ with respect to the
positive x-axis and at (signed) distance D from the origin. Now we condition
on the event that L hits W . Intersecting L with W we obtain a collection of
intervals and ν(a, b) =

∫ b
a

dν(l) is the expected number of intervals of length
between a and b.

We note that∫
l

ldν(l) =

∫
l

∫
ϑ

∫
t

∑
m

l1l(t,ϑ,m)(dl)dtdK(ϑ)

=

∫
ϑ

∫
t

∑
m

l(t, ϑ,m)dtdK(ϑ)

=

∫
ϑ

|W |dK(ϑ)

= |W |.
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We shall denote ∫
l

dν(l) = κ.

Integrals with respect to ν of such simple functions as above, are eas-
ily estimated using stereological methods. One would for instance sample
random lines (or even a random grid of lines) hitting W and estimate the
integrals by empirical averages. A nice introduction into the rudiments of
stereology is given in Baddeley (1999a). There one will also find that if K is
the uniform distribution, then κ = π|∂W |, where |∂W | denotes the length of
the boundary of W .

The points of Ψ = {(Ti, Xi, Li)} represent segments [Ti, Ti + Xi] on the
real line that could be observed through intervals [0, Li]. Define

A = {(t, x, l) : [t, t+ x] ∩ [0, l] 6= ∅} = {(t, x, l) : −x ≤ t ≤ l}.

If a point of Ψ falls in A, the corresponding fragment is (partly) observed.
Let us calculate the expected number of observed fragments, which equals
the expected number of points of Ψ in A.∫

A

λdtdF (x)dν(l) =

∫
l

∫
x

∫ l

−x
λdtdF (x)dν(l)

=

∫
l

∫
x

(l + x)λdF (x)dν(l)

=

∫
l

(l + µ)λdν(l) = λ(|W |+ µκ) (2.10)

2.3 Poisson

We have a stationary point process Ψ = {Ti, Xi, Li} on R × R+ × R+ with
intensity λdtdF (x)dν(l). These points represent line segments [Ti, Ti + Xi]
that might be observed through associated intervals [0, Li]. The situation
is very much akin to the set-up of Wijers (1995a and b). There are two
differences. First he supposed the Li to be constant. Secondly—and much
more importantly—he assumed that the fragments {(Ti, Xi)} are a Poisson
process. This is certainly not the case here, even if the original line segments
of Φ were Poisson. The problem is that two different fragments could have
come from a single segment.

However, we may as well analyze the data as if Ψ were Poisson, as long
as we make sure that our eventual results hold regardless of the dependen-
cies between the points of Ψ. This is exactly what we shall do. Under the
Poisson assumption we shall be able to derive the non-parametric maximum
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likelihood estimator of the distribution function F . But whether or not the
observations are independent, the algebraic properties of the maximum likeli-
hood estimator remain valid. To prove its consistency when the observations
are dependent we can basically copy the proof for the independent case.
We only need to replace the strong law of large numbers by some ergodic
theorem. We discussed these ideas in section 2.1.1.

So let us suppose Ψ is a Poisson point process. Then, given Ψ(A) = n,
the points (Ti, Xi, Li) in A are distributed as the set of values in an i.i.d.
sample of size n from the normalized intensity, which by (2.10) equals

1A(t, x, l)
λdtdF (x)dν(l)∫
A
λdtdF (x)dν(l)

= 1A(t, x, l)
dtdF (x)dν(l)

|W |+ µκ
.

(2.11)

We must now address the problem of ‘length bias’: Because longer line seg-
ments stand a better chance of hitting W than shorter ones, the lengths Xi

of the line segments that hit W are not a sample from F . Hence, even if
we observed the Xi, their empirical distribution would not estimate F . We
therefore introduce the distribution function, say V , of the length X of a line
segment [T, T + X], given its observation through [0, L]. We calculate just
like we did to derive (2.10)

V (x) =

∫ x

y=0

∫
l

∫ l

t=−x

dtdF (x)dν(l)

|W |+ µκ
(2.12)

=

∫ x

y=0

|W |+ yκ

|W |+ µκ
dF (y).

One can show that as F ranges over all possible distributions (with finite
mean µ), then V too varies over all distributions. Note that∫

1

|W |+ xκ
dV (x) =

∫
1

|W |+ µκ
dF (x) =

1

|W |+ µκ

so that one can recover µ from V and hence also recover F from V .
Formula (2.11) for the conditional distribution of (T,X, L) given obser-

vation becomes in terms of V

1A(t, x, l)
dtdV (x)dν(l)

|W |+ xκ
= 1A(t, x, l)

dt

l + x
dV (x)

l + x

|W |+ xκ
dν(l).

(2.13)

Define, for all x, measures

dρ(l|x) =
l + x

|W |+ xκ
dν(l).

and note that these are probability measures for all x. Hence, by inspection
of (2.13) we can interpret the distribution of (T,X, L) as
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1. X ∼ dV

2. Given X = x, L ∼ dρ(l|x)

3. Given X = x and L = l, T ∼ Unif[−x, l]

We call the collection (Ti, Xi, Li) the complete data. We observe only a
many-to-one mapping of it when we observe the intervals [0, Li] and their
intersection with the [Ti, Ti+Xi]. This reduction, together with the fact that
the distribution of the complete data has the above cascade-like structure,
casts the problem of estimating V as a non-parametric missing data problem,
cf. section 1.4.4. In this special model the parameter space is convex and the
distribution of a single observation is linear in the parameter.

We now derive the distribution of the (observed) data. Define Yi =
|[Ti, Ti + Xi] ∩ [0, Li]|, the length of the i-th fragment. Let ∆i be the num-
ber of endpoints of [Ti, Ti + Xi] that fall outside of [0, Li]. Also we observe
Li, the length of the interval in which a fragment is observed. Under the
assumption that the {Ti} are Poisson it will turn out that (Y,∆) is sufficient
for estimating V . At this point we introduce two functions that will help
describe the distribution of the data.

g(x) =

∫
[x,∞)

1

|W |+ κy
dV (y) (2.14)

h(x) =

∫
[x,∞)

y − x
|W |+ κy

dV (y). (2.15)

For the case ∆ = 1, V will enter the distribution of Y only through g, and
for the case ∆ = 2 only through h. There is a very useful relation between
V , g and h which is easy to check using the above two definitions. For all
x > 0

1 = κh(x) + (|W |+ κx)g(x) + V (x−). (2.16)

where V (x−) =
∫

[0,x)
dV (y).

Suppose that dρ(.|x) (the distribution of L given X = x) is degenerate at
some fixed l. We are then exactly in the situation studied by Wijers (1995).
We follow his derivation. First consider the region

Al = {(t, x) : [t, t+ x] ∩ [0, l] 6= ∅} = {(t, x) : −x ≤ t ≤ l}.

which can be subdivided into regions lc, rc, uc and dc as in figure 2.3. For a
point (t, x) in lc the intersection of [t, t + x] with [0, l] will be left censored.
Similarly, we distinguish right censored (rc), uncensored (uc) and doubly
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t

x

dc

uc

lc rc

l0

Figure 2.3: Subdividing Al into different censoring types.

censored (dc). Left and right censored observations are taken together as
censoring ‘type’ ∆ = 1; observation of one endpoint. Because L = l a.s., the
density of (t, x) becomes, cf. (2.13)

1Al(t, x)
dt

l + x
dV (x).

The sub-distributions for the various censoring types can be computed by
integrating, over the shaded regions in Figure 2.3. We take right and left
censored observations together. We find

P l(dy, 0) =
l − y
l + y

dV (y)

P l(dy, 1) = 2

∫ ∞
y

1

l + x
dV (x)dy

P l(dy, 2) =

∫ ∞
y

x− y
l + x

dV (x)δl(dy).

These formulas are easily modified to accommodate general dρ(l|x). Re-
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DC

BA

00

00

lx

lxlx

l

Figure 2.4: Integration regions for various sub-distribution functions.

calling that dρ(l|x) = l+x
|W |+xκdν(l) we have

P (dy, dl, 0) = 1{l≥y}
l − y
l + y

dρ(l|y)dV (y) = 1{l≥y}
l − y
|W |+ κy

dν(l)dV (y)

P (dy, dl, 1) = 21{l≥y}

∫ ∞
y

1

l + x
dρ(l|x)dV (x)dy

= 21{l≥y}dν(l)

∫ ∞
y

1

|W |+ κx
dV (x)dy

= 21{l≥y}dν(l)g(y)dy

P (dy, dl, 2) =

∫ ∞
y

x− y
l + x

dρ(l|x)dV (x)δl(dy)

= dν(l)

∫ ∞
y

x− y
|W |+ κx

dV (x)δl(dy)

= dν(l)h(y)δl(dy).

We see that the conditional distribution of L, given Y and ∆ does not depend
on V . Hence (Y,∆) is sufficient for estimation of V (at least under the present
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Poisson assumption). The joint distribution of (Y,∆) is

P (dy, 0) =

∫
l

P (dy, dl, 0) =

∫
l≥y(l − y)dν(l)

|W |+ κy
dV (y) (2.17)

P (dy, 1) =

∫
l

P (dy, dl, 1) = 2ν([y,∞))g(y)dy (2.18)

P (dy, 2) =

∫
l

P (dy, dl, 2) = dν(y)h(y) (2.19)

Suppose that τ is the supremum of the support of ρ(.|x) over all x. Then
τ is an upper bound for the length of a fragment that can be observed in W .
That is, P (Y > τ) = 0. Note that

g(x) =

∫
[x,∞)

1

|W |+ κy
dV (y)

=

∫
[x,τ)

1

|W |+ κy
dV (y) +

∫
[τ,∞)

1

|W |+ κy
dV (y)

=

∫
[x,τ)

1

|W |+ κy
dV (y) + g(τ)

h(x) =

∫
[x,∞)

y − x
|W |+ κy

dV (y)

=

∫
[x,τ)

y − x
|W |+ κy

dV (y) +

∫
[τ,∞)

y − τ + τ − x
|W |+ κy

dV (y)

=

∫
[x,τ)

y − x
|W |+ κy

dV (y) + h(τ) + (τ − x)g(τ).

We define

H = κh(τ) G = (|W |+ κτ)g(τ).

and recall that relation (2.16) states that G + H + V (τ−) = 1. Later on we
shall interpret G and H as probabilities. We can express the distribution of
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(Y,∆) in terms of V restricted to [0, τ), G and H. For y < τ

P (dy, 0) =

∫
l≥y(l − y)dν(l)

|W |+ κy
dV (y) (2.20)

P (dy, 1) = 2ν([y,∞))dyg(y) = 2ν([y,∞))dy

∫ ∞
y

1

|W |+ κx
dV (x)

= 2ν([y,∞))dy(

∫ τ−

y

1

|W |+ κx
dV (x) +

∫ ∞
τ

1

|W |+ κx
dV (x))

= 2ν([y,∞))dy

∫ τ−

y

1

|W |+ κx
dV (x) +

2ν([y,∞))dy

|W |+ κτ
G (2.21)

P (dy, 2) = dν(y)h(y) = dν(y)

∫ ∞
y

x− y
|W |+ κx

dV (x)

= dν(y)(

∫ τ−

y

x− y
|W |+ κx

dV (x) +

∫ ∞
τ

x− τ
|W |+ κx

dV (x)

+

∫ ∞
τ

τ − y
|W |+ κx

dV (x))

= dν(y)

∫ τ−

y

x− y
|W |+ κx

dV (x) +
dν(y)

κ
H +

(τ − y)dν(y)

|W |+ κτ
G.

(2.22)

Because (2.16) expresses G in terms of V (τ−) and H, the distribution of
the data is fully parameterized by

(V |[0,τ), H),

where V |[0,τ) ranges over all (possibly defective) distribution functions and
H is any positive real such that V (τ−) + H ≤ 1. Below we demonstrate
that there is a 1-1 correspondence between (V |[0,τ), H) and (F |[0,τ), µ), where
F |[0,τ) ranges over all (possibly defective) distribution functions and µ is any

positive real exceeding
∫ τ−

0
xdF (x).

By the way, it is interesting that without any observations exceeding τ ,
the mean of F can be estimated.

To express F |[0,τ) and µ in terms of V |[0,τ) and H, we first note that
g(τ) = G/(|W | + κτ) is determined by V (τ−) and H through (2.16). We
have∫

[0,τ)

1

|W |+ κy
dV (y) + g(τ) =

∫ ∞
0

1

|W |+ κy
dV (y)

=

∫ ∞
0

1

|W |+ κµ
dF (y) =

1

|W |+ κµ
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so that

µ =
1

κ

(
1∫

[0,τ)
1

|W |+κydV (y) + g(τ)
− |W |

)
(2.23)

and

F (x) =

∫ x

0

|W |+ κµ

|W |+ κy
dV (y)

=
1∫

[0,τ)
1

|W |+κydV (y) + g(τ)

∫ x

0

1

|W |+ κy
dV (y). (2.24)

2.4 EM

Under the assumption that the fragments we observe are independent, we
have a nonparametric missing data problem (see section 1.4.4).

1. X ∼ V, V ∈ V = {all distributions on R+}

2. Given X = x, L ∼ dρ(l|x)

3. Given X = x and L = l, T ∼ Unif[−x, l]

4. Observe (Y,∆) = g(X, T, L)

where Y = |[T, T +X]∩ [0, L]| and ∆ is the number of unobserved endpoints.
As we have seen, the distribution of the data (Y,∆) depends on V only

through its restriction to [0, τ) and a functional H. This means that the
model V is not identifiable from the data. If two distribution functions V
and V ′ agree on [0, τ) and have the same H’s, then they can never be told
apart on the basis of observing (Yi,∆i).

We could reduce V in such a way that it becomes identifiable, but then
the model is no longer completely nonparametric. However, we can construct
a different model consisting of all probability measures on a different space,
and a new missing data problem such that model is identifiable. Of course
we must make sure that the model for the observed data remains the same.

We now state a nonparametric, identifiable missing data problem, such
that the distribution of the observed data satisfies (2.20) to (2.22). We again
use the symbol V to denote the model for the complete data. We hope this
does not confuse too much.

The (new) model V for the complete data, say X, consists of all proba-
bility distributions on the space [0, τ) ∪ {†, ‡}. We write V ({†}) = P (X =
†) = G and V ({‡}) = P (X = ‡) = H. We must have V (τ−) +G+H = 1.

Sample X from V ∈ V. Next,
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• If X = x ∈ [0, τ) we draw an L from dρ(.|x) and given L = l we draw
a uniform T on [−x, l]. We set Y = |[T, T + X] ∩ [0, L]| and ∆ is the
number of endpoints of [T, T +X] outside of [0, L].

• If X = † we sample (Y,∆) from

11(δ)
2ν([y,∞))dy

|W |+ κτ
+ 12(δ)

(τ − y)dν(y)

|W |+ κτ
.

• If X = ‡ we sample (Y,∆) from

12(δ)
dν(y)

κ
.

It is certainly not hard to check that the distribution of (Y,∆) under this
new scheme is indeed again given by (2.20) to (2.22).

Now, because we have a completely nonparametric missing data model we
can use every square integrable function which integrates to zero as a score
function. In particular, we can use indicator functions of measurable sets in
[0, τ) ∪ {†, ‡} minus their expectations. As in (1.14) we find the following
system of score equations

V̂n(A) =
1

n

n∑
1

PV̂n(Xi ∈ A|Yi,∆i), A ⊆ [0, τ) ∪ {†, ‡}
(2.25)

or in other words

V̂ (dx) =
1

n

n∑
1

PV̂n(Xi ∈ dx|Yi,∆i), x ∈ [0, τ) (2.26)

V̂n({‡}) = Ĥ =
1

n

n∑
1

PV̂n(X = ‡|Yi,∆i) (2.27)

and by (2.16)

V̂n({†}) = 1− V̂n({‡})− V̂n(τ−). (2.28)

Solving the above equations iteratively is an instance of the EM algorithm.
From one iteration step to the next the support will not increase. Hence, one
should first decide on the support of V̂n and then start the iterations with
an initial guess which does not have smaller support. The support of the
true NPMLE (as defined in (1.1)) is unknown to us. We choose to start
the iterations with a distribution V on [0, τ) ∪ {†, ‡} with mass only at the
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observed uncensored observations and at the points † and ‡. Thus we obtain
a ‘data sieved’ NPMLE (see section 1.4.1).

To find explicit expressions for the above score equations, note that the
distribution of the data, specified in (2.20) to (2.22), is of the form

P (dy, δ) = KV (dy, δ) =

∫
K(dy, δ|x)dV (x).

We recognize, for y ∈ [0, τ) and δ ∈ {0, 1, 2},

K(dy, δ|x) = 10(δ)

∫
l≥x(l − x)dν(l)

|W |+ κx
δx(dy)

+ 11(δ)2ν([y,∞))

(
1(y,τ)(x)

|W |+ κx
+

1{†}(x)

|W |+ κτ

)
dy

+ 12(δ)

(
1(y,τ)(x)(x− y)

|W |+ κx
+

1{†}(x)(τ − y)

|W |+ κτ
+

1{‡}(x)

κ

)
dν(y).

Given a sample (y1, δ1), . . . , (yn, δn) suppose that x1, . . . , xm are the lengths
of all different uncensored observations. Consider the (random) measure

µ(dy, δ) = 10(δ)
m∑
i=1

∫
l≥xi(l − xi)dν(l)

|W |+ κXi

δxi(dy)

+ 11(δ)1[0,τ)(y)ν([y,∞))dy

+ 12(δ)1[0,∞)(y)ν(dy).

This sigma-finite measure µ dominates K(dy, δ|x) for all x ∈ {x1, . . . , xm} ∪
{†, ‡}. The Radon–Nikodym derivative of K(dy, δ|x) with respect to µ(dy, δ)
is, for all x ∈ {x1, . . . , xm} ∪ {†, ‡}

k(y, δ; x) = 10(δ)1[0,τ)(x)1x(y)

+ 11(δ)

(
1(y,τ)(x)

|W |+ κx
+

1{†}(x)

|W |+ κτ

)
+ 12(δ)

(
1(y,τ)(x)(x− y)

|W |+ κx
+

1{†}(x)(τ − y)

|W |+ κτ
+

1{‡}(x)

κ

)
.

We arrange it so that the data sieved NPMLE V̂n puts all its mass on
{x1, . . . , xm} ∪ {†, ‡}. Thus, for V̂n almost all x the mixing kernel K is
dominated by a single sigma-finite measure as was required in section 1.4.4.
In that section we also specified what the score equations for a nonparametric
missing data problem look like, cf. (1.17). We find

V̂n(A) =

∫ ∫
A
k(y, δ; x)dV (x)∫

x′ k(y, δ; x′)dV (x)
dPn(y, δ)
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where Pn is the empirical distribution of the data putting mass 1/n at the
observed (y1, δ1), . . . , (yn, δn). The equations work out to

V̂n({xi}) = Pn(xi, 0)

+
V̂n({xi})
|W |+ κxi

∫ xi

y=0

1

ĝn(y)
Pn(dy, 1)

+
V̂n({xi})
|W |+ κxi

∫ xi

y=0

xi − y
ĥn(y)

Pn(dy, 2), i = 1, 2, . . . ,m

V̂n({‡}) = Ĥn = Ĥn

∫
y

1

ĥn(y)
Pn(dy, 2).

where, cf. (2.16)

V̂n({†}) = Ĝn = 1− Ĥn − V̂n(τ−)

ĝn(τ) = Ĝn / (|W |+ κτ)) and ĥn(τ) = Ĥn/κ

and, for x ∈ [0, τ),

ĝn(x) =

∫
[x,τ)

1

|W |+ κy
dV̂n(y) + ĝn(τ)

ĥn(x) =

∫
[x,τ)

y − x
|W |+ κy

dV̂n(y) + ĥn(τ) + (τ − x)ĝn(τ).

Recall that (V[0,τ), H) and (F[0,τ), µ) stand in a one-to-one relation. In
the previous section we established formulas (2.23) and (2.24), expressing
(F[0,τ), µ) in terms of (V[0,τ), H). With g(τ) = (1− V (τ−)−H)/(|W |+ κτ),
we have

µ =
1

κ

(
1∫

[0,τ)
1

|W |+κydV (y) + g(τ)
− |W |

)

and

F (x) =
1∫

[0,τ)
1

|W |+κydV (y) + g(τ)

∫ x

0

1

|W |+ κy
dV (y).

It is now obvious how we define F̂n and µ̂n as transformations of V̂n and Ĥn.

There really is not much point in proving desirable asymptotic properties,
such as consistency, of V̂n as n tends to infinity. Any result we obtain here
will only hold under the Poisson assumption stated at the beginning of the
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previous section. However, it will turn out that the method of proving con-
sistency will—with minor modifications—work without the Poisson assump-
tion. When we no longer have the Poisson assumption we shall have to use
different asymptotics, which will lead to some complications. To give an
(admittedly sketchy) proof of consistency of V̂n here, allows us a more clean
presentation. We shall use Theorem 1.2, but we need a working hypothesis:

working hypothesis
If g(τ) > 0 then lim inf ĝn(τ) > 0, almost surely.

Whether or not this is true, we do not know. When, in the next section,
we prove consistency without the Poisson assumption this hypothesis will no
longer be needed. By that time, to get around other difficulties, we shall
have introduced some extra, artificial censoring. This will have the added
benefit of making our present working hypothesis superfluous.

First, we note that the model V (of all probability measures on [0, τ) ∪
{†, ‡}) is convex, which by Lemma 1.3 implies that also the model for the
distribution of the data KV = {KV : V ∈ V} is convex. This places us
in the realm of Theorem 1.2. We can use this theorem to prove consistency
(under our working hypothesis) of the NPMLE KV̂n in the sense that, almost
surely,

‖V̂n − V0‖[0,τ) → 0 and |Ĥn −H0| → 0. (2.29)

Here ‖.‖[0,τ) denotes the uniform distance on the set [0, τ). From (2.29) it is
not too difficult (using empirical process theory) to conclude that also

‖F̂n − F0‖[0,τ) → 0 and |µ̂n − µ0| → 0, (2.30)

almost surely.
To apply Theorem 1.2 we need to compare KV̂n to a sequence KVn for

which we can easily establish consistency. We choose

Vn(x) =

∫ x

0

|W |+ κy∫
l≥y(l − y)dν(l)

Pn(dy, 0) x ∈ [0, τ).

We define Vn(τ−) in the obvious manner and note that by the law of large
numbers it is consistent. Hence, for Vn({‡}) = Hn we can take a sequence
tending to H while Hn ≤ Vn(τ). We define Gn, gn and hn in terms of Vn|[0,τ)

and Hn.
From (2.20) we see that KVn(dy, 0) = Pn(dy, 0).
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First we show convergence of (Vn, Hn) to satisfy the first requirement of
Theorem 1.2. The collection

{1[0,x](y)
|W |+ κy∫

l≥y(l − y)dν(l)
, x ∈ [0, τ)}

is a Glivenko–Cantelli class of functions over which the law of large numbers
holds uniformly. In other words, we have

‖Vn − V0‖[0,τ) → 0 and |Hn −H0| → 0 (2.31)

almost surely. For empirical process theory see, for instance, van der Vaart
and Wellner (1996). That the above collection of functions is a Glivenko–
Cantelli class follows from the fact that the functions are all the product
of an indicator function (of intervals) and the same monotone function and
hence they are uniformly of bounded variation: the variation is bounded uni-
formly over the collection of functions. Also, there is an integrable ‘envelop’
(majorant) for the entire collection.

Next, we need that the straight line between KVn and KV̂n is Hellinger
differentiable at KV̂n. By Lemma 1.4 it suffices to show that the straight
line between Vn and V̂n is Hellinger differentiable at V̂n. Because Vn � V̂n
and also dVn/dV̂n ∈ L2(V̂n) this is indeed true.

Now, if we establish the final, third condition of Theorem 1.2

2∑
δ=0

∫
[0,τ)

(
dKVn

dKV̂n

)
d(Pn(y, δ)−KVn(y, δ))→ 0 (2.32)

then we can conclude that KV̂n converges to KV0 in the same sense as KVn
does. In other words, (2.32) implies (2.29), which in turn implies (2.30).

From formulas (2.17) to (2.19) we see that (2.32) reads

2∑
δ=0

∫
[0,τ)

(
dKVn

dKV̂n

)
d(Pn(y, δ)−KVn(y, δ))

=

∫
[0,τ)

(
dVn(y)

dV̂n(y)

)
d(Pn(y, 0)−KVn(y, 0))

+

∫
[0,τ)

(
gn(y)

ĝn(y)

)
d(Pn(y, 1)−KVn(y, 1))

+

∫
[0,τ)

(
hn(y)

ĥn(y)

)
d(Pn(y, 2)−KVn(y, 2))

→ 0. (2.33)



2.5 Without the Poisson assumption 57

Since KVn(dy, 0) = Pn(dy, 0) we get convergence of the first term of
(2.33) for free. To prove convergence of the other two terms, we again apply
empirical process theory to assert that not only for δ = 0, but also for δ = 1, 2

‖
∫ .

0

dPn(y, δ)−
∫ .

0

dKVn(y, δ)‖[0,τ)→ 0, (2.34)

almost surely. Now we need some elementary calculus

Lemma 2.1. Suppose that Hn (n = 1, 2, . . . ) and H are real valued functions
on an interval [a, b) which are of bounded variation. Suppose that Gn are
real valued functions on [a, b) which are bounded and of bounded variation
uniformly in n. Suppose that the Hn tend to H uniformly on [a, b). Then∫

[a,b)

Gnd(Hn −H)→ 0.

Proof Applying integration by parts, we rewrite the integral as

Gn(b−)(Hn(b−)−H(b−))−Gn(a)(Hn(a)−H(a)) +

∫
[a,b)

(Hn −H)dGn

The first two terms tend to zero because the Gn are uniformly bounded
and the Hn converge to H. The third term is in absolute value not more
than ||Hn −H||∞

∫
[a,b)
|dGn|. This term tends to zero because the Hn tend

uniformly to H and the Gn are uniformly of bounded variation. �

We need to show convergence of the remaining two terms of (2.33). With the
above lemma and (2.34), this boils down to showing that gn/ĝn and hn/ĥn
are uniformly bounded and of bounded variation (almost surely for n large
enough). Under our ‘working hypothesis’ this can be accomplished without
much difficulty.

2.5 Without the Poisson assumption

Recall that we started out with a marked point-process Φ = {(~Si, Xi,Θi)}
on R2 × R+ × (−π/2, π/2) to model a collection of line segments with left

endpoint ~Si, length Xi and orientation Θi. We then transformed Φ into
Φ′ = {(~Ti, Xi,Θi)}, representing the left endpoints with respect to the unique
straight line on which the associated line segment lies. Using square brackets,
we write [~t, x, ϑ] to denote a line segment (i.e. a random closed subset of
R2), and (~t, x, ϑ) to denote a point in R2 × R+ × (−π/2, π/2). We use
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Φ′ × N to represent all possible fragments arising from intersecting the line
segments with a random closed setW. Recall we introduced lines `(d, ϑ) with
orientation ϑ at (signed) distance d from the origin and defined W(d, ϑ) =
`(d, ϑ)∩W. We assumed that the W(t, θ) are always the union of (at most)
countably many closed intervals: W(t, ϑ) = ∪mW(t, ϑ,m). Conditionally
on W, a point (~t, x, ϑ,m) corresponds to a (possibly empty) random closed
set [~t, x, ϑ,m] = [~t, x, ϑ] ∩ W(t2, ϑ,m), which we called a fragment. Finally
we represented all observed fragments as a point process Ψ = {(Ti, Xi, Li)}
on R× R+ × R+ corresponding to the situation where we observe segments
[Ti, Ti +Xi] through intervals [0, Li].

In the preceding section we assumed that Ψ is a Poisson process. We
conditioned on the number of fragments that are observed, so that the frag-
ments could be interpreted as an independent, identically distributed sample.
We were then able to interpret the observations as ‘missing data’ (see sec-
tion 1.4.4) in a very convenient way. This led us to a set of nonparametric
score equations. The nonparametric maximum likelihood estimator (see sec-
tion 1.4.1) in the sense of Kiefer and Wolfowitz (1956) is a solution of these
equations. We proceeded to apply general methods (Theorem 1.2) to prove
consistency of the estimator as the number of observations tends to infinity.

As we explained earlier, the assumption that the fragments are Poisson
is simply not justified. They are not even independent, because several frag-
ments might belong to a single underlying segment. However, as it turns out,
without the Poisson assumption it is still sensible to use the same estimator.
Also, we can still use Theorem 1.2 to prove its consistency.

Without the Poisson assumption we no longer have i.i.d. observations,
the number of which we can send to infinity. We shall have to resort to dif-
ferent asymptotics. Indeed, we shall consider observation of W ∩ Φ through
expanding sets Bn. Instead of empirical distribution functions we shall have
empirical averages and instead of Glivenko–Cantelli we use an ergodic the-
orem to obtain the necessary convergence. We discussed this approach in
some generality in section 2.1.1.

2.5.1 Expanding domain asymptotics

Let

Bn = nB = [0, n]× [0, n] and B∞ = R2

and suppose we observe W ∩ Φ through these Bn. We must now modify
some earlier definitions to accommodate the varying n. Our original set-up
corresponds exactly to the case n = 1.
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We define, for all d ∈ R, ϑ ∈ (−π/2, π/2) and m ∈ N

Wn(d, ϑ,m) =W(d, ϑ,m) ∩Bn and W∞(d, ϑ,m) =W(d, ϑ,m)

Now consider sets

Dn = {(~t, x, ϑ,m) : Wn(t2, ϑ,m) 6= ∅}

and note that even the set D∞ is well defined.
As before we define on Dn two functions: tn(~t, ϑ,m) and ln(~t, ϑ,m).

tn(~t, x, ϑ,m) is the distance from the left endpoint of the line segment [~t, x, ϑ]
to the left-most endpoint of W (t2, ϑ,m), which we take negative if the first is
to the left of the latter. Let ln(~t, x, ϑ,m) be the length of Wn(t2, ϑ,m). Con-
sider the map that assigns (tn(~t, x, ϑ,m), x, ln(~t, x, ϑ,m)) to (~t, x, ϑ,m) for all
(~t, x, ϑ,m) ∈ Dn. The image under this map of Φ′′ ∩ D is a point-process
Ψn = {(Ti, Xi, Li)} on R× R+ × [0,∞) with intensity

λdtdF (x)dνn(l),

where

dνn(l) =

∫
t

∫
ϑ

∑
m

δln(t,ϑ,m)(dl)dtdK(ϑ).

The Ψn represent the fragments arising from intersecting Φ ∩W with Bn.
We note that ∫

l

ldνn(l) = |Wn|

and define ∫
l

dνn(l) = κn.

As before A = {(t, x, l) : [t, t+ x] ∩ [0, l] 6= ∅}, and the expected number of
fragments we observe in Wn =W ∩Bn is∫

A

λdtdF (x)dνn(l) = λ(|Wn|+ µκn).

Finally, define

Vn(x) =

∫ x

0

|Wn|+ yκn
|Wn|+ µκn

dF (y)

and set

gn(x) =

∫
[x,∞)

1

|Wn|+ κny
dVn(y)

hn(x) =

∫
[x,∞)

y − x
|Wn|+ κny

dVn(y).
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2.5.2 Some extra censoring

We have a sequence of statistical problems: observation of Φ ∩W through
sets Wn. For each fixed n we can proceed as before and, pretending that the
observed fragments are independent, write down the score equations. This is
exactly what we do in this section, but there is one slight complication. To
overcome it, we shall introduce some artificial censoring.

The normalized version of the measure dνn for a given x is

dρn(l|x) =
l + x

|Wn|+ xκn
dνn(l)

which may be interpreted as the distribution of the length of the interval
through which a fragment is observed, given that the underlying line segment
has length x. Now, if we define τn to be the supremum of the support of
dρn(l|x) over all x, then τn is an upper bound for the length of a fragment that
can be observed throughWn. The distribution of the data from observing Φ∩
Wn is determined by the restriction of Vn to [0, τn) and Hn = κnhn(τn). This
is changing with n in a very awkward way. We also believe that estimation of
F at τn from fragments seen through Wn is unstable, because it is typically
very unlikely to observe fragments of length near τn.

To regularize our problem we introduce some extra censoring. We fix
a value τ such that with probability 1 (under the distribution of W), the
supx supp dρn(l|x) will exceed τ . We group together all observations of length
equal to, or exceeding τ , irrespective of their censoring type. In practice it
would be wise to choose τ in such a way that a certain percentage of the
observed fragments are longer than τ .

We write Pn for the distribution, under the parameter (Vn|[0,τ), Hn), of
the fragments observed through Bn. The probability that the length of a
fragment observed through Wn exceeds τ is

Pn(Y > τ) =

∫
x>τ

∫
l>τ

∫ 0

t=τ−x

dtdνn(l)dVn(x)

|Wn|+ κnτ

+

∫
x>τ

∫
l>τ

∫ l−τ

t=0

dtdνn(l)dVn(x)

|Wn|+ κnτ

=

∫
l>τ

(l − τ)dνn(l)

∫
x>τ

1

|Wn|+ κnτ
dVn(x)

+

∫
l>τ

dνn(l)

∫
x>τ

x− τ
|Wn|+ κnτ

dVn(x)

=

∫
l>τ

(l − τ)dνn(l)gn(τ) +

∫
l>τ

dνn(l)hn(τ)

= anGn + bnHn
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where

an =
1

|Wn|+ κnτ

∫
l>τ

(l − τ)dνn(l)

bn =
1

κn

∫
l>τ

dνn(l)

The estimating equations of Vn are similar to what we found earlier, for
x < τ

dV̂n(x) = dPn(x, 0)

+
dV̂n(x)

|Wn|+ κnx

∫ x

y=0

1

ĝn(y)
dPn(y, 1)

+
dV̂n(x)

|Wn|+ κnx

∫ x

y=0

x− y
ĥn(y)

dPn(y, 2) (2.35)

The extra censoring does yield an extra term in the estimating equation for
H

Ĥn = Ĥn

∫ τ−

y=0

1

ĥn(y)
dPn(y, 2) +

bnĤn

anĜn + bnĤn

Pn(Y > τ)) (2.36)

where, cf. (2.16)
Ĝn = 1− Ĥn − V̂n(τ−)

and
ĝn(τ) = Ĝn / (|Wn|+ κnτ)) and ĥn(τ) = Ĥn/κ

and, for x ∈ [0, τ),

ĝn(x) =

∫
[x,τ)

1

|Wn|+ κny
dV̂n(y) + ĝn(τ)

ĥn(x) =

∫
[x,τ)

y − x
|Wn|+ κny

dV̂n(y) + ĥn(τ) + (τ − x)ĝn(τ).

2.5.3 ergodic lemmas

In this subsection we first work through a number of results establishing that
various (properly normalized) functionals of W ∩Bn converge as n tends to
infinity. Then we consider convergence of functionals of Φ ∩ W ∩ Bn. We
must assume:

Assumption 2.1. (Φ,W) is jointly stationary ergodic.
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This assumption actually holds if and only if Φ is weakly mixing and W
is ergodic or vice versa. Recall that weakly mixing implies ergodicity so that
in particular we are assuming that W is ergodic.

Observing the line segments of Φ through W ∩ Bn we have censoring
at the boundaries of W and of Bn. Censoring at the boundaries of Bn is
a negligible effect as n tends to infinity because the expected total number
of fragments observed through W ∩ Bn is of order n2, while the expected
number of fragments hitting the boundary of Bn is only of order n. In a
nutshell, this is what we make precise in this section.

Recall our transformation Φ′ = {(~Ti, Xi,Θi)} of Φ = {(~Si, Xi,Θi)} to
represent the location of the left endpoint of each line segment relative to
the unique straight line on which it lies. Observing Φ∩W ∩Bn, we see non-
empty intersections [~Ti, Xi,Θi,m] = [~Ti, Xi,Θi] ∩Wn(T2,i, Xi,Θi,m) ∩Bn =

[~Ti, Xi,Θi] ∩Wn(T2,i, Xi,Θi,m) for all m. We named these non-empty in-
tersections ‘fragments’. Now consider a modification. Suppose we observe
all non-empty intersections [~Ti, Xi,Θi,m]∗ = [~Ti, Xi,Θi]∩W(T2,i, Xi,Θi,m),

but only if the left endpoint of [~Ti, Xi,Θi,m]∗ ∈ Bn. In other words, we ob-
serve all fragments with left endpoint in the interior of Bn, without censoring
at the boundary of Bn. If we assume that these new fragments are a Pois-
son process, we can condition of their observed number and consider their
lengths and censoring types as an independent sample. To describe their
common distribution we need to introduce modifications ν∗n of the measures
νn. Define

l∗(t, ϑ,m) =

{
|W(t, ϑ,m)| if the left endpoint of W(t, ϑ,m) falls in Bn.
0 otherwise

and

dν∗n(l) =

∫
t

∫
ϑ

∑
m

δl∗n(t,ϑ,m)(dl)dtdK(ϑ).

Conditionally on W, the distribution of the lengths and censoring types of
the fragments without censoring at ∂Bn is the same as that of the original
fragments, but with ν replaced by ν∗ throughout.

We shall now establish the convergence of various functions of νn. We
shall make extensive use of an ergodic theorem for spatial processes due to
Nguyen and Zessin (1979, corollary 4.20).

A spatial process on a set S is a family {XG : G ∈ G} where G is the
collection of all bounded Borel sets in S. The spatial process is said to be
covariant if for any G ∈ G and s ∈ S

XG+s(Ts) = XG(.)
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It is said to be additive if

XH∪G = XH +XG, if H,G ∈ G, and H ∩G = ∅.

We denote by K the collection of bounded and convex subsets of S and by B
the unit square. We have the following theorem (Nguyen and Zessin (1979),

Theorem 2.1. If a spatial process {XG : G ∈ G} is covariant and additive
and if there exists a non-negative random variable Y ∈ L1(P ) such that

|XG| ≤ Y, a.s. for each G ∈ B ∩ K

then the limit

lim
n→∞

1

|Gn|
XGn = E(XB|J )

exists almost surely for each regular countable sequence Gn of sets in K.

Here J denotes the invariant sigma-algebra. If {XG : G ∈ G} is ergodic,
i.e. J is trivial, then the limit equals E(XB).

We want to establish convergence of Vn and the sub-distribution functions
Fn(y, δ) =

∫ y
0
Pn(dy′, δ). To this end, we must first prove convergence—

upon normalization—of |Wn| =
∫
l
ldνn(l), κn =

∫
l
dνn(l), an = 1/(|Wn| +

κnτ)
∫
l>τ

(l − τ)dνn(l) and bn = (1/κn)
∫
l>τ

dνn(l). We define |Wn|∗, κ∗n a∗n
and B∗n similarly as integrals with respect to ν∗n. We can think of these as ran-
dom quantities indexed by sets Bn. As such they are additive, covariant and
ergodic. The sequence Bn is a regular, countable sequence of convex bounded
sets, and |Bn| = n2. By Theorem 2.1 we have |Wn|∗/n2 → EW)|W1|∗,
κ∗n/n

2 → EW)κ
∗
1, a∗n/n

2 → EW)a
∗
1 and b∗n/n

2 → EW)κ
∗
1. It is not difficult

to show that (|Wn|∗ − |Wn|)/n2 → 0, (κn − κ∗n)/n2 → 0, (an − a∗n)/n2 → 0
and (bn − b∗n)/n2 → 0.

We can now show convergence of Vn and its relatives. Recall our definition
of Vn,

Vn(x) =

∫ x

0

|Wn|+ yκn
|Wn|+ µκn

dF (y)

Proposition 2.1. As n tends to infinity Vn tends almost surely, uniformly
to

V∞(x) =

∫ x

0

EW |W1|∗ + yEWκ
∗
1

EW |W1|∗ + µEWκ∗1
dF (y).

Proof We divide numerator and denominator by n2 and then use the
convergence of |Wn|/n2 and κn/n

2 to obtain pointwise convergence. Uniform
convergence follows from the usual arguments as Vn and V∞ are distribution
functions. �
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Of course gn, Gn, hn and Hn converge to limits g∞, G∞, h∞ and H∞, which
are defined in the obvious manner as integrals with respect to V∞.

In section 2.3, we derived the distribution P (dy, δ) of the length and
censoring type of the fragments observed through W = W1, under the as-
sumption that they are independent. We noted that for a certain Markov
kernel K(dy, δ; x) we can write P (dy, δ) = KV (dy, δ) =

∫
x
K(dy, δ; x)dV (x).

For the fragments observed through Wn we find, for y ∈ [0, τ),

Pn(dy, 0) =

∫
l≥y(l − y)dνn(l)

|Wn|+ κny
dVn(y)

Pn(dy, 1) = 2νn([y,∞))gn(y)dy

Pn(dy, 2) = dνn(y)hn(y)

Pn(y ≥ τ) = anGn + bnHn.

Again, Pn can be written as
∫
x
Kn(dy, δ; x)dVn(x), where

Kn(dy, δ; x) = 10(δ)1[0,τ)(y)

∫
l≥x(l − x)dνn(l)

|Wn|+ κnx
δx(dy)

+ 11(δ)1[0,τ)(y)2νn([y,∞))

(
1(y,τ)(x)

|Wn|+ κnx
+

1{†}(x)

|Wn|+ κnτ

)
dy

+ 12(δ)1[0,τ)(y)

(
1(y,τ)(x)(x− y)

|Wn|+ κnx
+

1{†}(x)(τ − y)

|Wn|+ κnτ
+

1{‡}(x)

κn

)
dνn(y)

+ 13(δ)δτ (dy)(an1{†}(x) + bn1{‡}(x)).

Let K∞ be defined by

K∞(dy, δ; x) = 10(δ)1[0,τ)(y)

∫
l≥x(l − x)dν∗1 (l)

|W1|∗ + κ∗1x
δx(dy)

+ 11(δ)1[0,τ)(y)2ν∗1([y,∞))

(
1(y,τ)(x)

|W1|∗ + κ∗1x
+

1{†}(x)

|W1|∗ + κ∗1τ

)
dy

+ 12(δ)1[0,τ)(y)

(
1(y,τ)(x)(x− y)

|W1|∗ + κ∗1x
+

1{†}(x)(τ − y)

|W1|∗ + κ∗1τ
+

1{‡}(x)

κ∗1

)
dν∗1(y)

+ 13(δ)(a∗11{†}(x) + b∗11{‡}(x)).

Proposition 2.2. KnVn(dy, δ) tends to K∞V∞(dy, δ) almost surely as n
tends to infinity, in the sense of uniform convergence of the associated (sub)dis-
tribution functions.

Proof The proof is similar to that of the previous proposition. �
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So far in this section we have only considered functionals of the random
set W as observed through increasing sets Bn. We now turn to the actual
data, which are fragments arising from observation of Φ∩W through the Bn.
We introduce a sequence of point processes, representing the data observed
through Bn.

Recall that we defined

Dn = {(~t, x, ϑ,m) : Wn(t2, ϑ,m) 6= ∅}.

Now define

En = {(~t, x, ϑ,m) ∈ Dn : [~t, x, ϑ] ∩Wn(t2, ϑ,m) 6= ∅}.

En is well defined for n = ∞, if we take B∞ = R2 and W∞(t2, ϑ,m) =
W(t2, ϑ,m). On the sets En we define three functions, pn, yn and δn.

pn(~t, x, ϑ,m) =left-most endpoint of [~t, x, ϑ] ∩Wn(t2, ϑ,m)

yn(~t, x, ϑ,m) = min(τ, |[~t, x, ϑ] ∩Wn(t2, ϑ,m)|
δn(~t, x, ϑ,m) =# endpoints of [~t, x, ϑ] outside of Wn(t2, ϑ,m)

or 3 when yn(~t, x, ϑ,m) = τ.

These definitions are also valid for n =∞. Define, for n = 1, 2, . . . ,∞, point
processes Πn by applying these functions to Φ′′ ∩ En. Thus, Πn are marked
point processes on Bn with mark spaceM = (0, τ ]×{0, 1, 2, 3} representing
the fragments observed through Bn. Π∞ is of special interest. It is a marked
point process on R2×M representing all fragments arising from intersecting
Φ with W. At the beginning of the present section, we claimed that as n
tends to infinity, the censoring at the boundary of Bn becomes negligible as
compared to the censoring at the boundary of W. The next lemma makes
this claim precise.

Lemma 2.2. For any measurable set M ⊆M,

1

n2
EΦ(|Πn(Bn ×M)−Π∞(Bn ×M)||W)→ 0

almost surely, as n tends to infinity

Proof The difference between Πn(Bn ×M) and Π∞(Bn×M) is less than
the number of fragments that cross the boundary of Bn. This, in turn, is
less than the number of line segments that cross the boundary of Bn. The
expected number of line segments that cross a fixed line segment of length
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n (such as one side of Bn) is no more than nλµ, where µ is the (finite)
mean of F . This is seen by noting that for a line segment of length x and
orientation ϑ to cross a given object line segment, its left-endpoint must lie in
a parallelogram with the object line segment for its base, and sides of length
x. The area of such a parallelogram is always less than nx. Integrating this
with respect to λd~tdF (x)dK(ϑ) we find our upper bound, nλµ. We conclude
that the expected difference between Πn(Bn ×M) and Π∞(Bn ×M) is less
than 4nλµ and the stated result follows. �

For a given measurable set M ⊆M, we have∫
M

Pn(dy, δ) = Pn(M) =
EΦ(Πn(Bn ×M)|W)

EΦ(Πn(Bn ×M)|W)
.

We define

P ∗n(M) =
EΦ(Π∞(Bn ×M)|W)

EΦ(Π∞(Bn ×M)|W)

and

Pn(M) =
Πn(Bn ×M)

Πn(Bn ×M)
.

We draw the reader’s attention to the fact that the subscript n refers to the
fact that Φ ∩W is observed through Bn and not to the number of observed
fragments. The number of observed fragments, in fact, equals Πn(Bn ×M).

Everything is now in place for the final result of this section.

Proposition 2.3. For every measurable set M ⊆M,

Pn(M)→ P∞(M),

in probability, as n tends to infinity.

Proof First, note that Π∞(Bn × M) is an additive covariant function
indexed by the sets Bn. Since we assume that Φ andW are jointly ergodic it
follows by Theorem 2.1 that Π∞(Bn×M)→ EΠ∞(Bn×M), almost surely.
Hence,

Π∞(Bn ×M)

Π∞(Bn ×M)
→ EΠ∞(Bn ×M)

EΠ∞(Bn ×M)
.

It immediately follows that P ∗n(M) converges to the same limit.
By Lemma 2.2, P ∗n(M) and Pn(M) have the same limit. In Proposition

2.2 we found that Pn(M) converges to P∞(M), so we may now conclude that

Π∞(Bn ×M)

Π∞(Bn ×M)
→ P∞(M).
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The reasoning of Lemma 2.2 allows us also to conclude that∣∣∣∣Πn(Bn ×M)

Πn(Bn ×M)
− Π∞(Bn ×M)

Π∞(Bn ×M)

∣∣∣∣→ 0

in probability. Hence, our claim follows. �

Of course the above convergence is uniform over sets M of the form
[0, y]×{δ} (y < τ, δ = 0, 1, 2, 3), corresponding to ‘empirical sub-distribution
functions’. Still, the convergence is weaker than when we were working under
the Poisson assumption. The Glivenko–Cantelli theorem yields almost sure
uniform convergence, and here we only have uniform convergence in prob-
ability. Fortunately, this is not much of a problem. We simply apply the
Skorohod–Dudley–Wichura almost sure representation theorem as stated, for
instance in Gill (1989). For us, this boils down to pretending that we do
have almost sure convergence and going ahead and prove almost sure uni-
form convergence of our estimator. In the end, we must then weaken the
result to uniform convergence in probability.

2.6 An estimator for the line segments

With Pn as defined in the previous section, we consider estimators

dV̂n(x) = dPn(x, 0)

+
dV̂n(x)

|Wn|+ κnx

∫ x

y=0

1

ĝn(y)
dPn(y, 1)

+
dV̂n(x)

|Wn|+ κnx

∫ x

y=0

x− y
ĥn(y)

dPn(y, 2) (2.37)

Ĥn = Ĥn

∫ τ−

y=0

1

ĥn(y)
dPn(y, 2) +

bnĤn

anĜn + bnĤn

Pn(Y > τ)) (2.38)

where, cf. (2.16)

Ĝn = 1− Ĥn − V̂n(τ−).

the functions ĥn and ĝn are defined as usual. These estimators are of course
inspired by (2.35) and (2.36), but it should be noted that the Pn have a
different meaning here. The subscript n here refers to observation through
Wn = W ∩ Bn, while the subscript n in (2.35) and (2.36) referred to n
observed fragments.
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We estimate (F |0,τ), µ) by

µ̂n =
1

κn

(
1∫

[0,τ)
1

|Wn|+κnydV̂n(y) + ĝn(τ)
− |Wn|

)

and

F̂n(x) =
1∫

[0,τ)
1

|Wn|+κnydV̂n(y) + ĝn(τ)

∫ x

0

1

|Wn|+ κny
dV̂n(y).

We now prove the consistency of our estimator.

Theorem 2.2. Suppose that W and Φ are jointly ergodic. Then

‖F̂n − F0‖[0,τ) → 0 and |µ̂n − µ0| → 0

in probability

Proof The proof will follow the outline we gave at the end of section 2.1.1.
Also, we use elements of an earlier consistency proof we gave at the end
of section 2.4. However, we no longer need the ‘working hypothesis’ of that
section. There we had difficulty proving that the mle of g(τ) is bounded away
from zero. Since the function g is non-decreasing, it suffices to show that for
n large enough Ĝn(τ) stays away from zero if Gn(τ) is positive. Because of
the extra censoring, this is not a problem anymore.

Proposition 2.1 established that for all F ∈ F (and in particular for
F0) Vn,F tends to V∞,F almost surely, uniformly on [0, τ). Also, Proposition
2.2 yielded that KnVn,F tends to K∞V∞,F almost surely, in the sense of
uniform convergence over sets of the form [0, y]× {δ} (y < τ, δ = 0, 1, 2, 3),
corresponding to ‘empirical sub-distribution functions’.

To apply Theorem 1.2, we need to compare the sequence KnV̂n with
another sequence KnṼn, say, which converges to K∞V∞,VF0

= K∞V∞,V0. For

Ṽn we choose an appropriately scaled version of the ‘empirical average’ of
uncensored fragments:

Ṽn(x) =

∫ x

0

|Wn|+ κny∫
l≥y(l − y)dν(l)

Pn(dy, 0), x ∈ [0, τ).

We define Ṽn(τ−) in the obvious way. An ergodic theorem can be used to
show its convergence of Ṽn(τ−) to V∞,F0(τ

−). Hence, we can take a sequence
Ṽn({‡}) = H̃n (such that H̃n ≤ Ṽn(τ−)) converging to V∞,F0({‡}) = H̃∞,F0.
Much like we did in section 2.4, we can apply empirical process theory to
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obtain almost sure uniform convergence of Ṽn to V∞,F0. Again using empirical
process theory, we obtain almost sure convergence of KnṼn to K∞V∞,F0,
uniformly over sets of the form [0, y]× {δ}.

Proposition 2.3 tells us that Pn also converges to P∞ = K∞V∞,F0, uni-
formly over sets of the form [0, y] × {δ}. However, this convergence is ‘in
probability’. For the remainder of this proof we assume that the convergence
is ‘almost sure’. This will lead to almost sure consistency of our estimator,
which we then modify to consistency in probability, as stated in the theorem.
We may do so by the Skorohod–Dudley–Wichura ‘almost sure representation
theorem’, which we discussed above.

Using the fact that KnṼn(dy, 0) = Pn(dy, o) and applying Lemma 2.1, we
can now conclude that∫ (

dKnṼn

dKnV̂n

)
d(Pn −KnṼn)→ 0

almost surely. Theorem 1.2 now allows us to conclude that KnV̂n converges
to K∞V∞,F0 in the same sense as KnṼn does. Since we have made sure that

our parameter is identifiable it follows that V̂n converges to V∞,F0, whence it

follows that F̂n = Fn,V̂n converges to F∞,V∞,F0
= F0. �
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