
Chapter 1

Introduction

1.1 Context and scope

This thesis deals with spatial statistics, or more precisely, with the statistical
analysis of spatial data. The spatial data we consider are random configu-
rations of points, line segments or discs in the two dimensional plane. Such
random ‘processes’ could serve, and have served, to model a wide variety of
real life phenomena. The points may represent the locations of trees in a
forest, the line segments could be fractures in a rock surface and the discs
could be cells under a microscope.

Usually, we observe these spatial processes through a bounded window
while we imagine they extend throughout the entire plane. As a result, we
often have to deal with ‘edge-effects’. For instance, observing a collection
of line segments through a bounded window some of the segments will be
clipped at the window’s boundaries. Such censoring has been studied ex-
tensively in the one dimensional case. The line segments then represent
lifetimes which are sometimes not completely observed. Estimation of the
lifetime distribution from incomplete observations is the main subject of the
field of survival analysis. Laslett (1982a, b) was the first to point out the
analogy of censoring in survival analysis and edge effects in spatial statistics.

Our goal in this thesis is always to estimate the probability distribution
of the (partly) observed random spatial process. Sometimes this distribution
is determined by a finite dimensional parameter, such as the expected num-
ber of points in a given set. At other times this will not be the case and
then we speak of a semi- or nonparametric problem or of a problem with
a ‘large parameter space’. In recent years estimation of infinite dimensional
parameters has received much attention and has made great headway. Bickel
et al. (1993) is a standard reference for modern semi-parametric theory. In-
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complete observation, such as due to edge effects, is well incorporated in the
theory.

One of the main themes of this thesis is the application to spatial data
of semi-parametric methods. Another, closely related theme is maximum
likelihood estimation from spatial data. Maximum likelihood estimation is
not common practice in spatial statistics as the method of moments and
minimum contrast methods are more often applied (Stoyan et al. 1987).
One might view our effort in the light of a development which has been
described—somewhat provocatively—by Geyer (1999):

“Exotic areas of statistics, such as spatial statistics in general and spatial
point processes in particular often recapitulate the history of statistics. The
first formal inference is nonparametric, using method of moments estimators.
At this stage there is no modeling. Ordinary statistics was in this phase a
century ago with Pearson families of curves fit by method of moments. Time
series was in this phase in the 1950s with spectral analysis. Spatial statistics
was in this phase in the 1970s. Ripley’s K-functions are an example. So is
spatial autocorrelation analysis of lattice processes.

The next phase involves the introduction of parametric statistical models,
efficient estimation methods, and hypothesis tests, which happened in ordi-
nary statistics in the 1920s and 1930s, in time series in the 1960s, and is
only now happening in spatial statistics. ”

The thesis is organized around three problems: Laslett’s line segment
problem; estimation of the chord length distribution; and estimation for the
bombing model. We describe these problems in section 1.2 of this introduc-
tion and return to each of them in the next three chapters. In the remainder
of this chapter we gather some theory and tools for later reference. In par-
ticular, we briefly discuss the issue of independence in spatial processes and
introduce the Poisson process and the related Boolean model. Next, we
discuss some topics in semi-parametrics and finally consider Markov Chain
Monte Carlo methods and perfect sampling. We want to draw the reader’s
special attention to two topics to which we contribute something new. The
first is a general discussion of consistency of maximum likelihood estimators
in section 1.4.2. The second is a modification of a stochastic version of the
well-known EM algorithm (Dempster et al. 1977, Celeux and Diebolt 1986)
in section 1.5.3.
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1.2 Three problems

In this thesis we analyze three spatial missing data problems. In all of these
we are unable to write down the likelihood of the data, let alone maximize
it. This seems typical of spatial statistical estimation problems and explains
why maximum likelihood is usually not the preferred approach.

In each of the first two of our problems we manage to find ‘analogous’
problems, which are simpler yet similar. For these analogous problems we can
perform maximum likelihood estimation. Thus we obtain estimators that are
MLEs—only not for the actual problems at hand! Still, if the simplifications
are minor we may expect that the nice properties that an MLE typically
possesses will be preserved, at least to a certain degree. Efficiency will gener-
ally fail, but consistency and asymptotic normality may not. We shall study
consistency only, but we feel confident that it would be also possible to tackle
asymptotic normality.

Although the first two problems both concern line segments and our ap-
proach to them is similar, we should point out that they really are quite dif-
ferent. In the first problem we have to deal with spatial dependence among
the data. The difficulty with the second problem is that the data are in the
form of random functions on random sets.

In the third problem, concerning the Boolean model of randomly placed
discs, our difficulties are of a different nature still. The likelihood is easy
enough, except for an intractable normalizing constant. No simplification
will help and so the emphasis shifts from analytic methods to a Monte Carlo
approach. In particular, we present a new algorithm to sample from the
distribution of a wide variety of point processes.

We now briefly state our three problems and point out their particular
difficulties. We do not as yet strive for mathematical rigor, but merely wish
to indicate where we are going—and hopefully whet the reader’s appetite.

Laslett’s line segments

Figure 1.1 is a map of an area of about 160 by 160 meters of the Canadian
Shield near Manitoba. The black parts are the rock surface, the white parts
are soil, vegetation or water. The white lines through the black regions indi-
cate fractures and the problem is to estimate the distribution of their lengths.
This is a missing data problem because the fractures are unobservable in the
white regions and outside the 160 by 160 meters area of the map. The par-
ticular difficulty here lies in the fact that the (black) observation region is
not convex. This means that of a single fracture we might observe several
fragments. Because the resolution of the map is rather poor, it is impossible
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to know if two fragments belong to the same fracture.
The fractures are conveniently modeled by a location and an associated

line segment. By ‘location’ we mean, for instance, the location of a preferred
point on the segment, such as the mid point or the left-hand end-point.

In earlier contributions, the case of a convex observation window was
considered. Assuming the locations and line segments to be a Poisson marked
point process one finds that the fractures are independent. Standard methods
can then be applied to compute the (non-parametric) maximum likelihood
estimator (Gill 1994, Wijers 1995a and b). For us there is no gain in assuming
that the locations of the fractures are Poisson, because even if the fractures
are independent some of the fragments are certainly dependent.

Chord Length Estimation

Consider a random closed set W ⊂ R2. With each point in W we can asso-
ciate a chord in a given direction which is the longest line segment through
that point which lies wholly withinW. Also, with each point inWc = R2\W
we can associate a contact segment (our terminology) in a given direction
which is the longest line segment starting at that point which is completely
contained in Wc. Of course these two concepts are closely related.

The problem is estimation of the distribution function of a typical chord
and a typical contact segment, when we observe W through a compact set B.
This is a missing data problem because some chords and contact segments are
clipped at the boundaries of B. The particular difficulty here is that for every
point in W, respectively Wc we have a chord or a contact segment. Such
continuous data is awkward and we are unable to apply standard methods
for missing data problems.

The Bombing Model

Consider the so-called Boolean model in R2 where at each point of a Poisson
point process of intensity λ, a disc of random radius is placed. This model
is also known as the bombing model. We observe only the union of the discs
through a compact window W . In this example data is missing as some discs
are not observed because they are covered by others. Also there is the usual
censoring at the observation window’s boundaries. For our present purpose,
estimation of the intensity parameter λ, the latter censoring is not the main
difficulty. The difficulty is that the conditional distribution of the complete
data, given the observed data involves a normalizing constant which cannot
possibly be evaluated. Again, standard methods for missing data problems
fail.
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Figure 1.1: Fractures in 160 m. by 160 m. granitic rock of the Lac du Bonnet
batholith in Manitoba. From Stone, Kamineni and Brown (1984). Digitized
and post-processed by professor A.J. Baddeley of the University of Western
Australia. The irregular black region is the rock’s surface. The white parts
represent areas where the rock cannot be observed due to soil, vegetation or
water. The white lines through the black regions indicate fractures.
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1.3 Independence, Poisson processes

and Boolean models

This section borrows its title from section 1.5 of Baddeley (1999a). It con-
tains some basic facts concerning the Poisson process in more general spaces
than R+, and introduces the Boolean model. The Poisson process and the
Boolean model—which is derived from it—are perhaps the simplest of all
spatial models. They have been studied in detail, for instance in Daley and
Vere-Jones (1988) and Stoyan et al. (1987). The content of this section can
be said to be part of the folklore of stochastic geometry.

Classical statistics deals typically with independent, identically distributed
random variables. An essential element of spatial statistics is a lack of in-
dependence. Suppose that X is a random spatial process of, say, randomly
placed points. If there is any spatial structure or regularity, then typically
we fail to have independence of X ∩ A and X ∩ B, even when A and B are
disjoint. The prime example of a completely random point process is the
Poisson process. We now give a rather general definition.

Let (S,B,Λ) denote a measure space with a finite diffuse Radon measure
Λ. A typical example is the case where S is a compact subset of R2 with the
Borel sigma-algebra and Λ(ds) = λds.

Consider the ‘Carter–Prenter exponential space’ Ω of all finite subsets x of
elements of S with a sigma-algebra F generated by sets {x ∈ Ω : n(x∩B) =
n} (B ∈ B), where n(x) denotes the number of elements in x.

The Poisson process Φ of intensity Λ can be seen as a random (counting)
measure on (S,B) or as a measure on (Ω,F). By Φ(B) we denote the (ran-
dom) number of points of Φ that fall in a B-measurable set B. The Poisson
process is determined by the following two properties

1. P (Φ(B) = n) = Λ(B)ne−Λ(B)/n!, for n = 0, 1, 2, . . . , for all B ∈ B

2. Φ(B1),Φ(B2), . . . ,Φ(Bk) are independent for disjoint B1, B2, . . . , Bk.

Note that EΦ(B) = Λ(B) =
∫
B

Λ(ds).
The expected number of points in a set B has the Poisson distribution

with parameter Λ(B). Conditionally on Φ(B) = n, the points of Φ ∩ B are
distributed as a sample of size n from the ‘normalized intensity’ Λ(S)−1Λ(ds).

Poisson processes have a nice ‘superposition’ property: The superposition
(union) of independent Poisson processes is again a Poisson process, whose
intensity is the sum of the intensities of the individual processes.

It is often useful to associate with each point of a point process a char-
acteristic or ‘mark’. For instance, when the points indicate locations (of the
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midpoint) of fractures in a rock surface, an extra mark could indicate each
fracture’s length or direction. When the points represent (the center of) trees
in a forest the mark could be their stem’s diameter.

Now suppose we have a point process Φ = {Si} on a space S. Suppose
with each point Si is associated a random mark Mi in some ‘mark space’ M ,
equipped with a probability measure P . Then the ‘Marking Theorem’ states
that the following are equivalent

• The point process Φ is Poisson with intensity Λ and conditional on Φ,
the marks are i.i.d. according to P .

• The marked point process {(Si,Mi)} is a Poisson process on S ×M
with intensity measure Λ× P .

As a consequence of the Marking Theorem we have the ‘thinning’ property
of Poisson processes: Suppose we have a Poisson process of intensity Λ. Now
if we delete each point, independently of the others, with probability 1 − p,
the result will be a Poisson process with intensity pΛ.

Above we gave two examples of marked point processes; one representing
a random collection of line segments (fractures), the other of circles (trees
with specified stems). When the underlying point process is Poisson, such
collections of randomly placed objects are called Boolean models (Matheron
1975, Stoyan et al. 1987). More precisely, suppose that Φ = {Si} is a Poisson
process on Rd and suppose that Ξ1,Ξ2, . . . are a sequence of independent,
identically distributed random closed sets in Rd. Then the Boolean model is
defined as ∪i(Si ⊕ Ξi). The symbol ⊕ means Minkowski addition defined as
A⊕B = {a+ b, a ∈ A, b ∈ B}.

1.4 Semi-parametrics

In this section we introduce the maximum likelihood estimator (MLE) P̂n of
a probability measure P0 among a class P which we allow to be infinite di-
mensional. In this situation, the MLE is often called the nonparametric MLE
(NPMLE). Also, we discuss differentiable, parametric sub-models through P.
Each such submodel will have a score function. With these scores, we can
consider solutions of score equations. We discuss consistency of the NPMLE
and of solutions of score equations. Other desirable properties we might look
for in estimators, such as efficiency and asymptotic normality will not be
touched upon in this thesis and are therefore omitted in the present discus-
sion. Finally, we also consider so-called missing data problems, which go also
by the name ‘mixture models’.
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A standard reference on semi-parametrics is the monograph by Bickel et
al. (1993). Our exposition here owes much to the very readable chapter 25
on semi-parametrics of a recent book by van der Vaart (1998).

1.4.1 Nonparametric maximum likelihood estimation

In this section we define the so-called nonparametric maximum likelihood
estimator (NPMLE). Consider random variables X1, X2, . . . , Xn which are
independent and identically distributed according to some distribution P0 in
a class P of probability measures.

When P is not dominated by a single measure, the ordinary definition
of the maximum likelihood estimator fails because there really is no like-
lihood. Kiefer and Wolfowitz (1956) proposed a way out of this difficulty
by considering only pairwise comparisons. Now let Pn denote the empirical
measure.

Definition 1.1. A maximum likelihood estimator P̂n of P0 ∈ P is any ele-
ment of P such that∫

log
dP̂n

d(P̂n + P )
dPn ≥

∫
log

dP

d(P̂n + P )
dPn ∀P ∈ P, (1.1)

while for every P ∈ P, the left hand side is greater than minus infinity.

The latter requirement is a technicality. Its meaning will become clear in
Lemma 1.1 below.

The definition says that P̂n should ‘beat’ any other candidate on the
data in pairwise comparison. Note that as we only compare two measures
at a time, P need not be dominated. Note also that if P is dominated the
definition reduces to the ordinary definition of maximum likelihood.

The definition depends on which versions of the Radon-Nikodym deriva-
tives are used. These versions are only determined up to (P1 + P2) null sets
(when comparing P1 and P2 in P), which are not necessarily Pn null sets.
This problem has nothing to do with the fact that P may be undominated or
infinite dimensional. It arises in parametric models just the same. It is gener-
ally felt that there should not be a problem—certainly not asymptotically—if
we assume “what are known in some quarters as the British regularity con-
ditions”, to quote Cox (2000) (on a different matter). For a more thorough
discussion see Scholz (1980).

For definiteness, we imagine that we have some mechanism to choose a
version of each Radon–Nikodym derivative dP/d(P + Q) for all P,Q ∈ P
in advance, thus making sure that our choices do not depend on the data.
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Moreover, we do this in such a way that 0 ≤ dP/d(P+Q) ≤ 1 and dP/d(P+
Q) + dQ/d(P +Q) = 1.

We find the definition of the NPMLE in its present form (1.1) slightly
awkward and prefer to have a definition in terms of ‘log likelihood ratios’,
see (1.2) and (1.3) below. Let us now define the likelihood ratio and log
likelihood ratio.

Consider two probability measures P1 and P2 in P, where P2 need not
dominate P1. Define the likelihood ratio to be

dP1

dP2
(x) =

(dP1/d(P1 + P2))(x)

(dP2/d(P1 + P2))(x)
.

This likelihood ratio should of course not be confused with the Radon–
Nikodym derivative, which conventionally is defined only when P1 � P2.
Because we can choose versions of the numerator and denominator which
add up to 1, there are no problems with dividing zero by zero. If the nu-
merator is positive while the denominator is zero, the ratio is defined to be
infinite.

Lemma 1.1. The defining property (1.1) of the NPMLE P̂n is equivalent to∫
log

dP̂n
dP

dPn ≥ 0 ∀P ∈ P, (1.2)

and also to ∫
log

dP

dP̂n
dPn ≤ 0 ∀P ∈ P. (1.3)

Proof This lemma is immediate from our definition of likelihood ratio. The
assumption that the left hand side of (1.1) is greater than minus infinity is
equivalent to (1.2) and (1.3) being well-defined. �

We should mention that an NPMLE need not exist and if it exists it need
not be unique. A modification called the method of sieves due to Grenander
(1981) is sometimes useful. We choose submodels Pn ⊆ P such that ∪nPn
will almost surely eventually include the true P0. Then we define a ‘sieved’
NPMLE P̂ s

n to be such that∫
log

dP̂ s
n

d(P̂ s
n + P )

dPn ≥
∫

log
dP

d(P̂ s
n + P )

dPn ∀P ∈ Pn, (1.4)

while for every P ∈ Pn, the left hand side is greater than minus infinity.
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The Pn should, if possible, be chosen in such a way that P̂ s
n exists and is

easily computed.

It is often useful to choose Pn in a way that is dependent on the data. For
instance, we can take Pn = {P ∈ P : P � Pn}. The resulting sieved NPMLE
we should perhaps call data sieved NPMLE. However, we shall generally omit
both modifiers ‘data’ and ‘sieved’.

1.4.2 Consistency of the (NP)MLE

In this section we argue that the ‘natural’ approach to proving consistency
of an MLE leads to Hellinger consistency. This usually overshoots the mark.
Hellinger consistency—being equivalent to consistency in total variation—
is too strong for most purposes. In many situations, especially when the
model P is infinite dimensional, it just does not hold. For instance, when
the NPMLE P̂n is discrete while P0 is absolutely continuous (with respect
to Lebesgue measure) the Hellinger distance between P̂n and P0 is never less
than 1.

One way to escape the rigidity of Hellinger consistency is to try to find
a sequence Pn such that Pn tends to P0 in some reasonable sense (say weak
convergence), while at the same time the Hellinger distance between Pn and
P̂n tends to zero. Such a comparative sequence has successfully been used
by Murphy (1994), Wijers (1995b) and Gill (1994) and it will also be used
several times in this thesis.

Now we define two concepts of ‘distance’ between two probability mea-
sures. The first, Hellinger distance, is a true distance in the mathematical
sense; the second, Kullback–Leibler information is not. Kullback–Leibler
information and the Hellinger metric play an important role in proving con-
sistency of maximum likelihood estimators as they fit in well with the MLE
definition as we will see later on.

Definition 1.2. The Hellinger distance H(P,Q) between two probability mea-
sures P and Q is defined to be the square root of

H2(P,Q) =

∫ ∣∣∣∣∣
(

dP

dµ

)1/2

−
(

dQ

dµ

)1/2
∣∣∣∣∣
2

dµ

= 2− 2

∫ (
dP

dµ

)1/2(
dQ

dµ

)1/2

dµ,

for µ dominating both P and Q
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This definition does not depend on the choice of µ. It can be shown that
the topologies induced by Hellinger metric and the—perhaps more familiar—
total variation metric are the same. In fact, we have

1

2
H2(P,Q) ≤ ‖P −Q‖TV ≤ H(P,Q),

where ‖.‖TV denotes the total variation norm. The variational metric is
always between 0 and 1 and the Hellinger metric is between 0 and

√
2.

Definition 1.3. The Kullback–Leibler information of a probability measure
P with respect to Q is defined to be

K(P : Q) =

∫
log

dP

dQ
dP. (1.5)

Conventionally, dP/dQ is only defined when Q dominates P and the
Kulback–Leibler information is defined to be infinite when that is not the
case. Since we defined dP/dQ even when Q does not dominate P , (1.5)
completely specifies the Kullback–Leibler information. One can check that,
also according to our definition (1.5), K(P : Q) = ∞ when Q does not
dominate P . Note that K(P : Q) can well be infinite even when Q dominates
P .

Even though the Kullback–Leibler information is often used to quantify
the difference between two measures, it is not a distance in the mathematical
sense. However, as a simple consequence of Jensen’s inequality we do have
that K(P : Q) ≥ 0 with equality if and only if P = Q.

The following lemma relates Kullback–Leibler information to Hellinger
distance.

Lemma 1.2. For any two probability measures P and Q we have

K(P : Q) ≥ H2(P,Q).

Proof For all x > 0 we have log x ≤ x− 1. Hence,

K(P : Q) =

∫
log

dP

dQ
dP

= −2

∫
log

(
dQ

dP

)1/2

dP

≥ 2

∫
1−

(
dQ

dP

)1/2

dP

= 2− 2

∫ (
dQ

dµ

)1/2(
dP

dµ

)1/2

dµ

= H2(P,Q).
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where µ is some measure dominating both P and Q. �

We now turn to consistency. Suppose for now that

K(P0 : P̂n) =

∫
log

dP0

dP̂n
dP0 <∞.

We can then rewrite (1.3) as

0 ≥
∫

log
dP0

dP̂n
dPn

=

∫
log

dP0

dP̂n
d(Pn − P0) +

∫
log

dP0

dP̂n
dP0

=

∫
log

dP0

dP̂n
d(Pn − P0) +K(P0 : P̂n),

so if

∫
log

dP0

dP̂n
d(Pn − P0)→ 0, P0-almost surely (1.6)

then K(P0 : P̂n) → 0, which by the above lemma implies H(P0 : P̂n) → 0.
In other words, (1.6) implies the almost sure Hellinger consistency of the
NPMLE P̂n.

Condition (1.6) is an obvious consequence of a uniform law of large num-
bers over a class of functions. Such uniform LLN’s are the object of much
study in modern empirical process theory. In ‘empirical process parlance’,
(1.6) follows directly from saying that the random function log(dP0/dP̂n) is,
for n large enough, in a so-called Glivenko–Cantelli class.

The convergence of (1.6) establishes ‘Kullback–Leibler’ consistency, which
by lemma 1.2 implies Hellinger consistency. We can also get at Hellinger
consistency directly. The equality we will now prove is due to van de Geer
(1993), though she considered only the case where P is dominated by a single
sigma-finite measure. We make no assumptions on P here. Taking P = P0
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in (1.2) and then using the fact that log x ≤ x− 1 (x > 0) have

0 ≤
∫

log
dP̂n
dP0

dPn

= 2

∫
log

(
dP̂n
dP0

)1/2

dPn

≤ 2

∫ (dP̂n
dP0

)1/2

− 1

dPn

= 2

∫ (
dP̂n
dP0

)1/2

d(Pn − P0) + 2

∫ (dP̂n
dP0

)1/2

− 1

dP0

= 2

∫ (
dP̂n
dP0

)1/2

d(Pn − P0)− 2H2(P0 : P̂n).

Because H2(P0; P̂n) is always between 0 and 2 it is not a problem to add and
delete it as we did in the one-but-last line above. Now if∫ (

dP̂n
dP0

)1/2

d(Pn − P0)→ 0 (1.7)

we can conclude that H(P0, P̂n) → 0, which is to say that P̂n is Hellinger
consistent. Again is suffices to verify a uniform law of large numbers. Van
de Geer (1993) proceeds to use empirical process theory to investigate the
rate of convergence of P̂n to P0 (when indeed they converge).

In case P is convex, she suggests comparing P̂n not to P0 but to a convex
combination of P̂n and P0, say Pn. The idea is that it may be easier to
establish H(P̂n, Pn) → 0 than H(P̂n, P0) → 0 when the two are actually
equivalent.

The two methods we presented for proving consistency of the NPMLE
yield Hellinger consistency, which—being equivalent to consistency in total
variation norm—is a very strong form of consistency. It may be too much to
ask for. It may also be more than we want as we are often only interested in
weak consistency (i.e. consistency in the Prohorov metric). In many non– and
semi-parametric models the NPMLE is discrete whereas the true P0 could
be absolutely continuous. As the total variation distance between singular
measures is 1, the Hellinger distance between P̂n and P0 cannot be less than
1.
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We propose the use of a sequence {Pn} which tends to P0 in some de-
sired sense, say weakly, while H(P̂n, Pn) tends to zero. Such a sequence was
successfully applied by Murphy (1994) in a case where Hellinger consistency
indeed did not hold.

We cast this idea in the form of a theorem. Suppose that d is a metric
on P which weaker than (or equivalent to) Hellinger metric.

Theorem 1.1. Let P̂n denote the NPMLE based on independent observa-
tions X1, X2, . . . , Xn which are all distributed according to P0 ∈ P and let Pn
denote the empirical measure. If there exists a sequence {Pn} ∈ P such that
d(Pn, P0)→ 0 (P0-a.s.) while either

K(Pn : P̂n) <∞ and

∫
log

dPn

dP̂n
d(Pn − Pn)→ 0, P0-almost surely

or ∫ (
dP̂n
dPn

)1/2

d(Pn − Pn)→ 0, P0-almost surely

then d(P̂n, P0)→ 0 (P0-almost surely)

Proof Replacing P0 with Pn in the preceding discussion, we see that either
condition on Pn allows us to conclude that H(P̂n, Pn) → 0. This theorem’s
claim now follows from the assumption that d(Pn, P0)→ 0. �

1.4.3 Score equations

In the parametric case the ‘score function’, i.e. the derivative of the log
likelihood, is a familiar object. Often the maximum likelihood estimator
solves the score equations: sum of scores (is less than or) equals zero. This
sometimes enables us to calculate the MLE and it also helps us to prove
efficiency and asymptotic normality. As it turns out, the notion of a score
can be extended very neatly to the infinite dimensional case. Hence we can
also write down ‘non-parametric’ score equations. In the infinite dimensional
case the score equations usually do not characterize the NPMLE. However,
solutions of the score equations are often relatively easy to obtain, when
the real NPMLE is much more elusive. Besides, we tend to prove favorable
properties of maximum likelihood estimators by considering them as solutions
of score equations. Why then not simply consider such solutions from the
outset? We shall at times be sloppy and even call any solution of the score
equations an NPMLE.
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Scores are defined through what are called ‘differentiable submodels’. Fol-
lowing van der Vaart (1998), we consider maps t 7→ Pt from a neighborhood
of 0 in [0,∞) to P such that there exists a measurable function g : X → R
for which ∫ [

p
1/2
t − p1/2

t
− 1

2
gp1/2

]2

dµ→ 0. (1.8)

where pt and p are Radon–Nikodym derivatives of Pt and P with respect to
a sigma-finite measure µ(P, Pt), which dominates both Pt and P .

We call t 7→ Pt a differentiable submodel through P . If the integrand
converges pointwise then g = d

dt
|t=0 log dPt which is just the familiar score

function. The collection of scores associated with all differential submodels is
called the tangent set of the model P at P and denoted Ṗ(P ). Lemma 25.14
in van der Vaart (1998) asserts that from (1.8) it follows that

∫
gdP = 0

and
∫
g2dP <∞. Hence, Ṗ(P ) can be identified (up to equivalence) with a

subset of L0
2(P ).

Here a clear distinction can be made between semi- and nonparametric
models: a nonparametric model has a tangent set equal to the whole of L0

2(P ),
while the tangent set of a semi-parametric model is a true subset of L0

2(P ).
Moreover, the tangent set of a semi-parametric model is not contained in a
finite dimensional subspace of L0

2(P ). In other words, it is infinite dimensional
but not everything. Indeed, if the model consists of all probability measures
(on a given measurable space) then Ṗ(P ) = L0

2(P ).
Now consider the ‘score inequalities’∫

gdPn =
1

n

∑
i

g(Xi) ≤ 0 ∀g ∈ Ṗ(P̂n) (1.9)

An NPMLE as defined in the previous section is a solution of these inequal-
ities. The converse does not hold. Still, we will call a solution of these
equations an NPMLE.

The most familiar NPMLE, the empirical measure, solves a the score
inequalities when the model P is non-parametric so that Ṗ(P̂n) = L0

2(P̂n).
Taking scores g(x) = 1F (x)− P̂n(F ), for all F ∈ F , we see that the empirical
P̂n = Pn indeed arises as a solution of (1.9).

We now discuss how the methods of the previous section can be used to
prove consistency of solutions of the score equations. To this end we must
choose particular submodels. Let P̂n be a solution of the score equations and
consider a sequence {Pn} ∈ P such that Pn � P̂n.

Now suppose that log(dPn/dP̂n) ∈ L2(P̂n) and that P̂
(1−t)
n P t

n ∈ P for t in

an open neighborhood of 0 in [0,∞). Then t 7→ P̂ (1−t)
n P t

n is a differentiable
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submodel with score

log
dPn

dP̂n
∈ Ṗ(P̂n).

Because P̂n solves all the score equations it follows that∫
log

dPn

dP̂n
dPn ≤ 0,

which coincides with (1.3). Now we can apply the reasoning of the previous
section to try to prove that a particular P̂n is consistent.

Unfortunately, it is not usually true that P̂
(1−t)
n P t

n ∈ P. However, it is
often true that P contains the straight line (1− t)P + tQ for all P and Q in
P (i.e. P is convex). If (and only if) Pn � P̂n and dPn/dP̂n ∈ L2(P̂n) then
t 7→ (1− t)P̂n + tPn is a differentiable submodel with score

dPn − dP̂n

dP̂n
=

dPn

dP̂n
− 1 ∈ Ṗ(P̂n)

and since P̂n solves all score equations, it follows in particular that∫ (
dPn

dP̂n
− 1

)
dPn ≤ 0. (1.10)

We are assuming that dPn/dP̂n ∈ L2(P̂n), so in other words∫
dPn

dP̂n
dPn <∞.

Hence, we can rewrite (1.10) as

0 ≥
∫ (

dPn

dP̂n
− 1

)
dPn

=

∫
dPn

dP̂n
d(Pn − Pn) +

∫ (
dPn

dP̂n
− 1

)
dPn.

Now since x− 1 > log x for all x > 0 we have∫ (
dPn

dP̂n
− 1

)
dPn >

∫
log

dPn

dP̂n
dPn = K(P̂n, Pn) ≥ 0.

Hence if ∫
dPn

dP̂n
d(Pn − Pn)→ 0 P0 − almost surely (1.11)
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then
∫ (

dPn
dP̂n
− 1
)

dPn tends to zero, which implies that K(P̂n, Pn) tends to

zero which in turn implies that H(P̂n, Pn) tends to zero. Thus we have a
theorem which is very similar to Theorem 1.1.

Let d be a metric on P which is weaker than (or equivalent to) Hellinger
metric.

Theorem 1.2. Let P̂n denote a solution of the score equations (1.9) based on
independent observations X1, X2, . . . , Xn which are all distributed according
to P0 ∈ P and let Pn denote the empirical measure. Suppose also that P is
convex. If there exists a sequence {Pn} ∈ P such that

1. d(Pn, P0)→ 0 (P0-a.s.)

2. The submodel t 7→ (1− t)P̂n + tPn is Hellinger differentiable at P̂n

3. (1.11) holds

then d(P̂n, P0)→ 0 (P0-a.s.)

1.4.4 Missing data problems and the EM algorithm

In this section we study missing data models which are also known as infor-
mation loss models or mixture models. The issue is that for some reason we
do not (completely) observe the random variables whose common distribu-
tion Q0 ∈ Q is of interest.

Let X be a generic random variable on some (measurable) space X with
distribution Q0 ∈ Q and let C be another random variable whose conditional
distribution given X is known to us. Let Y = Φ(X,C), where Φ is a known
many-to-one mapping. Y takes values in a measurable space Y . Now suppose
we observe independent Y1, . . . , Yn which are distributed as Y and from these
we want to estimate Q0. We call the Xi the complete data and the Yi the
incomplete or observed data. Estimation of Q0 ∈ Q (or functionals thereof)
from the observations Yi is called a missing data problem.

The setup we have described is so general that one could maintain that
every estimation problem is a missing data problem. Still, it will prove a
convenient way to think about all sorts of censoring mechanisms.

We now give another way to describe the situation. Consider a Markov
kernel K(dy; x). This means that K(dy; x) is a probability measure for every
x ∈ X and K(A; x) is a measurable function of x when A ⊆ Y is a measurable
set. Now for all Q ∈ Q define the ‘mixture’ P = KQ by

P (dy) = KQ(dy) =

∫
X
K(dy; x)dQ(x). (1.12)
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Clearly P is a probability measure on the space Y . Q is called the ‘mix-
ing distribution’. We suppose K is known and we observe an i.i.d. sample
Y1, . . . , Yn with common distribution P0 = KQ0, where Q0 is known to lie
in a class Q. The model for the distribution of a generic observation Y is of
course P = KQ = {KQ : Q ∈ Q}. The objective, again, is to estimate Q0.

We have explained what we mean by a ‘missing data model’ and by ‘a
mixture model’. In fact, these two descriptions are the same. A missing data
model can be described as a mixture model by defining K(dy; x) to be the
conditional distribution of Y = Φ(X,C) given X = x. Conversely, a mixture
model can be described as a missing data model as follows. First, define a
random variable C which, conditional on X = x, has distribution K(dy; x).
Next, define a random variable Y = Φ(X,C) = C.

We shall now give two useful properties of P = KQ which follow directly
from properties of Q.

Lemma 1.3. If Q is convex then so is P = KQ.

Proof Take two arbitrary elements P, P ′ ∈ P. Then there exist Q,Q′ ∈ Q
such that P = KQ and P ′ = KQ′. Now for 0 ≤ t ≤ 1

tP + (1− t)P ′ = t

∫
K(dy; x)dQ(x) + (1− t)

∫
K(dy; x)dQ′(x)

=

∫
K(dy; x)d(tQ(x) + (1− t)Q′(x)) ∈ P

because tQ+ (1− t)Q′ ∈ Q. �

Even more importantly,

Lemma 1.4. If t 7→ Qt is a differentiable submodel through Q ∈ Q with
score function g , then t 7→ Pt = KQt is a differentiable submodel through
P = KQ ∈ P with score EQ(g(X)|Y ).

Proof For a proof refer to Bickel et al. (1993) proposition A.5.5 or Le Cam
and Yang (1988) proposition 4. �

We shall concern ourselves exclusively with completely nonparametric
missing data / mixture problems, which means that Q̇(Q) = L0

2(Q) for all
Q ∈ Q. In other words, every square integrable function, which integrates
to zero is a score function belonging to a differentiable submodel. The fact
that scores are so plentiful is useful when we want to estimate Q0 by solving
score equations. The nonparametric situation typically arises when we have
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no prior information about Q0 so that we must take our model Q to consist
of all probability measures on X . In passing, we note that if Q consists of
all probability measures on a given space, then Q is convex. By the first of
the above lemmas, convexity of Q implies convexity of P = KQ. This will
be very useful as this puts us in the realm of Theorem 1.2.

The fact that we only observe Y and not X may cause a lack of identifia-
bility. We may well have that KQ = KQ′ while Q 6= Q′. This is unfortunate
as it means that from the data we can not tell Q and Q′ apart. We can of
course reduce Q in such a way that we do have identifiability, but then our
missing data problem will most likely fail to be completely non-parametric.

In the problems we study in this thesis we can construct a different missing
data problem which is identifiable, but also completely non-parametric. It
features a different model Q̃ of probability measures on a different space X̃
and also a different Markov kernel K̃. Of course we make sure that K̃Q̃ =
KQ so that the model for the data is the same. For the remainder of this
section we simply assume identifiability.

Turning to maximum likelihood estimation, the NPMLE Q̂n of Q0 is defined
to satisfy ∫

log
dP

dP̂n
dPn :=

∫
log

dKQ

dKQ̂n

dPn ≤ 0, ∀Q ∈ Q,

where Pn is the empirical distribution of the observed data Y1, . . . , Yn.
Instead of trying to find the NPMLE, we might be already be content

with a solution Q̂n of the score equations∫
EQ̂n(g(X)|y)dPn(y) =

1

n

∑
i

EQ̂n(g(Xi)|Yi) = 0, ∀g ∈ Q̇(Q̂n).
(1.13)

If we have a completely nonparametric missing data problem every func-
tion g in L0

2(P̂n) is a score. Thus we can take g(x) = 1A(x)− Q̂n(A) for any
measurable set A to obtain the so-called self consistency equations

Q̂n(A) =

∫
EQ̂n(1A(X)|y)dPn(y)) =

1

n

∑
Q̂n(Xi ∈ A|Yi).

(1.14)

It is usually assumed that for all x the kernels K(dy; x) have densities
with respect to a single sigma-finite measure. This may not hold, and in
particular it does not hold in the problems that are considered in this thesis.
Fortunately, to solve the score equations we only need to compute integrals
with respect to the conditional distribution under Q̂n of X given Y . Hence,
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it suffices if the K(dy; x) are dominated for Q̂n-almost all x. Thus sup-
pose that a sigma-finite measure µn dominates K(dy; x) for Q̂n-almost all
x. The measure µn is allowed to depend on the data Y1, . . . , Yn. We denote
K(dy; x)/dµn(y) = kn(y; x). Then the conditional distribution of X given
Y = y under X ∼ Q̂n is

kn(y; x)dQ̂n(x)∫
x′ kn(y; x′)dQ̂n(x′)

(1.15)

and the score equations (1.13) become

∑
i

∫
g(x)kn(Yi; x)dQ̂n(x)∫
x′ kn(Yi; x′)dQ̂n(x′)

= 0, ∀g ∈ Q̇(Q̂n). (1.16)

Again, if a missing data problem is completely nonparametric then we
can take g(x) = 1A(x)− Q̂n(A) for any measurable set A and (1.14) becomes

Q̂n(A) = 1/n
∑
i

∫
A

kn(Yi; x)dQ̂n(x)∫
x′ kn(Yi; x′)dQ̂n(x′)

. (1.17)

These equations are the well known self-consistency equations. Solving them
iteratively is an instance of the EM algorithm. When we start the iterations
with an initial guess Q(0)

n then all subsequent iterates will be dominated by
it. Hence we can never do better than compute a ‘sieved’ NPMLE over the
model {Q ∈ Q : Q� Q

(0)
n }.

There has been much discussion of the merits and flaws of the EM al-
gorithm (Dempster et al. 1977). Vardi and Lee (1993) point out the wide
applicability of EM, but—obviously—blind application of the algorithm to
every problem one meets is unwise. However, it does seem to perform rather
well in ‘nice’ cases, i.e., parametric– and

√
n-nonparametric problems. EM

is wholly unsuitable to determine the support of a distribution.
The rate at which EM converges is painfully slow, and has even been

described as ‘lethargic’. On the other hand, only infantile computer skills
are required to implement it. A clever mathematician who is good with
computers can generally do much better (cf. Meilijson, 1989).

1.5 Perfect Simulation

The distribution of a spatial process is often very complicated. Typically,
if there is any spatial dependence we have a normalizing constant that is
utterly intractable. To appreciate this fact, consider a Poisson point process
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of intensity λ > 0 on the unit square. Suppose we are interested in the
conditional distribution of the process, given that no two points are closer
than at distance r > 0. This is called the hard core model. The normalizing
constant here is an integral over all finite configurations of points that are
all further apart than r. Performing this integration analytically appears
impossible. Stochastic integration would be feasible if we can efficiently ob-
tain realizations of the hard core model. Rejection sampling, i.e. generating
Poisson processes and discarding those that do not meet the requirement,
may not be efficient depending on λ and r.

Coupling-from-the-past (CFTP) (Propp and Wilson, 1996) is a clever
method to obtain samples from complicated distributions which arise as the
stationary distribution of a Markov chain—as quite often happens in spatial
models. For instance, the hard core model arises as the stationary distribu-
tion of a so-called spatial birth and death process, where births that violate
the condition are rejected.

In chapter 4 we consider estimation of the intensity of the Boolean model
of discs (also known as the ‘bombing model’). As it turns out we need to
sample from a conditional Poisson point process. We have implemented a
CFTP algorithm which is extremely quick.

This Boolean discs problem is a missing data problem, and we can use a
stochastic version of the EM algorithm (StEM) to estimate the intensity. This
algorithm produces an ergodic Markov chain on the parameter space. The
StEM estimator is a sample (or an average of samples) from the stationary
distribution of this chain. We can again use CFTP to actually obtain such
samples. This we call the perfect StEM algorithm.

This section is based on van Zwet (2000). It is organized as follows. Below
we first describe coupling-from-the-past, then the stochastic EM and finally
the perfect stochastic EM algorithm.

1.5.1 Coupling From The Past

Consider an ergodic (i.e., irreducible and aperiodic) Markov chain Xt on a
state space S and suppose we want to simulate its equilibrium distribution.
Starting the chain from some arbitrary initial state and then running it for
a very long, but finite time will generally not ensure that samples are from
the stationary distribution. Recently, Propp and Wilson (1996) devised a
method, called coupling from the past (CFTP), to produce perfect or exact
samples. We closely follow Kendall and Thönnes (1998) to explain how it
works.

For now, let us assume that the state space S is finite. A Markov chain
Xt on S can be described by means of i.i.d. ‘random transition maps’ Ht :
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S → S. Such a random transition map Ht determines for each state i ∈ S
that the chain X might be in at time t − 1 where the chain would jump to
next. If pij are the transition probabilities of the Markov chain to move from
state i to j, then the common distribution of the Ht should be such that
P (Ht(i) = j) = pij . Then a realization of the Markov chain X is generated
by fixing X(0) at some X0 and setting

X(t) = Ht(X(t− 1)).

Coupling from the past now works as follows. We select a time −T < 0 in
the past and run chains starting from each state of S from time −T to time 0.
The chains are coupled by using the same realizations of the transition maps
for all the chains. Hence, it follows that if two chains started at different
initial states coalesce, they will forever after stay together. Now we check if
all chains have coalesced at time 0. If so, then the state at time zero must
be a sample from the stationary distribution. This is understood as follows.
Imagine that at some time long before −T we also started a chain from an
initial state selected according to the stationary distribution. This chain will
remain in equilibrium, so in particular its state at time zero is distributed
according to the stationary distribution. However, we have arranged it so
that all chains, no matter which state they were in at time −T , are at time
zero in the same state.

If not all chains have met, then we run chains from time −2T to time 0,
making sure that we use the same realizations of H−T+1, H−T+2, . . . , H0. If
the paths still have not coalesced, we run chains from time −4T and so on.

If the state space S has more than just a few elements it will not be feasible
to run chains starting from all possible states.

Let us now consider finite, countable or even uncountable S. Suppose
that S admits a partial ordering �, and that there are a minimal and a
maximal element, s and s such that

s � s � s, for all s ∈ S.

Also suppose that the chain is ‘monotone’ in that it respects the ordering.

Ht(s) � Ht(s
′), for all s � s′ a.s.

Now we can imagine that we run coupled chains starting at all possible states,
while in practice we only run chains from states s and s. Because all paths
are ordered, it follows that if the latter two have met then all paths starting
from intermediate states would have met as well. Of course it remains to
verify in each application that the algorithm will almost surely terminate in
finite time.
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1.5.2 Stochastic EM

The stochastic EM (StEM) algorithm (Celeux and Diebolt (1986), Wei and
Tanner (1990)), which we describe here, is an iterative procedure to estimate
a parameter in a missing data problem. It produces an ergodic Markov
Chain on the parameter space. The equilibrium distribution of this chain
has certain desirable properties (Nielsen (1997a and b). In the next section
we will investigate if and when the ideas of the previous section can be applied
to actually obtain a sample from this equilibrium distribution.

Suppose that X is distributed according to a probability measure Pθ0 .
Suppose we can observe only the result of a many-to-one mapping Y (C,X),
where the conditional distribution of C given X is known. The goal is to
estimate θ0, where θ0 is assumed to be in some general set Θ, from observing
Y = y. This is sometimes called a missing data problem (see section 1.4.4).
Often the EM algorithm (Dempster, Laird and Rubin (1977)) provides a
method to find the maximum likelihood estimator of θ0. There are two
drawbacks. The first is that it is not known how many iteration steps are
needed to bring one close enough to convergence. The other is that sometimes
the E-step, computation of the conditional expectation of the likelihood given
the data, is impossible.

In this latter case, the stochastic version of the EM algorithm (StEM)
may be a viable alternative. For a review and large sample results see Nielsen
(1997a and b). The algorithm works as follows. Suppose the complete data
maximum likelihood estimator is readily computable: θ̂MLE = M(X).

1. Fix a θ(0) in Θ;

2. Sample X(1) from Pθ(0)(.|Y = y);

3. Set θ(1) = M(X(1)).

By iterating this procedure, we obtain a sequence θ(0), θ(1), θ(2), . . . . If
step 2 is carried out using independent Unif(0,1) variables for each t, the
sequence θ(t) is a time homogeneous Markov chain. Under certain conditions
it is also ergodic. If so, the algorithm converges in that the θ(t) converge in
distribution to a random variable, say θ̂, which is distributed according to the
stationary distribution of the Markov chain. Then θ̂ is the StEM estimate.
In other words, a StEM estimate is a sample from the stationary distribution
of the ‘StEM Markov chain’.

It is not clear for how long we should run the StEM chain to allow it to
reach equilibrium. This lack of a termination rule seems to be something
StEM and EM have in common. However, we shall find that in some cases
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we can apply coupling-from-the-past to obtain a sample that is guaranteed
to come from the stationary distribution of the StEM chain.

1.5.3 Perfect Stochastic EM

In this section we combine the ideas from the previous two sections. We
use the set-up and notation of the preceding section. Let us suppose that
the parameter space Θ admits a partial ordering �. Fix a time −T < 0 in
the past. Suppose that for t = 0,−1,−2, . . . we can construct independent
collections of random variables {Xθ(t), θ ∈ Θ} such that

1. Xθ(t) ∼ Pθ(.|Y = y)

2. θ � θ′ ⇒M(Xθ(t)) �M(Xθ′(t)) almost surely.

Recall that M(X) is the complete data maximum likelihood estimator of θ.
To simulate a Markov chain θ−T (−T ), θ−T (−T + 1), . . . , θ−T (0) we define

random transition maps

Ht(θ(t− 1)) = M(Xθ(t−1)(t)), t = −T + 1,−T + 2, . . . , 0.

Now suppose that there are ‘minimal’ and ‘maximal’ elements θ and θ
such that θ � θ � θ for all θ ∈ Θ. Consider two coupled paths θL−T (.) and

θU−T (.) starting at θL−T (−T ) = θ and θU−T (−T ) = θ. It now suffices to check if
these paths have coalesced at time zero, i.e. if θL−T (0) = θU−T (0). If so, then

we have a perfect StEM estimate θ̂ = θL−T (0). If not we have to go back
further in time.

We demonstrate the Perfect StEM algorithm in a simple example. We
also apply it to a more involved problem in section 4.4.2.

An Example

Suppose X = (X1, X2, . . . , Xn) is an i.i.d. sample from Pθ0 = Exp(θ0); the
exponential distribution with intensity (reciprocal of the mean) θ0. We wish
to estimate the intensity θ0. Suppose that θ0 is known to be bigger than some
θ > 0, that is θ0 ∈ Θ = [θ,∞) Of course the maximum likelihood estimator
of θ0 is θ̂MLE = M(X) = (n/

∑
Xi) ∨ θ. Suppose we only observe

X̃i = Xi ∧ C ∆i = 1{Xi>C},

for some fixed positive constant C. Write Yi = (X̃i,∆i) for the observed
data.
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The maximum likelihood estimator of θ0 based on the observed data is
known to be the ‘occurrence’ divided by the ‘exposure’.

n−
∑

∆i∑
X̃i

.

So there is really no need to apply the StEM algorithm here. The purpose
of this example is strictly illustrative.

We now describe how the StEM algorithm works here. When multiplying
vectors we mean coordinate wise multiplication (mapping two vectors to one
vector).

1. Fix θ(0) > 0

2. Generate X(1) ∼ Pθ(0)(X|Y = y):

X(1) = X̃ + ∆E, where E = (E1, . . . , En), Ei ∼ Exp(θ(0))

3. θ(1) = M(X(1)) = nP
Xi(1)

∨ θ.

Repeating this procedure, we obtain an ergodic Markov chain θ(0), θ(1), . . . .
Now we demonstrate how we can apply perfect sampling to this chain.

Recall the usual ordering on Rn: x ≤ y if x1 ≤ y1 and x2 ≤ y2 . . . and
xn ≤ yn. Note that if x ≥ y then M(x) ≤ M(y). Set θ = M(X̃). Since, for
all t, X(t) ≥ X̃ it follows that θ(t) = M(X(t)) will always be less than θ.
Hence, we may reduce our parameter-space Θ to [θ, θ]. Of course θ and θ are
minimal and maximal elements of Θ with the usual ordering.

We now construct collections {Xθ(t), θ ∈ Θ} as required at the beginning
of this section. For t = −T + 1,−T + 2, . . . 0 and i = 1, 2, . . . , n generate
independent

Eθ,i(t) ∼ Exp(θ) and Ei(t) ∼ Exp(θ − θ)
and define

Eθ,i(t) = Eθ,i(t) ∧
θ − θ
θ − θEi(t).

Then, evidently, Eθ,i(t) ∼ Exp(θ), and θ ≤ θ′ implies Eθ,i(t) ≥ Eθ′,i(t). For
t = 0,−1,−2, . . . and all θ ∈ Θ we define

Xθ,i(t) = X̃i + ∆iEθ,i(t),

Thus, for t = 0,−1,−2, . . . we have collections of random variables {Xθ(t), θ ∈
Θ} such that

1. Xθ(t) ∼ Pθ(.|Y = y)
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2. (θ ≤ θ′ ⇒M(Xθ(t)) ≤M(Xθ′(t))) a.s.

as required. We can now run a ‘lower’ chain θL−T (−T ) = θ, θL−T (−T +

1), . . . , θL−T (0) and an ‘upper’ chain θU−T (−T ) = θ, θU−T (−T + 1), . . . , θU−T (0)
and check if θL−T (0) = θU−T (0). We do need to make sure that the algorithm
will terminate in finite time. It is enough to check that for some fixed −T
the event θL−T (0) = θU−T (0) has positive probability. Well,

Pr(θL−1(0) = θU−1(0)) ≥ Pr(Xθ,i(0) = Xθ,i(0), ∀i)
≥ Pr(Exp(θ) ≤ Exp(θ − θ))n > 0.

This concludes the example.

The difficulty in making the StEM algorithm perfect lies in the construction
of collections of random variables satisfying points 1 and 2 at the beginning
of this section. There probably is no general recipe to achieve this. Here we
ask ourselves when such a construction is at all possible. It turns out that
the concept of realizable monotonicity (Fill and Machida (1998)) is essentially
what we need.

Realizable monotonicity is very close to stochastic monotonicity, which is
a more familiar concept and which is also easier to check. Suppose that the
complete data are random elements in some space E, and that the complete
data maximum likelihood estimator of a parameter θ ∈ Θ is given by a
function M on E. We assume that the parameter space Θ admits a partial
order �1.

Suppose that E admits a partial ordering �2 such that, for any x1, x2 ∈ E

x1 �2 x2 ⇒ M(x1) �1 M(x2).

Then we need to be able to construct a collection {Xθ, θ ∈ Θ} such that

1. Xθ ∼ Pθ,

2. θ �1 θ
′ ⇒ Xθ �2 Xθ′, almost surely.

We shall have a look at two notions of monotonicity for a collection
{Pθ , θ ∈ Θ} of probability measures: realizable and stochastic monotonicity.

Definition 1.4. The collection {Pθ , θ ∈ Θ} is called realizably monotone
if there exists a collection of random variables {Xθ , θ ∈ Θ} such that

1. Xθ ∼ Pθ,

2. θ �1 θ
′ ⇒ Xθ �2 Xθ′, almost surely.
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A subset U of E is said to be an up-set in (E,�2) if y ∈ U whenever
x ∈ U and x �2 y. If P1 and P2 are probability measures on E then P1 is
stochastically smaller than P2 if P1(U) ≤ P2(U) for all up-sets U in (E,�2).
we then write P1 �D2 P2.

Definition 1.5. The collection {Pθ , θ ∈ Θ} is called stochastically mono-
tone if

θ �1 θ
′ ⇒ Pθ �D2 Pθ′, a.s.

Realizable monotonicity is clearly what we need, while stochastic mono-
tonicity is usually easier to check. It is easily seen that realizable monotonic-
ity implies stochastic monotonicity. That the converse is not always true
is demonstrated by an example in Ross (1993). However, for various finite
classes of (E,�2), Fill and Machida (1998) give conditions on finite index
sets (Θ,�1) such that stochastic monotonicity does imply realizable mono-
tonicity. For instance, realizable and stochastic monotonicity are equivalent
when (E,�2) or (Θ,�1) is a finite linearly ordered set. Recall that a set is
linearly ordered if each pair of elements is comparable.

Fill and Machida (1998) coined the term ‘realizable monotonicity’ and
noted its relevance for perfect sampling. Their results for finite sets are all
the more useful because of the following unpublished result by Ross (1993).

Theorem 1.3. Suppose that (Θ,�1) is a partially ordered set and (E,�2)
is a complete separable metric space with closed partial order. Then {Pθ, θ ∈
Θ} is realizably monotone if and only if for every finite Ψ ⊆ Θ {Pθ, θ ∈ Ψ}
is realizably monotone.

Now if for some separable set with a closed partial order we can use
the results of Fill and Machida (1998) to check realizable monotonicity for
all its finite subsets then Ross’s theorem allows us to conclude realizable
monotonicity for the entire infinite set.
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