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Chapter 1

Introduction

1.1 Context and scope

This thesis deals with spatial statistics, or more precisely, with the statistical
analysis of spatial data. The spatial data we consider are random configu-
rations of points, line segments or discs in the two dimensional plane. Such
random ‘processes’ could serve, and have served, to model a wide variety of
real life phenomena. The points may represent the locations of trees in a
forest, the line segments could be fractures in a rock surface and the discs
could be cells under a microscope.

Usually, we observe these spatial processes through a bounded window
while we imagine they extend throughout the entire plane. As a result, we
often have to deal with ‘edge-effects’. For instance, observing a collection
of line segments through a bounded window some of the segments will be
clipped at the window’s boundaries. Such censoring has been studied ex-
tensively in the one dimensional case. The line segments then represent
lifetimes which are sometimes not completely observed. Estimation of the
lifetime distribution from incomplete observations is the main subject of the
field of survival analysis. Laslett (1982a, b) was the first to point out the
analogy of censoring in survival analysis and edge effects in spatial statistics.

Our goal in this thesis is always to estimate the probability distribution
of the (partly) observed random spatial process. Sometimes this distribution
is determined by a finite dimensional parameter, such as the expected num-
ber of points in a given set. At other times this will not be the case and
then we speak of a semi- or nonparametric problem or of a problem with
a ‘large parameter space’. In recent years estimation of infinite dimensional
parameters has received much attention and has made great headway. Bickel
et al. (1993) is a standard reference for modern semi-parametric theory. In-
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4 Chapter 1. Introduction

complete observation, such as due to edge effects, is well incorporated in the
theory.

One of the main themes of this thesis is the application to spatial data
of semi-parametric methods. Another, closely related theme is maximum
likelihood estimation from spatial data. Maximum likelihood estimation is
not common practice in spatial statistics as the method of moments and
minimum contrast methods are more often applied (Stoyan et al. 1987).
One might view our effort in the light of a development which has been
described—somewhat provocatively—by Geyer (1999):

“Exotic areas of statistics, such as spatial statistics in general and spatial
point processes in particular often recapitulate the history of statistics. The
first formal inference is nonparametric, using method of moments estimators.
At this stage there is no modeling. Ordinary statistics was in this phase a
century ago with Pearson families of curves fit by method of moments. Time
series was in this phase in the 1950s with spectral analysis. Spatial statistics
was in this phase in the 1970s. Ripley’s K-functions are an example. So is
spatial autocorrelation analysis of lattice processes.

The next phase involves the introduction of parametric statistical models,
efficient estimation methods, and hypothesis tests, which happened in ordi-
nary statistics in the 1920s and 1930s, in time series in the 1960s, and is
only now happening in spatial statistics. ”

The thesis is organized around three problems: Laslett’s line segment
problem; estimation of the chord length distribution; and estimation for the
bombing model. We describe these problems in section 1.2 of this introduc-
tion and return to each of them in the next three chapters. In the remainder
of this chapter we gather some theory and tools for later reference. In par-
ticular, we briefly discuss the issue of independence in spatial processes and
introduce the Poisson process and the related Boolean model. Next, we
discuss some topics in semi-parametrics and finally consider Markov Chain
Monte Carlo methods and perfect sampling. We want to draw the reader’s
special attention to two topics to which we contribute something new. The
first is a general discussion of consistency of maximum likelihood estimators
in section 1.4.2. The second is a modification of a stochastic version of the
well-known EM algorithm (Dempster et al. 1977, Celeux and Diebolt 1986)
in section 1.5.3.
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1.2 Three problems

In this thesis we analyze three spatial missing data problems. In all of these
we are unable to write down the likelihood of the data, let alone maximize
it. This seems typical of spatial statistical estimation problems and explains
why maximum likelihood is usually not the preferred approach.

In each of the first two of our problems we manage to find ‘analogous’
problems, which are simpler yet similar. For these analogous problems we can
perform maximum likelihood estimation. Thus we obtain estimators that are
MLEs—only not for the actual problems at hand! Still, if the simplifications
are minor we may expect that the nice properties that an MLE typically
possesses will be preserved, at least to a certain degree. Efficiency will gener-
ally fail, but consistency and asymptotic normality may not. We shall study
consistency only, but we feel confident that it would be also possible to tackle
asymptotic normality.

Although the first two problems both concern line segments and our ap-
proach to them is similar, we should point out that they really are quite dif-
ferent. In the first problem we have to deal with spatial dependence among
the data. The difficulty with the second problem is that the data are in the
form of random functions on random sets.

In the third problem, concerning the Boolean model of randomly placed
discs, our difficulties are of a different nature still. The likelihood is easy
enough, except for an intractable normalizing constant. No simplification
will help and so the emphasis shifts from analytic methods to a Monte Carlo
approach. In particular, we present a new algorithm to sample from the
distribution of a wide variety of point processes.

We now briefly state our three problems and point out their particular
difficulties. We do not as yet strive for mathematical rigor, but merely wish
to indicate where we are going—and hopefully whet the reader’s appetite.

Laslett’s line segments

Figure 1.1 is a map of an area of about 160 by 160 meters of the Canadian
Shield near Manitoba. The black parts are the rock surface, the white parts
are soil, vegetation or water. The white lines through the black regions indi-
cate fractures and the problem is to estimate the distribution of their lengths.
This is a missing data problem because the fractures are unobservable in the
white regions and outside the 160 by 160 meters area of the map. The par-
ticular difficulty here lies in the fact that the (black) observation region is
not convex. This means that of a single fracture we might observe several
fragments. Because the resolution of the map is rather poor, it is impossible
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to know if two fragments belong to the same fracture.
The fractures are conveniently modeled by a location and an associated

line segment. By ‘location’ we mean, for instance, the location of a preferred
point on the segment, such as the mid point or the left-hand end-point.

In earlier contributions, the case of a convex observation window was
considered. Assuming the locations and line segments to be a Poisson marked
point process one finds that the fractures are independent. Standard methods
can then be applied to compute the (non-parametric) maximum likelihood
estimator (Gill 1994, Wijers 1995a and b). For us there is no gain in assuming
that the locations of the fractures are Poisson, because even if the fractures
are independent some of the fragments are certainly dependent.

Chord Length Estimation

Consider a random closed set W ⊂ R2. With each point in W we can asso-
ciate a chord in a given direction which is the longest line segment through
that point which lies wholly withinW. Also, with each point inWc = R2\W
we can associate a contact segment (our terminology) in a given direction
which is the longest line segment starting at that point which is completely
contained in Wc. Of course these two concepts are closely related.

The problem is estimation of the distribution function of a typical chord
and a typical contact segment, when we observe W through a compact set B.
This is a missing data problem because some chords and contact segments are
clipped at the boundaries of B. The particular difficulty here is that for every
point in W, respectively Wc we have a chord or a contact segment. Such
continuous data is awkward and we are unable to apply standard methods
for missing data problems.

The Bombing Model

Consider the so-called Boolean model in R2 where at each point of a Poisson
point process of intensity λ, a disc of random radius is placed. This model
is also known as the bombing model. We observe only the union of the discs
through a compact window W . In this example data is missing as some discs
are not observed because they are covered by others. Also there is the usual
censoring at the observation window’s boundaries. For our present purpose,
estimation of the intensity parameter λ, the latter censoring is not the main
difficulty. The difficulty is that the conditional distribution of the complete
data, given the observed data involves a normalizing constant which cannot
possibly be evaluated. Again, standard methods for missing data problems
fail.
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Figure 1.1: Fractures in 160 m. by 160 m. granitic rock of the Lac du Bonnet
batholith in Manitoba. From Stone, Kamineni and Brown (1984). Digitized
and post-processed by professor A.J. Baddeley of the University of Western
Australia. The irregular black region is the rock’s surface. The white parts
represent areas where the rock cannot be observed due to soil, vegetation or
water. The white lines through the black regions indicate fractures.
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1.3 Independence, Poisson processes

and Boolean models

This section borrows its title from section 1.5 of Baddeley (1999a). It con-
tains some basic facts concerning the Poisson process in more general spaces
than R+, and introduces the Boolean model. The Poisson process and the
Boolean model—which is derived from it—are perhaps the simplest of all
spatial models. They have been studied in detail, for instance in Daley and
Vere-Jones (1988) and Stoyan et al. (1987). The content of this section can
be said to be part of the folklore of stochastic geometry.

Classical statistics deals typically with independent, identically distributed
random variables. An essential element of spatial statistics is a lack of in-
dependence. Suppose that X is a random spatial process of, say, randomly
placed points. If there is any spatial structure or regularity, then typically
we fail to have independence of X ∩ A and X ∩ B, even when A and B are
disjoint. The prime example of a completely random point process is the
Poisson process. We now give a rather general definition.

Let (S,B, Λ) denote a measure space with a finite diffuse Radon measure
Λ. A typical example is the case where S is a compact subset of R2 with the
Borel sigma-algebra and Λ(ds) = λds.

Consider the ‘Carter–Prenter exponential space’ Ω of all finite subsets x of
elements of S with a sigma-algebra F generated by sets {x ∈ Ω : n(x∩B) =
n} (B ∈ B), where n(x) denotes the number of elements in x.

The Poisson process Φ of intensity Λ can be seen as a random (counting)
measure on (S,B) or as a measure on (Ω,F). By Φ(B) we denote the (ran-
dom) number of points of Φ that fall in a B-measurable set B. The Poisson
process is determined by the following two properties

1. P (Φ(B) = n) = Λ(B)ne−Λ(B)/n!, for n = 0, 1, 2, . . . , for all B ∈ B

2. Φ(B1), Φ(B2), . . . , Φ(Bk) are independent for disjoint B1, B2, . . . , Bk.

Note that EΦ(B) = Λ(B) =
∫

B
Λ(ds).

The expected number of points in a set B has the Poisson distribution
with parameter Λ(B). Conditionally on Φ(B) = n, the points of Φ ∩ B are
distributed as a sample of size n from the ‘normalized intensity’ Λ(S)−1Λ(ds).

Poisson processes have a nice ‘superposition’ property: The superposition
(union) of independent Poisson processes is again a Poisson process, whose
intensity is the sum of the intensities of the individual processes.

It is often useful to associate with each point of a point process a char-
acteristic or ‘mark’. For instance, when the points indicate locations (of the



1.4 Semi-parametrics 9

midpoint) of fractures in a rock surface, an extra mark could indicate each
fracture’s length or direction. When the points represent (the center of) trees
in a forest the mark could be their stem’s diameter.

Now suppose we have a point process Φ = {Si} on a space S. Suppose
with each point Si is associated a random mark Mi in some ‘mark space’ M ,
equipped with a probability measure P . Then the ‘Marking Theorem’ states
that the following are equivalent

• The point process Φ is Poisson with intensity Λ and conditional on Φ,
the marks are i.i.d. according to P .

• The marked point process {(Si, Mi)} is a Poisson process on S ×M
with intensity measure Λ× P .

As a consequence of the Marking Theorem we have the ‘thinning’ property
of Poisson processes: Suppose we have a Poisson process of intensity Λ. Now
if we delete each point, independently of the others, with probability 1 − p,
the result will be a Poisson process with intensity pΛ.

Above we gave two examples of marked point processes; one representing
a random collection of line segments (fractures), the other of circles (trees
with specified stems). When the underlying point process is Poisson, such
collections of randomly placed objects are called Boolean models (Matheron
1975, Stoyan et al. 1987). More precisely, suppose that Φ = {Si} is a Poisson
process on Rd and suppose that Ξ1, Ξ2, . . . are a sequence of independent,
identically distributed random closed sets in Rd. Then the Boolean model is
defined as ∪i(Si ⊕ Ξi). The symbol ⊕ means Minkowski addition defined as
A⊕B = {a + b, a ∈ A, b ∈ B}.

1.4 Semi-parametrics

In this section we introduce the maximum likelihood estimator (MLE) P̂n of
a probability measure P0 among a class P which we allow to be infinite di-
mensional. In this situation, the MLE is often called the nonparametric MLE
(NPMLE). Also, we discuss differentiable, parametric sub-models through P.
Each such submodel will have a score function. With these scores, we can
consider solutions of score equations. We discuss consistency of the NPMLE
and of solutions of score equations. Other desirable properties we might look
for in estimators, such as efficiency and asymptotic normality will not be
touched upon in this thesis and are therefore omitted in the present discus-
sion. Finally, we also consider so-called missing data problems, which go also
by the name ‘mixture models’.
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A standard reference on semi-parametrics is the monograph by Bickel et
al. (1993). Our exposition here owes much to the very readable chapter 25
on semi-parametrics of a recent book by van der Vaart (1998).

1.4.1 Nonparametric maximum likelihood estimation

In this section we define the so-called nonparametric maximum likelihood
estimator (NPMLE). Consider random variables X1, X2, . . . , Xn which are
independent and identically distributed according to some distribution P0 in
a class P of probability measures.

When P is not dominated by a single measure, the ordinary definition
of the maximum likelihood estimator fails because there really is no like-
lihood. Kiefer and Wolfowitz (1956) proposed a way out of this difficulty
by considering only pairwise comparisons. Now let Pn denote the empirical
measure.

Definition 1.1. A maximum likelihood estimator P̂n of P0 ∈ P is any ele-
ment of P such that∫

log
dP̂n

d(P̂n + P )
dPn ≥

∫
log

dP

d(P̂n + P )
dPn ∀P ∈ P, (1.1)

while for every P ∈ P, the left hand side is greater than minus infinity.

The latter requirement is a technicality. Its meaning will become clear in
Lemma 1.1 below.

The definition says that P̂n should ‘beat’ any other candidate on the
data in pairwise comparison. Note that as we only compare two measures
at a time, P need not be dominated. Note also that if P is dominated the
definition reduces to the ordinary definition of maximum likelihood.

The definition depends on which versions of the Radon-Nikodym deriva-
tives are used. These versions are only determined up to (P1 + P2) null sets
(when comparing P1 and P2 in P), which are not necessarily Pn null sets.
This problem has nothing to do with the fact that P may be undominated or
infinite dimensional. It arises in parametric models just the same. It is gener-
ally felt that there should not be a problem—certainly not asymptotically—if
we assume “what are known in some quarters as the British regularity con-
ditions”, to quote Cox (2000) (on a different matter). For a more thorough
discussion see Scholz (1980).

For definiteness, we imagine that we have some mechanism to choose a
version of each Radon–Nikodym derivative dP/d(P + Q) for all P, Q ∈ P
in advance, thus making sure that our choices do not depend on the data.
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Moreover, we do this in such a way that 0 ≤ dP/d(P +Q) ≤ 1 and dP/d(P +
Q) + dQ/d(P + Q) = 1.

We find the definition of the NPMLE in its present form (1.1) slightly
awkward and prefer to have a definition in terms of ‘log likelihood ratios’,
see (1.2) and (1.3) below. Let us now define the likelihood ratio and log
likelihood ratio.

Consider two probability measures P1 and P2 in P, where P2 need not
dominate P1. Define the likelihood ratio to be

dP1

dP2
(x) =

(dP1/d(P1 + P2))(x)

(dP2/d(P1 + P2))(x)
.

This likelihood ratio should of course not be confused with the Radon–
Nikodym derivative, which conventionally is defined only when P1 � P2.
Because we can choose versions of the numerator and denominator which
add up to 1, there are no problems with dividing zero by zero. If the nu-
merator is positive while the denominator is zero, the ratio is defined to be
infinite.

Lemma 1.1. The defining property (1.1) of the NPMLE P̂n is equivalent to∫
log

dP̂n

dP
dPn ≥ 0 ∀P ∈ P, (1.2)

and also to ∫
log

dP

dP̂n

dPn ≤ 0 ∀P ∈ P. (1.3)

Proof This lemma is immediate from our definition of likelihood ratio. The
assumption that the left hand side of (1.1) is greater than minus infinity is
equivalent to (1.2) and (1.3) being well-defined. �

We should mention that an NPMLE need not exist and if it exists it need
not be unique. A modification called the method of sieves due to Grenander
(1981) is sometimes useful. We choose submodels Pn ⊆ P such that ∪nPn

will almost surely eventually include the true P0. Then we define a ‘sieved’
NPMLE P̂ s

n to be such that∫
log

dP̂ s
n

d(P̂ s
n + P )

dPn ≥
∫

log
dP

d(P̂ s
n + P )

dPn ∀P ∈ Pn, (1.4)

while for every P ∈ Pn, the left hand side is greater than minus infinity.
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The Pn should, if possible, be chosen in such a way that P̂ s
n exists and is

easily computed.

It is often useful to choose Pn in a way that is dependent on the data. For
instance, we can take Pn = {P ∈ P : P � Pn}. The resulting sieved NPMLE
we should perhaps call data sieved NPMLE. However, we shall generally omit
both modifiers ‘data’ and ‘sieved’.

1.4.2 Consistency of the (NP)MLE

In this section we argue that the ‘natural’ approach to proving consistency
of an MLE leads to Hellinger consistency. This usually overshoots the mark.
Hellinger consistency—being equivalent to consistency in total variation—
is too strong for most purposes. In many situations, especially when the
model P is infinite dimensional, it just does not hold. For instance, when
the NPMLE P̂n is discrete while P0 is absolutely continuous (with respect
to Lebesgue measure) the Hellinger distance between P̂n and P0 is never less
than 1.

One way to escape the rigidity of Hellinger consistency is to try to find
a sequence Pn such that Pn tends to P0 in some reasonable sense (say weak
convergence), while at the same time the Hellinger distance between Pn and
P̂n tends to zero. Such a comparative sequence has successfully been used
by Murphy (1994), Wijers (1995b) and Gill (1994) and it will also be used
several times in this thesis.

Now we define two concepts of ‘distance’ between two probability mea-
sures. The first, Hellinger distance, is a true distance in the mathematical
sense; the second, Kullback–Leibler information is not. Kullback–Leibler
information and the Hellinger metric play an important role in proving con-
sistency of maximum likelihood estimators as they fit in well with the MLE
definition as we will see later on.

Definition 1.2. The Hellinger distance H(P, Q) between two probability mea-
sures P and Q is defined to be the square root of

H2(P, Q) =

∫ ∣∣∣∣∣
(

dP

dµ

)1/2

−
(

dQ

dµ

)1/2
∣∣∣∣∣
2

dµ

= 2− 2

∫ (
dP

dµ

)1/2(
dQ

dµ

)1/2

dµ,

for µ dominating both P and Q
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This definition does not depend on the choice of µ. It can be shown that
the topologies induced by Hellinger metric and the—perhaps more familiar—
total variation metric are the same. In fact, we have

1

2
H2(P, Q) ≤ ‖P −Q‖TV ≤ H(P, Q),

where ‖.‖TV denotes the total variation norm. The variational metric is
always between 0 and 1 and the Hellinger metric is between 0 and

√
2.

Definition 1.3. The Kullback–Leibler information of a probability measure
P with respect to Q is defined to be

K(P : Q) =

∫
log

dP

dQ
dP. (1.5)

Conventionally, dP/dQ is only defined when Q dominates P and the
Kulback–Leibler information is defined to be infinite when that is not the
case. Since we defined dP/dQ even when Q does not dominate P , (1.5)
completely specifies the Kullback–Leibler information. One can check that,
also according to our definition (1.5), K(P : Q) = ∞ when Q does not
dominate P . Note that K(P : Q) can well be infinite even when Q dominates
P .

Even though the Kullback–Leibler information is often used to quantify
the difference between two measures, it is not a distance in the mathematical
sense. However, as a simple consequence of Jensen’s inequality we do have
that K(P : Q) ≥ 0 with equality if and only if P = Q.

The following lemma relates Kullback–Leibler information to Hellinger
distance.

Lemma 1.2. For any two probability measures P and Q we have

K(P : Q) ≥ H2(P, Q).

Proof For all x > 0 we have log x ≤ x− 1. Hence,

K(P : Q) =

∫
log

dP

dQ
dP

= −2

∫
log

(
dQ

dP

)1/2

dP

≥ 2

∫
1−

(
dQ

dP

)1/2

dP

= 2− 2

∫ (
dQ

dµ

)1/2(
dP

dµ

)1/2

dµ

= H2(P, Q).
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where µ is some measure dominating both P and Q. �

We now turn to consistency. Suppose for now that

K(P0 : P̂n) =

∫
log

dP0

dP̂n

dP0 <∞.

We can then rewrite (1.3) as

0 ≥
∫

log
dP0

dP̂n

dPn

=

∫
log

dP0

dP̂n

d(Pn − P0) +

∫
log

dP0

dP̂n

dP0

=

∫
log

dP0

dP̂n

d(Pn − P0) + K(P0 : P̂n),

so if

∫
log

dP0

dP̂n

d(Pn − P0)→ 0, P0-almost surely (1.6)

then K(P0 : P̂n) → 0, which by the above lemma implies H(P0 : P̂n) → 0.
In other words, (1.6) implies the almost sure Hellinger consistency of the
NPMLE P̂n.

Condition (1.6) is an obvious consequence of a uniform law of large num-
bers over a class of functions. Such uniform LLN’s are the object of much
study in modern empirical process theory. In ‘empirical process parlance’,
(1.6) follows directly from saying that the random function log(dP0/dP̂n) is,
for n large enough, in a so-called Glivenko–Cantelli class.

The convergence of (1.6) establishes ‘Kullback–Leibler’ consistency, which
by lemma 1.2 implies Hellinger consistency. We can also get at Hellinger
consistency directly. The equality we will now prove is due to van de Geer
(1993), though she considered only the case where P is dominated by a single
sigma-finite measure. We make no assumptions on P here. Taking P = P0
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in (1.2) and then using the fact that log x ≤ x− 1 (x > 0) have

0 ≤
∫

log
dP̂n

dP0

dPn

= 2

∫
log

(
dP̂n

dP0

)1/2

dPn

≤ 2

∫ (dP̂n

dP0

)1/2

− 1

dPn

= 2

∫ (
dP̂n

dP0

)1/2

d(Pn − P0) + 2

∫ (dP̂n

dP0

)1/2

− 1

dP0

= 2

∫ (
dP̂n

dP0

)1/2

d(Pn − P0)− 2H2(P0 : P̂n).

Because H2(P0; P̂n) is always between 0 and 2 it is not a problem to add and
delete it as we did in the one-but-last line above. Now if∫ (

dP̂n

dP0

)1/2

d(Pn − P0)→ 0 (1.7)

we can conclude that H(P0, P̂n) → 0, which is to say that P̂n is Hellinger
consistent. Again is suffices to verify a uniform law of large numbers. Van
de Geer (1993) proceeds to use empirical process theory to investigate the
rate of convergence of P̂n to P0 (when indeed they converge).

In case P is convex, she suggests comparing P̂n not to P0 but to a convex
combination of P̂n and P0, say Pn. The idea is that it may be easier to
establish H(P̂n, Pn) → 0 than H(P̂n, P0) → 0 when the two are actually
equivalent.

The two methods we presented for proving consistency of the NPMLE
yield Hellinger consistency, which—being equivalent to consistency in total
variation norm—is a very strong form of consistency. It may be too much to
ask for. It may also be more than we want as we are often only interested in
weak consistency (i.e. consistency in the Prohorov metric). In many non– and
semi-parametric models the NPMLE is discrete whereas the true P0 could
be absolutely continuous. As the total variation distance between singular
measures is 1, the Hellinger distance between P̂n and P0 cannot be less than
1.
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We propose the use of a sequence {Pn} which tends to P0 in some de-
sired sense, say weakly, while H(P̂n, Pn) tends to zero. Such a sequence was
successfully applied by Murphy (1994) in a case where Hellinger consistency
indeed did not hold.

We cast this idea in the form of a theorem. Suppose that d is a metric
on P which weaker than (or equivalent to) Hellinger metric.

Theorem 1.1. Let P̂n denote the NPMLE based on independent observa-
tions X1, X2, . . . , Xn which are all distributed according to P0 ∈ P and let Pn

denote the empirical measure. If there exists a sequence {Pn} ∈ P such that
d(Pn, P0)→ 0 (P0-a.s.) while either

K(Pn : P̂n) <∞ and

∫
log

dPn

dP̂n

d(Pn − Pn)→ 0, P0-almost surely

or ∫ (
dP̂n

dPn

)1/2

d(Pn − Pn)→ 0, P0-almost surely

then d(P̂n, P0)→ 0 (P0-almost surely)

Proof Replacing P0 with Pn in the preceding discussion, we see that either
condition on Pn allows us to conclude that H(P̂n, Pn) → 0. This theorem’s
claim now follows from the assumption that d(Pn, P0)→ 0. �

1.4.3 Score equations

In the parametric case the ‘score function’, i.e. the derivative of the log
likelihood, is a familiar object. Often the maximum likelihood estimator
solves the score equations: sum of scores (is less than or) equals zero. This
sometimes enables us to calculate the MLE and it also helps us to prove
efficiency and asymptotic normality. As it turns out, the notion of a score
can be extended very neatly to the infinite dimensional case. Hence we can
also write down ‘non-parametric’ score equations. In the infinite dimensional
case the score equations usually do not characterize the NPMLE. However,
solutions of the score equations are often relatively easy to obtain, when
the real NPMLE is much more elusive. Besides, we tend to prove favorable
properties of maximum likelihood estimators by considering them as solutions
of score equations. Why then not simply consider such solutions from the
outset? We shall at times be sloppy and even call any solution of the score
equations an NPMLE.
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Scores are defined through what are called ‘differentiable submodels’. Fol-
lowing van der Vaart (1998), we consider maps t 7→ Pt from a neighborhood
of 0 in [0,∞) to P such that there exists a measurable function g : X → R
for which ∫ [

p
1/2
t − p1/2

t
− 1

2
gp1/2

]2

dµ→ 0. (1.8)

where pt and p are Radon–Nikodym derivatives of Pt and P with respect to
a sigma-finite measure µ(P, Pt), which dominates both Pt and P .

We call t 7→ Pt a differentiable submodel through P . If the integrand
converges pointwise then g = d

dt
|t=0 log dPt which is just the familiar score

function. The collection of scores associated with all differential submodels is
called the tangent set of the model P at P and denoted Ṗ(P ). Lemma 25.14
in van der Vaart (1998) asserts that from (1.8) it follows that

∫
gdP = 0

and
∫

g2dP <∞. Hence, Ṗ(P ) can be identified (up to equivalence) with a
subset of L0

2(P ).
Here a clear distinction can be made between semi- and nonparametric

models: a nonparametric model has a tangent set equal to the whole of L0
2(P ),

while the tangent set of a semi-parametric model is a true subset of L0
2(P ).

Moreover, the tangent set of a semi-parametric model is not contained in a
finite dimensional subspace of L0

2(P ). In other words, it is infinite dimensional
but not everything. Indeed, if the model consists of all probability measures
(on a given measurable space) then Ṗ(P ) = L0

2(P ).
Now consider the ‘score inequalities’∫

gdPn =
1

n

∑
i

g(Xi) ≤ 0 ∀g ∈ Ṗ(P̂n) (1.9)

An NPMLE as defined in the previous section is a solution of these inequal-
ities. The converse does not hold. Still, we will call a solution of these
equations an NPMLE.

The most familiar NPMLE, the empirical measure, solves a the score
inequalities when the model P is non-parametric so that Ṗ(P̂n) = L0

2(P̂n).
Taking scores g(x) = 1F (x)− P̂n(F ), for all F ∈ F , we see that the empirical
P̂n = Pn indeed arises as a solution of (1.9).

We now discuss how the methods of the previous section can be used to
prove consistency of solutions of the score equations. To this end we must
choose particular submodels. Let P̂n be a solution of the score equations and
consider a sequence {Pn} ∈ P such that Pn � P̂n.

Now suppose that log(dPn/dP̂n) ∈ L2(P̂n) and that P̂
(1−t)
n P t

n ∈ P for t in

an open neighborhood of 0 in [0,∞). Then t 7→ P̂ (1−t)
n P t

n is a differentiable
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submodel with score

log
dPn

dP̂n

∈ Ṗ(P̂n).

Because P̂n solves all the score equations it follows that∫
log

dPn

dP̂n

dPn ≤ 0,

which coincides with (1.3). Now we can apply the reasoning of the previous
section to try to prove that a particular P̂n is consistent.

Unfortunately, it is not usually true that P̂
(1−t)
n P t

n ∈ P. However, it is
often true that P contains the straight line (1− t)P + tQ for all P and Q in
P (i.e. P is convex). If (and only if) Pn � P̂n and dPn/dP̂n ∈ L2(P̂n) then
t 7→ (1− t)P̂n + tPn is a differentiable submodel with score

dPn − dP̂n

dP̂n

=
dPn

dP̂n

− 1 ∈ Ṗ(P̂n)

and since P̂n solves all score equations, it follows in particular that∫ (
dPn

dP̂n

− 1

)
dPn ≤ 0. (1.10)

We are assuming that dPn/dP̂n ∈ L2(P̂n), so in other words∫
dPn

dP̂n

dPn <∞.

Hence, we can rewrite (1.10) as

0 ≥
∫ (

dPn

dP̂n

− 1

)
dPn

=

∫
dPn

dP̂n

d(Pn − Pn) +

∫ (
dPn

dP̂n

− 1

)
dPn.

Now since x− 1 > log x for all x > 0 we have∫ (
dPn

dP̂n

− 1

)
dPn >

∫
log

dPn

dP̂n

dPn = K(P̂n, Pn) ≥ 0.

Hence if ∫
dPn

dP̂n

d(Pn − Pn)→ 0 P0 − almost surely (1.11)
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then
∫ (

dPn
dP̂n
− 1
)

dPn tends to zero, which implies that K(P̂n, Pn) tends to

zero which in turn implies that H(P̂n, Pn) tends to zero. Thus we have a
theorem which is very similar to Theorem 1.1.

Let d be a metric on P which is weaker than (or equivalent to) Hellinger
metric.

Theorem 1.2. Let P̂n denote a solution of the score equations (1.9) based on
independent observations X1, X2, . . . , Xn which are all distributed according
to P0 ∈ P and let Pn denote the empirical measure. Suppose also that P is
convex. If there exists a sequence {Pn} ∈ P such that

1. d(Pn, P0)→ 0 (P0-a.s.)

2. The submodel t 7→ (1− t)P̂n + tPn is Hellinger differentiable at P̂n

3. (1.11) holds

then d(P̂n, P0)→ 0 (P0-a.s.)

1.4.4 Missing data problems and the EM algorithm

In this section we study missing data models which are also known as infor-
mation loss models or mixture models. The issue is that for some reason we
do not (completely) observe the random variables whose common distribu-
tion Q0 ∈ Q is of interest.

Let X be a generic random variable on some (measurable) space X with
distribution Q0 ∈ Q and let C be another random variable whose conditional
distribution given X is known to us. Let Y = Φ(X, C), where Φ is a known
many-to-one mapping. Y takes values in a measurable space Y . Now suppose
we observe independent Y1, . . . , Yn which are distributed as Y and from these
we want to estimate Q0. We call the Xi the complete data and the Yi the
incomplete or observed data. Estimation of Q0 ∈ Q (or functionals thereof)
from the observations Yi is called a missing data problem.

The setup we have described is so general that one could maintain that
every estimation problem is a missing data problem. Still, it will prove a
convenient way to think about all sorts of censoring mechanisms.

We now give another way to describe the situation. Consider a Markov
kernel K(dy; x). This means that K(dy; x) is a probability measure for every
x ∈ X and K(A; x) is a measurable function of x when A ⊆ Y is a measurable
set. Now for all Q ∈ Q define the ‘mixture’ P = KQ by

P (dy) = KQ(dy) =

∫
X

K(dy; x)dQ(x). (1.12)
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Clearly P is a probability measure on the space Y . Q is called the ‘mix-
ing distribution’. We suppose K is known and we observe an i.i.d. sample
Y1, . . . , Yn with common distribution P0 = KQ0, where Q0 is known to lie
in a class Q. The model for the distribution of a generic observation Y is of
course P = KQ = {KQ : Q ∈ Q}. The objective, again, is to estimate Q0.

We have explained what we mean by a ‘missing data model’ and by ‘a
mixture model’. In fact, these two descriptions are the same. A missing data
model can be described as a mixture model by defining K(dy; x) to be the
conditional distribution of Y = Φ(X, C) given X = x. Conversely, a mixture
model can be described as a missing data model as follows. First, define a
random variable C which, conditional on X = x, has distribution K(dy; x).
Next, define a random variable Y = Φ(X, C) = C.

We shall now give two useful properties of P = KQ which follow directly
from properties of Q.

Lemma 1.3. If Q is convex then so is P = KQ.

Proof Take two arbitrary elements P, P ′ ∈ P. Then there exist Q, Q′ ∈ Q
such that P = KQ and P ′ = KQ′. Now for 0 ≤ t ≤ 1

tP + (1− t)P ′ = t

∫
K(dy; x)dQ(x) + (1− t)

∫
K(dy; x)dQ′(x)

=

∫
K(dy; x)d(tQ(x) + (1− t)Q′(x)) ∈ P

because tQ + (1− t)Q′ ∈ Q. �

Even more importantly,

Lemma 1.4. If t 7→ Qt is a differentiable submodel through Q ∈ Q with
score function g , then t 7→ Pt = KQt is a differentiable submodel through
P = KQ ∈ P with score EQ(g(X)|Y ).

Proof For a proof refer to Bickel et al. (1993) proposition A.5.5 or Le Cam
and Yang (1988) proposition 4. �

We shall concern ourselves exclusively with completely nonparametric
missing data / mixture problems, which means that Q̇(Q) = L0

2(Q) for all
Q ∈ Q. In other words, every square integrable function, which integrates
to zero is a score function belonging to a differentiable submodel. The fact
that scores are so plentiful is useful when we want to estimate Q0 by solving
score equations. The nonparametric situation typically arises when we have
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no prior information about Q0 so that we must take our model Q to consist
of all probability measures on X . In passing, we note that if Q consists of
all probability measures on a given space, then Q is convex. By the first of
the above lemmas, convexity of Q implies convexity of P = KQ. This will
be very useful as this puts us in the realm of Theorem 1.2.

The fact that we only observe Y and not X may cause a lack of identifia-
bility. We may well have that KQ = KQ′ while Q 6= Q′. This is unfortunate
as it means that from the data we can not tell Q and Q′ apart. We can of
course reduce Q in such a way that we do have identifiability, but then our
missing data problem will most likely fail to be completely non-parametric.

In the problems we study in this thesis we can construct a different missing
data problem which is identifiable, but also completely non-parametric. It
features a different model Q̃ of probability measures on a different space X̃
and also a different Markov kernel K̃. Of course we make sure that K̃Q̃ =
KQ so that the model for the data is the same. For the remainder of this
section we simply assume identifiability.

Turning to maximum likelihood estimation, the NPMLE Q̂n of Q0 is defined
to satisfy ∫

log
dP

dP̂n

dPn :=

∫
log

dKQ

dKQ̂n

dPn ≤ 0, ∀Q ∈ Q,

where Pn is the empirical distribution of the observed data Y1, . . . , Yn.
Instead of trying to find the NPMLE, we might be already be content

with a solution Q̂n of the score equations∫
EQ̂n

(g(X)|y)dPn(y) =
1

n

∑
i

EQ̂n
(g(Xi)|Yi) = 0, ∀g ∈ Q̇(Q̂n).

(1.13)

If we have a completely nonparametric missing data problem every func-
tion g in L0

2(P̂n) is a score. Thus we can take g(x) = 1A(x)− Q̂n(A) for any
measurable set A to obtain the so-called self consistency equations

Q̂n(A) =

∫
EQ̂n

(1A(X)|y)dPn(y)) =
1

n

∑
Q̂n(Xi ∈ A|Yi).

(1.14)

It is usually assumed that for all x the kernels K(dy; x) have densities
with respect to a single sigma-finite measure. This may not hold, and in
particular it does not hold in the problems that are considered in this thesis.
Fortunately, to solve the score equations we only need to compute integrals
with respect to the conditional distribution under Q̂n of X given Y . Hence,
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it suffices if the K(dy; x) are dominated for Q̂n-almost all x. Thus sup-
pose that a sigma-finite measure µn dominates K(dy; x) for Q̂n-almost all
x. The measure µn is allowed to depend on the data Y1, . . . , Yn. We denote
K(dy; x)/dµn(y) = kn(y; x). Then the conditional distribution of X given
Y = y under X ∼ Q̂n is

kn(y; x)dQ̂n(x)∫
x′ kn(y; x′)dQ̂n(x′)

(1.15)

and the score equations (1.13) become

∑
i

∫
g(x)kn(Yi; x)dQ̂n(x)∫

x′ kn(Yi; x′)dQ̂n(x′)
= 0, ∀g ∈ Q̇(Q̂n). (1.16)

Again, if a missing data problem is completely nonparametric then we
can take g(x) = 1A(x)− Q̂n(A) for any measurable set A and (1.14) becomes

Q̂n(A) = 1/n
∑

i

∫
A

kn(Yi; x)dQ̂n(x)∫
x′ kn(Yi; x′)dQ̂n(x′)

. (1.17)

These equations are the well known self-consistency equations. Solving them
iteratively is an instance of the EM algorithm. When we start the iterations
with an initial guess Q(0)

n then all subsequent iterates will be dominated by
it. Hence we can never do better than compute a ‘sieved’ NPMLE over the
model {Q ∈ Q : Q� Q

(0)
n }.

There has been much discussion of the merits and flaws of the EM al-
gorithm (Dempster et al. 1977). Vardi and Lee (1993) point out the wide
applicability of EM, but—obviously—blind application of the algorithm to
every problem one meets is unwise. However, it does seem to perform rather
well in ‘nice’ cases, i.e., parametric– and

√
n-nonparametric problems. EM

is wholly unsuitable to determine the support of a distribution.
The rate at which EM converges is painfully slow, and has even been

described as ‘lethargic’. On the other hand, only infantile computer skills
are required to implement it. A clever mathematician who is good with
computers can generally do much better (cf. Meilijson, 1989).

1.5 Perfect Simulation

The distribution of a spatial process is often very complicated. Typically,
if there is any spatial dependence we have a normalizing constant that is
utterly intractable. To appreciate this fact, consider a Poisson point process
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of intensity λ > 0 on the unit square. Suppose we are interested in the
conditional distribution of the process, given that no two points are closer
than at distance r > 0. This is called the hard core model. The normalizing
constant here is an integral over all finite configurations of points that are
all further apart than r. Performing this integration analytically appears
impossible. Stochastic integration would be feasible if we can efficiently ob-
tain realizations of the hard core model. Rejection sampling, i.e. generating
Poisson processes and discarding those that do not meet the requirement,
may not be efficient depending on λ and r.

Coupling-from-the-past (CFTP) (Propp and Wilson, 1996) is a clever
method to obtain samples from complicated distributions which arise as the
stationary distribution of a Markov chain—as quite often happens in spatial
models. For instance, the hard core model arises as the stationary distribu-
tion of a so-called spatial birth and death process, where births that violate
the condition are rejected.

In chapter 4 we consider estimation of the intensity of the Boolean model
of discs (also known as the ‘bombing model’). As it turns out we need to
sample from a conditional Poisson point process. We have implemented a
CFTP algorithm which is extremely quick.

This Boolean discs problem is a missing data problem, and we can use a
stochastic version of the EM algorithm (StEM) to estimate the intensity. This
algorithm produces an ergodic Markov chain on the parameter space. The
StEM estimator is a sample (or an average of samples) from the stationary
distribution of this chain. We can again use CFTP to actually obtain such
samples. This we call the perfect StEM algorithm.

This section is based on van Zwet (2000). It is organized as follows. Below
we first describe coupling-from-the-past, then the stochastic EM and finally
the perfect stochastic EM algorithm.

1.5.1 Coupling From The Past

Consider an ergodic (i.e., irreducible and aperiodic) Markov chain Xt on a
state space S and suppose we want to simulate its equilibrium distribution.
Starting the chain from some arbitrary initial state and then running it for
a very long, but finite time will generally not ensure that samples are from
the stationary distribution. Recently, Propp and Wilson (1996) devised a
method, called coupling from the past (CFTP), to produce perfect or exact
samples. We closely follow Kendall and Thönnes (1998) to explain how it
works.

For now, let us assume that the state space S is finite. A Markov chain
Xt on S can be described by means of i.i.d. ‘random transition maps’ Ht :
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S → S. Such a random transition map Ht determines for each state i ∈ S
that the chain X might be in at time t − 1 where the chain would jump to
next. If pij are the transition probabilities of the Markov chain to move from
state i to j, then the common distribution of the Ht should be such that
P (Ht(i) = j) = pij . Then a realization of the Markov chain X is generated
by fixing X(0) at some X0 and setting

X(t) = Ht(X(t− 1)).

Coupling from the past now works as follows. We select a time −T < 0 in
the past and run chains starting from each state of S from time −T to time 0.
The chains are coupled by using the same realizations of the transition maps
for all the chains. Hence, it follows that if two chains started at different
initial states coalesce, they will forever after stay together. Now we check if
all chains have coalesced at time 0. If so, then the state at time zero must
be a sample from the stationary distribution. This is understood as follows.
Imagine that at some time long before −T we also started a chain from an
initial state selected according to the stationary distribution. This chain will
remain in equilibrium, so in particular its state at time zero is distributed
according to the stationary distribution. However, we have arranged it so
that all chains, no matter which state they were in at time −T , are at time
zero in the same state.

If not all chains have met, then we run chains from time −2T to time 0,
making sure that we use the same realizations of H−T+1, H−T+2, . . . , H0. If
the paths still have not coalesced, we run chains from time −4T and so on.

If the state space S has more than just a few elements it will not be feasible
to run chains starting from all possible states.

Let us now consider finite, countable or even uncountable S. Suppose
that S admits a partial ordering �, and that there are a minimal and a
maximal element, s and s such that

s � s � s, for all s ∈ S.

Also suppose that the chain is ‘monotone’ in that it respects the ordering.

Ht(s) � Ht(s
′), for all s � s′ a.s.

Now we can imagine that we run coupled chains starting at all possible states,
while in practice we only run chains from states s and s. Because all paths
are ordered, it follows that if the latter two have met then all paths starting
from intermediate states would have met as well. Of course it remains to
verify in each application that the algorithm will almost surely terminate in
finite time.
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1.5.2 Stochastic EM

The stochastic EM (StEM) algorithm (Celeux and Diebolt (1986), Wei and
Tanner (1990)), which we describe here, is an iterative procedure to estimate
a parameter in a missing data problem. It produces an ergodic Markov
Chain on the parameter space. The equilibrium distribution of this chain
has certain desirable properties (Nielsen (1997a and b). In the next section
we will investigate if and when the ideas of the previous section can be applied
to actually obtain a sample from this equilibrium distribution.

Suppose that X is distributed according to a probability measure Pθ0 .
Suppose we can observe only the result of a many-to-one mapping Y (C, X),
where the conditional distribution of C given X is known. The goal is to
estimate θ0, where θ0 is assumed to be in some general set Θ, from observing
Y = y. This is sometimes called a missing data problem (see section 1.4.4).
Often the EM algorithm (Dempster, Laird and Rubin (1977)) provides a
method to find the maximum likelihood estimator of θ0. There are two
drawbacks. The first is that it is not known how many iteration steps are
needed to bring one close enough to convergence. The other is that sometimes
the E-step, computation of the conditional expectation of the likelihood given
the data, is impossible.

In this latter case, the stochastic version of the EM algorithm (StEM)
may be a viable alternative. For a review and large sample results see Nielsen
(1997a and b). The algorithm works as follows. Suppose the complete data
maximum likelihood estimator is readily computable: θ̂MLE = M(X).

1. Fix a θ(0) in Θ;

2. Sample X(1) from Pθ(0)(.|Y = y);

3. Set θ(1) = M(X(1)).

By iterating this procedure, we obtain a sequence θ(0), θ(1), θ(2), . . . . If
step 2 is carried out using independent Unif(0,1) variables for each t, the
sequence θ(t) is a time homogeneous Markov chain. Under certain conditions
it is also ergodic. If so, the algorithm converges in that the θ(t) converge in
distribution to a random variable, say θ̂, which is distributed according to the
stationary distribution of the Markov chain. Then θ̂ is the StEM estimate.
In other words, a StEM estimate is a sample from the stationary distribution
of the ‘StEM Markov chain’.

It is not clear for how long we should run the StEM chain to allow it to
reach equilibrium. This lack of a termination rule seems to be something
StEM and EM have in common. However, we shall find that in some cases
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we can apply coupling-from-the-past to obtain a sample that is guaranteed
to come from the stationary distribution of the StEM chain.

1.5.3 Perfect Stochastic EM

In this section we combine the ideas from the previous two sections. We
use the set-up and notation of the preceding section. Let us suppose that
the parameter space Θ admits a partial ordering �. Fix a time −T < 0 in
the past. Suppose that for t = 0,−1,−2, . . . we can construct independent
collections of random variables {Xθ(t), θ ∈ Θ} such that

1. Xθ(t) ∼ Pθ(.|Y = y)

2. θ � θ′ ⇒M(Xθ(t)) �M(Xθ′(t)) almost surely.

Recall that M(X) is the complete data maximum likelihood estimator of θ.
To simulate a Markov chain θ−T (−T ), θ−T (−T +1), . . . , θ−T (0) we define

random transition maps

Ht(θ(t− 1)) = M(Xθ(t−1)(t)), t = −T + 1,−T + 2, . . . , 0.

Now suppose that there are ‘minimal’ and ‘maximal’ elements θ and θ
such that θ � θ � θ for all θ ∈ Θ. Consider two coupled paths θL

−T (.) and

θU
−T (.) starting at θL

−T (−T ) = θ and θU
−T (−T ) = θ. It now suffices to check if

these paths have coalesced at time zero, i.e. if θL
−T (0) = θU

−T (0). If so, then

we have a perfect StEM estimate θ̂ = θL
−T (0). If not we have to go back

further in time.
We demonstrate the Perfect StEM algorithm in a simple example. We

also apply it to a more involved problem in section 4.4.2.

An Example

Suppose X = (X1, X2, . . . , Xn) is an i.i.d. sample from Pθ0 = Exp(θ0); the
exponential distribution with intensity (reciprocal of the mean) θ0. We wish
to estimate the intensity θ0. Suppose that θ0 is known to be bigger than some
θ > 0, that is θ0 ∈ Θ = [θ,∞) Of course the maximum likelihood estimator
of θ0 is θ̂MLE = M(X) = (n/

∑
Xi) ∨ θ. Suppose we only observe

X̃i = Xi ∧ C ∆i = 1{Xi>C},

for some fixed positive constant C. Write Yi = (X̃i, ∆i) for the observed
data.
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The maximum likelihood estimator of θ0 based on the observed data is
known to be the ‘occurrence’ divided by the ‘exposure’.

n−
∑

∆i∑
X̃i

.

So there is really no need to apply the StEM algorithm here. The purpose
of this example is strictly illustrative.

We now describe how the StEM algorithm works here. When multiplying
vectors we mean coordinate wise multiplication (mapping two vectors to one
vector).

1. Fix θ(0) > 0

2. Generate X(1) ∼ Pθ(0)(X|Y = y):

X(1) = X̃ + ∆E, where E = (E1, . . . , En), Ei ∼ Exp(θ(0))

3. θ(1) = M(X(1)) = nP
Xi(1)

∨ θ.

Repeating this procedure, we obtain an ergodic Markov chain θ(0), θ(1), . . . .
Now we demonstrate how we can apply perfect sampling to this chain.

Recall the usual ordering on Rn: x ≤ y if x1 ≤ y1 and x2 ≤ y2 . . . and
xn ≤ yn. Note that if x ≥ y then M(x) ≤ M(y). Set θ = M(X̃). Since, for
all t, X(t) ≥ X̃ it follows that θ(t) = M(X(t)) will always be less than θ.
Hence, we may reduce our parameter-space Θ to [θ, θ]. Of course θ and θ are
minimal and maximal elements of Θ with the usual ordering.

We now construct collections {Xθ(t), θ ∈ Θ} as required at the beginning
of this section. For t = −T + 1,−T + 2, . . . 0 and i = 1, 2, . . . , n generate
independent

Eθ,i(t) ∼ Exp(θ) and Ei(t) ∼ Exp(θ − θ)

and define

Eθ,i(t) = Eθ,i(t) ∧
θ − θ

θ − θ
Ei(t).

Then, evidently, Eθ,i(t) ∼ Exp(θ), and θ ≤ θ′ implies Eθ,i(t) ≥ Eθ′,i(t). For
t = 0,−1,−2, . . . and all θ ∈ Θ we define

Xθ,i(t) = X̃i + ∆iEθ,i(t),

Thus, for t = 0,−1,−2, . . . we have collections of random variables {Xθ(t), θ ∈
Θ} such that

1. Xθ(t) ∼ Pθ(.|Y = y)
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2. (θ ≤ θ′ ⇒M(Xθ(t)) ≤M(Xθ′(t))) a.s.

as required. We can now run a ‘lower’ chain θL
−T (−T ) = θ, θL

−T (−T +

1), . . . , θL
−T (0) and an ‘upper’ chain θU

−T (−T ) = θ, θU
−T (−T + 1), . . . , θU

−T (0)
and check if θL

−T (0) = θU
−T (0). We do need to make sure that the algorithm

will terminate in finite time. It is enough to check that for some fixed −T
the event θL

−T (0) = θU
−T (0) has positive probability. Well,

Pr(θL
−1(0) = θU

−1(0)) ≥ Pr(Xθ,i(0) = Xθ,i(0), ∀i)
≥ Pr(Exp(θ) ≤ Exp(θ − θ))n > 0.

This concludes the example.

The difficulty in making the StEM algorithm perfect lies in the construction
of collections of random variables satisfying points 1 and 2 at the beginning
of this section. There probably is no general recipe to achieve this. Here we
ask ourselves when such a construction is at all possible. It turns out that
the concept of realizable monotonicity (Fill and Machida (1998)) is essentially
what we need.

Realizable monotonicity is very close to stochastic monotonicity, which is
a more familiar concept and which is also easier to check. Suppose that the
complete data are random elements in some space E, and that the complete
data maximum likelihood estimator of a parameter θ ∈ Θ is given by a
function M on E. We assume that the parameter space Θ admits a partial
order �1.

Suppose that E admits a partial ordering �2 such that, for any x1, x2 ∈ E

x1 �2 x2 ⇒ M(x1) �1 M(x2).

Then we need to be able to construct a collection {Xθ, θ ∈ Θ} such that

1. Xθ ∼ Pθ,

2. θ �1 θ′ ⇒ Xθ �2 Xθ′, almost surely.

We shall have a look at two notions of monotonicity for a collection
{Pθ , θ ∈ Θ} of probability measures: realizable and stochastic monotonicity.

Definition 1.4. The collection {Pθ , θ ∈ Θ} is called realizably monotone
if there exists a collection of random variables {Xθ , θ ∈ Θ} such that

1. Xθ ∼ Pθ,

2. θ �1 θ′ ⇒ Xθ �2 Xθ′, almost surely.
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A subset U of E is said to be an up-set in (E,�2) if y ∈ U whenever
x ∈ U and x �2 y. If P1 and P2 are probability measures on E then P1 is
stochastically smaller than P2 if P1(U) ≤ P2(U) for all up-sets U in (E,�2).
we then write P1 �D

2 P2.

Definition 1.5. The collection {Pθ , θ ∈ Θ} is called stochastically mono-
tone if

θ �1 θ′ ⇒ Pθ �D
2 Pθ′, a.s.

Realizable monotonicity is clearly what we need, while stochastic mono-
tonicity is usually easier to check. It is easily seen that realizable monotonic-
ity implies stochastic monotonicity. That the converse is not always true
is demonstrated by an example in Ross (1993). However, for various finite
classes of (E,�2), Fill and Machida (1998) give conditions on finite index
sets (Θ,�1) such that stochastic monotonicity does imply realizable mono-
tonicity. For instance, realizable and stochastic monotonicity are equivalent
when (E,�2) or (Θ,�1) is a finite linearly ordered set. Recall that a set is
linearly ordered if each pair of elements is comparable.

Fill and Machida (1998) coined the term ‘realizable monotonicity’ and
noted its relevance for perfect sampling. Their results for finite sets are all
the more useful because of the following unpublished result by Ross (1993).

Theorem 1.3. Suppose that (Θ,�1) is a partially ordered set and (E,�2)
is a complete separable metric space with closed partial order. Then {Pθ, θ ∈
Θ} is realizably monotone if and only if for every finite Ψ ⊆ Θ {Pθ, θ ∈ Ψ}
is realizably monotone.

Now if for some separable set with a closed partial order we can use
the results of Fill and Machida (1998) to check realizable monotonicity for
all its finite subsets then Ross’s theorem allows us to conclude realizable
monotonicity for the entire infinite set.



30 Chapter 1. Introduction



Chapter 2

Laslett’s line segments

2.1 Introduction

Almost to decades ago a study was to be made into the hazards of nuclear fuel
waste disposal in underground excavations in selected plutonic rock masses
of the Canadian Shield. Experiments had to be done related to thermal
heating and hydraulic conductivity along fractures in the rock. As part of this
research the construction was planned of an underground research laboratory
within the granitic rock of the Lac du Bonnet batholith in southeastern
Manitoba. For more information we refer to Stone et al. (1984). Figure 1.1
in the introduction to this thesis shows part of a map from that report of
roughly 160 by 160 meters of fractures in the rock at the Lac du Bonnet site.

This particular data set enters the statistical literature with Chung (1989a
and b). The statistical problem is to estimate from figure 1.1 the distribution
of the lengths of the fractures. Estimation of the length distribution of line
segments observed through a bounded window is sometimes called Laslett’s
line segment problem after Laslett (1982a and b).

We are not sure if the underground laboratory was ever built, but quite
apart from the original motivation the estimation problem presents a very
interesting statistical challenge. We encounter three main difficulties. First,
we have to deal with censoring, since most of the fractures are only partly
observed as the rock is only partly exposed due to vegetation, soil and water.
Secondly, the sample of (partly) observed cracks is biased, because longer
cracks stand a better chance of being observed than shorter ones. Thirdly,
the area of exposed rock where we observe the cracks is not convex. This
means that we might observe several fragments of a single crack. A single
glance at Figure 1.1 will convince the reader that it would be very difficult
to assess if two observed fragments belong to the same underlying fracture.

31
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The first two problems, censoring and length bias, have been studied
rather extensively Laslett (1982a and b), van der Laan (1993), Gill (1994)
and Wijers (1995). The third difficulty, non-convexity of the observation
window, is treated here for the first time. Also, in the above contributions
the assumption is made that the locations of the fractures are distributed
according to a Poisson process. We will obtain our results under far more
general ergodicity assumptions.

A line segment process can be modeled as a marked point process, where
the points indicate the locations of the segments and the marks their lengths
and orientations. Assuming that the locations are scattered as a Poisson
process greatly facilitates any statistical analysis because then, conditional on
their number, the segments are independent. We will argue that an analysis
under the Poisson assumption is still relevant when that assumption is not
fulfilled. We feel that this is an important point and we do not want it to
be snowed under by details. Therefore we give a general—albeit somewhat
heuristic—discussion in the next section, which will then serve as a blueprint
for the remainder of the chapter.

The reader will search in vain for the actual estimate of the length distri-
bution of the Canadian fractures. As this thesis is on its way to the printer,
we have not yet implemented our estimator and extracted the necessary data
from Figure 1.1.

2.1.1 Inference for ergodic point processes

Consider a point process (see section 1.3) Φ = {(Ti, Xi)} on R × X with
intensity measure

dΛλ,F (t, x) = λdtdF (x),

where F is known to belong to some class F .
We think of Φ as a marked point process on R with marks Xi in a mark

space X . For instance, the Ti could be the locations of cars parked along a
street and the Xi could be their make. For another example, the Xi could
determine the length of a line segment starting at Ti. Evidently, this is a
very general set up and in fact our restriction to Ti taking values in R is not
at all necessary for our discussion.

We are primarily interested in estimating the mark distribution F0 which
is supposed to be in some collection F . The ‘nuisance’ parameter λ is also
assumed to be unknown to us.

We do not observe Φ entirely. Suppose that of points (Ti, Xi) outside a
set W ⊆ R×X we observe nothing, while if (Ti, Xi) ∈ W we only observe the
result of some known function Yi = g(Ti, Xi). The mapping g may depend
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on W . For instance, if the (Ti, Xi) represent line segments [Ti, Ti + Xi] then
Yi = g(Ti, Xi) could be |[Ti, Ti + Xi] ∩ [0, 1]|, the length of the intersection
with the unit interval. Then W = {(t, x) : [t, t + x] ∩ [0, 1] 6= ∅}.

We now define a new ‘point process’ of observations

Ψ = {Yi} = {g(Ti, Xi) : (Ti, Xi) ∈W}.

It is convenient to think of the Yi as a point process because the observed
data will often be of similar structure as the incompletely observed model Φ.

Now suppose that Φ is Poisson (cf. section 1.3 on Poisson point processes).
Then the intensity λdtdF (x) completely determines the distribution of Φ.
The distribution of Ψ is also determined and can be described as follows.

Define, for all F ∈ F

µF =

∫ ∫
W

dtdF (x),

and assume it to be finite. The reader should mistake µF for the mean of F .
Now,

1. let N be distributed as a Poisson random variable with mean λµF ;

2. conditional on N = n draw an i.i.d. sample (Ti, Xi) of size n from the
‘normalized intensity’ measure

1W (t, x)
1

µF
dtdF (x); (2.1)

3. compute Yi = g(Xi, Ti);

4. identify samples Y1, . . . , Yn that are equal up to ordering.

It is easy to write down the likelihood for the pair (λ, F ) at the data
(N, Y1, . . . , YN).

e−λµF

N !
(λµF )N

N∏
i=1

∫∫
(t,x)∈g−1(Yi)∩W

1

µF
dtdF (x)N !.

We find the profile likelihood for estimating F by first fixing F and replacing
λ by its maximum likelihood estimator N/µF . We find

e−NNN

N∏
i=1

∫∫
(t,x)∈g−1(Yi)∩W

1

µF
dtdF (x).
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This profile likelihood can be interpreted as the likelihood of a missing data
problem (see section 1.4.4.) To make this clear we re-parameterize the prob-
lem. Define for all x

W (x) = {t ∈ R : (t, x) ∈W}.

Also define for all F ∈ F a transformation

dVF (x) =
|W (x)|

µF

dF (x). (2.2)

For later use we have the inverse transformation

dFV (x) =

(∫
x′

1

|W (x′)|dV (x′)

)−1 1

|W (x)|dV (x). (2.3)

so that FVF = F . Define V = {VF , F ∈ F}.
We can rewrite the distribution of (T, X) as

1W (t, x)
dt

|W (x)|dV (x). (2.4)

Our missing data problem takes the form

1. Sample X from V ∈ V

2. Given X = x sample T from the uniform distribution on W (x)

3. Set Y = g(T, X)

In line with section 1.4.4 we can also describe the situation as follows.
Defining a Markov kernel

K(dy; x) =

∫
W (x)

δg(t,x)(dy)
dt

|W (x)| ,

we have that

KV (dy) =

∫
K(dy; x)dV (x)

is the distribution of Y = g(T, X). The model for the observations Yi is thus

KV = {KV : V ∈ V}.

Conditionally on N = n, the maximum likelihood estimator V̂n satisfies∫
log

dKV

dKV̂n

dPn ≥ 0 ∀V ∈ V.
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Suppose that F0 is the ‘true’ parameter. The MLE V̂n is of course supposed
to estimate V0 = VF0 (cf. (2.2)). We define F̂n = FV̂n

(cf. (2.3)) as the MLE
of F0.

Now if the model V—and hence KV—is convex, we can attempt to use
Theorem 1.2 to prove the convergence of KV̂n to KV0. To conclude con-
vergence of V̂n to V0 we of course need to have identifiability: If V 6= V ′

then KV 6= KV ′. Ultimately, convergence of V̂n to V0 hopefully implies that
F̂n = FV̂n

tends to FVF0
= F0.

To use Theorem 1.2 we need a sequence Vn such that KVn tends to KV0

and prove ∫
dKVn

dKV̂n

d(Pn −KVn)→ 0. (2.5)

Such a proof, and indeed the choice of Vn, will rely on the fact that Pn

converges to KV0.

But what if Φ is not Poisson? Then we can no longer condition on the number
of observations and treat them as an i.i.d. sample. We cannot write down
the likelihood and maximize it. Also, the above asymptotics involving the
number of observations tending to infinity become meaningless.

In spite of all this, we propose to use exactly the same estimator. Though
no longer the maximum likelihood estimator, one still expects it to have nice
properties. We explain.

First, some notation. We can consider Ψ as a random set of points but
also as a random measure. By Ψ(A) we mean the number of points of Ψ that
fall in some measurable set A. In fact, we write Ψ(A) =

∫
A

dΨ(y). Upon
normalization, we obtain a random probability measure

Ψ(dy)

Ψ(g−1(W ))
.

Now we can define a ‘maximum likelihood estimator’ V̂ as satisfying∫ (
log

dKV

dKV̂

)
d

Ψ(y)

Ψ(g−1(W ))
≥ 0 ∀V ∈ V,

and we define F̂ = FV̂ . Of course, all this is just notation; the estimator
we just defined coincides exactly with the maximum likelihood estimator we
defined earlier for the case where Φ is Poisson.

We will study the asymptotics of the present estimator as more and more
of the underlying process Φ is revealed. Suppose we have a sequence W =
W1 ⊆W2 ⊆, . . . . Define

Ψi = {gi(Ti, Xi) : (Ti, Xi) ∈ Wi}.
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Note that the gi may depend on Wi. Since we defined W = W1 we have
Ψ = Ψ1.

Define

µi,F =

∫ ∫
Wi

dtdF (x),

and
Wi(x) = {t ∈ R : (t, x) ∈Wi}.

Similarly to (2.2) and (2.3), define

dVi,F (x) =
|Wi(x)|

µi,F

dF (x) (2.6)

and

dFi,V (x) =

(∫
x′

1

|Wi(x′)|
dV (x′)

)−1
1

|Wi(x)|dV (x). (2.7)

Define
Vi = {Vi,F , F ∈ F}.

Finally, define a Markov kernel

Ki(dy; x) =

∫
Wi(x)

δgi(t,x)(dy)
dt

|Wi(x)| .

We now have a sequence of statistical experiments: observation of Ψi. The
model for the distribution of the data under the Poisson assumption changes
with each experiment as the mapping gi may depend on the ‘window’ Wi.
Thus we have a sequence of models

KiVi = {KiV : V ∈ Vi} = {KiVi,F : F ∈ F}.

We can define a sequence of estimators V̂i by requiring∫ (
log

dKiV

dKiV̂i

)
d

Ψi(y)

Ψi(g
−1
i (Wi))

≥ 0 ∀V ∈ Vi.

We set F̂i = Fi,V̂i

We would like to use the ideas behind theorem 1.2 to prove that the F̂i

tend to F0. However, first we must try to use ergodic properties of Φ and
the sequence Wi to show that for all F ∈ F there exist V∞,F and K∞V∞,F

such that

Vi,F → V∞,F and KiVi,F → K∞V∞,F . (2.8)
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These convergences are established for Laslett’s problem in section 2.5.3.
There it is also made clear in which sense they hold.

Next, we need a sequence Vi such that KiVi tends to K∞V∞,F0. Then we
show that ∫ (

dKiVi

dKiV̂i

)
d

(
Ψi(y)

Ψi(g−1(W ))
−KiVi

)
→ 0. (2.9)

From this we can conclude that KiV̂i converges to K∞V∞,F0. Identifiability

will then imply that also V̂i tends to V∞,F0. This will (at least for Laslett’s

problem) imply that F̂i = Fi,V̂i
tends to F∞,V∞,F0

= F0.
For the convergence of (2.9), we will need that

Ψi(dy)

Ψi(g−1(W ))
→ K∞V∞,F0(dy).

For Laslett’s problem this is shown in section 2.5.3.

2.1.2 Laslett’s line segment problem

A line segment process is conveniently modeled by a marked point-process in
the plane, where the points indicate the location of, say, the left endpoints
and the marks indicate orientation and length. We consider a point process
Φ = {(~Si, Xi, Θi)} on R2×R+×(−π/2, π/2). We could call R+×(−π/2, π/2)

the mark-space. Take the ~Si to be left endpoints of the line segments and
let Xi and Θi be their lengths and orientations. Let us use square brackets,
writing [s, x, ϑ], to denote a line segment in R2, rather than a point in R2 ×
R+ × (−π/2, π/2).

Suppose that Φ is stationary (with respect to shifts on R2). Also, suppose
that each segment’s length and orientation are independent, in the sense that
Φ has an intensity measure of the form λd~sdF (x)dK(ϑ), where λ > 0 and F
and K are distribution functions on R+ and (−π/2, π/2), respectively. Let
µ denote the mean of F , and suppose that it is finite. Note that by giving
this intensity we have not completely described the distribution of Φ.

Now we assume that K is known. Our goal is nonparametric estimation
of the length distribution F . This means that F belongs to a model, say F ,
which consists of all probability distributions on the R+. Lok (1994) considers
just the opposite situation: she assumes F to be known, and estimates K. If
both F and K are unknown we could alternate estimation of F as presented
here and estimation of K as presented by Lok (1994).

As a technical aside we point out the following. For reasons of mathe-
matical convenience we decided to let the orientations range in (−π/2, π/2),
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excluding vertical line segments with orientation π/2. However, there is no
loss of generality in doing so, because we can choose the orientation of the
entire process so that K does not have a jump at π/2.

We have defined a stationary line segment process and stated our aim to
estimate the distribution of the lengths of the line segments. We now describe
the data that are available to us. Let W ⊂ R2 be a random closed set and
let B be the unit square; B = [0, 1] × [0, 1]. Suppose we can only observe
the intersections of the line segments with W = W ∩ B. In the Canadian
dataset, c.f. Figure 1.1, B corresponds to the 160 × 160 meters square area
and W is the irregular black region through which we observe the fractures.

After we come up with an estimator of F , shall study its asymptotic
properties. In spatial statistics basically two types of asymptotics are usually
considered (Cressie (1991) p. 100). The first is ‘infill’ asymptotics where
the observation region is kept fixed, but within that region the number of
observations increases. The other is ‘increasing-domain’ asymptotics, where
the observation region is expanded. In fact, we shall define Bn = [0, n]×[0, n]
and consider observation of the line segment process Φ through W ∩ Bn as
n tends to infinity. When doing so, we shall have to impose some ergodicity
assumptions on Φ and W.

2.1.3 Some history

We now present a brief overview of the work that has already been done by
other authors. Much effort has been put into the one dimensional case where
line segments are scattered according to a Poisson process on the real line and
the segments are observed (without occlusion) through an interval. Laslett
(1982 a) showed how the EM algorithm can be used to obtain the (sieved)
nonparametric maximum likelihood estimator. Wijers (1995b) has shown it
to be consistent. Gill (1994), van der Laan (1995) and Wijers (1995a) have
(jointly) established its asymptotic normality and efficiency. Many of the
methods that have been developed for the one-dimensional case carry over
to the two dimensional case, as long as the observation window is convex.
The trick is to subdivide the plane into parallel strips of infinitesimal width
and doing so in every direction. Then through each strip we observe—as it
were—a one-dimensional line segment process and then we integrate over all
strips and all directions. We shall perform such calculations later on. At
that time this approach will be made more precise.

Two things should be noted about assuming Φ to be Poisson and W to be
convex. First, the Poisson assumption allows us to condition on the number of
observations, after which we have an i.i.d. sample and we can apply standard
estimation techniques. Secondly, the fact that the observation window W is
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convex ensures that we can not observe more than one fragment of a single
underlying line segment.

2.1.4 Scope of our contribution

We study the two dimensional line segment process observed through a non-
convex window. This is prompted by the fact that the exposed rock surface
of the Canadian data is obviously non-convex.

If the observation window is non-convex we might observe several frag-
ments of a single line segment. It may occur, as it does with the Canadian
data, that it is near impossible to decide if two fragments belong to the same
fracture. As a consequence the observed fragments may be dependent in a
way unknown to us.

In this situation it is of no use to assume that the segments are scattered
as a Poisson process. Even if we could condition on the number of different
segments that are observed, the fragments are not necessarily distributed as
an i.i.d. sample.

However, we propose that the statistician analyze the data “as if” the
observed fragments are scattered according to a Poisson process. In this
simpler situation we find the non-parametric maximum likelihood estimator
of the length distribution of the fractures. We shall show consistency of the
estimator without using the Poisson assumption.

Under the Poisson assumption the estimator may well be efficient, though
we have not tried to prove this. Without the Poisson assumption, it will
certainly not be efficient because we effectively ignore dependencies among
the data, thus throwing away information. However, we feel confident that
this loss of information is minor.

2.2 A re-parameterization

Above we briefly explained how to extend the one-dimensional case to the
two-dimensional case. We now demonstrate in detail how this works. The
main step is to re-parameterize the location of each line segment relative to
the unique line in the plane on which the segment lies.

Recall that we are studying a point-process Φ = {(~Si, Xi, Θi)} on R2 ×
R+ × (−π/2, π/2), with finite intensity λd~sdF (x)dK(ϑ). The ~Si denote left
endpoints of line segments of length Xi and orientation Θi. It is straight-
forward to represent the locations of the left endpoints relative to rotated
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coordinate axes. Define two functions

t1(s1, s2, ϑ) = s1 cos(ϑ) + s2 sin(ϑ)

t2(s1, s2, ϑ) = −s1 sin(ϑ) + s2 cos(ϑ).

For fixed ϑ this map represents (s1, s2) ∈ R2, with respect to the coordinate
axes tilted counter-clockwise over an angle ϑ, cf. Figure 2.1. Now consider the

t

t

s

s

2

2

1

1

θ

Figure 2.1: Re-parameterization of locations.

map that assigns (t1(s1, s2, ϑ), t2(s1, s2, ϑ), x, ϑ) to (s1, s2, x, ϑ). The image

of Φ under this mapping is a new point-process Φ′ = {(~Ti, Xi, Θi)} on R2 ×
R+ × (−π/2, π/2) with intensity

λd~tdF (x)dK(ϑ).

This follows since Lebesgue measure is invariant under rotation.
Write `(d, ϑ) for the line with orientation ϑ at (signed) distance d from

the origin. In our new parameterization, a line segment [~t, x, ϑ] lies exactly
on the line `(t2, ϑ).
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Denote W(d, ϑ) =W ∩ `(d, ϑ). Let us assume that W(d, ϑ) is always the
union of at most a countable number of intervals: W(d, ϑ) = ∪mW(d, ϑ, m).
The situation is depicted in Figure 2.2.

θ
d

l  (d, θ)

Figure 2.2: The line `(d, ϑ) intersecting (part of) the random set W (grey)
producing closed intervals W(d, ϑ, m) (bold).

Since W is non-convex, the intersection of a line segment [~t, x, ϑ] withW
might consist of several fragments. In other words, we may have a non-empty
intersection of [~t, x, ϑ] with W(t2, ϑ, m) for several values of m. Conversely,
every fragment corresponds to a line segment [~t, x, ϑ] and a positive number
m. Our use of the words ‘fragment’ and ‘segment’ will have always precisely
this meaning.

Consider countably many identical copies of Φ′ = {(~Ti, Xi, Θi)}, one for
each m. The result, Φ′′ = Φ′×N is a stationary point-process on R2×R+×
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(−π/2, π/2)×N with intensity

λd~tdF (x)dK(ϑ)dC(m),

where C denotes counting measure on N. This new point-process Φ′′ can
represent any fragment that could possible arise from the line segments of
Φ′. A fragment [~t, x, ϑ, m] is the intersection of a line segment [~t, x, ϑ] with
W(t2, ϑ, m). Of course such an intersection may very well be empty.

We must now deal with further edge effects because we observe the line
segments only through the intersection ofW with the unit square B = [0, 1]×
[0, 1]. For all (d, ϑ, m) ∈ R× (−π/2, π/2)× N let

W (d, ϑ, m) =W(d, ϑ, m) ∩B

Define

D = {(~t, x, ϑ, m) ∈ R2 × R+ × (−π/2, π/2)× N : W (t2, ϑ, m) 6= ∅}.

Only points in D can correspond to fragments that could be observed through
W .

We define two functions on D, t : D → R and l : D → R+, as follows. Let
t(~t, x, ϑ, m) be the distance from the left endpoint of the line segment [~t, x, ϑ]
to the left endpoint of W (t2, ϑ, m), which we take negative if the first is to
the left of the latter. Let l(~t, x, ϑ, m) be the (strictly positive) length of the
interval W (t2, ϑ, m).

Now consider the map that assigns (t(~t, x, ϑ, m), x, l(~t, x, ϑ, m)) to each
‘potential fragment’ (~t, x, ϑ, m) ∈ D. The image under this map of Φ′′ ∩ D
is a new point-process Ψ = {(Ti, Xi, Li)} on R × R+ × R+. The points of
Ψ can be interpreted as segments [Ti, Ti + Xi] on the real line which can be
observed through intervals [0, Li]. These intersections [Ti, Ti + Xi] ∩ [0, Li]
are the observed fragments.

We have now accomplished what we set out to do; we are now in the one-
dimensional case. Wijers (1995) studied the case where the Li are constant
almost surely and the Ti follow a homogeneous Poisson process. We shall
be able to make much use of his methods. However, we wish to stress that
the Poisson assumption certainly does not hold here because some of the
[Ti, Ti + Xi] are actually different representations of the same line segment!

We now demonstrate that the intensity of Ψ is given by

λdtdF (x)dν(l)

where

dν(l) =

∫
ϑ

∫
t

∑
m

δl(t,ϑ,m)(dl)dtdK(ϑ).
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Here δl(t,ϑ,m)(dl) is Dirac measure putting point mass at l(t, ϑ, m).

We must show that dt1dν(l) is the image measure of d~tdK(ϑ)dC(m) under
the transformation, described above, that turned Φ′′ ∩ D into Ψ. First we
point out that t(.) does not depend on x and that l(.) does not depend on
either t1 or x. Abusing notation we write

t(~t, x, ϑ, m) = t(~t, ϑ, m).

l(~t, x, ϑ, m) = l(t2, ϑ, m).

Next, we notice that t(~t, x, ϑ, m) = t1 + t(0, t2, x, ϑ, m). It now follows that∫
~t

∫
ϑ

∑
m

1{a<t(~t,x,ϑ,m)≤b}1{c<l(~t,x,ϑ,m)≤d}d~tdK(ϑ)

=

∫
t1

∫
t2

∫
ϑ

∑
m

1{a<t1+t(0,t2,ϑ,m)≤b}1{c<l(t2,ϑ,m)≤d}dt1dt2dK(ϑ)

=

∫ b

a

dt1

∫
t2

∫
ϑ

∑
m

(1{c<l(t2,ϑ,m)≤d}dK(ϑ)dt2

=

∫ b

a

dt1

∫ d

c

dν(l).

The measure ν on R+ can be interpreted geometrically. Recall that we
defined `(d, ϑ) to be a line with orientation ϑ at (signed) distance d from the
origin. We define a random line L as follows. First, consider a circle B(c, r)
with center c and radius R such that W ⊂ C(c, R). Next, draw a random
variable Θ from K and a random variable D from the uniform distribution
on [−R, R]. Finally, define L to be the line at an angle Θ with respect to the
positive x-axis and at (signed) distance D from the origin. Now we condition
on the event that L hits W . Intersecting L with W we obtain a collection of
intervals and ν(a, b) =

∫ b

a
dν(l) is the expected number of intervals of length

between a and b.
We note that∫

l

ldν(l) =

∫
l

∫
ϑ

∫
t

∑
m

l1l(t,ϑ,m)(dl)dtdK(ϑ)

=

∫
ϑ

∫
t

∑
m

l(t, ϑ, m)dtdK(ϑ)

=

∫
ϑ

|W |dK(ϑ)

= |W |.
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We shall denote ∫
l

dν(l) = κ.

Integrals with respect to ν of such simple functions as above, are eas-
ily estimated using stereological methods. One would for instance sample
random lines (or even a random grid of lines) hitting W and estimate the
integrals by empirical averages. A nice introduction into the rudiments of
stereology is given in Baddeley (1999a). There one will also find that if K is
the uniform distribution, then κ = π|∂W |, where |∂W | denotes the length of
the boundary of W .

The points of Ψ = {(Ti, Xi, Li)} represent segments [Ti, Ti + Xi] on the
real line that could be observed through intervals [0, Li]. Define

A = {(t, x, l) : [t, t + x] ∩ [0, l] 6= ∅} = {(t, x, l) : −x ≤ t ≤ l}.

If a point of Ψ falls in A, the corresponding fragment is (partly) observed.
Let us calculate the expected number of observed fragments, which equals
the expected number of points of Ψ in A.∫

A

λdtdF (x)dν(l) =

∫
l

∫
x

∫ l

−x

λdtdF (x)dν(l)

=

∫
l

∫
x

(l + x)λdF (x)dν(l)

=

∫
l

(l + µ)λdν(l) = λ(|W |+ µκ) (2.10)

2.3 Poisson

We have a stationary point process Ψ = {Ti, Xi, Li} on R × R+ × R+ with
intensity λdtdF (x)dν(l). These points represent line segments [Ti, Ti + Xi]
that might be observed through associated intervals [0, Li]. The situation
is very much akin to the set-up of Wijers (1995a and b). There are two
differences. First he supposed the Li to be constant. Secondly—and much
more importantly—he assumed that the fragments {(Ti, Xi)} are a Poisson
process. This is certainly not the case here, even if the original line segments
of Φ were Poisson. The problem is that two different fragments could have
come from a single segment.

However, we may as well analyze the data as if Ψ were Poisson, as long
as we make sure that our eventual results hold regardless of the dependen-
cies between the points of Ψ. This is exactly what we shall do. Under the
Poisson assumption we shall be able to derive the non-parametric maximum
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likelihood estimator of the distribution function F . But whether or not the
observations are independent, the algebraic properties of the maximum likeli-
hood estimator remain valid. To prove its consistency when the observations
are dependent we can basically copy the proof for the independent case.
We only need to replace the strong law of large numbers by some ergodic
theorem. We discussed these ideas in section 2.1.1.

So let us suppose Ψ is a Poisson point process. Then, given Ψ(A) = n,
the points (Ti, Xi, Li) in A are distributed as the set of values in an i.i.d.
sample of size n from the normalized intensity, which by (2.10) equals

1A(t, x, l)
λdtdF (x)dν(l)∫
A

λdtdF (x)dν(l)
= 1A(t, x, l)

dtdF (x)dν(l)

|W |+ µκ
.

(2.11)

We must now address the problem of ‘length bias’: Because longer line seg-
ments stand a better chance of hitting W than shorter ones, the lengths Xi

of the line segments that hit W are not a sample from F . Hence, even if
we observed the Xi, their empirical distribution would not estimate F . We
therefore introduce the distribution function, say V , of the length X of a line
segment [T, T + X], given its observation through [0, L]. We calculate just
like we did to derive (2.10)

V (x) =

∫ x

y=0

∫
l

∫ l

t=−x

dtdF (x)dν(l)

|W |+ µκ
(2.12)

=

∫ x

y=0

|W |+ yκ

|W |+ µκ
dF (y).

One can show that as F ranges over all possible distributions (with finite
mean µ), then V too varies over all distributions. Note that∫

1

|W |+ xκ
dV (x) =

∫
1

|W |+ µκ
dF (x) =

1

|W |+ µκ

so that one can recover µ from V and hence also recover F from V .
Formula (2.11) for the conditional distribution of (T, X, L) given obser-

vation becomes in terms of V

1A(t, x, l)
dtdV (x)dν(l)

|W |+ xκ
= 1A(t, x, l)

dt

l + x
dV (x)

l + x

|W |+ xκ
dν(l).

(2.13)

Define, for all x, measures

dρ(l|x) =
l + x

|W |+ xκ
dν(l).

and note that these are probability measures for all x. Hence, by inspection
of (2.13) we can interpret the distribution of (T, X, L) as
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1. X ∼ dV

2. Given X = x, L ∼ dρ(l|x)

3. Given X = x and L = l, T ∼ Unif[−x, l]

We call the collection (Ti, Xi, Li) the complete data. We observe only a
many-to-one mapping of it when we observe the intervals [0, Li] and their
intersection with the [Ti, Ti +Xi]. This reduction, together with the fact that
the distribution of the complete data has the above cascade-like structure,
casts the problem of estimating V as a non-parametric missing data problem,
cf. section 1.4.4. In this special model the parameter space is convex and the
distribution of a single observation is linear in the parameter.

We now derive the distribution of the (observed) data. Define Yi =
|[Ti, Ti + Xi] ∩ [0, Li]|, the length of the i-th fragment. Let ∆i be the num-
ber of endpoints of [Ti, Ti + Xi] that fall outside of [0, Li]. Also we observe
Li, the length of the interval in which a fragment is observed. Under the
assumption that the {Ti} are Poisson it will turn out that (Y, ∆) is sufficient
for estimating V . At this point we introduce two functions that will help
describe the distribution of the data.

g(x) =

∫
[x,∞)

1

|W |+ κy
dV (y) (2.14)

h(x) =

∫
[x,∞)

y − x

|W |+ κy
dV (y). (2.15)

For the case ∆ = 1, V will enter the distribution of Y only through g, and
for the case ∆ = 2 only through h. There is a very useful relation between
V , g and h which is easy to check using the above two definitions. For all
x > 0

1 = κh(x) + (|W |+ κx)g(x) + V (x−). (2.16)

where V (x−) =
∫

[0,x)
dV (y).

Suppose that dρ(.|x) (the distribution of L given X = x) is degenerate at
some fixed l. We are then exactly in the situation studied by Wijers (1995).
We follow his derivation. First consider the region

Al = {(t, x) : [t, t + x] ∩ [0, l] 6= ∅} = {(t, x) : −x ≤ t ≤ l}.

which can be subdivided into regions lc, rc, uc and dc as in figure 2.3. For a
point (t, x) in lc the intersection of [t, t + x] with [0, l] will be left censored.
Similarly, we distinguish right censored (rc), uncensored (uc) and doubly
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t

x

dc

uc

lc rc

l0

Figure 2.3: Subdividing Al into different censoring types.

censored (dc). Left and right censored observations are taken together as
censoring ‘type’ ∆ = 1; observation of one endpoint. Because L = l a.s., the
density of (t, x) becomes, cf. (2.13)

1Al(t, x)
dt

l + x
dV (x).

The sub-distributions for the various censoring types can be computed by
integrating, over the shaded regions in Figure 2.3. We take right and left
censored observations together. We find

P l(dy, 0) =
l − y

l + y
dV (y)

P l(dy, 1) = 2

∫ ∞
y

1

l + x
dV (x)dy

P l(dy, 2) =

∫ ∞
y

x− y

l + x
dV (x)δl(dy).

These formulas are easily modified to accommodate general dρ(l|x). Re-
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DC

BA

00

00

lx

lxlx

l

Figure 2.4: Integration regions for various sub-distribution functions.

calling that dρ(l|x) = l+x
|W |+xκ

dν(l) we have

P (dy, dl, 0) = 1{l≥y}
l − y

l + y
dρ(l|y)dV (y) = 1{l≥y}

l − y

|W |+ κy
dν(l)dV (y)

P (dy, dl, 1) = 21{l≥y}

∫ ∞
y

1

l + x
dρ(l|x)dV (x)dy

= 21{l≥y}dν(l)

∫ ∞
y

1

|W |+ κx
dV (x)dy

= 21{l≥y}dν(l)g(y)dy

P (dy, dl, 2) =

∫ ∞
y

x− y

l + x
dρ(l|x)dV (x)δl(dy)

= dν(l)

∫ ∞
y

x− y

|W |+ κx
dV (x)δl(dy)

= dν(l)h(y)δl(dy).

We see that the conditional distribution of L, given Y and ∆ does not depend
on V . Hence (Y, ∆) is sufficient for estimation of V (at least under the present
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Poisson assumption). The joint distribution of (Y, ∆) is

P (dy, 0) =

∫
l

P (dy, dl, 0) =

∫
l≥y

(l − y)dν(l)

|W |+ κy
dV (y) (2.17)

P (dy, 1) =

∫
l

P (dy, dl, 1) = 2ν([y,∞))g(y)dy (2.18)

P (dy, 2) =

∫
l

P (dy, dl, 2) = dν(y)h(y) (2.19)

Suppose that τ is the supremum of the support of ρ(.|x) over all x. Then
τ is an upper bound for the length of a fragment that can be observed in W .
That is, P (Y > τ) = 0. Note that

g(x) =

∫
[x,∞)

1

|W |+ κy
dV (y)

=

∫
[x,τ)

1

|W |+ κy
dV (y) +

∫
[τ,∞)

1

|W |+ κy
dV (y)

=

∫
[x,τ)

1

|W |+ κy
dV (y) + g(τ)

h(x) =

∫
[x,∞)

y − x

|W |+ κy
dV (y)

=

∫
[x,τ)

y − x

|W |+ κy
dV (y) +

∫
[τ,∞)

y − τ + τ − x

|W |+ κy
dV (y)

=

∫
[x,τ)

y − x

|W |+ κy
dV (y) + h(τ) + (τ − x)g(τ).

We define

H = κh(τ) G = (|W |+ κτ)g(τ).

and recall that relation (2.16) states that G + H + V (τ−) = 1. Later on we
shall interpret G and H as probabilities. We can express the distribution of
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(Y, ∆) in terms of V restricted to [0, τ), G and H. For y < τ

P (dy, 0) =

∫
l≥y

(l − y)dν(l)

|W |+ κy
dV (y) (2.20)

P (dy, 1) = 2ν([y,∞))dyg(y) = 2ν([y,∞))dy

∫ ∞
y

1

|W |+ κx
dV (x)

= 2ν([y,∞))dy(

∫ τ−

y

1

|W |+ κx
dV (x) +

∫ ∞
τ

1

|W |+ κx
dV (x))

= 2ν([y,∞))dy

∫ τ−

y

1

|W |+ κx
dV (x) +

2ν([y,∞))dy

|W |+ κτ
G (2.21)

P (dy, 2) = dν(y)h(y) = dν(y)

∫ ∞
y

x− y

|W |+ κx
dV (x)

= dν(y)(

∫ τ−

y

x− y

|W |+ κx
dV (x) +

∫ ∞
τ

x− τ

|W |+ κx
dV (x)

+

∫ ∞
τ

τ − y

|W |+ κx
dV (x))

= dν(y)

∫ τ−

y

x− y

|W |+ κx
dV (x) +

dν(y)

κ
H +

(τ − y)dν(y)

|W |+ κτ
G.

(2.22)

Because (2.16) expresses G in terms of V (τ−) and H, the distribution of
the data is fully parameterized by

(V |[0,τ), H),

where V |[0,τ) ranges over all (possibly defective) distribution functions and
H is any positive real such that V (τ−) + H ≤ 1. Below we demonstrate
that there is a 1-1 correspondence between (V |[0,τ), H) and (F |[0,τ), µ), where
F |[0,τ) ranges over all (possibly defective) distribution functions and µ is any

positive real exceeding
∫ τ−

0
xdF (x).

By the way, it is interesting that without any observations exceeding τ ,
the mean of F can be estimated.

To express F |[0,τ) and µ in terms of V |[0,τ) and H, we first note that
g(τ) = G/(|W | + κτ) is determined by V (τ−) and H through (2.16). We
have∫

[0,τ)

1

|W |+ κy
dV (y) + g(τ) =

∫ ∞
0

1

|W |+ κy
dV (y)

=

∫ ∞
0

1

|W |+ κµ
dF (y) =

1

|W |+ κµ
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so that

µ =
1

κ

(
1∫

[0,τ)
1

|W |+κy
dV (y) + g(τ)

− |W |
)

(2.23)

and

F (x) =

∫ x

0

|W |+ κµ

|W |+ κy
dV (y)

=
1∫

[0,τ)
1

|W |+κy
dV (y) + g(τ)

∫ x

0

1

|W |+ κy
dV (y). (2.24)

2.4 EM

Under the assumption that the fragments we observe are independent, we
have a nonparametric missing data problem (see section 1.4.4).

1. X ∼ V, V ∈ V = {all distributions on R+}

2. Given X = x, L ∼ dρ(l|x)

3. Given X = x and L = l, T ∼ Unif[−x, l]

4. Observe (Y, ∆) = g(X, T, L)

where Y = |[T, T +X]∩ [0, L]| and ∆ is the number of unobserved endpoints.
As we have seen, the distribution of the data (Y, ∆) depends on V only

through its restriction to [0, τ) and a functional H. This means that the
model V is not identifiable from the data. If two distribution functions V
and V ′ agree on [0, τ) and have the same H’s, then they can never be told
apart on the basis of observing (Yi, ∆i).

We could reduce V in such a way that it becomes identifiable, but then
the model is no longer completely nonparametric. However, we can construct
a different model consisting of all probability measures on a different space,
and a new missing data problem such that model is identifiable. Of course
we must make sure that the model for the observed data remains the same.

We now state a nonparametric, identifiable missing data problem, such
that the distribution of the observed data satisfies (2.20) to (2.22). We again
use the symbol V to denote the model for the complete data. We hope this
does not confuse too much.

The (new) model V for the complete data, say X, consists of all proba-
bility distributions on the space [0, τ) ∪ {†, ‡}. We write V ({†}) = P (X =
†) = G and V ({‡}) = P (X = ‡) = H. We must have V (τ−) + G + H = 1.

Sample X from V ∈ V. Next,
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• If X = x ∈ [0, τ) we draw an L from dρ(.|x) and given L = l we draw
a uniform T on [−x, l]. We set Y = |[T, T + X] ∩ [0, L]| and ∆ is the
number of endpoints of [T, T + X] outside of [0, L].

• If X = † we sample (Y, ∆) from

11(δ)
2ν([y,∞))dy

|W |+ κτ
+ 12(δ)

(τ − y)dν(y)

|W |+ κτ
.

• If X = ‡ we sample (Y, ∆) from

12(δ)
dν(y)

κ
.

It is certainly not hard to check that the distribution of (Y, ∆) under this
new scheme is indeed again given by (2.20) to (2.22).

Now, because we have a completely nonparametric missing data model we
can use every square integrable function which integrates to zero as a score
function. In particular, we can use indicator functions of measurable sets in
[0, τ) ∪ {†, ‡} minus their expectations. As in (1.14) we find the following
system of score equations

V̂n(A) =
1

n

n∑
1

PV̂n
(Xi ∈ A|Yi, ∆i), A ⊆ [0, τ) ∪ {†, ‡}

(2.25)

or in other words

V̂ (dx) =
1

n

n∑
1

PV̂n
(Xi ∈ dx|Yi, ∆i), x ∈ [0, τ) (2.26)

V̂n({‡}) = Ĥ =
1

n

n∑
1

PV̂n
(X = ‡|Yi, ∆i) (2.27)

and by (2.16)

V̂n({†}) = 1− V̂n({‡})− V̂n(τ−). (2.28)

Solving the above equations iteratively is an instance of the EM algorithm.
From one iteration step to the next the support will not increase. Hence, one
should first decide on the support of V̂n and then start the iterations with
an initial guess which does not have smaller support. The support of the
true NPMLE (as defined in (1.1)) is unknown to us. We choose to start
the iterations with a distribution V on [0, τ) ∪ {†, ‡} with mass only at the
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observed uncensored observations and at the points † and ‡. Thus we obtain
a ‘data sieved’ NPMLE (see section 1.4.1).

To find explicit expressions for the above score equations, note that the
distribution of the data, specified in (2.20) to (2.22), is of the form

P (dy, δ) = KV (dy, δ) =

∫
K(dy, δ|x)dV (x).

We recognize, for y ∈ [0, τ) and δ ∈ {0, 1, 2},

K(dy, δ|x) = 10(δ)

∫
l≥x

(l − x)dν(l)

|W |+ κx
δx(dy)

+ 11(δ)2ν([y,∞))

(
1(y,τ)(x)

|W |+ κx
+

1{†}(x)

|W |+ κτ

)
dy

+ 12(δ)

(
1(y,τ)(x)(x− y)

|W |+ κx
+

1{†}(x)(τ − y)

|W |+ κτ
+

1{‡}(x)

κ

)
dν(y).

Given a sample (y1, δ1), . . . , (yn, δn) suppose that x1, . . . , xm are the lengths
of all different uncensored observations. Consider the (random) measure

µ(dy, δ) = 10(δ)
m∑

i=1

∫
l≥xi

(l − xi)dν(l)

|W |+ κXi

δxi(dy)

+ 11(δ)1[0,τ)(y)ν([y,∞))dy

+ 12(δ)1[0,∞)(y)ν(dy).

This sigma-finite measure µ dominates K(dy, δ|x) for all x ∈ {x1, . . . , xm} ∪
{†, ‡}. The Radon–Nikodym derivative of K(dy, δ|x) with respect to µ(dy, δ)
is, for all x ∈ {x1, . . . , xm} ∪ {†, ‡}

k(y, δ; x) = 10(δ)1[0,τ)(x)1x(y)

+ 11(δ)

(
1(y,τ)(x)

|W |+ κx
+

1{†}(x)

|W |+ κτ

)
+ 12(δ)

(
1(y,τ)(x)(x− y)

|W |+ κx
+

1{†}(x)(τ − y)

|W |+ κτ
+

1{‡}(x)

κ

)
.

We arrange it so that the data sieved NPMLE V̂n puts all its mass on
{x1, . . . , xm} ∪ {†, ‡}. Thus, for V̂n almost all x the mixing kernel K is
dominated by a single sigma-finite measure as was required in section 1.4.4.
In that section we also specified what the score equations for a nonparametric
missing data problem look like, cf. (1.17). We find

V̂n(A) =

∫ ∫
A

k(y, δ; x)dV (x)∫
x′ k(y, δ; x′)dV (x)

dPn(y, δ)
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where Pn is the empirical distribution of the data putting mass 1/n at the
observed (y1, δ1), . . . , (yn, δn). The equations work out to

V̂n({xi}) = Pn(xi, 0)

+
V̂n({xi})
|W |+ κxi

∫ xi

y=0

1

ĝn(y)
Pn(dy, 1)

+
V̂n({xi})
|W |+ κxi

∫ xi

y=0

xi − y

ĥn(y)
Pn(dy, 2), i = 1, 2, . . . , m

V̂n({‡}) = Ĥn = Ĥn

∫
y

1

ĥn(y)
Pn(dy, 2).

where, cf. (2.16)

V̂n({†}) = Ĝn = 1− Ĥn − V̂n(τ
−)

ĝn(τ) = Ĝn / (|W |+ κτ)) and ĥn(τ) = Ĥn/κ

and, for x ∈ [0, τ),

ĝn(x) =

∫
[x,τ)

1

|W |+ κy
dV̂n(y) + ĝn(τ)

ĥn(x) =

∫
[x,τ)

y − x

|W |+ κy
dV̂n(y) + ĥn(τ) + (τ − x)ĝn(τ).

Recall that (V[0,τ), H) and (F[0,τ), µ) stand in a one-to-one relation. In
the previous section we established formulas (2.23) and (2.24), expressing
(F[0,τ), µ) in terms of (V[0,τ), H). With g(τ) = (1− V (τ−)−H)/(|W |+ κτ),
we have

µ =
1

κ

(
1∫

[0,τ)
1

|W |+κy
dV (y) + g(τ)

− |W |
)

and

F (x) =
1∫

[0,τ)
1

|W |+κy
dV (y) + g(τ)

∫ x

0

1

|W |+ κy
dV (y).

It is now obvious how we define F̂n and µ̂n as transformations of V̂n and Ĥn.

There really is not much point in proving desirable asymptotic properties,
such as consistency, of V̂n as n tends to infinity. Any result we obtain here
will only hold under the Poisson assumption stated at the beginning of the
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previous section. However, it will turn out that the method of proving con-
sistency will—with minor modifications—work without the Poisson assump-
tion. When we no longer have the Poisson assumption we shall have to use
different asymptotics, which will lead to some complications. To give an
(admittedly sketchy) proof of consistency of V̂n here, allows us a more clean
presentation. We shall use Theorem 1.2, but we need a working hypothesis:

working hypothesis
If g(τ) > 0 then lim inf ĝn(τ) > 0, almost surely.

Whether or not this is true, we do not know. When, in the next section,
we prove consistency without the Poisson assumption this hypothesis will no
longer be needed. By that time, to get around other difficulties, we shall
have introduced some extra, artificial censoring. This will have the added
benefit of making our present working hypothesis superfluous.

First, we note that the model V (of all probability measures on [0, τ) ∪
{†, ‡}) is convex, which by Lemma 1.3 implies that also the model for the
distribution of the data KV = {KV : V ∈ V} is convex. This places us
in the realm of Theorem 1.2. We can use this theorem to prove consistency
(under our working hypothesis) of the NPMLE KV̂n in the sense that, almost
surely,

‖V̂n − V0‖[0,τ) → 0 and |Ĥn −H0| → 0. (2.29)

Here ‖.‖[0,τ) denotes the uniform distance on the set [0, τ). From (2.29) it is
not too difficult (using empirical process theory) to conclude that also

‖F̂n − F0‖[0,τ) → 0 and |µ̂n − µ0| → 0, (2.30)

almost surely.
To apply Theorem 1.2 we need to compare KV̂n to a sequence KVn for

which we can easily establish consistency. We choose

Vn(x) =

∫ x

0

|W |+ κy∫
l≥y

(l − y)dν(l)
Pn(dy, 0) x ∈ [0, τ).

We define Vn(τ
−) in the obvious manner and note that by the law of large

numbers it is consistent. Hence, for Vn({‡}) = Hn we can take a sequence
tending to H while Hn ≤ Vn(τ). We define Gn, gn and hn in terms of Vn|[0,τ)

and Hn.
From (2.20) we see that KVn(dy, 0) = Pn(dy, 0).
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First we show convergence of (Vn, Hn) to satisfy the first requirement of
Theorem 1.2. The collection

{1[0,x](y)
|W |+ κy∫

l≥y
(l − y)dν(l)

, x ∈ [0, τ)}

is a Glivenko–Cantelli class of functions over which the law of large numbers
holds uniformly. In other words, we have

‖Vn − V0‖[0,τ) → 0 and |Hn −H0| → 0 (2.31)

almost surely. For empirical process theory see, for instance, van der Vaart
and Wellner (1996). That the above collection of functions is a Glivenko–
Cantelli class follows from the fact that the functions are all the product
of an indicator function (of intervals) and the same monotone function and
hence they are uniformly of bounded variation: the variation is bounded uni-
formly over the collection of functions. Also, there is an integrable ‘envelop’
(majorant) for the entire collection.

Next, we need that the straight line between KVn and KV̂n is Hellinger
differentiable at KV̂n. By Lemma 1.4 it suffices to show that the straight
line between Vn and V̂n is Hellinger differentiable at V̂n. Because Vn � V̂n

and also dVn/dV̂n ∈ L2(V̂n) this is indeed true.
Now, if we establish the final, third condition of Theorem 1.2

2∑
δ=0

∫
[0,τ)

(
dKVn

dKV̂n

)
d(Pn(y, δ)−KVn(y, δ))→ 0 (2.32)

then we can conclude that KV̂n converges to KV0 in the same sense as KVn

does. In other words, (2.32) implies (2.29), which in turn implies (2.30).
From formulas (2.17) to (2.19) we see that (2.32) reads

2∑
δ=0

∫
[0,τ)

(
dKVn

dKV̂n

)
d(Pn(y, δ)−KVn(y, δ))

=

∫
[0,τ)

(
dVn(y)

dV̂n(y)

)
d(Pn(y, 0)−KVn(y, 0))

+

∫
[0,τ)

(
gn(y)

ĝn(y)

)
d(Pn(y, 1)−KVn(y, 1))

+

∫
[0,τ)

(
hn(y)

ĥn(y)

)
d(Pn(y, 2)−KVn(y, 2))

→ 0. (2.33)
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Since KVn(dy, 0) = Pn(dy, 0) we get convergence of the first term of
(2.33) for free. To prove convergence of the other two terms, we again apply
empirical process theory to assert that not only for δ = 0, but also for δ = 1, 2

‖
∫ .

0

dPn(y, δ)−
∫ .

0

dKVn(y, δ)‖[0,τ)→ 0, (2.34)

almost surely. Now we need some elementary calculus

Lemma 2.1. Suppose that Hn (n = 1, 2, . . . ) and H are real valued functions
on an interval [a, b) which are of bounded variation. Suppose that Gn are
real valued functions on [a, b) which are bounded and of bounded variation
uniformly in n. Suppose that the Hn tend to H uniformly on [a, b). Then∫

[a,b)

Gnd(Hn −H)→ 0.

Proof Applying integration by parts, we rewrite the integral as

Gn(b−)(Hn(b−)−H(b−))−Gn(a)(Hn(a)−H(a)) +

∫
[a,b)

(Hn −H)dGn

The first two terms tend to zero because the Gn are uniformly bounded
and the Hn converge to H. The third term is in absolute value not more
than ||Hn −H||∞

∫
[a,b)
|dGn|. This term tends to zero because the Hn tend

uniformly to H and the Gn are uniformly of bounded variation. �

We need to show convergence of the remaining two terms of (2.33). With the
above lemma and (2.34), this boils down to showing that gn/ĝn and hn/ĥn

are uniformly bounded and of bounded variation (almost surely for n large
enough). Under our ‘working hypothesis’ this can be accomplished without
much difficulty.

2.5 Without the Poisson assumption

Recall that we started out with a marked point-process Φ = {(~Si, Xi, Θi)}
on R2 × R+ × (−π/2, π/2) to model a collection of line segments with left

endpoint ~Si, length Xi and orientation Θi. We then transformed Φ into
Φ′ = {(~Ti, Xi, Θi)}, representing the left endpoints with respect to the unique
straight line on which the associated line segment lies. Using square brackets,
we write [~t, x, ϑ] to denote a line segment (i.e. a random closed subset of
R2), and (~t, x, ϑ) to denote a point in R2 × R+ × (−π/2, π/2). We use
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Φ′ × N to represent all possible fragments arising from intersecting the line
segments with a random closed setW. Recall we introduced lines `(d, ϑ) with
orientation ϑ at (signed) distance d from the origin and defined W(d, ϑ) =
`(d, ϑ)∩W. We assumed that the W(t, θ) are always the union of (at most)
countably many closed intervals: W(t, ϑ) = ∪mW(t, ϑ, m). Conditionally
on W, a point (~t, x, ϑ, m) corresponds to a (possibly empty) random closed
set [~t, x, ϑ, m] = [~t, x, ϑ] ∩ W(t2, ϑ, m), which we called a fragment. Finally
we represented all observed fragments as a point process Ψ = {(Ti, Xi, Li)}
on R× R+ × R+ corresponding to the situation where we observe segments
[Ti, Ti + Xi] through intervals [0, Li].

In the preceding section we assumed that Ψ is a Poisson process. We
conditioned on the number of fragments that are observed, so that the frag-
ments could be interpreted as an independent, identically distributed sample.
We were then able to interpret the observations as ‘missing data’ (see sec-
tion 1.4.4) in a very convenient way. This led us to a set of nonparametric
score equations. The nonparametric maximum likelihood estimator (see sec-
tion 1.4.1) in the sense of Kiefer and Wolfowitz (1956) is a solution of these
equations. We proceeded to apply general methods (Theorem 1.2) to prove
consistency of the estimator as the number of observations tends to infinity.

As we explained earlier, the assumption that the fragments are Poisson
is simply not justified. They are not even independent, because several frag-
ments might belong to a single underlying segment. However, as it turns out,
without the Poisson assumption it is still sensible to use the same estimator.
Also, we can still use Theorem 1.2 to prove its consistency.

Without the Poisson assumption we no longer have i.i.d. observations,
the number of which we can send to infinity. We shall have to resort to dif-
ferent asymptotics. Indeed, we shall consider observation of W ∩ Φ through
expanding sets Bn. Instead of empirical distribution functions we shall have
empirical averages and instead of Glivenko–Cantelli we use an ergodic the-
orem to obtain the necessary convergence. We discussed this approach in
some generality in section 2.1.1.

2.5.1 Expanding domain asymptotics

Let

Bn = nB = [0, n]× [0, n] and B∞ = R2

and suppose we observe W ∩ Φ through these Bn. We must now modify
some earlier definitions to accommodate the varying n. Our original set-up
corresponds exactly to the case n = 1.
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We define, for all d ∈ R, ϑ ∈ (−π/2, π/2) and m ∈ N

Wn(d, ϑ, m) =W(d, ϑ, m) ∩Bn and W∞(d, ϑ, m) =W(d, ϑ, m)

Now consider sets

Dn = {(~t, x, ϑ, m) : Wn(t2, ϑ, m) 6= ∅}

and note that even the set D∞ is well defined.
As before we define on Dn two functions: tn(~t, ϑ, m) and ln(~t, ϑ, m).

tn(~t, x, ϑ, m) is the distance from the left endpoint of the line segment [~t, x, ϑ]
to the left-most endpoint of W (t2, ϑ, m), which we take negative if the first is
to the left of the latter. Let ln(~t, x, ϑ, m) be the length of Wn(t2, ϑ, m). Con-
sider the map that assigns (tn(~t, x, ϑ, m), x, ln(~t, x, ϑ, m)) to (~t, x, ϑ, m) for all
(~t, x, ϑ, m) ∈ Dn. The image under this map of Φ′′ ∩ D is a point-process
Ψn = {(Ti, Xi, Li)} on R× R+ × [0,∞) with intensity

λdtdF (x)dνn(l),

where

dνn(l) =

∫
t

∫
ϑ

∑
m

δln(t,ϑ,m)(dl)dtdK(ϑ).

The Ψn represent the fragments arising from intersecting Φ ∩W with Bn.
We note that ∫

l

ldνn(l) = |Wn|

and define ∫
l

dνn(l) = κn.

As before A = {(t, x, l) : [t, t + x] ∩ [0, l] 6= ∅}, and the expected number of
fragments we observe in Wn =W ∩Bn is∫

A

λdtdF (x)dνn(l) = λ(|Wn|+ µκn).

Finally, define

Vn(x) =

∫ x

0

|Wn|+ yκn

|Wn|+ µκn
dF (y)

and set

gn(x) =

∫
[x,∞)

1

|Wn|+ κny
dVn(y)

hn(x) =

∫
[x,∞)

y − x

|Wn|+ κny
dVn(y).
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2.5.2 Some extra censoring

We have a sequence of statistical problems: observation of Φ ∩W through
sets Wn. For each fixed n we can proceed as before and, pretending that the
observed fragments are independent, write down the score equations. This is
exactly what we do in this section, but there is one slight complication. To
overcome it, we shall introduce some artificial censoring.

The normalized version of the measure dνn for a given x is

dρn(l|x) =
l + x

|Wn|+ xκn
dνn(l)

which may be interpreted as the distribution of the length of the interval
through which a fragment is observed, given that the underlying line segment
has length x. Now, if we define τn to be the supremum of the support of
dρn(l|x) over all x, then τn is an upper bound for the length of a fragment that
can be observed through Wn. The distribution of the data from observing Φ∩
Wn is determined by the restriction of Vn to [0, τn) and Hn = κnhn(τn). This
is changing with n in a very awkward way. We also believe that estimation of
F at τn from fragments seen through Wn is unstable, because it is typically
very unlikely to observe fragments of length near τn.

To regularize our problem we introduce some extra censoring. We fix
a value τ such that with probability 1 (under the distribution of W), the
supx supp dρn(l|x) will exceed τ . We group together all observations of length
equal to, or exceeding τ , irrespective of their censoring type. In practice it
would be wise to choose τ in such a way that a certain percentage of the
observed fragments are longer than τ .

We write Pn for the distribution, under the parameter (Vn|[0,τ), Hn), of
the fragments observed through Bn. The probability that the length of a
fragment observed through Wn exceeds τ is

Pn(Y > τ) =

∫
x>τ

∫
l>τ

∫ 0

t=τ−x

dtdνn(l)dVn(x)

|Wn|+ κnτ

+

∫
x>τ

∫
l>τ

∫ l−τ

t=0

dtdνn(l)dVn(x)

|Wn|+ κnτ

=

∫
l>τ

(l − τ)dνn(l)

∫
x>τ

1

|Wn|+ κnτ
dVn(x)

+

∫
l>τ

dνn(l)

∫
x>τ

x− τ

|Wn|+ κnτ
dVn(x)

=

∫
l>τ

(l − τ)dνn(l)gn(τ) +

∫
l>τ

dνn(l)hn(τ)

= anGn + bnHn
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where

an =
1

|Wn|+ κnτ

∫
l>τ

(l − τ)dνn(l)

bn =
1

κn

∫
l>τ

dνn(l)

The estimating equations of Vn are similar to what we found earlier, for
x < τ

dV̂n(x) = dPn(x, 0)

+
dV̂n(x)

|Wn|+ κnx

∫ x

y=0

1

ĝn(y)
dPn(y, 1)

+
dV̂n(x)

|Wn|+ κnx

∫ x

y=0

x− y

ĥn(y)
dPn(y, 2) (2.35)

The extra censoring does yield an extra term in the estimating equation for
H

Ĥn = Ĥn

∫ τ−

y=0

1

ĥn(y)
dPn(y, 2) +

bnĤn

anĜn + bnĤn

Pn(Y > τ)) (2.36)

where, cf. (2.16)
Ĝn = 1− Ĥn − V̂n(τ−)

and
ĝn(τ) = Ĝn / (|Wn|+ κnτ)) and ĥn(τ) = Ĥn/κ

and, for x ∈ [0, τ),

ĝn(x) =

∫
[x,τ)

1

|Wn|+ κny
dV̂n(y) + ĝn(τ)

ĥn(x) =

∫
[x,τ)

y − x

|Wn|+ κny
dV̂n(y) + ĥn(τ) + (τ − x)ĝn(τ).

2.5.3 ergodic lemmas

In this subsection we first work through a number of results establishing that
various (properly normalized) functionals of W ∩Bn converge as n tends to
infinity. Then we consider convergence of functionals of Φ ∩ W ∩ Bn. We
must assume:

Assumption 2.1. (Φ,W) is jointly stationary ergodic.
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This assumption actually holds if and only if Φ is weakly mixing and W
is ergodic or vice versa. Recall that weakly mixing implies ergodicity so that
in particular we are assuming that W is ergodic.

Observing the line segments of Φ through W ∩ Bn we have censoring
at the boundaries of W and of Bn. Censoring at the boundaries of Bn is
a negligible effect as n tends to infinity because the expected total number
of fragments observed through W ∩ Bn is of order n2, while the expected
number of fragments hitting the boundary of Bn is only of order n. In a
nutshell, this is what we make precise in this section.

Recall our transformation Φ′ = {(~Ti, Xi, Θi)} of Φ = {(~Si, Xi, Θi)} to
represent the location of the left endpoint of each line segment relative to
the unique straight line on which it lies. Observing Φ∩W ∩Bn, we see non-
empty intersections [~Ti, Xi, Θi, m] = [~Ti, Xi, Θi] ∩Wn(T2,i, Xi, Θi, m) ∩Bn =

[~Ti, Xi, Θi] ∩Wn(T2,i, Xi, Θi, m) for all m. We named these non-empty in-
tersections ‘fragments’. Now consider a modification. Suppose we observe
all non-empty intersections [~Ti, Xi, Θi, m]∗ = [~Ti, Xi, Θi]∩W(T2,i, Xi, Θi, m),

but only if the left endpoint of [~Ti, Xi, Θi, m]∗ ∈ Bn. In other words, we ob-
serve all fragments with left endpoint in the interior of Bn, without censoring
at the boundary of Bn. If we assume that these new fragments are a Pois-
son process, we can condition of their observed number and consider their
lengths and censoring types as an independent sample. To describe their
common distribution we need to introduce modifications ν∗n of the measures
νn. Define

l∗(t, ϑ, m) =

{
|W(t, ϑ, m)| if the left endpoint of W(t, ϑ, m) falls in Bn.
0 otherwise

and

dν∗n(l) =

∫
t

∫
ϑ

∑
m

δl∗n(t,ϑ,m)(dl)dtdK(ϑ).

Conditionally on W, the distribution of the lengths and censoring types of
the fragments without censoring at ∂Bn is the same as that of the original
fragments, but with ν replaced by ν∗ throughout.

We shall now establish the convergence of various functions of νn. We
shall make extensive use of an ergodic theorem for spatial processes due to
Nguyen and Zessin (1979, corollary 4.20).

A spatial process on a set S is a family {XG : G ∈ G} where G is the
collection of all bounded Borel sets in S. The spatial process is said to be
covariant if for any G ∈ G and s ∈ S

XG+s(Ts) = XG(.)
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It is said to be additive if

XH∪G = XH + XG, if H, G ∈ G, and H ∩G = ∅.

We denote by K the collection of bounded and convex subsets of S and by B
the unit square. We have the following theorem (Nguyen and Zessin (1979),

Theorem 2.1. If a spatial process {XG : G ∈ G} is covariant and additive
and if there exists a non-negative random variable Y ∈ L1(P ) such that

|XG| ≤ Y, a.s. for each G ∈ B ∩ K

then the limit

lim
n→∞

1

|Gn|
XGn = E(XB|J )

exists almost surely for each regular countable sequence Gn of sets in K.

Here J denotes the invariant sigma-algebra. If {XG : G ∈ G} is ergodic,
i.e. J is trivial, then the limit equals E(XB).

We want to establish convergence of Vn and the sub-distribution functions
Fn(y, δ) =

∫ y

0
Pn(dy′, δ). To this end, we must first prove convergence—

upon normalization—of |Wn| =
∫

l
ldνn(l), κn =

∫
l
dνn(l), an = 1/(|Wn| +

κnτ)
∫

l>τ
(l − τ)dνn(l) and bn = (1/κn)

∫
l>τ

dνn(l). We define |Wn|∗, κ∗n a∗n
and B∗n similarly as integrals with respect to ν∗n. We can think of these as ran-
dom quantities indexed by sets Bn. As such they are additive, covariant and
ergodic. The sequence Bn is a regular, countable sequence of convex bounded
sets, and |Bn| = n2. By Theorem 2.1 we have |Wn|∗/n2 → EW)|W1|∗,
κ∗n/n

2 → EW)κ
∗
1, a∗n/n

2 → EW)a
∗
1 and b∗n/n2 → EW)κ

∗
1. It is not difficult

to show that (|Wn|∗ − |Wn|)/n2 → 0, (κn − κ∗n)/n2 → 0, (an − a∗n)/n2 → 0
and (bn − b∗n)/n2 → 0.

We can now show convergence of Vn and its relatives. Recall our definition
of Vn,

Vn(x) =

∫ x

0

|Wn|+ yκn

|Wn|+ µκn
dF (y)

Proposition 2.1. As n tends to infinity Vn tends almost surely, uniformly
to

V∞(x) =

∫ x

0

EW |W1|∗ + yEWκ∗1
EW |W1|∗ + µEWκ∗1

dF (y).

Proof We divide numerator and denominator by n2 and then use the
convergence of |Wn|/n2 and κn/n

2 to obtain pointwise convergence. Uniform
convergence follows from the usual arguments as Vn and V∞ are distribution
functions. �
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Of course gn, Gn, hn and Hn converge to limits g∞, G∞, h∞ and H∞, which
are defined in the obvious manner as integrals with respect to V∞.

In section 2.3, we derived the distribution P (dy, δ) of the length and
censoring type of the fragments observed through W = W1, under the as-
sumption that they are independent. We noted that for a certain Markov
kernel K(dy, δ; x) we can write P (dy, δ) = KV (dy, δ) =

∫
x
K(dy, δ; x)dV (x).

For the fragments observed through Wn we find, for y ∈ [0, τ),

Pn(dy, 0) =

∫
l≥y

(l − y)dνn(l)

|Wn|+ κny
dVn(y)

Pn(dy, 1) = 2νn([y,∞))gn(y)dy

Pn(dy, 2) = dνn(y)hn(y)

Pn(y ≥ τ) = anGn + bnHn.

Again, Pn can be written as
∫

x
Kn(dy, δ; x)dVn(x), where

Kn(dy, δ; x) = 10(δ)1[0,τ)(y)

∫
l≥x

(l − x)dνn(l)

|Wn|+ κnx
δx(dy)

+ 11(δ)1[0,τ)(y)2νn([y,∞))

(
1(y,τ)(x)

|Wn|+ κnx
+

1{†}(x)

|Wn|+ κnτ

)
dy

+ 12(δ)1[0,τ)(y)

(
1(y,τ)(x)(x− y)

|Wn|+ κnx
+

1{†}(x)(τ − y)

|Wn|+ κnτ
+

1{‡}(x)

κn

)
dνn(y)

+ 13(δ)δτ (dy)(an1{†}(x) + bn1{‡}(x)).

Let K∞ be defined by

K∞(dy, δ; x) = 10(δ)1[0,τ)(y)

∫
l≥x

(l − x)dν∗1 (l)

|W1|∗ + κ∗1x
δx(dy)

+ 11(δ)1[0,τ)(y)2ν∗1([y,∞))

(
1(y,τ)(x)

|W1|∗ + κ∗1x
+

1{†}(x)

|W1|∗ + κ∗1τ

)
dy

+ 12(δ)1[0,τ)(y)

(
1(y,τ)(x)(x− y)

|W1|∗ + κ∗1x
+

1{†}(x)(τ − y)

|W1|∗ + κ∗1τ
+

1{‡}(x)

κ∗1

)
dν∗1(y)

+ 13(δ)(a
∗
11{†}(x) + b∗11{‡}(x)).

Proposition 2.2. KnVn(dy, δ) tends to K∞V∞(dy, δ) almost surely as n
tends to infinity, in the sense of uniform convergence of the associated (sub)dis-
tribution functions.

Proof The proof is similar to that of the previous proposition. �
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So far in this section we have only considered functionals of the random
set W as observed through increasing sets Bn. We now turn to the actual
data, which are fragments arising from observation of Φ∩W through the Bn.
We introduce a sequence of point processes, representing the data observed
through Bn.

Recall that we defined

Dn = {(~t, x, ϑ, m) : Wn(t2, ϑ, m) 6= ∅}.

Now define

En = {(~t, x, ϑ, m) ∈ Dn : [~t, x, ϑ] ∩Wn(t2, ϑ, m) 6= ∅}.

En is well defined for n = ∞, if we take B∞ = R2 and W∞(t2, ϑ, m) =
W(t2, ϑ, m). On the sets En we define three functions, pn, yn and δn.

pn(~t, x, ϑ, m) =left-most endpoint of [~t, x, ϑ] ∩Wn(t2, ϑ, m)

yn(~t, x, ϑ, m) = min(τ, |[~t, x, ϑ] ∩Wn(t2, ϑ, m)|
δn(~t, x, ϑ, m) =# endpoints of [~t, x, ϑ] outside of Wn(t2, ϑ, m)

or 3 when yn(~t, x, ϑ, m) = τ.

These definitions are also valid for n =∞. Define, for n = 1, 2, . . . ,∞, point
processes Πn by applying these functions to Φ′′ ∩ En. Thus, Πn are marked
point processes on Bn with mark spaceM = (0, τ ]×{0, 1, 2, 3} representing
the fragments observed through Bn. Π∞ is of special interest. It is a marked
point process on R2×M representing all fragments arising from intersecting
Φ with W. At the beginning of the present section, we claimed that as n
tends to infinity, the censoring at the boundary of Bn becomes negligible as
compared to the censoring at the boundary of W. The next lemma makes
this claim precise.

Lemma 2.2. For any measurable set M ⊆M,

1

n2
EΦ(|Πn(Bn ×M)−Π∞(Bn ×M)||W)→ 0

almost surely, as n tends to infinity

Proof The difference between Πn(Bn ×M) and Π∞(Bn×M) is less than
the number of fragments that cross the boundary of Bn. This, in turn, is
less than the number of line segments that cross the boundary of Bn. The
expected number of line segments that cross a fixed line segment of length
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n (such as one side of Bn) is no more than nλµ, where µ is the (finite)
mean of F . This is seen by noting that for a line segment of length x and
orientation ϑ to cross a given object line segment, its left-endpoint must lie in
a parallelogram with the object line segment for its base, and sides of length
x. The area of such a parallelogram is always less than nx. Integrating this
with respect to λd~tdF (x)dK(ϑ) we find our upper bound, nλµ. We conclude
that the expected difference between Πn(Bn ×M) and Π∞(Bn ×M) is less
than 4nλµ and the stated result follows. �

For a given measurable set M ⊆M, we have∫
M

Pn(dy, δ) = Pn(M) =
EΦ(Πn(Bn ×M)|W)

EΦ(Πn(Bn ×M)|W)
.

We define

P ∗n(M) =
EΦ(Π∞(Bn ×M)|W)

EΦ(Π∞(Bn ×M)|W)

and

Pn(M) =
Πn(Bn ×M)

Πn(Bn ×M)
.

We draw the reader’s attention to the fact that the subscript n refers to the
fact that Φ ∩W is observed through Bn and not to the number of observed
fragments. The number of observed fragments, in fact, equals Πn(Bn ×M).

Everything is now in place for the final result of this section.

Proposition 2.3. For every measurable set M ⊆M,

Pn(M)→ P∞(M),

in probability, as n tends to infinity.

Proof First, note that Π∞(Bn × M) is an additive covariant function
indexed by the sets Bn. Since we assume that Φ andW are jointly ergodic it
follows by Theorem 2.1 that Π∞(Bn×M)→ EΠ∞(Bn×M), almost surely.
Hence,

Π∞(Bn ×M)

Π∞(Bn ×M)
→ EΠ∞(Bn ×M)

EΠ∞(Bn ×M)
.

It immediately follows that P ∗n(M) converges to the same limit.
By Lemma 2.2, P ∗n(M) and Pn(M) have the same limit. In Proposition

2.2 we found that Pn(M) converges to P∞(M), so we may now conclude that

Π∞(Bn ×M)

Π∞(Bn ×M)
→ P∞(M).
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The reasoning of Lemma 2.2 allows us also to conclude that∣∣∣∣Πn(Bn ×M)

Πn(Bn ×M)
− Π∞(Bn ×M)

Π∞(Bn ×M)

∣∣∣∣→ 0

in probability. Hence, our claim follows. �

Of course the above convergence is uniform over sets M of the form
[0, y]×{δ} (y < τ, δ = 0, 1, 2, 3), corresponding to ‘empirical sub-distribution
functions’. Still, the convergence is weaker than when we were working under
the Poisson assumption. The Glivenko–Cantelli theorem yields almost sure
uniform convergence, and here we only have uniform convergence in prob-
ability. Fortunately, this is not much of a problem. We simply apply the
Skorohod–Dudley–Wichura almost sure representation theorem as stated, for
instance in Gill (1989). For us, this boils down to pretending that we do
have almost sure convergence and going ahead and prove almost sure uni-
form convergence of our estimator. In the end, we must then weaken the
result to uniform convergence in probability.

2.6 An estimator for the line segments

With Pn as defined in the previous section, we consider estimators

dV̂n(x) = dPn(x, 0)

+
dV̂n(x)

|Wn|+ κnx

∫ x

y=0

1

ĝn(y)
dPn(y, 1)

+
dV̂n(x)

|Wn|+ κnx

∫ x

y=0

x− y

ĥn(y)
dPn(y, 2) (2.37)

Ĥn = Ĥn

∫ τ−

y=0

1

ĥn(y)
dPn(y, 2) +

bnĤn

anĜn + bnĤn

Pn(Y > τ)) (2.38)

where, cf. (2.16)

Ĝn = 1− Ĥn − V̂n(τ−).

the functions ĥn and ĝn are defined as usual. These estimators are of course
inspired by (2.35) and (2.36), but it should be noted that the Pn have a
different meaning here. The subscript n here refers to observation through
Wn = W ∩ Bn, while the subscript n in (2.35) and (2.36) referred to n
observed fragments.
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We estimate (F |0,τ), µ) by

µ̂n =
1

κn

(
1∫

[0,τ)
1

|Wn|+κny
dV̂n(y) + ĝn(τ)

− |Wn|
)

and

F̂n(x) =
1∫

[0,τ)
1

|Wn|+κny
dV̂n(y) + ĝn(τ)

∫ x

0

1

|Wn|+ κny
dV̂n(y).

We now prove the consistency of our estimator.

Theorem 2.2. Suppose that W and Φ are jointly ergodic. Then

‖F̂n − F0‖[0,τ) → 0 and |µ̂n − µ0| → 0

in probability

Proof The proof will follow the outline we gave at the end of section 2.1.1.
Also, we use elements of an earlier consistency proof we gave at the end
of section 2.4. However, we no longer need the ‘working hypothesis’ of that
section. There we had difficulty proving that the mle of g(τ) is bounded away
from zero. Since the function g is non-decreasing, it suffices to show that for
n large enough Ĝn(τ) stays away from zero if Gn(τ) is positive. Because of
the extra censoring, this is not a problem anymore.

Proposition 2.1 established that for all F ∈ F (and in particular for
F0) Vn,F tends to V∞,F almost surely, uniformly on [0, τ). Also, Proposition
2.2 yielded that KnVn,F tends to K∞V∞,F almost surely, in the sense of
uniform convergence over sets of the form [0, y]× {δ} (y < τ, δ = 0, 1, 2, 3),
corresponding to ‘empirical sub-distribution functions’.

To apply Theorem 1.2, we need to compare the sequence KnV̂n with
another sequence KnṼn, say, which converges to K∞V∞,VF0

= K∞V∞,V0. For

Ṽn we choose an appropriately scaled version of the ‘empirical average’ of
uncensored fragments:

Ṽn(x) =

∫ x

0

|Wn|+ κny∫
l≥y

(l − y)dν(l)
Pn(dy, 0), x ∈ [0, τ).

We define Ṽn(τ−) in the obvious way. An ergodic theorem can be used to
show its convergence of Ṽn(τ−) to V∞,F0(τ

−). Hence, we can take a sequence
Ṽn({‡}) = H̃n (such that H̃n ≤ Ṽn(τ−)) converging to V∞,F0({‡}) = H̃∞,F0.
Much like we did in section 2.4, we can apply empirical process theory to
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obtain almost sure uniform convergence of Ṽn to V∞,F0. Again using empirical
process theory, we obtain almost sure convergence of KnṼn to K∞V∞,F0,
uniformly over sets of the form [0, y]× {δ}.

Proposition 2.3 tells us that Pn also converges to P∞ = K∞V∞,F0, uni-
formly over sets of the form [0, y] × {δ}. However, this convergence is ‘in
probability’. For the remainder of this proof we assume that the convergence
is ‘almost sure’. This will lead to almost sure consistency of our estimator,
which we then modify to consistency in probability, as stated in the theorem.
We may do so by the Skorohod–Dudley–Wichura ‘almost sure representation
theorem’, which we discussed above.

Using the fact that KnṼn(dy, 0) = Pn(dy, o) and applying Lemma 2.1, we
can now conclude that∫ (

dKnṼn

dKnV̂n

)
d(Pn −KnṼn)→ 0

almost surely. Theorem 1.2 now allows us to conclude that KnV̂n converges
to K∞V∞,F0 in the same sense as KnṼn does. Since we have made sure that

our parameter is identifiable it follows that V̂n converges to V∞,F0, whence it

follows that F̂n = Fn,V̂n
converges to F∞,V∞,F0

= F0. �
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Chapter 3

Chord Length Estimation

3.1 Introduction

Consider a random closed set W ⊂ R2 which we observe through a bounded
‘window’ B. Important characteristics of the probability distribution of a
random set are the chord length distribution (CLD) and the—perhaps more
familiar—linear contact distribution (LCD) (Stoyan et al. 1987 p. 178–188).
These characteristics can give us some insight in the ‘architectural’ features
of the random set, such as the shape, size and dispersion of its various con-
nected parts. Also, the CLD and LCD can help us when we want to test for
stationarity (translation invariance) or for isotropy (rotation invariance).

The CLD and LCD are closely related as is established in formula (3.24)
below. With this relation, estimates for the one can be transformed into
estimates for the other. For instance, in Hansen et al. (1996) an estimator
for the LCD is developed and it is noted that an estimator for the CLD can
be obtained from it. Our primary interest is in estimation of the CLD and
we shall argue that it is better to estimate the CLD and transform it into an
estimate of the LCD than to do it the other way around.

The ‘classical’ definition of a chord or an intercept (Weibel, 1979, p. 315)
is a “line segment contained fully within an object and extending between
two points on the object’s surface”.

We can informally define the chord length distribution in the direction
e as the distribution of the length of the longest line segment through the
origin in the direction e which is fully contained within W, conditionally on
the event that the origin lies inW. IfW is stationary and rotation invariant
then this distribution does not depend on the choice of the reference point
(the origin) or on the direction e. Hence, if we should want to test whether
W is isotropic, we could estimate the CLD in various directions and see if the

71
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estimates differ. Note that our definition introduces a length bias; the origin
is more likely to fall in a ‘large’ part of W and hence the chord through
the origin will have a tendency to be unusually long. If we should want,
we could easily correct for this to obtain an ‘unweighted’ CLD (see formula
(3.3)) below. For further discussion on chord lengths cf. Serra (1982, Chapter
X), Matheron (1975, p. 53) and Stoyan et al. (1987, pp. 178–182).

The CLD has been applied in biology to study certain features of tissue,
especially to characterize lung airspace dimensions, see Rosenthal (1989),
Lum et al. (1990) and Oldmixon et al. (1994). Estimation of the CLD can
be used also for inferential purposes in the statistical analysis of random set
models (Stoyan et al. 1987, Hansen et al. 1996).

Estimation of certain characteristics of the chord length distribution can
be done from stereological estimates of the surface to volume ratio and the
volume fraction. Such stereological estimates are obtained by straightfor-
ward intersection and point counting methods (Stoyan et al. 1987 p. 180).
These methods are simple, fast and easy to deal with, but they do have their
limitations. Stereological mean value formulas can only be used to obtain
certain low-dimensional characteristics of the CLD, whereas knowledge of
the shape of the CLD may give important additional information about the
structure of the random set under consideration.

Estimation is, of course, influenced by edge effects as the random setW is
only observed in a bounded observation window B. More specifically, when a
certain point x is used as a reference point, the chord through x could extend
beyond B. A given chord is called uncensored (u.c.) when both endpoints
are in B; singly censored (s.c.) when one of its endpoints is outside B; and
doubly censored (d.c.) when both endpoints are outside B.

Estimation from spatial data in the presence of censoring is often dealt
with by means of ‘minus sampling’ which is also known as the ‘border
method’. In our situation this means that when we want to estimate the
probability that the length of a chord is less than r, we restrict attention to
those reference points which are further than r away from the boundary of
B. The resulting estimator can be termed the ‘reduced sample estimator’
(Baddeley and Gill, 1997). The obvious disadvantage of minus sampling is
that much information is discarded, especially for large values of r.

Oldmixon et al. (1994) suggest to make two separate estimates; one based
only on the uncensored chords and another one based only on the singly
censored chords. These two estimates could then be combined by taking
some convex combination of them. Olmixon et al. do not discuss to do so
optimally. Also, they discard doubly censored chords.

Estimation from censored observations belongs traditionally to the field
of survival analysis, where it has—among other things—resulted in the de-
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velopment and study of the famous Kaplan–Meier estimator. Laslett (1982a
and b) first noted the similarity of censoring in survival studies and edge
effects in spatial statistics. Subsequently, this analogy has been exploited
by Wijers (1995), van der Laan (1996,1998), Hansen et al. (1996), Badde-
ley and Gill (1997) and by ourselves in the previous chapter of this thesis.
In particular, in Hansen et al. (1996) a Kaplan–Meier type estimator was
proposed for the linear contact distribution. The unique correspondence be-
tween the LCD and the CLD suggests a transformation of the estimator of
the former to obtain an estimator of the latter. Unfortunately, doing so in-
volves a numerically unstable differentiation, which is believed to cause loss
of efficiency.

We want to use semi-parametric methods and missing data theory but
cannot do so directly. Much like we did in the previous section, we first
consider an analogous problem. We derive an NPMLE for that problem and
then show that the estimator can also be applied in the real problem. The
estimator will not be the maximum likelihood estimator in the real problem.
However, it does utilize all the available data—though not in the absolutely
most efficient way.

The organization of this chapter is as follows. First, we give a more pre-
cise definition of the chord length distribution and discuss why it is difficult
to estimate it. Then we consider an analogous, but similar problem and de-
rive the nonparametric maximum likelihood estimator. We proceed to show
that this NPMLE is consistent for the original problem. We report a mod-
est simulation experiment to try out our new estimator. Finally, we shall
consider the linear contact distribution and study its relation to the chord
length distribution.

3.2 The chord length distribution

Let W be a stationary random closed set in R2 and e a unit vector in R2.
The chord through a point ofW in the direction e is the longest line segment
through the given point with orientation e which is fully contained within
W. We are interested in estimation of the distribution of the length of the
chord through the origin, given that the origin belongs to W. Since W is
stationary, the particular choice of reference point (in this case the origin) is
irrelevant. The ‘chord length distribution’ (CLD) is an interesting feature of
the distribution of W. The data on which we shall base our estimation will
consist of n independent realizations of W which are all observed through a
fixed compact set B.

Let ξe(s, t) denote the chord in the direction e through the point (s, t) ∈
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W. The situation is clarified in figure 3.1. A formal definition of the chord

(s,t)

Figure 3.1: The chord ξ(1,0)(s, t). The shaded region is (part of) the random
set W.

length distribution is as follows. Let W =W ∩B where B is some compact
set of positive area. Define, for all positive x

W (x) = {(s, t) ∈W : |ξe(s, t)| ≤ x} (3.1)

where |ξe(s, t)| denotes the length of the chord ξe(s, t). Now define the (length
weighted) chord length distribution function as

Le(x) =
E|W (x)|
E|W | (3.2)

where the expectation is with respect to the distribution ofW and |.| denotes
area. It is easily seen that this definition does not depend on the choice of
B.

For simplicity we fix e = (1, 0) and omit e from our notation.

We call L the length weighted chord length distribution for a reason. Recall
that L may be interpreted as the distribution of the length of the chord
though the origin, given that the origin lies in W. Informally, the origin
is more likely to fall in a big part of W than in a small part. Hence L is
biased towards greater chord lengths. We can easily correct for this. The
unweighted chord length distribution is

L0(x) =

∫ x

0
1
t
dL(t)∫∞

0
1
t
dL(t)

. (3.3)



3.2 The chord length distribution 75

The subscript ‘0’ indicating ‘unweighted’ should not be confused with the
subscript ‘e’ we used earlier.

Of a chord ξ(s, t) through a point (s, t) ∈ W = W ∩ B we observe only
ξ(s, t)∩B. Hence, from observation of W =W∩B we can not in general infer
W (x) as a chord through a given point in W ∩B might well extend beyond
B. However, we do observe the length of the intersection of each chord with
B and we observe how many of each chord’s endpoints are outside of B.
Define two functions

y(s, t) = |ξ(s, t) ∩B| (3.4)

δ(s, t) = # endpoints of ξ(s, t) outside of B. (3.5)

From observation of W we know, for all positive y and δ = 0, 1 or 2

A(y, δ) = {(s, t) ∈W : y(s, t) ≤ y, δ(s, t) = δ}. (3.6)

We define

F (y, δ) =
E|A(y, δ)|

E|W | , (3.7)

where again the expectation is with respect to the distribution of W. For
δ = 0, 1, 2, F (y, δ) are sub-distribution functions.

We can interpret L and F in the following way which will be very useful
in the next section.

Lemma 3.1. Let (S, T ) be uniformly distributed on W . Then

1. L is the distribution of |ξ(S, T )|;

2. F is the distribution of (y(S, T ), δ(S, T ));

3. conditionally on ξ(S, T ), (S, T ) is uniformly distributed on ξ(S, T ).

Proof The first two statements are immediate from the definitions of L and
F . To prove the third, define, for all t, Wt = {s : (s, t) ∈W}. Conditionally
on ξ(S, T ), T is degenerate. Also, conditional on T , it is clear that S is
uniformly distributed on WT . Now WT consists of one and possibly several
line segments, ξ(S, T ) being one of these. Hence, conditionally on ξ(S, T ),
(S, T ) is uniformly distributed on ξ(S, T ). �

We now turn to the statistical problem of estimating L from independent
observations. LetW1,W2, . . . ,Wn be independent and identically distributed
asW. For simplicity, let B = [0, τ ]×[0, 1] (τ > 0). Note that doubly censored
chords (δ = 2) for which neither endpoint is in B, will always have length τ .



76 Chapter 3. Chord Length Estimation

Define Wi = Wi ∩ B and let ξ(i, s, t) be the chord through (s, t) in Wi.
Like before,

Wi(x) = {(s, t) ∈Wi : |ξ(i, s, t)| ≤ x} (3.8)

y(i, s, t) = |ξ(i, s, t) ∩B| (3.9)

δ(i, s, t) = # endpoints of ξ(i, s, t) outside of B. (3.10)

Ai(y, δ) = {(s, t) ∈Wi : y(i, s, t) ≤ y, δ(i, s, t) = δ} (3.11)

We really need only one result about the observed chords:

Lemma 3.2. ∑
i |Ai(y, δ)|∑

i |Wi|
→ F (y, δ)

almost surely, uniformly.

Proof Pointwise convergence follows from the strong law of large numbers.
By the usual ‘Glivenko–Cantelli argument’, uniform convergence follows as
usual from the fact that F is monotone and bounded. �

3.3 Digression: A related problem

We can think of chord length estimation as a missing data problem. The
complete data consists of the Wi and {ξ(i, s, t) : (s, t) ∈Wi, i = 1, . . . n}. The
observed data are the Wi and {(y(i, s, t), δ(i, s, t)) : (s, t) ∈Wi, i = 1, . . . n}.
Application of the EM algorithm springs to mind, but we do not see how
to how to find the conditional distribution of the complete data given the
observed data, as required by that algorithm.

In this section we consider a different missing data problem which is easier
to handle as the observations will be numbers instead of functions on random
sets. However, this easier problem will bear so much resemblance to chord
length estimation that the analysis will be very useful. In fact, our findings
in this section will guide us to an estimator which we can use in the chords
problem. The reader should keep in mind that in this section there are no
random sets Wi involved. However, we shall re-use many of the symbols of
the first section to point out the similarities between the two problems. We
hope this will clarify and not confuse.

Let B = [0, τ ]× [0, 1] and let (S, T ) be a uniformly distributed point in B.
Associate with (S, T ) a random variable X which is distributed according to
L as defined in (3.2). Conditional on S and X, let R be a random variable
which is uniformly distributed on the interval [Si − Xi, Si]. Now let ξ be
the line-segment from (R, T ) to (R + X, T ). Note that, given ξ, (S, T ) is
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uniformly distributed on ξ. Define Y = |ξ ∩ B| = |[R, R + X] ∩ [0, τ ]| and
∆ is the number of endpoints of ξ that fall outside of B which is the same
as the number of endpoints of [R, R + X] that fall outside of [0, τ ]. We see
that our specific choices of B = [0, τ ] × [0, 1] and e = (1, 0) have made T
irrelevant; from (S, X, R) we can derive (Y, ∆)

Lemma 3.3. The joint distribution of Y and ∆ is given by F as defined in
(3.7).

Proof This is an immediate consequence of Lemma 3.1. �

The joint distribution of (S, X, R) is of course given by

1A(s, x, r)
ds

τ
L(dx)

dr

x
(3.12)

where A = {(s, x, r) : [r, r + x] ∩ [0, τ ] 6= ∅}.
From our description of the model we can explicitly derive the distribution

of the observed data (Y, ∆). We introduce very two useful quantities

G =

∫
[τ,∞)

τ

x
dL(x) and H =

∫
[τ,∞)

x− τ

x
dL(x) (3.13)

and note that

L(τ−) + G + H = 1 (3.14)

where L(τ−) :=
∫ τ−

0
dL(x) :=

∫
(0,τ)

dL(x).

We can write down the distribution of (Y, ∆) in terms of L restricted
to [0, τ), G and H. (Re)define functions y(s, x, r) = |[r, r + x] ∩ [0, τ ]| and
δ(s, x, r) = the number of endpoints of [r, r + x] outside [0, τ ]. Now consider
sets

S(y, 0) = {(s, x, r) : y(s, x, r) = y, δ(s, x, r) = 0}
= {(s, x, r) : x = y, 0 < r < τ − x}

S(y, 1) = {(s, x, r) : y(s, x, r) = y, δ(s, x, r) = 1} = S(y, lc) ∪ S(y, rc)

S(y, lc) = {(s, x, r) : x > y, s < y, r = y − x}
S(y, rc) = {(s, x, r) : x > y, s > τ − y, r = τ − y}
S(τ, 2) = {(s, x, r) : y(s, x, r) = τ, δ(s, x, r) = 2}

= {(s, x, r) : x > τ, τ − x < r < 0}.
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Integrating the distribution of (S, X, R) given in (3.12) over these sets we
find, for 0 ≤ y < τ ,

P (dy, 0) =

∫
A∩S(y,0)

ds

τ

dr

x
dL(x)

=

∫ ∞
x=0

∫ τ

s=0

∫ s

r=s−x

1y(x)1{0<r<τ−x}(r)
ds

τ

dr

x
dL(x)

=

∫ τ

s=0

∫ s

r=s−y

1{0<r<τ−y}(r)
ds

τ

dr

y
L(dy) (3.15)

There is no need to further evaluate this expression, but should be it noted
that it depends on L only through its restriction to [0, τ). For the distribution
of the singly censored observations we have by symmetry of right and left
censored observations

P (dy, 1) =

∫
A∩S(y,1)

ds

τ

dr

x
dL(x) = 2

∫
A∩S(y,rc)

ds

τ

dr

x
dL(x).

Hence, for 0 ≤ y < τ ,

P (dy, 1) = 2

∫ ∞
x=0

∫ τ

s=0

∫ s

r=s−x

1{x>y}(x)1{s>τ−y}(s)1{r=τ−y}(r)
ds

τ

dr

x
dL(x)

= 2

∫ ∞
x=y

∫ τ

s=τ−y

ds

x

d(τ − y)

τ
dL(x)

= 2

∫ ∞
x=y

y

xτ
dydL(x)

= 2

(∫ τ−

x=y

y

xτ
dydL(x) +

y

τ2
dyG

)
, (3.16)

where we used that a random variable U (say) is uniformly distributed on
[0, τ) if and only if τ − U has the same distribution.

The doubly censored observations are always of length τ .

P (Y = τ, ∆ = 2) =

∫
A∩S(y,2)

ds

τ

dr

x
dL(x)

=

∫ ∞
x=0

∫ τ

s=0

∫ s

r=s−x

1{x>τ}(x)1{τ−x<r<0}(r)
ds

τ

dr

x
dL(x)

=

∫ ∞
x=τ−

∫ τ

s=0

∫ 0

r=τ−x

ds

τ

dr

x
dL(x)

=

∫ ∞
x=τ−

x− τ

τ
dL(x)

= H (3.17)
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Because G can be expressed in terms of L|[0,τ) and H, we see that the
distribution of the data is fully parameterized by L|[0,τ) and H. This means
that the model L = {all distributions on R+} is not identified. We could
reduce L so that it is, but then the missing data problem will no longer
be completely nonparametric. We now give a different model, that is both
nonparametric and identified, while the distribution of the observed (Y, ∆)
remains the same.

Consider a new model L for X of all distributions on a new space [0, τ)∪
{†, ‡}. We denote L({†}) = P (X = †) = G and L({‡}) = P (X = ‡) =
H. We have the following missing data problem which is both completely
nonparametric and identified:

Draw X from L ∈ L
• if L = l ∈ [0, τ), then sample S uniformly on [0, τ ] and given S = s

sample R uniformly on [s − x, s]. Finally, set Y = [R, R + X] ∩ [0, τ ]
and ∆ equal to the number of unobserved endpoints.

• if X = †, Sample Y from 1[0,τ)(y)2y/τ2 and set ∆ = 1

• if X = ‡, set (Y, ∆) = (τ, 2)

It is easily verified that the distribution of the data (Y, ∆) is indeed given
by formulas (3.15) to (3.15). P (dy, δ) is of the form

P (dy, δ) =

∫
x∈[0,τ)∪{†,‡}

K(dy, δ; x)dL(x)

where

K(dy, δ; x) = 10(δ)

∫ τ

s=0

∫ s

r=s−x

1{0<r<τ−x}(r)
ds

τ

dr

x
δx(dy)

+ 11(δ)2
(
1(y,τ)(x)

y

xτ
+ 1{†}(x)

y

τ2

)
dy

+ 12(δ)1{‡}(x)δτ (dy)

Now suppose we have n i.i.d. copies (Si, Ti, Xi, Ri) of (S, T, X, R). Let ξi

denote the line-segment from (Ri, Ti) to (Ri + Xi, Ti) and Y = |ξi ∩ B| =
|[Ri, Ri +Xi]∩ [0, τ ]| and ∆i is the number of endpoints of ξi that fall outside
of B. Let Fn denote the empirical distribution of the (Yi, ∆i). The EM
equations are, cf. (1.17)

L̂n(dx) = Fn(dx, 0)

+

∫ x

y=0

(y/x)dL̂n(x)∫ τ

x=y
(y/x)dL̂n(x) + (y/τ)Ĝn

Fn(dy, 1)

Ĥn = Pn(∆ = 2),
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where

Ĝn = 1− L̂n(τ−)− Ĥn.

3.4 Back to the chord lengths

We now return to our original problem of estimating the chord length dis-
tribution of a random set W observed through the set B = [0, τ ] × [0, 1].
Inspired by the previous section, we propose as an estimator L̂n satisfying

L̂n(dx) =

∑
i |Ai(dx, 0)|∑

i |Wi|

+

∫ x

y=0

(y/x)dL̂n(x)∫ τ

x=y
(y/x)dL̂n(x) + (y/τ)Ĝn

∑
i |Ai(dy, 1)|∑

i |Wi|

Ĥn =

∑
i |Ai(τ, 2)|∑

i |Wi|
,

where

Ĝn = 1− L̂n(τ−)− Ĥn.

We could prove consistency of this estimator using Theorem 1.2. Such a
proof would be strikingly similar to our proof of section 2.4. Instead of em-
pirical (sub)distribution functions we have empirical averages of areas. This
is not a problem, as we have already established the uniform convergence of
these averages in lemma 3.2. We can again compare the maximum likelihood
estimator to a comparison sequence of based on a simple transformation of
the empirical distribution (empirical averages of areas) of the uncensored
chords.

Unfortunately, we expect that we will again have difficulty estimating the
chord length distribution at the point τ−. With that in mind, it might well
be worth-while to introduce some extra artificial censoring, similar to what
we did for Laslett’s problem.

3.5 A simulation

In this section we compare our estimator to a simple alternative. Recall
our definition of the chord length distribution in the direction e = (1, 0).
L(x) = E|W (x)|/E|W | where W (x) = {(s, t) ∈W =W∩B : |ξe(s, t)| ≤ x}.
It is clear that this definition does not depend on B. From observing W ∩B
we cannot in general infer |W (x)|.
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Define the line segment C = {te : −1 ≤ t ≤ 1} which, since e = (1, 0) is
just the horizontal line segment of length 2 though the origin. Let xC = {te :
−x ≤ t ≤ x}. Finally, we define ‘Minkowski’ subtraction of two sets A1 and
A2 as A1 	A2 = (Ac

1 ⊕A2)
c . We shall consider B 	 xC = [x, τ − x]× [0, 1],

for positive x ≤ τ . This set is called the erosion of B by xC.
Note that W (x) ∩ (B 	 xC) = {(s, t) ∈ W ∩ (B 	 xC) : |ξe(s, t)| ≤ x}

and that |W (x)∩ (B	 xC)| can be inferred from observing W . It is natural
to define the following ‘reduced sample’ estimator based on an i.i.d. sample
of n copies W1,W2, . . . ,Wn of W all observed through B

L̃n(x) =

∑
i |Wi(x) ∩ (B 	 xC)|∑

i |Wi ∩ (B 	 xC)| .

This estimator is ‘ratio unbiased’, meaning that it is the ratio of unbiased
estimators of the numerator and denominator appearing in the definition of
L(x). It is clearly (uniformly, almost surely) consistent.

In Figure 3.2(a) we see a realization of a Boolean model Ξ observed in
the unit square, B = [0, 1]2. The grains are circular discs with a constant
radius of 0.04. The underlying intensity of the Poisson process is 33.0.

We take the random set W of interest to be the closure of the void of
the Boolean model W = Ξc. The reason for doing this, is that we know how
to obtain a closed form expression for the chord length distribution of Ξc.
We use the so called linear contact distribution function of Ξ (Stoyan et al.,
1987)

H(x) = 1− exp(−2µRx),

where R = 0.04 is the radius and µ = 33 is the intensity. The following
equation relates the linear contact distribution function H of Ξ and the chord
length distribution L of Ξ

c
(Matheron, 1975, p. 53)

L(r) = H(r)− r
dH(r)

dr
.

We have generated 100 realizations Ξ1, Ξ2, . . . , Ξ100 of our Boolean model.
On the basis of, say, Ξk we have derived the ‘NPMLE’ estimator L̂

(k)
1 and

the reduced sample estimator L̃
(k)
1 . The subscript “1” indicates that the

estimator is based on a single observation. In Figure 3.2(b) we show L̂
(k)
1 and

L̃
(k)
1 for some value of k. In Figure 3.3 we see a comparison of the estimated

root means square errors of the two estimators. That is, the figure shows(
100∑
k=1

(L̃
(k)
1 (x)− L(x))2/100

)1/2

and

(
100∑
k=1

(L̂
(k)
1 (x)− L(x))2/100

)1/2

.
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The latter seems uniformly more efficient. We should point out that com-
paring our estimator to this very simple reduced sample estimator is not the
last word. One could surely think of more sophisticated alternatives (such
as various edge correction estimators) that would present a sterner test.

3.6 The linear contact distribution

Recall that W is a stationary random closed set in R2 and e is a unit vector
in R2. The contact segment through a point outside W in the direction e,
is the longest line-segment starting at that point that does not hit W. The
distribution of the length of this contact segment is called the linear contact
distribution. Let χe(s, t) denote the contact segment originating at (s, t) and
let |χe(s, t) denote its length. The situation is illustrated in figure 3.6.

We now formally define the linear contact distribution function. Let B
be any compact set of positive area and set W = W ∩B and W c = B \W .
Now define

V (x) = {(s, t) ∈W c : |χe(s, t)| ≤ x}. (3.18)

The linear contact distribution function is

He(x) =
E|V (x)|

E|B \W | (3.19)

The expectations are with respect to the distribution of W. This definition
does not depend on B. Again, for simplicity we take e = (1, 0) and drop it
from our notation. Also, we take B = [0, τ ] × [0, 1]. We now proceed in a
similar way as before. In fact, as we are running out of useful letters we shall
now re-define the functions y(s, t) and δ(s, t) and the sets A(s, t). Define

y(s, t) = |χ(s, t) ∩B| (3.20)

δ(s, t) = # endpoints of χ(s, t) outside of B (3.21)

to indicate a contact segment’s length and censoring type. Previously, these
From observation of W we ascertain for all positive y and δ = 0 or 1

A(y, δ) = {(s, t) ∈W c : y(s, t) ≤ y, δ(s, t) = δ}. (3.22)

We define

G(y, δ) =
E|A(y, δ)|

E|W c| , (3.23)
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Figure 3.2: (a) Realization of a Boolean model; (b) Corresponding
“NPMLE”-estimator L̂1 (solid, ragged line), Reduced sample estimator L̃1

(dotted line) and the estimand L (solid, smooth line).
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Figure 3.3: Root mean square error comparison of the NPMLE-estimator
(solid line) and reduced sample estimator (dotted line).
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(s,t)

Figure 3.4: The contact segment χ(1,0)(s, t). The shaded region is (part of)
the random set W.

where the expectation is with respect to the distribution ofW. This definition
should not be confused with (3.7). The sets A(y, δ) have a different meaning
here.

Note that if (S, T ) is a uniform point in W c then H is the distribution
function of |χ(S, T )| and G is the joint distribution function of y(S, T ) =
|χ(S, T ) ∩ B| and δ(S, T ), which is the number (0 or 1) of endpoints of
χ(S, T ) that fall outside of B.

Now consider the following related experiment. Let (S, T ) be uniformly
distributed on B and let X be independently distributed according to H.
Define χ to be the line-segment between (S, T ) and (S + X, T ). Define
Y = |χ ∩ B| = |[S, S + X] ∩ [0, τ ]| and let ∆ be the number of endpoints of
χ outside of B. This set-up is the familiar random censorship model. The
maximum likelihood estimator of H from observing n i.i.d. copies (Yi, ∆i)
of (Y, ∆) is the well-known Kaplan–Meier estimator. The Kaplan–Meier es-
timator is a function of the empirical distribution of the (Yi, ∆i). In the
original problem—estimation the linear contact distribution H from observ-
ing i.i.d. copies Wi of W—we replace these empirical distribution functions
with empirical ratios of areas of the form

∑
i |Ai(y, δ)|/

∑
i |B \Wi|. The re-

sulting estimator was introduced and studied in Hansen et al. (1996). There
it is also compared to a reduced sample estimator.

There is a very useful connection between the chord length distribution
and the contact distribution given in Stoyan et al. (1987 p. 180). Let Wc

denote the closure of the complement of W, which is again a stationary
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random closed set. Let L0 denote the unweighted chord length distribution
function of Wc and let H be the linear contact distribution function of W
itself. Then

H(x) =

∫ x

0

(1− L0(t))dt/m (3.24)

where m is the mean typical chord length

m =

∫
xdL0(x).

First of all we note from (3.24) that H is absolutely continuous with density
h(x) = (1− L0(x))/m. We easily deduce

L0(x) = 1− h(x)/h(0). (3.25)

Now from (3.24) it also follows that h is monotone or—equivalently—that H
is concave. Non-parametric maximum likelihood estimation of a concave dis-
tribution function from right-censored observations is studied in Huang and
Zhang (1994) and Huang and Wellner (1995). Using the NPMLE derived in
these papers instead of the Kaplan–Meier estimator (and replacing empirical
distribution functions by ratios of areas) we can improve the estimator of
Hansen et al. (1996). Replacing the Kaplan–Meier estimator with its least
concave majorant will also improve the estimator.

To estimate the chord length distribution of W we can first estimate the
density of the contact distribution of W c and then apply (3.25). However,
it seems that this estimator will not improve the chord length estimator
we obtained earlier, as density estimation is generally awkward. It is more
fruitful to work in the other direction: To estimate the contact distribution
ofW, first estimate the chord length distribution ofWc and then use (3.24).



Chapter 4

The Bombing Model

4.1 Introduction

Many images found in microscopy, materials science and biology can be de-
scribed by means of a random set. Perhaps the best known model is the
Boolean model formalizing a configuration of independent, randomly placed
particles. It is formed by replacing the points of a Poisson process by ran-
dom closed sets. The points of the Poisson process are sometimes called the
germs, the associated random sets the grains or particles. If the process is
defined on the plane and the grains are discs, then it is also know as the
‘bombing model’. Notwithstanding the strong independence assumptions,
inference for Boolean models is far from trivial (Molchanov, 1997). The dif-
ficulty lies in the occlusion arising from the fact that only the union of all
particles is observed, not the individual germ–grain pairs.

One may distinguish between two types of parameters of a Boolean model:
aggregate (or macroscopic) parameters and individual (or microscopic) ones
(Molchanov, 1997). Typical examples of aggregate parameters are the area
fraction and the set-covariance, which can be easily estimated by their ob-
served image counterparts. The resulting estimators are unbiased, and ex-
pressions for the variance can be obtained from Robbins’ theorem (e.g.,
Stoyan et al. 1987). Under mild ergodicity assumptions they are strongly
consistent (Molchanov, 1997) as the observation window expands to the en-
tire plane. Aggregate functionals such as the contact distribution and pair
correlation function are of interest when fitting the Boolean model to a data
image. Usually, estimation is hampered by edge effects, but minus sam-
pling ideas (Ripley, 1988, Stoyan et al. 1987) are generally applicable as are
Horvitz–Thompson style estimators including the Kaplan–Meier (Baddeley
and Gill, 1995) and Hanisch style estimators (Hanisch, 1984). Unbiased-

87
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ness follows from the Campbell–Mecke theorem (Stoyan et al. 1987) and
asymptotic results are available (Molchanov, 1997).

Individual parameters, including the intensity of the germ process, are
much harder to estimate. Minimum contrast methods (Dupač, 1980, Serra,
1982) for the intensity are based on minimizing the distance between an
estimated aggregate parameter (e.g. the contact distribution) and an ap-
proximation expressed in terms of the intensity. Some asymptotic results are
available, but the expressions for the asymptotic variance are too complicated
to be useful in practice. An alternative is the method of moments based on
coverage fraction, mean area and boundary length, and the Euler–Poincaré
characteristic. This method is computationally easy but leads to a biased
estimator (Weil, 1988). In the tangent point approach, the Euler–Poincaré
characteristic is replaced by the specific connectivity number, resulting in
easier asymptotics (Molchanov and Stoyan, 1994). Further details can be
found in (Molchanov, 1977) and the references therein.

In this chapter we shall take a likelihood based approach using Monte
Carlo methods to perform the necessary computations. To do so, we need to
be able to sample from the conditional distribution of a Boolean model given
an observation of the union of its particles. In the next section we show that
this distribution is straightforward if the grains are balls. However, due to an
intractable normalizing constant, direct sampling is not possible. In section
4.3, we use ‘coupling from the past’ (Propp and Wilson, 1996) to design an
algorithm yielding exact or perfect samples. We discussed coupling from the
past in section 1.5.1 of this thesis. Also, we provide a simple modification of
our CFTP algorithm which speeds it up considerably.

Section 4.4 is devoted to two approaches to maximum likelihood estima-
tion through simulation. The first method is based on a Monte Carlo approx-
imation of the likelihood ratio with respect to a fixed parameter value (Geyer,
1998). The other approach is a stochastic version of the EM-algorithm (StEM
algorithm, cf. section 1.5.2) (Celeux and Diebolt, 1986). This iterative algo-
rithm works as follows. We start by choosing some initial parameter value.
At each E-step one or more samples are drawn from the conditional distri-
bution, under the current parameter value, of the complete data given the
observed data. These samples are used to estimate the conditional expec-
tation of the likelihood, given the data. This estimated likelihood is then
maximized in the M-step to obtain a new parameter value. Repeating these
steps a sequence of parameter values is obtained. In fact, under certain con-
ditions, this sequence is an ergodic Markov chain on the parameter space.
The stochastic EM (StEM) estimator is defined to be a sample, or an aver-
age of samples, from the stationary distribution of this Markov chain. See
(Nielsen, 1997a and b) for asymptotic results. A drawback of the algorithm is
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that it is not clear when the chain has reached stationarity. However, we can
make the algorithm ‘perfect’ by applying coupling from the past to obtain
perfect samples from the ‘StEM’ chain’s stationary distribution. This issue
was explored in section 1.5.3.

In section 4.5 we present results of a modest simulation experiment we
conducted to compare the two methods.

In section 4.6 we note that our simulation algorithm can be applied to
sample from any point process for which the so-called Papangelou conditional
intensity is bounded away from zero. In this sense, our work is complemen-
tary to an algorithm of Kendall and Møller (1999) to sample from point
processes for which the Papangelou conditional intensity is bounded away
from infinity. We also present a generalization of the algorithm of Kendall
and Møller making it faster.

Between them, the two algorithms will enable us to sample from a very
wide variety of point processes. Especially sampling from Boolean models
under certain constraints could be of considerable practical use. A typical
example comes from the oil industry (Chessa, 1995), where a Boolean model
is employed to represent the reservoir geometry. If it is known from test
drilling or geological surveying that the reservoir has certain characteristics,
simulation studies into its further properties then amount to sampling from
a Boolean model conditional on these characteristics.

4.2 The conditional Boolean model

Suppose a realization of a Boolean model is observed with the aim to es-
timate the intensity of the underlying point process of germs. Since the
conditional distribution of the germs given the observed union of particles
involves an intractable normalizing constant depending on the intensity pa-
rameter of interest, direct maximum likelihood estimation seems very hard.
However, in certain situations, it is possible to sample from the conditional
distribution, so that Monte Carlo-based maximum likelihood estimation is a
viable alternative.

In this chapter, we focus our attention on the case where the particles are
(random) balls. Then, the location of a germ is identified upon observation of
any part of the boundary of its associated ball. The remaining, not directly
identifiable germs turn out to be distributed as a Poisson process conditioned
to satisfy a coverage condition. The following makes this claim more precise.

Definition 4.1. A Boolean model of balls is defined as follows. Let X be a
stationary Poisson process with intensity λ > 0 on Rd, and B = B(0, 1) the
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d-dimensional closed unit ball centered at the origin. Then, writing A⊕B =
{a + b : a ∈ A, b ∈ B}, the random set

B(X) = ∪xi∈X(xi ⊕ rB)

is a Boolean model of balls with radius r > 0 on Rd.

For d = 2, the process of Definition 4.1 is sometimes referred to as the
bombing model . The underlying points X are called the germs. The set B
is called the primary grain. More general Boolean models are obtained by
letting the germs be scattered according to a non-stationary Poisson process
or letting the grains be arbitrary random closed sets.

Our goal in this chapter is to perform statistical inference for the intensity
parameter λ based on an observation of B(X) in a compact sampling window
W with non-empty interior. Because B is symmetric about the origin we have
for all x ∈ R2

x ∈W ⊕B ⇔ x⊕B ∩W 6= ∅,
and hence

B(X ∩ (W ⊕ rB)) ∩W = B(X) ∩W

So inference may be based on the conditional distribution of the germ process
X ∩ (W ⊕ rB) given the data Y = B(X) ∩W .

The unconditional distribution of X ∩ (W ⊕ rB) is absolutely continu-
ous with respect to that of a unit rate Poisson process on (W ⊕ rB) with
Radon-Nikodym derivative at a configuration x given by exp{(1 − λ)|W ⊕
rB|}λn(x). This density is defined on the space of all finite, unordered sets
x = {x1, . . . , xn} of points in W ⊕ rB. Here |W ⊕ rB| denotes the area of
the set W ⊕ rB, and n(x) is the number of points in configuration x.

We return to the conditional distribution of X∩W⊕rB given Y = B(X)∩
W . Since the primary grains are balls, the location of a germ is identified
whenever a part of its associated grain’s boundary is exposed. Therefore,
the conditional distribution of X ∩ (W ⊕ rB) can be decomposed into a
deterministic ‘exposed boundary’ part Xb and a stochastic ‘interior’ X i of
germs that cannot be uniquely identified. Indeed we write X ∩ (W ⊕ rB) =
X i∪Xb. The conditional distribution given Y of the exposed boundary part
Xb is of course degenerate at some configuration xb. The distribution of the
unobserved germs X i is only slightly more complicated.

Define

C = Y \ B(Xb) (4.1)

D = {y ∈W ⊕ rB : (y ⊕ rB) ∩W ⊆ Y }. (4.2)
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In words, C is the part of Y which is not covered by exposed grains, and
must therefore be covered by the interior grains. The set D describes the
locations where interior points may fall such that their associated grains are
not outside of Y .

Lemma 4.1. The conditional distribution of X i given Y is that of a Poisson
process on D with intensity λ, conditional on coverage of C.

We write πλ for this conditional distribution of X i given Y . Its density is

fλ(x
i) =

1{xicovers C}e
(1−λ)|D| λn(xi)

Pλ(C is covered)
(4.3)

where Pλ(·) denotes the distribution of a Poisson process with intensity λ on
D.

Proof The Janossy density (Daley and Vere–Jones, 1988) at any xi ∪ xb

satisfying B(xi ∪ xb) ∩W = Y is given by

e−|W⊕rB|

(n(xi) + n(xb))!
p(xi ∪ xb) =

e−|W⊕rB|

(n(xi) + n(xb))!
e(1−λ)|W⊕rB|λn(xi)+n(xb)

=
e−λ|W⊕rB|

(n(xi) + n(xb))!
λn(xi) λn(xb).

Hence, the Radon–Nikodym density is proportional to λn(xi) for any xi ⊆ D
covering C. Since xi ⊆ D, it is natural to replace the reference distribution
of a unit rate Poisson process on W ⊕ rB by that of a unit rate Poisson
process on D. Noting that the probability of covering C by balls centered at
the points of a Poisson process on D with intensity λ equals

Pλ(C is covered) =
∞∑

n=0

e−λ|D|

n!
λn

∫
D
· · ·
∫
D

1{{e1,...,en}covers C}(e)de1 . . .den

it follows that the normalizing constant is e(1−λ)|D|

Pλ(C is covered)
. �

The covering probability Pλ(C is covered) is typically impossible to compute,
see Hall (1988) on covering problems. Because of this, direct sampling from
πλ is also impossible. An alternative is of course rejection sampling: simply
generating independent Poisson processes of intensity λ until one of them
satisfies the covering condition. Unfortunately, depending on λ and C the
probability of success, Pλ(C is covered), may be too small.

It is important for us to note that Pλ(C is covered) is strictly increasing
in λ. This follows from the fact that a Poisson process of intensity κ > λ
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can be written as the independent superposition of Poisson processes with
intensity λ and κ−λ respectively. So we see that if we choose κ large enough
we can quite easily obtain a sample from πκ. In the next section we use this
fact to construct a method to sample from πλ by thinning a sample from πκ

for an arbitrary κ > λ.

4.3 Coupling from the past for the conditional

Boolean model

Recall that an ordinary stationary Poisson point process of intensity λ > 0 on
a compact set S arises as the stationary distribution of a spatial birth-and-
death process (Preston 1977). We start with any finite collection of points
on S. Then each point is deleted after an exponential lifetime with rate 1.
Also, after exponential waiting times with mean 1/λ new points are added
which are uniformly distributed on S. The sequence of point configurations
thus obtained converges weakly to a Poisson point process on S of intensity
λ. Lantuéjoul (1997) demonstrates that similarly we can obtain a Poisson
process point process, conditioned on a certain event E of positive probability,
as the limit of a birth and death process. Informally, if whenever a point is
added or deleted according to the scheme described above, we make sure
never to enforce a transition violating E , the stationary distribution of the
resulting process is the conditional version of the Poisson process.

In our case, S = D and E is the event that C is covered. Let X(t) be
a birth and death process with birth rate λ and individual death rate 1. A
birth is understood to be the addition of a uniform point on D. Let X(t−)
denote the configuration at time t− just before t. If a point zi is born at time
t it is added: X(t) = X(t−) ∪ {x}. If x ∈ X(t−) dies at time t it is removed
only if that does not cause part of C to become uncovered, that is if

B(x, r) ∩ C ⊆ B(X(t−) \ {x}) ∩ C. (4.4)

If x cannot be removed, then it is granted an extra exponential lifetime after
which its removal is reconsidered. Following the terminology in (Kendall and
Thönnes, 1999) x is then called perpetuated .

Following Lantuéjoul (1997) it would not be difficult to show that the
stationary distribution of X(t) is indeed πλ. However, X(t) is not the birth
and death process we shall use to sample from πλ. We want to apply coupling
from the past (section 1.5.1) to obtain perfect samples from πλ but X(t) does
not appear amenable to this approach.

The difficulty is that for perfect sampling from the stationary distribution
of a Markov chain it is convenient if the state-space admits a partial order
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and there exist maximal and minimal elements majorizing and minorizing
all other elements with respect to this partial order. The state space of X(t)
consists of all finite collections of points on D. The obvious (partial) ordering
of this space is the inclusion ordering, but then there is certainly no maximal
state, because D itself is infinite.

We shall construct a different birth-and-death process on a state space
consisting of all subsets of a finite (but random) set of points which also
converges to πλ. We shall be able to apply coupling from the past to this
process.

It should be remarked that for the special case where E is the event that
a certain finite collection of points is covered, a perfect sampling algorithm is
available due to Kendall and Thönnes (1998). Unfortunately, their method
does not seem to extend to our situation: coverage of a uncountable set.
However, some of the ideas in (Kendall and Thönnes, 1998) play a role in
our construction also.

As noted previously, rejection sampling from (4.3) is possible for large
intensity parameters. Using this observation, the first step in our algorithm
to sample from a given πλ is to choose a κ > λ and to generate a sample,
say D = {z1, z2, . . . , zn} ⊂ D, from πκ. D will serve as maximal state. All
configurations obtained when running the birth-and-death processes will be
subsets of this finite set D. Now D is thinned, independently retaining each
point with probability λ/κ.

The key result is the following.

Proposition 4.1. Let D have distribution πκ and define E0 to be the in-
dependent thinning of D with retention probability λ/κ. Conditionally on
coverage of C, E0 is distributed according to πλ (cf. (4.3)).

Proof Note that the conditional distribution of E0 given coverage of C is
concentrated almost surely on configurations of points of D. For any such
configuration x, the Janossy density is given by

jn(x)

=
∞∑

n=0

e−|D|

n!

∫
. . .

∫
Dn

fκ(x ∪ {y1, . . . , yn})
(

λ

κ

)n(x)(
1− λ

κ

)n

dy1 . . .dyn

=
∞∑

n=0

e−|D|

n!
ακe

(1−κ)|D|λn(x)

[
κ(1− λ

κ
)

]n

|D|n = ακλ
n(x)e−λ|D|,

where α−1
κ = Pκ(C is covered) is the probability that balls of radius r around

the points of a Poisson process with intensity κ cover C. The claim follows
upon normalization and comparison to (4.3). �
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We shall construct a coupling-from-the-past (CFTP) algorithm that se-
lects a configuration Z between E0 and D (E0 ⊆ Z ⊆ D) such that Z is
distributed according to πλ.

First we construct a spatial birth-and-death process E = {E(t), t ≥ 0},
such that E(t) ⊆ D = {z1, z2, . . . , zn} for all t. We set E(0) = E0. The
dynamics of the process are such that each point is removed from E(·) after
an exponentially distributed lifetime with mean 1. Whenever a point is
removed, it is added again after an exponentially distributed waiting time of
mean (κ − λ)/lambda. All life– and waiting times are independent of each
other and everything else. Points zi ∈ E(0) are treated as if they were added
at time 0, those zi /∈ E(0) as removed at time 0.

Lemma 4.2. Conditionally on D, the spatial birth-and-death process E(t),
t ≥ 0, is irreducible, homogeneous, and positive recurrent. Moreover, E(t) is
in equilibrium and time-reversible.

In particular E(t) is distributed as E(0) = E0 for all t ≤ 0.

Proof As E(·) is defined conditionally on D0 = {z1, z2, . . . , zn}, at any
time there are only a finite number of points. Clearly, the transition rates do
not change in time, hence E(·) is homogeneous. Moreover, any state x ⊆ D
can be reached from any other state x′ (say) by successively deleting the
points in x′ followed by addition of the points in x. Therefore, the birth-and-
death process is well-defined and possesses a stationary distribution (Parzen,
1962, Chapter 7). Moreover, since the state space is finite, not all stationary
probabilities can be zero, hence they are all positive and the E(·) is positive
recurrent.

The process E(·) is in equilibrium and time reversible because it satisfies
‘detailed balance’ with respect to the distribution (given D) of E(0) = E0

λ

κ− λ
P (E0 = x|D) = P (E0 = x ∪ {zi}|D),

where zi 6∈ x ⊆ D. �

We now define a spatial birth-and-death process Z(t), t ≥ 0, as a con-
ditional version of E(·) in the spirit of Lantuéjoul (1997). The equilibrium
distribution of Z(·) will be πλ.

Start with Z(0) being any subset of D0. The dynamics of the process
are such that a point zi might be removed from Z(·) after an exponentially
distributed lifetime of mean 1. The point zi is actually removed only if

B(zi, r) ∩ C ⊆ B(Z(t−) \ {zi}) ∩ C. (4.5)
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If zi cannot be removed, then it is granted an extra exponential lifetime
with mean 1 after which its removal is reconsidered. Whenever a point is
removed, it is added again after an exponentially distributed waiting time of
mean (κ − λ)/λ. All life– and waiting times are independent of each other
and everything else. Points zi ∈ Z(0) are treated as if they were added at
time 0, those zi /∈ Z(0) as removed at time 0.

Proposition 4.2. Conditionally on D, the spatial birth-and-death process
Z(t), t ≥ 0, is homogeneous, and has a single positive recurrent class con-
sisting of those subsets z of D for which B(z) covers C. It tends in distribution
to πλ as t→∞.

Proof We work conditionally on D = {z1, z2, . . . , zn}. First note that
almost surely B(Z(t)) will cover C for some t ≥ 0. The transition mechanism
ensures that B(Z(s)) ⊇ C for all s ≥ t. Moreover, the class C of configura-
tions z ⊆ D whose associated Boolean model covers C is irreducible, since
any state z can be reached from any other state z′ by successively adding all
points of D \ z′, then deleting those of D \ z. Thus Z(·) is well-defined, with
a stationary distribution concentrated on C (Parzen, 1962). Again, since the
state space is finite, not all stationary probabilities can be zero, hence they
are all positive and the C is positive recurrent.

Consider a move at time t of Z(·) from a configuration x∪zi ⊆ D to x, for
which both B(x) and B(x ∪ zi) cover C and zi 6∈ x. The birth rate of Z(·) is
the same as the birth rate of E(·). The death rate for both perpetuated and
non-perpetuated points is 1, as it is for E, provided the coverage condition
is not violated. Thus, the detailed balance conditions for E(·) and Z(·)
coincide on C, from which it follows that Z(t) tends to the distribution of
E(0) restricted to C as t→∞. Using lemma 4.1 the result follows. �

We shall now describe how to apply coupling from the past to obtain a
sample from the stationary distribution of Z(·). We already have a maximal
state D.

Fix a time −T < 0. By lemma 4.2, E(·) is time-reversible, hence can
easily be extended backwards from E(0) until time −T . E(·) on the interval
[−T, 0] will be the minimal state.

It is straightforward to define a coupled process Z−T (t), −T ≤ t ≤ 0
which has the same dynamics as Z(·) while E(t) ⊆ Z(t) ⊆ D. First set
Z−T (−T ) = E(−T ). Now with each zi ∈ D associate a unit rate Poisson
process Ξi on the set {−T ≤ t ≤ 0 : zi /∈ E(t)}. These Ξi will govern possible
deaths of perpetuated points. At the (forward) birth in the process E(·) at
time t of a point zi, add zi to Z(t−) (if not already present). At the (forward)
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death in the process E(·) at time t of a point zi, remove zi from Z(t−) but
only if (cf. 4.5)

B(zi, r) ∩ C ⊆ B(Z−T (t−) \ {zi}) ∩ C. (4.6)

If zi cannot be removed at time t, then its removal is reconsidered at the
next event time after t of the process Ξi.

Lemma 4.3. Z−T (0) tends in distribution to πλ as T →∞.

Proof Z−T (·) has the same dynamics and hence the same stochastic prop-
erties as the process Z(·) considered in the beginning of this section. Hence,
this lemma follows directly from Proposition 4.2. �

To check if Z−T (0) has reached equilibrium—so to say—we need processes
L−T (·) and U−T (·) such that (cf. Kendall and Møller (1999) formulas (3.5)
to (3.7))

1. (‘sandwiching’) E(t) ⊆ L−T (t) ⊆ U−T (t) ⊆ D0 for all −T ≤ t ≤ 0;

2. (‘funneling’) L−T (t) ⊆ L−S(t) ⊆ U−S(t) ⊆ U−T (t), for all −S ≤ −T ≤
t ≤ 0;

3. (‘coalescing’) if, for some s, L−T (s) = U−T (s) then L−T (t) = U−T (t),
for all t ≥ s.

Moreover, we need that L−T (0) = U−T (0) almost surely for finite (preferably
small) T . If the above inclusions hold and the latter event occurs then we
can conclude that L−T (0) = U−T (0) is a perfect sample from πλ. This is
roughly the content of Theorem 4.1 below.

Now the construction of the processes L−T (·) and U−T (·) is very similar
to that of Z−T (·). The only difference is that removal (if present) of a point
zi at time t from L−T (t−) is enforced only if

B(zi, r) ∩ C ⊆ B(U−T (t−) \ {zi}) ∩ C. (4.7)

and the same removal from U−T (t−) is enforced only if

B(zi, r) ∩ C ⊆ B(L−T (t−) \ {zi}) ∩ C. (4.8)

The—at first perhaps mystifying—fact that these processes pay attention
to each other is necessary to ensure the above inclusions. This ‘cross-over’
trick has also been applied by Häggström and Nelander (1998) and Kendall
(1997).

Summarizing, we propose the following algorithm.
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Algorithm 4.1. Generate a random sample D from πκ for some κ > λ and
delete each point independently with probability 1−(λ/κ) to obtain E(0). Set
T = 1 and write [T

2
] for the integer part of T

2
.

• extend E(·) backwards on [−T,−[T
2
]) with birth rate λ/(κ−λ) and death

rate 1;

• extend independent unit rate Poisson processes Ξi backwards on {−T ≤
t < [T

2
] : Ei(t) = 0};

• set L−T (−T ) = E(−T ) and U−T (−T ) = D;

• at a birth transition E(t+) = E(t)∪{zi}, add zi to L−T (t) and U−T (t).

• at a death transition E(t+) = E(t) \ {zi} or an event time of Ξi

– delete (if present) zi from L−T (t) provided that does not cause the
Boolean model associated with U−T (t) to uncover part of C, i.e. zi

may be deleted only if (4.8) holds;

– delete (if present) zi from U−T (t) provided that does not cause the
Boolean model associated with L−T (t) to uncover part of C, i.e. zi

may be deleted only if (4.7) holds;

• if L−T (0) = U−T (0) exit; otherwise double T and repeat.

Algorithm 4.1 is designed in so that the inclusion relations 1, 2 and 3
hold.

Lemma 4.4. The processes E(t), L−T (t), U−T (t) (t ≤ 0) and D satisfy the
inclusion relations 1, 2 and 3.

Proof By definition, E(−T ) − L−T (−T ) ⊆ U−T (−T ) = D, hence the
sandwiching property holds for t = −T . Also D is a supset of all other sets.
Since births in E(·) are reciprocated in L−T (·) and U−T (·), the inclusion
relationship is preserved under birth transitions. Next, consider the death
at some time t ∈ [−T, 0], say E(t+) = E(t) \ {zi} or an event time t of
Ξi. Suppose that E(t) ⊆ L−T (t) ⊆ U−T (t). Since Ξi is restricted to the set
{t ≤ 0 : Ei(t) = 0}, E(t+) is a subset of L−T (t+) and U−T (t+). Furthermore,
if zi dies in the upper process,

B(zi, r) ∩ C ⊆ B(L−T (t) \ {zi}) ∩ C ⊆ B(U−T (t) \ {zi}) ∩ C

and consequently zi also dies in the lower process.
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Turning to the funneling property, we have to show that L−T (t) ⊆ L−S(t)
and that U−S(t) ⊆ U−T (t). Now, by definition E(−S) = L−S(−S). Since
the dynamics of algorithm 4.1 preserve inclusion, it follows that L−T (−T ) =
E(−T ) ⊆ L−S(−T ) and, more generally, L−T (t) ⊆ L−S(t) for any t ≥ −T .
Regarding the upper process, U−T (−T ) = D ⊇ U−S(−T ). Applying once
more the fact that the algorithm preserves the inclusion ordering yields
U−T (t) ⊇ U−S(t) for any t ≥ −T .

Finally, suppose that the upper and lower processes meet at some time
s ≤ 0. Then, as they are coupled by the same E– and Ξi-processes, they
proceed as one. �
We are now ready to state the main result of this section.

Theorem 4.1. Algorithm 4.1 almost surely terminates in finite time; its
output has density fλ(·) (cf. (4.3)) with respect to a unit rate Boolean model
on D.

Proof Note that P (E(0) = D|D) =
(

λ
κ

)n(D)
, hence

P (E(0) = D) = E

[(
λ

κ

)n(D)
]

where n(D) is Poisson distributed with mean κ|D|. Consequently, the event
{E(0) = D} has strictly positive probability. By lemma 4.1, E(−T ) = D
will occur for some T almost surely. Hence, using Lemma 4.4, the algorithm
terminates almost surely in finite time.

As stated by Lemma 4.3 Z−T (0) tends in distribution to πλ as T → ∞.
Moreover, using the fact that Algorithm 4.1 preserves the inclusions ordering,
L−T (t) ⊆ Z−T (t) ⊆ U−T (t) for all −T ≤ t ≤ 0.

Suppose T0 is a (random) time such that L−T0(0) = U−T0(0). It follows
that Z−T (0) = L−T0(0) = U−T0(0) for all−T ≤ T0. Hence, L−T0(0) = U−T0(0)
is a sample from πλ.

This completes the proof. �

To conclude this section we present a modification of algorithm 4.1, which
not only speeds it up but also facilitates and even makes possible some in-
teresting estimation methods. These estimation methods will be discussed
in the following section.

First, we note that the algorithm typically takes a long time to terminate
when the difference between the dominating pattern D and its thinning E0

is large. For example, suppose we want to sample from π1 while rejection
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sampling only allows us to sample from π100 to obtain D. This is clearly
a ‘hard’ problem. E0 would on average contain only one hundredth of the
points of D so the algorithm has many configurations between D and E(0)
to choose from—so to speak.

The idea is to first use algorithm 4.1 to reduce D ∼ π100 to a sample,
say X99, from π99. Then use algorithm 4.1 again with D = X99 to obtain a
sample X98 from π98. Repeating this, we obtain a nested sequence of samples
X99 ⊇ X98, · · · ⊇ X1 from π99, π98, . . . , π1.

This will be much faster than trying to sample from π1 straight away.
In fact, for small steps of λ it might well happen that D and E0 coincide,
in which case there is clearly no need to run the algorithm. Also, it might
happen that there is no pattern X with E0 ⊆ X ⊂ D which meets the
coverage requirement. Again, there would be no need to run the algorithm
at because the output must be D itself.

With an estimation method called ‘perfect stochastic EM’ (section 1.5.3)
in mind, we now present an algorithm that produces a nested continuum of
samples {Xλ ∼ πλ : λ ≤ λ ≤ λ} for any two values 0 < λ ≤ λ. By ‘nested’
we mean that Xλ ⊂ Xλ′ if λ ≤ λ′. The idea is to slowly thin an initial sample
form πλ, removing one point at a time.

We suppose (without any loss of generality) that it is feasible to sample from
πλ. Denote λ = λ(0). Let Xλ(0) = {x1, . . . , xn} be a sample from πλ(0). Now
associate with each xi a standard uniform random variable U1

i ; all the U1
i

being independent. Define

E1
λ = {xi ∈ Xλ(0) : U1

i < λ/λ(0)} λ ≤ λ(1)

Note that for each λ, E1
λ is a thinning of Xλ(0) with retention probability

λ/λ(0). Conceptually, we could—for every λ—run algorithm 4.1 with D =
Xλ(0) and E0 = E1

λ to obtain a sample from πλ.
Define λ(1) = λ(0) maxi U

1
i . Then E1

λ = Xλ(0) for all λ(1) < λ ≤ λ(0),
while E1

λ(1) = Xλ(0) \ {xi} for some i.
Now set

Xλ = Xλ(0) λ(1) < λ ≤ λ(0).

It is clear that these Xλ are distributed according to πλ; application of algo-
rithm 4.1 with D = Xλ(0) and E0 = E1

λ must output Xλ(0) because D = E0.
Next, run algorithm 4.1 with D = Xλ(0) and E0 = E1

λ(1) = Xλ(0) \ {xi} to

obtain a sample Xλ(1) from πλ(1). Note that when E1
λ(1) does not cover, the

algorithm must output Xλ(0) and hence need not be run.
Now repeat the entire procedure, starting with Xλ(1) instead of Xλ(0). We

must associate new uniform random variables U2
i with the points of Xλ(1) and
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define new thinnings

E2
λ = {xi ∈ Xλ(1) : U2

i < λ/λ(1)} λ ≤ λ(1)

Note that the distributions of E1
λ and E2

λ are the same for all λ ≤ λ(1).
Hence we are indeed starting afresh.

Repeating again and again in this manner, we obtain a sequence λ(0) >
λ(1) > λ(2) . . . and after n repetitions we have a nested continuum of samples
{Xλ ∼ πλ : λ(n) ≤ λ ≤ λ(0) = λ}.

Define N to be the smallest number such that λ(N) < λ. It is not difficult
to see that N is almost surely finite. Hence the above method provides,
almost surely in finite time, nested samples from πλ for all λ between λ and
λ.

4.4 Maximum likelihood

In general, direct maximum likelihood estimation of the intensity parameter
in a Boolean model (Definition 4.1) seems very hard. In this section, we will
describe two alternative techniques.

4.4.1 MCMC approach

Suppose a Boolean model B(X) of discs with radius r is observed though
a non-empty compact set W . We write Y = B(X) ∩ W . The goal is to
estimate the intensity parameter λ of the underlying Poisson germ process
X. Although the likelihood of Y is known, it involves a normalizing constant
which we cannot compute. A solution is to use the approach in (Geyer and
Thompson, 1992, Geyer, 1998) and consider the likelihood ratio

p(Y |λ)

p(Y |κ)
= e(κ−λ)|W⊕rB| c(λ|Y )

c(κ|Y )

with respect to a fixed parameter κ > 0. Note that the normalizing constant
c(λ|Y ) = E

[
λn(X)1{B(X)∩W=Y }

]
where the expectation is taken with respect

to a unit rate Poisson process. Note that

c(λ|Y )

c(κ|Y )
= Eκ

[(
λ

κ

)n(X)
∣∣∣∣∣B(X) = Y

]
.

Hence the log likelihood ratio can be rewritten as

`(λ) = log
p(Y |λ)

p(Y |κ)
= (κ− λ)|W ⊕ rB|+ log Eκ

[(
λ

κ

)n(X)
∣∣∣∣∣B(X) ∩W = Y

]
.

(4.9)
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The expectation can be estimated by an average over independent realiza-
tions of the conditional distribution of X given B(X) ∩ W = Y (under
parameter κ) (see section 4.3).

The approximation works well if the reference value κ is not too far from
the true value. To try to make sure of this, we could use a pilot estimate
as κ. Alternatively, we can take a sequence of different parameter values
λ < λ1 <, . . . , < λn < κ. Noting that

`(λ) = log
p(Y |λ)

p(Y |λ1)
+ log

p(Y |λ1)

p(Y |λ2)
+ · · ·+ log

p(Y |λn−1)

p(Y |λn)
+ log

p(Y |λn)

p(Y |κ)

we need samples from πλ(i) for i = 1, 2, . . . , n. We could (perhaps should)
produce these samples independently, but we can also start with a sample
from πλ(n) and then successively work our way down. When sampling from
πλ(i) we can then take the sample from πλ(i+1) as dominating state D.

4.4.2 EM

The EM-algorithm (Dempster et al. 1977) is an iterative technique to ap-
proximately solve the likelihood equations for missing data problems by al-
ternating expectation and maximization steps. In general, let X be the unob-
served (complete) data, and Y the observed data obtained by a many-to-one
mapping Y = Y (X) and assume that X has a density p(x; λ) depending on a
parameter λ > 0. Starting from any initial value λ(0), construct a sequence
λ(0), λ(1), . . . by repeating the following.

Expectation-step compute as the conditional expectation under λ(k) of
the complete data log-likelihood, given the observed data

Eλ(k) [log p(λ; X) | Y ] ; (4.10)

Maximization-step find λ(k + 1) by maximizing (4.10) with respect to λ.

In our set-up, Y = B(X) ∩W and p(x; λ) is the Poisson(λ) density. The
(complete data) log-likelihood is linear in the sufficient statistic n(X). Hence
the expectation and maximization steps amount to computing the conditional
expectation under λ(k) of the complete data maximum likelihood estimator
given the observed data, that is

λ(k + 1) = Eλ(k)

[
n(X)

|W ⊕ rB| | Y
]

= Eλ(k)

[
n(X i) + n(Xb)

|W ⊕ rB| | Y
]

(4.11)
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We cannot compute (4.11), as required by the EM-algorithm. However,
since we can sample from the conditional distribution of X given Y , we
can use Monte Carlo methods to approximate it. Suppose that at the k-th
iteration step we use m samples to do so. The average of these estimates
Eλ(k)[n(X)/|W ⊕ rB| | Y ]. This estimate is the next parameter value, λ(k +
1). At the next iteration we need a new set of m independent samples under
λ(k + 1). This algorithm is known as the Monte Carlo EM or, if m = 1,
the stochastic EM-algorithm (StEM). We discussed this algorithm in section
1.5.2.

We now specialize to StEM, i.e. the case m = 1. Usually, the algorithm is
run for a great number of steps to allow it to approach equilibrium (burn-in).
After that, the chain is continued for many more iterations and its steps are
averaged to bring down the variance of the estimator. Since the discovery
of CFTP, the arbitrary burn-in is unsatisfactory. Here we demonstrate how
we can use CFTP to generate a StEM chain that is actually guaranteed to
be in equilibrium. We need one mild assumption, namely that the true λ is
known to be less than some finite λ. The complete data maximum likelihood
estimator is slightly modified to become n(X)/|W ⊕ rB| ∧ λ.

We might as well (and do) assume that λ is so big that we can easily
sample from πλ. Of course λ will be our ‘maximal state’. As n(X i) is
obviously bounded below by |C|/(πr2), there is a very natural minimal state:

λ =
|C|/(πr2) + n(Xb)

|W ⊕ rB| .

Thus we may restrict the parameter space to [λ, λ].

Using the sampling scheme described at the end of section 4.3 we can
obtain nested samples Xλ for all λ ∈ [λ, λ]. With such a collection of samples
we can define a random transition maps (cf. section 1.5.1) H : [λ, λ]→ [λ, λ]
by

H(λ) =
n(Xλ) + n(Xb)

|W ⊕ rB| ∧ λ.

Since the Xλ are nested, n(Xλ) is (‘surely’) monotone increasing as a function
of λ and hence so is H. Coupling-from-the-past works as follows here. Fix an
integer −T < 0. For t = −T + 1,−T + 2, . . . , 0 generate independent copies
Nt of N . Define an upper chain U−T = {U−T (t) : t = −T, . . . , 0} by setting
U−T (t) = Ht(U−T (t− 1)) and U−T (−T ) = λ. Similarly, define a lower chain
L−T by L−T (t) = Ht(L−T (t− 1)) and L−T (−T ) = λ.

At time 0, check if U−T (0) = L−T (0). If so terminate; if not repeat,
starting at time −2T and re-using the {Ht : t = −T + 1, . . . , 0}.
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Figure 4.1: (a) Realization of a Poisson point process of intensity 75 on the
set [0, 1]2 ⊕ rB. There are 101 points. With each point a circle with radius
0.1 is associated. (b) The observed Boolean model Y = B(X) ∩ [0, 1]2

4.5 An example

In Figure 4.1 (a) we have a realization of a Boolean model of discs of radius
.10 as observed through the set [0, 1]2 ⊕ (0.1)B (B is the unit disc). The
intensity of the underlying germ process is 75. There were 101 points in
the set [0, 1]2 ⊕ (0.1)B, of which 56 could be identified from observing the
Boolean model through [0, 1]2 as depicted in Figure 4.1 (b). Figure 4.2 shows
the region D where the interior points ‘live’ and the region C to be covered.

We have applied the Monte Carlo likelihood ratio approach and the StEM
algorithm to the data in Figure 4.1 (b). First, we estimated the log likelihood
ratio (4.9) with respect to κ = 80 for λ ∈ [50, 100]. The estimate, shown in
Figure 4.3, is based on 50 independent samples from π80. To obtain such a
sample we first generated a dominating pattern D. This was done by rejection
sampling, where we gently increased the intensity until success. The first,
rejection sampling attempts were done at intensity 80. After 50 failures, the
intensity was increased by 10/|[0, 1]2 ⊕ (0.1)B|. Generally, success occurred
at intensities around 110.

From figure 4.3 the log likelihood ratio is readily maximized. We find 69
as an estimate of the true intensity (75).

Of course the choice κ = 80 as reference value for the log likelihood ratio
is quite arbitrary. Instead, we could have used some pilot estimate.
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Figure 4.2: (a) The set D where the interior points ‘live’. (b) the set C which
must be covered by the Boolean model associated with the interior points.

50 60 70 80 90 100

-5
-4

-3
-2

-1
0

1

Figure 4.3: Estimated log likelihood ratio as a function of λ with respect to
κ = 80.
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Figure 4.4: The upper and lower processes in the perfect stochastic EM
algorithm, starting at times -1, -2 and -4. After the upper and lower processes
have coalesced, the (then stationary) chain is continued.

A run of the perfect StEM algorithm is shown in figure 4.4. We see upper
and lower processes U−1(t) and L−1(t) and U−2(t) and L−2(t) which have
not met at time zero, and processes U−4(t) and L−4(t) which have. We have
chosen to start the upper processes at λ = 100, pretending that we know for
a fact that the true intensity is below 100. Note how quickly the algorithm
has terminated. The value at time zero (after termination) is 61. We could
now continue to run the StEM chain starting at 61 at time zero and average
the result to bring down the variance.

We should mention that it took us longer to generate Figure 4.4 than
Figure 4.3. Although fewer samples were needed for the former, they were
of lower intensity (40) than the samples required for the latter (80).

An advantage of the likelihood ratio approach is that it allows us to do
much more than just estimate the intensity. Indeed, it is easy to estimate
the expectation and variance of any function φ of the complete data. We use
importance sampling ideas (Geyer, 1994). To this end, 50 independent sam-
ples were generated from the conditional distribution of interior points with
at intensities κi = 60.0 + 10i (i = 0, 1, 2, 3). Hence, in all, 200 independent
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Figure 4.5: The solid line denotes a Monte Carlo estimate of Eλn(X i) as
a function of λ. The dashed lines show the (pointwise) estimated standard
deviation.

samples were generated. An estimate for Eλφ given by

s

∑50
j=1 φ(Xi,j)(

λ
κi

)n(Xi,j)∑50
j=1(

λ
κi

)n(Xi,j)
+ (1− s)

∑50
j=1 φ(Xi+1,j)(

λ
κi+1

)n(Xi=1,j)∑50
j=1(

λ
κi+1

)n(Xi=1,j)

if λ = sκi + (1 − s)κi+1, 0 ≤ s < 1, and where Xi,j is the jth sample from
πκi.

In our case, the expectation of n(X i) may be the most interesting. In
Figure 4.5 we provide Monte Carlo estimates of the expected number of
interior points under πλ, as a function of λ, together with the (pointwise)
standard deviation envelopes.

4.6 Sampling from general point processes

In a recent paper Kendall and Møller (1999) presented two perfect sampling
algorithms for so-called hereditary (or more precisely: locally stable) point
processes. One based on spatial birth-and-death processes and the other a
Metropolis–Hastings algorithm. In this section we show that our algorithm
4.1 will generally allow us to sample from what one might call anti-hereditary
point processes. We show that the modification we applied to algorithm 4.1
can also be used in this more general setup. Finally, we show that there
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exists a similar modification of the birth-and-death algorithm of Kendall and
Møller.

Following the notation and setup of Kendall and Møller (1999), let (S,B, λ)
be a measure space. For us, λ will always be the uniform measure on
S. Consider the ‘Carter–Prenter exponential space’ Ω of all finite collec-
tions of elements of S with its natural sigma-algebra F generated by sets
{x ∈ Ω : n(x ∩B) = n} (B ∈ B).

In particular we can take S to be a compact set in R2 and let dλ = λds,
where ds is Lebesgue measure on S. Let Poλ denote the probability measure
on (Ω,F) corresponding to a Poisson process of intensity λ on S. The Poisson
process of intensity λ is of course absolutely continuous with respect to the
Poisson process of intensity 1. The density is pλ : Ω→ [0,∞) given by

pλ(x) = e(1−S)|S|λn(x) (4.12)

Consider a point process X on S, whose distribution πλ on (Ω,F) is
absolutely continuous with respect to Poλ with density f : Ω→ [0,∞)

dπλ = fdPoλ (4.13)

In the previous sections we considered the special case S = D and

f(x) =
1{x covers C}(x)∫

1{x covers C}(x)dPoλ(x)
.

Defining

fλ(x) = f(x)e(1−λ)|S|λn(x) (4.14)

we have
dπλ = fλdPo1.

Now consider the problem of obtaining a sample from πλ. If f is bounded
by, say, M we can apply rejection sampling. First we take a sample X ∼ Poλ

and a uniform random variable U on [0, M ]. We ‘accept’ X as a sample
from πλ if U ≤ f(X) and otherwise we repeat the procedure. Unfortunately,
it often happens that the acceptance probability is so small that this sam-
pling method would take forever. We shall now investigate various other
approaches.

We consider two cases:

hereditary There is a constant K > 0 such that

f(x ∪ {ξ}) ≤ Kf(x), ∀x ∈ Ω, ξ ∈ S (ξ /∈ x) (4.15)
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To be precise, the hereditary property usually (Kendall and Møller 1999,
Geyer 1999) means: if x ⊆ y then f(x) > 0 implies f(y) > 0. Condi-
tion (4.15) is really a ‘local stability condition’ which implies the hereditary
property. The ratio f(x ∪ {ξ})/f(x) is sometimes called the ‘Papangelou
conditional intensity’ and is denoted `∗(x; ξ). Perfect sampling for locally
stable point processes was considered by Kendall and Møller (1999).

anti-hereditary There is a constant K > 0 such that

f(x) ≤ Kf(x ∪ {ξ}), ∀x ∈ Ω, ξ ∈ S (ξ /∈ x) (4.16)

Straightforward rejection sampling is feasible in the hereditary case when
λ is small. In fact, it works trivially for λ = 0 when we would (almost)
always obtain the empty configuration. In the anti-hereditary case rejection
sampling typically is feasible when λ is large. Therefore we shall assume
throughout that we can easily obtain a sample from πκ when we choose κ
large enough.

4.6.1 spatial birth-and-death processes

We now discuss so-called spatial birth-and-death (b&d) processes as they
were introduced by Preston (1975). We closely follow a brief review in
Kendall and Møller (1999).

A spatial birth-and-death process Xt (t ≥ 0) is a random process taking
its values in Ω, the collection of finite sets of points of S. The process
is Markov and (hardly surprising) it has two kinds of transitions: births
(addition of a point) and deaths (deletion of a point). Now suppose X(·)
has ‘birth rate’ b and death ‘rate’ d. These are non-negative functions on
Ω×S, while b must satisfy B(x) =

∫
b(x, ξ)dλ(ξ) <∞. The birth rate b(x, ξ)

determines the rate at which X(·) jumps from a state x to x ∪ {ξ} and the
death rate d(x, ξ) determines the rate at which it jumps from x ∪ {ξ} to x.
More precisely, the dynamics of X(·) are as follows.

Suppose that Xt = x = {x1, . . . , xn}. Let E0, E1, . . . , En denote indepen-
dent exponential random variables with respective means 1/B(x), 1/d(x \
{x1}, x1), . . . , 1/d(x \ {xn}, xn). The first transition after time t happens at
time t + E, where E is the minimum of E0, . . . , En. If E = E0 then the
transition is a birth and a point ξ is added. The point ξ is selected according
to the density b(x, ξ)/B(x). If E = Ei, i 6= 0, the transition is a death and
the point xi is removed.

The following important lemma is from Preston (1975)
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Lemma 4.5. If there exists a density g : Ω→ [0,∞) satisfying the so-called
detailed balance equations

g(x)b(x, ξ) = g(x ∪ {ξ})d(x, ξ) > 0, whenever g(x ∪ {ξ}) > 0,
(4.17)

then Xt is time reversible and it has g as density of its unique stationary
distribution.

Suppose that we have—as we do—a density f and wish to construct a b&d
process with f as its equilibrium, then we can take b(x, ξ) = f(x∪{ξ})/f(x)
and d(x, ξ) = 1 or alternatively b(x, ξ) = 1 and d(x, ξ) = f(x)/f(x∪{ξ}). Of
course these birth and death rates should be well-defined, and in this light
conditions (4.15) and (4.16) above are not surprising.

4.6.2 the anti-hereditary case

Suppose we have a sample from an anti-hereditary point process with distri-
bution πκ. In this section we show how to obtain a sample from πλ for any
λ ≤ κ by means of thinning. This section generalizes our earlier work on
sampling from the bombing model under a covering condition. The following
lemma is a generalization of Proposition 4.1.

Lemma 4.6. Suppose condition (4.16) holds. Let κ > λ > 0. Suppose Y is
a sample from πκ and let Y ′ be an independent thinning of Y with retention
probability λ/κ. Then∫

y

f(x)

f(x ∪ y)
P (Y ′ = x|Y = x ∪ y)πκ(x ∪ dy) = e−|S|fλ(x)

(4.18)

Proof By condition (4.16) we have that f(x)/f(x ∪ y) is bounded. Now
it follows from (4.14) that

fκ(x ∪ y) = f(x ∪ y)e(1−κ)|S|κn(x)+n(y)

and

f(x) = fλ(x)e(λ−1)|S|λ−n(x).
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Hence∫
y

f(x)

f(x ∪ y)
P (Y ′ = x|Y = x ∪ y)πκ(x ∪ dy)

=
∞∑

n=0

e−|S|

n!

∫
· · ·
∫

Sn

f(x)

f(x ∪ {y1, . . . , yn})

(
λ

κ

)n(x)(
1− λ

κ

)n

× fκ(x ∪ {y1, . . . , yn})dy1 . . .dyn

=
∞∑

n=0

e−|S|

n!

∫
· · ·
∫

Sn

fλ(x)

f(x ∪ {y1, . . . , yn})
e(λ−1)|S|λ−n(x)

(
λ

κ

)n(x)(
1− λ

κ

)n

× f(x ∪ {y1, . . . , yn})e(1−κ)|S|κn(x)+ndy1 . . . dyn

= fλ(x)e−|S|e(λ−κ)|S|
∞∑

n=0

1

n!
κn

(
1− λ

κ

)n

|S|n

= fλ(x)e−|S|

�

Suppose we have a sample D = y = {y1, . . . , yn} from πκ and require a
sample from πλ for some λ < κ. Consider a spatial b&d process, X(t), t ≥ 0,
on the powerset of y (denoted P(y)) with birthrate b(x, ξ) = 1{ξ∈y\x}λ/(κ−λ)
and death rate d(x, ξ) = f(x)/f(x ∪ {ξ}). Let D′ denote an independent
thinning of D with retention probability λ/κ. We have the following identity,
for all x ⊂ x ∪ {ξ} ⊆ y

λ

κ− λ

f(x)

f(y)
P (D′ = x|D = y) =

f(x)

f(x ∪ {ξ})
f(x ∪ {ξ})

f(y)
P (D′ = x∪{ξ}|D = y),

In other words, X(t) satisfies detailed balance with respect to

f(x)

f(y)
P (D′ = x|D = y)

which is therefore the stationary distribution of X(t), conditionally on D =
y. Since D is distributed according to πκ it follows from lemma 4.6 that
unconditionally the stationary distribution of X(t) is πλ.

Now consider another spatial birth and death process, E(t), t ≥ 0, on
P(y) with birth rate b(x, ξ) = 1{ξ∈y\x}λ/(κ − λ) and death rate K. Let E0

be an independent thinning of D with retention probability

λ/(K(κ− λ))

1 + λ/(K(κ− λ))
.
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This time we have, for all x ⊂ x ∪ {ξ} ⊆ y

λ

κ− λ
P (E0 = x|D = y) = KP (E0 = x ∪ {ξ}|D = y),

We see that E(t) satisfies detailed balance with respect to the conditional
distribution of E0 given D. It follows that E(t) is time-reversible and in
equilibrium if we set E(0) = E0.

X(t) and E(t) have identical birth rates while by (4.16) the death rate
of E(t) is greater than that of X(t). Setting X(0) = E(0) it is possible
to generate coupled realizations of X(t) and E(t) such that E(t) ⊆ X(t)
for all t. This works as follows. Suppose X(t) = x and E(t) = e, e ⊆
x ⊆ y. Then associate with every point of xi ∈ x an exponential lifetime
Li with mean 1/K and a uniform random variable Ui on [0, K]. Associate
with all points yi ∈ y \ e an exponential waiting time Wi with mean (κ −
λ)/λ. The first transition after time t takes place at time t + m where
m = min(L1, . . . , Ln(x), W1, . . . , Wn(y)−n(e)). If m = Li then the point xi

is removed (if present) from the E process and xi is removed from the X
process, but only if Ui ≤ f(x \ {xi})/f(x). If m = Wi the point ei is added
to the E process and (if not already present) to the X process.

We now explain how we can apply coupling-from-the-past (CFTP) to
obtain a perfect sample from the πλ, the stationary distribution of X(t).
Fix a time −T < 0 in the past. Since the E process is time reversible, we
can extend it from E(0) = E0 into the past until time −T . Now define a
process X−T on [−T, 0] starting at X−T (−T ) = E(−T ). We can arrange it
so that X−T is a birth and death process with the same dynamics as X, while
E(t) ⊆ X−T (t) ⊆ D for all t ∈ [−T, 0]. Because X−T has the same dynamics
as X, it follows that X−T (0) tends in distribution to πλ as T →∞.

To check if X−T (0) has reached equilibrium—so to say—we need a ‘lower
bound process’ L−T (·) with L−T (−T ) = E(−T ) and an ‘upper bound process’
U−T (·) with U−T (−T ) = D such that (cf. Kendall and Møller (1999) formulas
(3.5) to (3.7))

1. (‘sandwiching’) E(t) ⊆ L−T (t) ⊆ X−T (t) ⊆ U−T (t) ⊆ D for all −T ≤
t ≤ 0;

2. (‘funneling’) L−T (t) ⊆ L−S(t) ⊆ X−S(t) ⊆ U−S(t) ⊆ U−T (t), for all
−S ≤ −T ≤ t ≤ 0;

3. (‘coalescing’) if, for some s, L−T (s) = U−T (s) then L−T (t) = U−T (t),
for all t ≥ s.

Moreover, we need that the event {L−T (0) = U−T (0)} almost surely occurs
for finite T . If the above 3 inclusion properties hold and the latter event
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occurs then we can conclude that L−T (0) = U−T (0) is a perfect sample from
πλ. This is roughly the content of Theorem 3.1 of Kendall and Møller (1999).
The difference is that they consider a varying ‘maximal state’ D(t) but a fixed
minimal state E(t) = ∅, whereas we consider a fixed maximal state D(t) = D,
but a varying minimal state.

In practice, the CFTP algorithm would consist of successively choosing
increasing T and running E(t), L−T (t) and U−T (t) for t ∈ [−T, 0] until
L−T (0) = U−T (0).

The algorithm takes a long time to terminate when the difference between
D and E(0) is large. This occurs typically if the difference between κ and λ is
large. Therefore it is a good idea to choose a decreasing sequence κ = λ(0) >
λ(1) > · · · > λ(n) = λ and successively sample from πλ(0), πλ(1), . . . , πλ(n). At
each step we can use the sample obtained in the previous step as dominating
pattern D. In fact, in section 4.3 we showed how to choose the λ(i) in such
a way that the difference between D and E(0) is never more than a single
point. This allowed us to obtain samples from πλ for all λ in a given interval.

4.6.3 the hereditary case

Recall our definition of an hereditary point process at (4.15). Kendall and
Møller (1999) give two algorithms to obtain samples from a hereditary point
process with distribution πλ, one of which is based on birth-and-death pro-
cesses. They construct a b&d process X(t) with πλ as its stationary dis-
tribution and a dominating process D(t) which is in equilibrium and time
reversible. In fact, D(t) is at all times t a spatial Poisson process of inten-
sity Kλ. Kendall and Møller give a coupling of D(t) and X(t) such that
X(t) ⊆ D(t) for all t. They then demonstrate a coupling-from-the-past algo-
rithm with D(t) (t ∈ [−T, 0]) as a (variable) maximal state and E(t) = ∅ as
a trivial minimal state. The sample from πλ which the algorithm produces
lies between D(0) and E = ∅. When λ is large the difference between D(0)
and E will typically be large. If this is the case, then the algorithm will take
very long to terminate because it has many different configurations to choose
from.

We give a generalization of the work of Kendall and Møller which allows
us to take as a fixed minimal state a sample E ∼ πκ for an arbitrary κ <
λ. The maximal state D(t) will be a birth-and-death process which has
the superposition of E and a Poisson process of intensity K(λ − κ) as its
equilibrium distribution. Noting that the empty set is trivially a sample
from π0 we see that our generalization reduces to the Kendall and Møller
algorithm when we take κ = 0.

The use of the generalization is that it will allow us to choose an increasing
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sequence 0 = λ(0) < λ(1) < · · · < λ(n) = λ and successively sample from
πλ(0), πλ(1), . . . , πλ(n). At each step we can use the sample obtained in the
previous step as minimal pattern E to which we add a Poisson point process
of intensity K(λ(i + 1) − λ(i)) to obtain the maximal pattern D(0). If we
choose the steps from λ(i) to λ(i + 1) small enough, then the difference
between D(0) and E will always be small too.

The next lemma shows how we can obtain a sample from πλ by adding
points to a sample from πκ for an arbitrary κ < λ.

Lemma 4.7. Suppose condition (4.15) holds. Let 0 ≤ κ < λ. Then for all
x ∈ Ω ∑

y⊆x

f(x)

f(y)
fκ(y)pλ−κ(x \ y) = fλ(x). (4.19)

Proof This lemma basically follows from the superposition property of
Poisson processes. By condition (4.15) we have that f(x)/f(y) is bounded.
Now it follows from (4.14) that

fκ(y) = f(y)e(1−κ)|S|κn(y)

and
f(x) = fλ(x)e(λ−1)|S|λ−n(x).

Hence∑
y⊆x

f(x)

f(y)
pλ−κ(x \ y)fκ(y)

=
∑
y⊆x

fλ(x)

f(y)
e(λ−1)|S|λ−n(x)e−(λ−κ)|S|(λ− κ)n(x\y)f(y)e(1−κ)|S|κn(y)

= fλ(x)λ−n(x)
∑
y⊆x

(λ− κ)n(x)−n(y)κn(y)

= fλ(x).

�

Suppose we have a sample E = y = {y1, . . . , yn} from πκ for some κ < λ.
Now consider a spatial birth-and-death process X(t), t ≥ 0 on the space
{y ∪ x : x ∈ Ω} with birth rate b(y ∪ x, ξ) = (λ− κ)f(y ∪ x ∪ {ξ})/f(y ∪ x)
and death rate d(y ∪ x, ξ) = 1. One easily checks that

(λ− κ)
f(y ∪ x ∪ {ξ})

f(y ∪ x)

f(y ∪ x)

f(y)
pλ−κ(x) = 1

f(y ∪ x ∪ {ξ})
f(y)

pλ−κ(x ∪ {ξ}).
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So X(t) satisfies detailed balance with respect to

f(y ∪ x)

f(y)
pλ−κ(x),

which is therefore the density of the stationary distribution of X(t), con-
ditionally on E = y. Hence, by lemma 4.7 the unconditional stationary
distribution of X(t) is πλ.

Consider another b&d process, D(t), t ≥ 0, on {y ∪ x : x ∈ Ω} with
birthrate b(y ∪ x, ξ) = K(λ − κ) and death rate d(y ∪ x, ξ) = 1. Let D0 be
the union of y and be a sample from PoK(λ−κ). We have for all x ∈ Ω

K(λ− κ)pK(λ−κ)(x) = 1pK(λ−κ)(x ∪ {ξ}).

Hence if we set D(0) = D0 then D(t) is time reversible and in equilibrium.
X(t) and D(t) have the same death rates, while by (4.15) the birth rate

of D(t) is greater than the birth rate of X(t). Setting X(0) = D(0) it is
not difficult to couple D(t) and X(t) such that X(t) ⊆ D(t) for all t. This
could be done much like we indicated in the previous subsection for the anti-
hereditary case. In fact, a detailed description of the coupling is given in
Kendall and Møller (1999) for the particular—but in no sense special—case
κ = 0. They also explain how to apply CFTP to obtain a perfect sample
from the stationary distribution of X(t).
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Samenvatting

Op vele gebieden, zoals geologie, biologie of medicijnen worden gegevens
verzameld bestaande uit een beeld van een proces van geometrische ob-
jecten in de ruimte. Lijnsegmenten kunnen breukvlakken in een rotsformatie
voorstellen, waargenomen als rechte lijnen op het rotsoppervlak. Punten
kunnen de locaties van bomen in een bos weergeven. Cirkelschijfjes kunnen
cellen onder een microscoop zijn. Altijd is ons beeld begrensd, ook al strekt
het proces zich ver buiten het beeld uit. Er ontstaat een soort censurering
van de gegevens, namelijk dat van sommige objecten alleen een gedeelte
waarneembaar is zodat de werkelijke omvang onbekend blijft.

Dit proefschrift gaat over ruimtelijke statistiek, of preciezer: de mathe-
matisch statistische analyse van ruimtelijke data. We observeren een of
meerdere beelden, zoals hierboven beschreven, en stellen ons voor dat deze
zijn ontstaan als trekkingen uit een kansverdeling. Het doel is om uit onze
waarnemingen deze kansverdeling—of belangrijke eigenschappen ervan—zo
goed mogelijk te achterhalen. Wellicht verheldert het volgende voorbeeld wat
we bedoelen.

Figuur 1.1 in dit proefschrift is een geologische kaart van een gebied van
zo’n 160 bij 160 meter van het Canadese schild. In het zwarte deelgebied
kunnen we het granieten rotsoppervlak waarnemen. Buiten dit gebied kun-
nen we het graniet niet zien vanwege begroeiing of water. De witte lijnen in
het zwarte deelgebied zijn barsten in de rots. In hoofdstuk 2 geven we een
methode om de kansverdeling van de lengte van de barsten te schatten op
basis van de kaart.

Men zou kunnen zeggen dat ruimtelijke statistiek moeilijker is dan ‘gewone’
statistiek. Een typische bijkomende moeilijkheid is ruimtelijke afhankelijk-
heid: wat men op verschillende locaties in een beeld waarneemt is zelden
onafhankelijk van elkaar. Onafhankelijkheid is een standaard aanname in de
statistiek, die in de ruimtelijke problemen zelden kan worden gehandhaafd.
Andere moeilijkheden komen door censurering en andere rand-effecten. ‘Rand-
effecten’ is een verzamelnaam voor wiskundige complicaties die ontstaan als
een ruimtelijk proces slechts in een beperkt gebied wordt waargenomen. Als
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gevolg van al deze moeilijkheden is de ruimtelijke statistiek enigzins een
achtergebleven gebied. In mijn proefschrift passen we echter moderne ‘main-
stream’ statistische methoden toe in enige ruimtelijke problemen, waarbij we
bovengenoemde moeilijkheden omzeilen. De wijze waarop wij dit doen zijn
de ‘listen’ uit de titel.

In hoofdstuk 1 leggen we ons gereedschap klaar. Nieuw in dit hoofdstuk
is een algemene verhandeling over consistentie van de zogeheten meest aan-
nemelijke schatter. Dit resulteert onder andere in Stelling 1.2. Deze stelling
geeft voorwaarden waaronder de (niet parametrische) meest aannemelijke
schatter in convexe modellen consistent is. In hoofdstuk 2 en 3 kunnen we
deze stelling toepassen, hoewel we dit slechts in hoofdstuk 2 daadwerke-
lijk uitwerken. Ook presenteren we in hoofdstuk 1 een modificatie van de
stochastische versie van het bekende EM algorithme. Dit algorithme passen
we toe in hoofdstuk 4.

In hoofdstuk 2 beschouwen we ‘Laslett’s lijnsegmenten probleem’. Het
doel is de verdeling van de lengte van lijnsegmenten, waargenomen door een
stochastische verzameling, te schatten. Dit probleem heeft een een ruime
geschiedenis en werd onder meer bestudeerd in twee eerdere Utrechtse proef-
schriften, die van Mark van der Laan en Bart Wijers. Wij beschouwen
het probleem in grotere algemeenheid en laten de aanname vallen dat het
waarnemingsgebied convex is. Als gevolg hiervan kunnen we verschillende
fragmenten van één lijnsegment waarnemen. In de praktijk is het onmogelijk
te onderscheiden welke fragmenten bij elkaar horen, en zodoende zijn ze op
een onontwarbare wijze afhankelijk. Onze ‘list’ is een eenvoudiger, maar
vergelijkbaar probleem te beschouwen zonder deze afhankelijkheid. Voor dit
probleem kunnen we de meest aannemelijke schatter afleiden. We tonen
vervolgens aan dat de schatter ook goede eigenschappen heeft in het oor-
spronkelijke probleem.

In hoofdstuk 3 schatten we de kansverdeling van de lengte van een ‘ty-
pische koorde’ van een stochastische verzameling. Een koorde is het lang-
ste lijnsegment door een gegeven punt van de verzameling in een gegeven
richting, dat geheel binnen de verzameling past. De moeilijkheid is dat we
de kansverdeling van de stochastische verzamling in termen van de koorde-
lengte verdeling zouden moeten kennen om de meest aannemelijke schatter
uit te kunnen rekenen. Dit is helaas zelden het geval. Wederom beschouwen
we een eenvoudiger variant van het probleem, leiden de meest aannemelijke
schatter af voor dat probleem en laten zien dat de schatter ook goed is in de
oorspronkelijke situatie.

In hoofdstuk 4 bestuderen we het ‘bommen’ model. We nemen de verenig-
ing waar van enige toevallig rondgestrooide cirkelschijfjes. Men zou zich kun-
nen voorstellen dat deze schijfjes bom-kraters zijn, hetgeen de naam van dit
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model verklaart. Op basis van onze waarnemingen willen we het verwachte
aantal schijfjes schatten, waarvan het centrum zich in een verzameling van
gegeven oppervlakte bevindt. Voor de kenner: We schatten de intensiteit van
het Poisson process dat het waargenomen Boolese model genereerde. Het
probleem is dat sommige schijfjes geheel bedekt kunnen worden door andere
en zodoende volledig onzichtbaar zijn. Hier bestaat onze list uit een algo-
rithme dat ons in staat stelt een steekproef te nemen uit de voorwaardelijke
verdeling van de niet-geobserveerde schijfjes, gegeven wat we wel observeren.
Met behulp van dergelijke steekproeven kunnen we de meest aannemelijke
schatter schatten, zo gezegd. Het algorithme is in grotere algemeenheid toe
te passen om puntprocessen te genereren waarvan de zogeheten Papangelou
intensiteit van nul is wegbegrensd.
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