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A large-scale model of the immune network is analyzed, using the shape-space for-
malism. In this formalism, it is assumed that the immunoglobulin receptors on B
cells can be characterized by their unique portions, or idiotypes, that have shapes
that can be represented in a space of a small finite dimension. Two receptors are
assumed to interact to the extent that the shapes of their idiotypes are complemen-
tary. This is modeled by assuming that shapes interact maximally whenever their co-
ordinates in the space-space are equal and opposite, and that the strength of inter-
action falls off for less complementary shapes in a manner described by a Gaussian
function of the Euclidean "distance" between the pair of interacting shapes.

The degree of stimulation of a cell when confronted with complementary idiotypes
is modeled using a log bell-shaped interaction function. This leads to three possible
equilibrium states for each clone: a virgin, an immune, and a suppressed state. The
stability properties of the three possible homogeneous steady states of the network
are examined. For the parameters chosen, the homogeneous virgin state is stable to
both uniform and sinusoidal perturbations of small amplitude. A sufficiently large
perturbation will, however, destabilize the virgin state and lead to an immune reac-
tion. Thus, the virgin system is both stable and responsive to perturbations. The
homogeneous immune state is unstable to both uniform and sinusoidal perturbations,
whereas the homogeneous suppressed state is stable to uniform, but unstable to
sinusoidal, perturbations. The non-uniform patterns that arise from perturbations
of the homogeneous states are examined numerically. These patterns represent the
actual immune repertoire of an animal, according to the present model.

The effect of varying the standard deviation a of the Gaussian is numerically
analyzed in a one-dimensional model. If a is large compared to the size of the shape-
space, the system attains a fixed non-uniform equilibrium. Conversely if a is small,
the system attains one out of many possible non-uniform equilibria, with the final
pattern depending on the initial conditions. This demonstrates the plasticity of the
immune repertoire in this shape-space model. We describe how the repertoire organ-
izes itself into large clusters of clones having similar behavior.

These results are extended by analyzing pattern formation in a two-dimensional
(2-D) shape-space. A lattice mapping is employed, whose rules are rigorously derived
from a simplified version of the underlying differential equations via a logarithmic
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transformation of variables. A novel feature of the lattice model is that the neighbor-
hood of cell (i,j) is centered around cell (i, j). Thus, interactions are non-local.
The 2-D patterns that emerge are reminiscent of those found in reaction-diffusion
systems, and contain many hills and valleys. (In contrast with most reaction-diffusion
models, pattern formation in this model is not dependent on long-range inhibition
and short-range activation.) The scale of the pattern depends on neighborhood size,
with small neighborhoods generating fine scale patterns with narrow peaks, and large
neighborhoods generating large scale patterns with wide peaks and valleys. Both
one- and two-dimensional models support patterns in which a fraction of the clones
are not stimulated by network interactions. The fraction of such "disconnected
clones" increases with both dimensionality and a.

1. Introduction

Jerne (1974) postulated that the immune system functions as a network with a
complexity comparable to that of the nervous system. The number of different lym-
phocyte clones, or idiotypes, involved in the immune network may be of order 106

to 10s. Interactions amongst the clones depend on complementarities between the
immunoglobulin receptors characteristic of each clone. The degree of binding of two
idiotypes, usually measured by their equilibrium binding constant or affinity, depends
on the generalized shapes of the two receptor molecules involved (Perelson & Oster,
1979). By generalized shape, we mean not only the average geometric shape of the
binding region of the receptor molecule, but also factors such as the electric charge,
dipole moments, and hydrophobicity. Recent structural determinations of antigen-
antibody complexes (cf. Amit et al., 1986; Stanfield et al., 1990) highlight the import-
ance of shape complementarity and show that in the binding region positive charges
are complemented by negative ones (Sheriff et al., 1987). Because cells in the immune
system are constantly being generated in the bone marrow, stimulated to grow, and
dying, one is led to conceive of the immune network as a vast collection of shifting
clonal populations each characterized by a generalized shape x.

Attempts to model high-dimensional immune networks have utilized two different
approaches to represent molecular shape and to compute complementarity between
molecules. In one approach, the shape of receptors is associated with a binary string,
and the degree of complementarity between bitstrings is employed tcl. determine the
degree of interaction between clones. The degree of interaction modifies the size
of certain terms in a system of ordinary differential equations that determines the
population size of each clone. In this approach the number of idiotypes incorporated
in the network can vary, owing to the introduction of novel clones from a source
meant to mimic the bone marrow, and owing to interactions among the clones
present in the network (Farmer et al., 1986; De Boer & Perelson, 1991). In a second
approach put forward by Segel & Perelson (1988), and which we shall pursue here,
shape is described by a vector of real numbers and a set of partial integro-differential
equations in both shape and time variables determines the size of clonal populations.
By finite difference methods, the partial differential equations can be converted into
a set of ordinary differential equations. Thus, a discrete set of equations results but
these are different from those in the bitstring model in that they have a different
interaction kernel.
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It is conceivable that an adequate characterization of essential shape variables can
be accomplished by a relatively small number of measurements (Perelson & Oster,
1979). This would give a shape-space of some small finite dimension. Our earlier
work (Segel & Perelson, 1988) was confined to a one-dimensional (1-D) shape-space;
here we will extend this to a two-dimensional (2-D) shape-space. By contrast, in the
bitstring approach the shape-space is the /-dimensional hypercube, where 1 is the
number of bits in the string used to represent shape. As we demonstrate below a major
advantage of using a continuous shape-space is that standard analytical methods are
available for partially analyzing system behavior.

The model that we analyze here is the one of a sequence of models that we have
proposed, and studied extensively, in previous publications (De Boer, 1988; De Boer
& Hogeweg, 1989a-c; De Boer et al., 1990; De Boer & Perelson, 1991; Perelson &
Weisbuch, 1992; Weisbuch et al., 1990). For each B cell population, the model
incorporates one differential equation with terms corresponding to a constant source
of cells from the bone marrow, cell death, and proliferation in response to cell
activation. The most crucial feature of the model is that the degree of activation is
a log bell-shaped function of the total amount of stimulation a cell receives. Since a
bell-shaped function has a region in which it increases and a region in which it
decreases, the effect of increasing the stimulation can either be an increase or a
decrease in proliferation. A steady state exists in each of the two regions. We have
called these the immune state and the suppressed state, respectively. A third steady
state exists when the degree of stimulation is negligible. This virgin state, is charac-
terized by a balance between the source of cells from the bone marrow and the loss
of cells due to cell death.

Here we study this model in a shape-space setting. Our aim is to come to a better
understanding of repertoire development. The potential repertoire of our model
immune system is the entire shape-space. Owing to network interactions, clones in
some regions of the shape-space will be suppressed, some will be activated, and some
will hardly be stimulated by other shapes in the immune network. Accordingly, we
expect some spatial distribution of clone sizes throughout the network, where
"spatial" refers to shape-space. This distribution, together with the spatial distribu-
tion of the degree of stimulation, defines our immune repertoire. We will show that
the repertoire is very plastic in the sense that it can assume any of a large number
of distinct spatial distributions. Further, we analyze the onset of pattern formation
via linear stability theory. We find that the formation of patterns of the immune
repertoire does not require a major feature postulated by Segel & Perelson (1988),
inhibition and activation with different specificities.

We will first introduce the 1-D shape-space version of our model, and discuss its
three uniform equilibrium states. We analyze the stability properties of these three
states to both uniform and sinusoidal perturbations of small amplitude. We numeri-
cally study the model and then, based on our results, modify the model by introducing
density-dependent growth to give more realistic non-uniform patterns. We then ana-
lyze a 2-D version of the model using a 2-D lattice mapping. (Readers unfamiliar
with mathematical analysis may wish to skip the sections dealing with the stability
of the uniform steady states.)

.
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The most important immunological question that we address is whether or not the
network, in its shape-space setting, will be able to combine a functional idiotypic
network with a clonal organization of functionally disconnected antigen-reactive
clones. In two recent reviews, Coutinho (1989) and Holmberg et al. (1989) argue
that about 10-20% of clones form an idiotypic network. In their view, the other 80-
90% of clones are disconnected from the network and form a clonal compartment
of immunocompetent but resting lymphocytes that is responsible for immune
responses to foreign antigens. The network is thought to select which T and B cell
clones are expressed in an animal. This is what we call repertoire selection. In a shape-
space model, the question of finding a combination of network and independent
clonal organizations boils down to finding a mosaic of regions that are stimulated
by the network and regions that are hardly stimulated. We will show this to be
possible, but in our model the fraction of cells in each compartment does not agree
with the Coutinho-Holmberg estimates.

Two other important immunological questions that we focus on is the ability of
self-antigens to shape the repertoire of antibodies expressed within an animal, and
the degree of plasticity of possible repertoires. First, if the antigenic experience of an
animal is to be reflected in its immune repertoire, the immune system must be able
to maintain a large variety of different patterns of antibody expression. We show
that this is the case for our immune network model. Second, it appears that during
B cell development exposure to self-antigens can cause the deletion or inactivation
of self-reactive cells (cf. Goodnow et al., 1990). In addition to the deletion of single
clones, we show that network interactions can cause more global changes in the
pattern of antibodies that an animal expresses. Thus, repertoires can be determined
by interactions with both self- and foreign-antigens. This leads to the interesting
speculation that each animal's immune system may be different. If this is the case, it
may explain the observation that when immune responses are studied in inbred
strains of mice, which are supposedly identical, one still observes considerable indivi-
dual variability.

9

2. The One-dimensional Continuous Shape-space Model

2.1. FORMULATION

In principle our network model is composed of an infinite number of B cell and
corresponding antibody populations of different shapes that may be ordered in a
finite-dimensional shape-space. In order to facilitate analytic treatment we study a
simple version of the model, in which we do not differentiate between B cells and
free antibody, and in which we use a phenomenological log bell-shaped function to
summarize the chemistry involved in receptor crosslinking and subsequent B cell
activation. We have previously shown that more complex models that incorporate
antibodies and crusslinking chemistry have similar steady states but in some param-
eter regimes tend to have oscillatory and/or chaotic behavior (De Boer et al., 1990;
Perelson & Weisbuch, 1991). Similar results have also been obtained by Stewart &
Varela (1990) and Verela et al. (1988). Free antibody can be imagined as present, if
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one assumes that there is always a constant number of free antibodies per lympho-
cyte. Note, however, that we have shown before that this can be an unrealistic
assumption (De Boer & Perelson, 1991). An analysis with this assumption lifted has
been published elsewhere (see Segel & Pere !son, 1991).

We track the population levels b(x, t) at time t of B cells with receptors of shape
x. We mainly consider here the simplest case wherein x is a real number bounded
by the half-length, L, of shape-space, i.e. L ..x L. Later in the paper we examine
the 2-D case where a second variable y is introduced. Weisbuch (1990) and Weinand
(1990, 1991) have explicitly dealt with 2-D and 3-D shape-spaces; Percus (1988)
presents a model in which the dimension need not be specified. High-dimensional
models restricted to a Bethe lattice have also been presented by Percus (1989) and
Weisbuch et al. (1990). Recently, Stewart & Varela (1991) developed a 2-D shape-
space model resembling the one presented here. Their model is further addressed in
sections).

Writing b(x, t) as b, we propose as the fundamental population balance equation
of our model

Ob / aT= M + b[Pf(h) d].

Here M is the constant source of cells from the bone marrow, d is the per capita rate
of cell death, P is the maximum per capita rate of B cell proliferation, f(h) defines
the degree of activation, and h is the total stimulation that the population receives
from all other B cell populations in the shape-space. We will refer to h as the external
field or simply the field of the population. The model is non-dimensionalized by
scaling the time T to the rate at which B cells turn over:

()Nat= m + b[pf(h) 1], (1)

where t = Td, In= M Id, and p= P/d.
The most crucial feature of this model is the shape of the activation function f(h),

which is taken to be the biphasic dose-response function

h ( h h 02

01+1 02+11) 01+h 02+h'

where 02>> 0, (see Fig. 1). The first factor in f increases from 0 to 1, reaching its
half-maximal value at 01, the second factor decreases from 1 to 0, reaching its half-
maximal value at 02. For 02>> 01, the maximum 02/(A+ NI-0-2)2, is approximately
I. This maximum is attained at h = f6T2. Because 0 <f(h) <1, we derive from eqn
(1) that the B cells can maximally grow at a rate p 1. Thus, in order to allow for
net clonal expansion p must be greater than I. Since maximally stimulated cells divide
about once every 16 hr, and cells live a few days (e.g. d= 0-5 p= 2 is a typical
non-dimensional rate of proliferation.

Below the maximum off(h), increasing h increases f(h); we call this the stimulatory
regime. Above the maximum, increasing h decreases f(h); we call this the suppressive
regime. Plotted as a function of log h, the graph of f(h) is a bell-shaped curve (Fig.
1). An important argument for the use of a log-shaped function is that receptor

(2)1f(h) )
k

day-'),
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trig, Ln

in g
FIG. I. Graph of the bell-shaped proliferation function, f(h) given by eqn (2), vs. the logarithm of the

field h. Equilibria involving proliferation, i.e. the immune and suppressed state, are close to the inter-

sections of f(h) with the line y=p/2, see the text.

in h

crosslinking is involved in B cell activation. The fraction of cell surface receptors
crosslinked by a ligand when plotted against the logarithm of the ligand concentra-
tion is called a crosslinking curve. For bivalent ligands the crosslinking curve is bell-
shaped and symmetric around its maximum (Dembo & Goldstein, 1978; Perelson &

DeLisi, 1980; Perelson, 1984).

The field h(x; b) that is felt by B cells of shape x in the presence of a population
distribution b= b(x, I) determines the degree of cell stimulation. To specify the field,

we assume cells of shape x are mainly stimulated by cells of complementary or near-
complementary shape centered around .Z= x. For any shape x, let g(x, Z)b(.5?, t) d5e

be the total stimulation (or field), h, that B cells of shape x receive from B cells of
shapes between fe and where d5e is a small number. Then

h(x; g(x, t) d.
-L

(3)

As in Segel & Perelson (1988), we assume that the affinity or degree of interaction
between shapes x and S- decreases according to a Gaussian function g(x, 5c) of the

distance to the perfect match x = :

g(x, = G(2ir0-2) 112 exp [(x + V/2a2], (4)

In (4) G and a are constants determining the amplitude and width of the Gaussian,
respectively. If each shape is complementary to only to a small fraction of all possible
shapes, a«L. Because we can scale 01, and 02, we can set G= 1 without loss of

+ di,

h)=

Xs-)

f
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generality (De Boer & Perelson, 1991). This has the advantage that for L» a

g(x, 1) d.Z Ati . (5)
-L

For a multi-dimensional shape-space, we replace eqn (4) with

g(x, ics)= G(2na2)-II2 exp [(x +ii)2/2o-2],

where / is the dimension of the shape-space and x and are /-dimensional vectors.
The use of different variances in different shape-space directions is also possible in
this multi-dimensional model.

2.2. EQUILIBRIUM STATES

We have shown before (De Boer, 1988; Weisbuch et al., 1990) that whenever
m « 01« 02 then eqn (1) has three spatially uniform equilibria b(x, t)= b. We have
called these the virgin, the immune, and the suppressed states, respectively. By eqns
(3) and (5) the fields of the uniform states satisfy h(x; b)= b = constant, for all x.
Each of the three states has its own typical range of values of the field. We greatly
simplify our analysis by approximating f(h) differently in each of the three states.

The virgin state corresponds to a situation in which B cells are hardly stimulated.
This corresponds to the first region of the bell-shaped function where h « 01« 02 and

f(h) . (6a)
01

Recalling that for a uniform state, h = E, the equilibrium value, 6, of the virgin state
is then given by

with solutions

01, P= 0 = m+ 2

0 fb
b,

at

I 1 ± 4mp/ 01
2p/01

A necessary condition for having a virgin state is that ,/1 -41.7/ 0, is real, or

4mp< 01.

(6b)

(7)

Whenever eqn (7) holds, eqn (6b) yields two real positive solutions. The virgin state
corresponds to the smaller of the two, i.e. to b . (The solution b+ is close to 01 and
thus violates the condition h «01.) Choosing m« 01, we approximate ,./1 4mp/ 01
by its first order Taylor expansion, and obtain

m. (8)

Since we choose m« 01, eqn (6a) is a good approximation of eqn (2).

k

--zz

IL
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In the immune and the suppressed states B cells proliferate. Since a proliferating
population based upon eqn (1) expands mainly by cell division, and not by receiving
novel cells from the bone marrow, we neglect m and observe that to a good
approximation

RP( f(h))] =0, or f(h)=-1 , for E.> O.
P

(9)

For a clone in the immune state, further stimulation, i.e. a small increase of h,
increases the rate of proliferation. This corresponds to the increasing region of f(h)

where h < \ICII-Oi. If .10102<< 02, i.e. if ,A«,/(72, then 02/(02+ h) 7-t; 1. Thus, we
assume jij;«,A, and in the region m«h< .10-18-2<< 02, we approximate eqn (2) by

f(h)-
0 i +

h

h
.

Since h 5, with (10a) eqn (9) becomes

and hence

b 1

f(h)= ...- ,
01+h p

(10a)

(10b)

Note that because p>l, 5> 0.
When the system is in a suppressed state, further stimulation, i.e. an increase of

h, decreases the rate of proliferation. This corresponds to the decreasing region of

f(h) where h > ,ITIT 2. Therefore, by arguments similar to those given above, we

approximate eqn (2) by

02

02+6.

Since h=E., eqn (9) becomes

f(h)= 02 _--
I

,
02+b p

and hence

(11a)

(11b)

Because p-1;,-,1, the B cell population levels in the uniform immune state, eqn
(10b) and the uniform suppressed state, eqn (11b), are located around the respective
half-saturation constants, 01 and 02, of the two saturation functions that make up

f(h).

f(b)=

F=(p-1)02.

01

P-1
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2.3. STABILITY TO UNIFORM PERTURBATIONS

The linear stability analysis that we perform below follows that given in Segel &
Perelson (1988) for a similar model having only one uniform equilibrium state.
Treating each of our three equilibria separately, we analyze stability first to uniform
and then to sinusoidal perturbations.

We first examine the effect of a small perturbation b'(t) that is applied to each B
cell population. For each of the equilibria

Writing

we find that

0= m+ b[pf(5) 1]. (12)

b(r)= + (13)

0(5+ b') ab'
m(b+ b')[pfC 6 + b') 1].

at at
(14)

Upon substituting the first order Taylor expansion of f (E + b'), employing eqn (12),
and neglecting the second-order terms in b' we obtain

ab'
blPf(E)+ FPf 'UT) 1],

where f'(5) denotes the derivative of f(h) with respect to h evaluated at h= F. For
stability we require db' < 0 when b' > 0, i.e.

pf (5) + tipf'(5) 1 < 0. (15)

Employing our approximations (6a), (10a) and (11a) for the virgin, immune and
suppressed states we obtain, respectively, the following versions of the stability condi-
tion (15):

2pm < 01,
P

(16a, b, c)

For the virgin state, stability condition (16a) is even less restrictive than condition
eqn (7) for having a virgin state. Since p2--2, and m« 91 both conditions will be
satisfied. We conclude that the virgin state is stable to uniform perturbations. For
the immune state, since p> 1 the stability condition (16b) is never satisfied, so that
the immune state is unstable to uniform perturbations. For the suppressed state,
since p> 1 the stability condition (16c) is always satisfied. The stability results for

gt

r-I -1<0' P <0.

-
= =

(It
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TABLE I

Stability properties of the uniform steady states
Stability to perturbation Most dangerous

State Uniform Sinusoidal perturbation

Virgin Stable Stable
Immune Unstable Unstable cos kx

Suppressed Stable Unstable sin kx

uniform perturbations are summarized in Table I. The pattern of three alternating
stable and unstable-steady states is of course standard for an equation of the form

abli-it= cubic in b

that governs spatially uniform populations h. But it is advantageous to perform the
simple calculation given above to obtain the growth and decay rates, for they form
another point of comparison with the numerical analysis.

2.4. STABILITY TO SINUSOIDAL PERTURBATIONS

Consider a perturbation that is exponential in time and sinusoidal in space. For
the time being consider a shape-space of infinite domain. We search for perturbations
that can destabilize the uniform steady states. As is conventional, we examine

ett + ilcx et-ikx, (17)

where the asterisk denotes the complex conjugate, and the real number k is the
wavenumber of the perturbation. In highor dimensions, we use a similar perturbation

but replace kx by k x, where k and x are vectors. We assume k 00, so that the
perturbation is sinusoidal and leaves the average value of b unchanged. Equation
(17) is a corrected version of the corresponding eqn (A.11) in Segel & Perelson
(1988). Jaeger (Weizmann Institute) pointed out the error to us, and put forward a
corrected proof that A is real, which is incorporated into the stability analysis given

below.
Employing eqns (3) and (17), and redefining the Gaussian function as

we find that the perturbation of the field h due to b' is

h(b') =
-X

g(x+.k)[13 fl* er- dis.

With the substitution z =x we obtain

h(b') =
5

g(z)[13 eAr+ e'] dz
R(0[1:3 + eA.,+ikx]. (18a)

*

f co el''+

+ ie

13*

ear /3*

h'(x, 1)=13

g(x+
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Here k is the Fourier transform

,e(k)= ell"g(z) dz =
00,2/2

In analogy to eqns (12-14) we write

0(5+ b')
m+ (g.+ b')[pf(fg(x+ X')(E+ b' dX)- 1].

at at

Employing eqn (5) we reshuffle this into

--atm+ (6 + b')[pf (6+ g(x + clic)-

which, upon expanding f(.) around 6 yields

797=m+ (b + b')[pf(b)+pf'(6) g(x+ ii)1,13?) die- 11

305

(18b)

Upon neglecting the second-order term of b', and using eqn (12), this can be rewritten
as

a7=b1pf(5) + Epf g(x + 1)b'(1) d.

Employing eqns (17) and (18a), we find that

+ ikx Ar eAt- ikx eAt + fkx eA.1-11(pf (5)

+113 ikx et + iklEpf (F),(k).

We write A= A, + 13 = fir+ Of. If A.,0 0, in (19) the coefficients of etlit and
must both vanish. This gives

(p./(5)- OW ex 5pf'(5),l(k);.3 e-ikx .-=- 0,

together with its complex conjugate. It follows that (for p#0), A= pf(5)- 1, which
contradicts A, #0. Hence, A must be real. One can therefore cancel e and et in eqn
(19), wherein for k the coefficient of exp (ikx) must vanish separately from the
coefficient of exp (-ikx). Thus,

P[P1(-6)- I A] fi*6Pf'(5),i(k)= 0, (20)

together with its complex conjugate. Taking the real and imaginary parts of eqn (20)
we obtain

6,[1i(6)- 1 A+ EPf VOg(k)]= 0, P,[pf(6)- Fpf'(5)i(k)l= O.

-- CO

Oh'

1],

ab'

at

+ = bq I)

(19)

iA.,; e-tAl`

#0,

1 A

ab'

at

at

ei.f

P*

[A

f

Ad + P1

+
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Non-trivial solutions result when

/3,= 0, 0,0o, A.=A and firO 0, f3,= 0, A= A+, (21)

where

A.± = pf(5)-1±Epf'(b)e-k472/2, k #0, (22)

and eqn (19) has been used to substitute for ek). We now use this result, i.e. the
values of A..4- and A-, to examine the stability of the virgin, immune, and suppressed
steady states to sinusoidal perturbations.

In the virgin state, b;z:m, we approximate eqn (2) by eqn (6a), obtaining

.1(5)=

Substitutiing this into eqn (22) yields

A,±
I

Pm Pm -k2a2/2e (23)
01 0,

For m« 01, the term before the ± symbol is negative. Instability, i.e. A> 0, can
therefore only be obtained for A'. The largest contribution of the term following the
± symbol in eqn (23) is obtained when e-k2°.2/2 reaches its maximal value, which
equals unity for k =0. Hence, we obtain as a sufficient condition for stability

(24a)
01

This condition is equal to the requirement for stability of the virgin state to a uniform
perturbation [i.e. eqn (16a)] and is satisfied as long as the virgin state exists. We
conclude that the virgin state is stable to both uniform and sinusoidal perturbations

(see Table 1).
In the immune state, 6= 01/(p-1), we neglect m and approximate eqn (2) by eqn

(10a), i.e.

1 e, (p 1)2_ and r
01+ b p (01+ 0,p2

Hence, eqn (22) simplifies into

±p 1 e-1,20-2/2.

Because p> 1, A+ > 0 and the immune state is unstable to sinusoidal perturbations.
Substituting A.= A+ , )6,00 and /3, = 0, into eqn (17) yields

b'(x, t)= Alex + C`kx1= 213, ev, cos kx,

and hence destabilizing perturbations are of the form cos kx (see Table 1).

(24b)

6 _ 2b)

A+ =

1

.f46)=
01

.

_

1 < 0.



SHAPE-SPACE MODELS OF THE IMMUNE SYSTEM 307

In the suppressed state, Rp-1)02, we neglect m and approximate eqn (2) by eqn
(11a), i.e.

-f(b)- 02 1 02 1_- and f '(E)=02+b p (02+ 6)2 10202.

Hence eqn (22) simplifies into

A.± I k2a2/2
(24c)

Since p> I, 2 >0 and the suppressed state is unstable to sinusoidal perturbations.
Substitution of /3,= 0 and /3,0 0, into eqn (17) yields

b, e-Jap,i[eikx _2fl CI' sin kx,

and hence destablishing perturbations are of the form sin kx (see Table 1).
Small sinusoidal perturbations of the immune state and suppressed state will both

grow most rapidly when exp (-k2a2/2) is maximal, i.e. for an infinite wavelength
k = . However, the states differ with respect to the form of the "most dangerous"
sinusoidal perturbation, i.e. whether it is sin kx or cos kx. It is important to realize
that, with respect to x= 0, perturbations of the form sin x are asymmetric in the
shape-space, whereas those of the form cos x are symmetric. Thus, if a perturbation
of the form sin x increases certain populations around shape x, the complementary
shapes around -x decrease. Because these complementary shapes comprise the field
h(x), perturbations of the form sin kx induce an opposite change in each population
and its field. Conversely, since perturbations of the form cos kx are symmetric around
x =0, cosinusoidal perturbations causes both populations and fields to change in the
same direction.

For the immune state, in which cos kx is most dangerous, this means that any
increased population gains an increased field. Since the population is in the stimula-
tory regime, this causes the increased populations to increase further. Similarly, any
decreased population will decrease. Additionally, as k 0, a cos kx perturbation
tends to increase all shapes uniformly. Indeed, as k 0 the requirement for stability
to cosinusoidal perturbations [see eqn (24b)] becomes identical to that for stability
to uniform perturbations, eqn (16b).

For the suppressed state, in which the asymmetric perturbation sin kx is destabiliz-
ing, this means that any increased population gains a decreased field. Since the
population is in the suppressive regime, this causes the increased populations to
increase further. Similarly, any decreased population will decrease. Additionally, as
k 0, sin kx perturbs all shapes of equal sign in the same direction. Thus, one side
of the shape-space populations increases, while on the other side populations
decrease. Since the changes on the positive side of the shape-space will reinforce the
rate of change on the negative side of shape-space, and vice versa, such a perturbation
grows rapidly.

It is easy to extend our stability results to the case where shape-space is confined
to the interval -L with periodic boundary conditions. In considering the

TP
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infinite domain, for example, destabilizing perturbations to the immune state take
the form of cos kx for any positive k. Now k is restricted to the values nit / L, where
n is a positive integer.

3. A Discrete One-dimensional Shape-space

3.1. FORMULATION

So far in our analysis we have treated shape-space as if it were continuous. In
order to numerically solve eqns (1-5) that determine our model we need to discretize
the problem. Although this can be done with any of a number of well-studied proce-
dures, we prefer to describe a discrete formulation of our model that can stand on
its own as an immune network model. This is the same philosophy that underlies the
numerical work in Segel & Perelson (1988).

In the discrete formulation of the one-dimensional problem, the shape-space is
divided into subintervals of width A. Let bi(t)A represent the population size of a set
of clones of related shape centered around b(x, t), where x = iA, i= N, . . . , N. Let
the interval of shapes represented by b, be symmetrically distributed around b(x, t),
i.e. have width A/2 on each side of b(x, t). Thus, the entire shape-space is now
defined on L A/2 < x < L+ A/2. Since there are 2N+ 1 intervals, each of width A,
L= NA. If periodic boundary conditions are used, then the extension of shape-space
beyond L is not needed. In this case, we set b_Ar= bw and hence we map the region
of width A/2 to the left of L into the region of width A/2 to the left of L, and
similarly for the regions to the right of L and L. Despite the apparent complexity,
we choose this symmetric representation so that 60 represents clones distributed
around the origin of shape-space.

In the discrete representation,

MO= b(x,, t)A, i= N, . . . , N,

where b(x, t) is a density having units of number/unit length of shape, whereas h,

has units of number. In this formulation we can either view the b, as representing
"superclones", i.e. a set of clones of sufficiently similar shape that their behavior can
not be distinguished, or, if we have a fine enough grid, as the set of all possible clones

in the animal.
We now construct a set of discrete equations that are the counterparts of eqns (1-

5). Thus,

db,/dt = b,[pf(hi) 1], (25a)

where in; is the rate of supply of clones of type i. The activation function f( ) is still
given by eqn (2). The counterpart of eqn (3) specifying the field is

hi= E g(i, j)k(t)A.
N

(25b)
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Because we have discretized shape-space, the Gaussian now becomes

D.G(2ga2)-1 /2 D2A2/2,72]. (25c)

We employ periodic boundary conditions, so that b_N=bN, and our system con-
sists of a set of 2N ordinary differential equations. If the tails of the Gaussian reach
the boundaries we wrap them around the domain, allowing the distance in the
Gaussian to increase. Thus, the field becomes

CO

hi= E g(i,j)k(t)A, (25d)

where b, is assumed to be 2N periodic, i.e. b,=k+21v=bj-2N.
In the discrete approach one can view the system (25a) of differential equations

as forming the true model, which describes the interactions among a set of 2N
clones. The continuous system of partial differential equations then is an approximate
description and presumably a good one when N is large. An alternative approach is
to view the partial differential equations as the true model. Then any of a number
of discretizations are possible, some more accurate then the simple trapezoidal rule
approximation for the integral in eqn (25b).

3.2. SIMULATION OF THE DISCRETE MODEL

We simulated the discrete model by numerical integration. Since the space is
sampled according to the Gaussian function g(.), and because A defines the step size
in space, we define n a/A, so that n is the number of intervals used to approximate
one standard deviation of the Gaussian. [The paper of Weisbuch (1990) can be
regarded as a study of situations in which a < A.] We typically choose n=5, and test
the accuracy of the approximation by increasing n, which should not affect the
results. With no loss of generality the size, L= NA, of the shape-space is chosen as
L=1. (This can be accomplished by introducing a dimensionless shape variable
x/ L.) The number of differential equations needed, 2N, is then determined by
N= L/ A= nLla. Increasing the accuracy of the spatial approximation, i.e. increasing
n, thus increases the number of differential equations.

In order to compare our analytic derivations with our numerical analysis, and
hence to check both, we simulated this discrete system with periodic boundary condi-
tions. In the numerical approximation the maximum wavelength is 2L. Owing to the
periodic boundary conditions the wave has to repeat itself beyond L and L. First,
for the virgin state, b=m, we confirmed the stability to both uniform and sinusoidal
perturbations (not shown). Second, for the immune state, we showed that a uniform
perturbation that increases the population size of clones that were initially at the
immune state, b= 01, causes all of the clones to increase in size until the suppressed
state, 6=02, is attained. Conversely, a uniform negative perturbation, that decreases
the population size of all clones at the immune state, causes clones to decrease
uniformly in size until the virgin state, b=m, is attained (not shown).

f-



310 R. J. DE BOER ET AL.

Recall that the immune state is unstable to perturbations of the form cos kx,
whereas the suppressed state is unstable to perturbations of the form sin kx. Figure
2(a) shows that a perturbation of the immune state of the form sin irx has a tendency

to damp out. However, due to non-linear effects the network fails to return to the
immune state, but attains the uniform virgin state. Figure 2(b) shows a perturbation
of the immune state of the form cos irx. The perturbation increases in amplitude,
spreads, and approaches the uniform suppressed state b = 02, from where it grows

(d)

Fic. 2. Development of sinusoidal perturbations to the uniform immune and the uniform suppressed

state. Solution of the system (25) with periodic boundary conditions. Parameters: in,=I,p=
2, 0, =102, 02 = 1 04, L=1, a = 0.045, n= 5, A=0.009, N=112. The final distribution is shown as a heavy

line. (a) A perturbation around the immune state, 5=100, of the form 50 sin xx/L, damps out during

the first few time steps. Because the increased populations decrease more rapidly than the decreased

populations increase, the increased populations receive insufficient stimulation at the time they attain the

immune state. Hence, they decrease further, and the system finally attains the virgin state h=m. (b) A
perturbation around the immune state, h= 100, of the form 10 cos xir/L, increases and spreads through

the shape-space. In the middle region the uniform suppressed state is attained. The network leaves the

suppressed state via a distribution of the form sin x. (c) A perturbation around the suppressed state b=
104 of the form 10 sin xx/L, grows rapidly. The network finally approaches a pattern with narrow but

high peaks. (d) A perturbation around the suppressed state h= 10 of the form 10 cos xx/L damps out

and returns to the uniform suppressed state.

(a)

sr
8

L < A 5_ L.
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further in the form of sin xx. As predicted, the suppressed state was found stable to
uniform perturbations. Figure 2(c) shows the effects of a perturbation of the form
sin Irx to the suppressed state b= 02. The perturbation grows monotonically until
non-linear effects come into play. Conversely, a perturbation of the form cos irx
decreases in amplitude [Fig. 2(d)]. These observations confirm our analytic results.

The simulations displayed in Fig. 2(b) and (c) did not attain an equilibrium
distribution. The simulations were terminated since some of the populations grow
very large by self-stimulation. This is illustrated in Fig. 3(a), which displays the
distribution of clones and fields at t = 50. These results are attained by continuation

12

6

.p 0

9. 12
(c

15

7.5

FIG. 3. The distribution of the B cell populations (light lines) and of the fields (heavy lines) that are
attained long after a destabilizing perturbation (h' = 10 sin Aur / L) of the suppressed state. Periodic bound-
ary conditions with parameters as in Fig. 2. (a) The distribution at t = 50 on a logarithmic scale ranging
to 10" cells. The two, unrealistically large, peaks are sustained through self-stimulation. The correspond-
ing peaks in the fields reach the opposite part of the shape-space by crossing at x =0 and x = L. The low
affinity that is typical of the tail of the Gaussian distribution is counterbalanced by a very large population
size. (b) The time evolution of these spiky patterns on a logarithmic scale ranging to 10" cells. The B cell
distributions are displayed at t =50, 100, 150. 200. (c) As in (a) but for fixed boundary conditions. Now
the shape-space is dominated by a single large peak. which is a low affinity autobody. (d) As in (b) but
for fixed boundary conditions.

fff
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of the simulation shown in Fig. 2(c). Figure 3(a) displays two peaks of about 10"

cells, having a stimulatory field value. Closer inspection shows that the field of each

peak is comprised of a contribution from the tail of the Gaussian centered around
the shape complementary to that peak. In other words, the clones stimulate them-

selves. To see how this works, consider the effect of a single clone at x= xl , where

xi > 0. Thus, let

b(x)= b18(x xi),

where 8 denotes the delta function. Then, by eqn (3),

h(y)= g(x + y)b(x) dx= 6, g(x, + y). (25e)

The field is maximal at y= x, and falls towards zero as y approaches xl . If, at

some value 9, h(9)/7 then a clone at 9 will be maximally stimulated. If

this maximal stimulation occurs at 9= xi , then the clone at xf will stimulate itself

maximally. This will occur if big(2x,)z-NIC),-(12 or xl = aV2 log q/2, where

=b,/,./27ra20,02. Thus, xi is of order a, i.e. near the origin. Notice that the larger

bi is, the further from the origin is the clone that maximally stimulates itself. Thus

we expect the peak near the origin to move gradually to the right as it grows, which

in fact is observed in the simulations.
Self-stimulation of clones near the origin makes sense because shapes near zero

are supposed to match themselves closely. B cells clones that stimulate themselves

strongly have been discovered in mice and are called autobodies (Kang & Köhler,

1986a, b). In our model a low affinity autobody can grow large enough to sustain its

own proliferation, andas a side effectdominate a large proportion of the shape-

space. The other peak in Fig. 3(a) stimulates itself due to the periodic boundary

condition. In Fig. 3(b) we continue the stimulation further, showing the B cell

distribution at t= 50, 100, 150, 200. This shows that the peaks keep on increasing,

moving further outwards into the tail of the Gaussian distribution. Thepopulation

levels are unrealistically high, and we end up (at t = 200), with a repertoire containing

only two species. In Fig. 3(c)--(d) we repeat the simulations for a system wherein

b(x, 0 when x is outside the interval [L, U. Under these conditions there is no

contribution to the field from clones outside the interval. We term this system as one

with fixed boundaries. We now only find the autobody peak, but its unrealistic

increase to extremely large populations is the same.

In reality shape-spaces are neither infinite nor periodic. Having confirmed our
analytic derivations, which were done for an infinite domain, it seems more realistic

to abandon the periodic boundary conditions and assume fixed boundaries for our

further exploratory numerical work. Fixed boundaries only affect the field of the

clones close to the boundaries. For instance, in a uniform state, b = 5, the field of the

clone in the middle still approximates h b, but shapes at the boundary have a field

that is closer to h = 5/2 than to h= k This non-uniform distribution of the field alters

the uniform suppressed state 5=(p 1)02, but the alteration is confined to the

vicinity of the boundaries. Because the suppressed state is unstable to sinusoidal

si
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perturbations, and because completely uniform perturbations are unrealistic anyway,
this hardly changes the interpretation of our results.

3.3. THE PROBLEM OF LARGE POPULATION SIZES

Assuming fixed boundaries eliminates the possibility of self-stimulation via the
edges of the shape-space, but fails to solve the problem raised by the autobodies
centered around x=0. The reason why a small degree of self-stimulation causes
populations to be so large can be understood by writing the ordinary differential
equation

db/dt=m + b[pf(eb) 11, (26a)

where b(t) is the population at time t of an autobody of shape xl h= eb defines the
degree of self stimulation, and, from the material under eqn (25e), e=g(2x1). In
analogy with the derivation of the three uniform equilibrium states, i.e. eqns (8),
(10b), and (11 b), we now obtain

=11
0, (p 1)02F1, (26b)e(p-1)'

for the virgin, the immune, and the suppressed state of the autobody, respectively.
As in the stability analysis for uniform perturbations, one can show that the virgin
and the suppressed state are stable, and that the immune state is unstable. Thus, we
expect that an autobody, once stimulated, will grow sufficiently large so that it
ultimately suppresses itself. The counterintuitive property of the self stimulation is
that a decrease of the degree or self stimulation, E, increases the equilibrium popula-
tion in both the immune and the suppressed states. Instead of interactions fading
away at the tails of the Gaussian distributions they may become more pronounced!
We consider this point further in section 5.

A simple solution to the problem of large population sizes is to incorporate a self-
limiting term in the growth equation for each population. Thus, we multiply the
maximum proliferation rate p by the density dependent function r(b), so that eqn
(1) is replaced by

01) 1 = m + b[pf (h)r(b) 1], (26c)

where r(b) is

03r(b)
03+ b

Instead of r(b) a variety of other functions could be used. For example, Segel &
Perelson (1988) suggested e-lh. The logistic type term, (1 h/bma,i), could also be
used. We prefer r(b) for two reasons. First, unlike the logistic term there is no strict
maximum population size. Populations can get to be larger than 03 but not much
larger. Thus, the limit to population growth is somewhat elastic. This is more akin
to what happens in the immune system, where the total number of lymphocytes is

k= b-
E
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controlled but can still rise during infections. Additionally, because a logistic term
allows for negative growth rates, it requires the assumption that above the maximum
population size stimulated clones decay more rapidly than non-stimulated clones.
This need not be the case in the immune system. As to the exponential term, it also
gives rise to an elastic limit, but it has the disadvantage that to find the steady-
state population size one needs to solve a transcendental equation rather than a
polynomial.

Incorporating the density-dependent function r(b) into the model will have no
effect on the stability results as long as r(b) only plays a role at population densities
that are much larger than the three equilibrium population levels b=m, b=
01/(p 1), and b= (p 1)02. The equilibrium value that is attained by a population,
b, limited by the growth limitation only, i.e. for f(h) 1, is

03 _1
03+ b p'

which is of order 03. Setting 03»02» 01»ni, ensures that r(b).--:.: I in the virgin,
immune and suppressed equilibrium states. Whenever r(b), I it can be omitted from
eqn (26c), reducing it to eqn (1), that we have used for the stability analysis.

One can also show formally that adding r(b) to the model does not add new
uniform equilibrium states. Consider a region where r(b) plays a functional role, i.e.
let b a uniform B cell population of order 03. Because h= b= 03» 02» 01,

02
and 0.

0 14- h 02+1i

As a result, f(h)0, However, if f(h)0, eqn (26a) reduces to

Oh
In b,

at

which has the virgin state, b=m, as the only equilibrium solution. Since
m« 01« 02« 03, b is not of order 03, which contradicts our assumption. Hence,
besides the virgin, immune and suppressed states, there is no additional uniform
equilibrium in the region where b» 02.

hence 6= (p 1)03, (26d)

3.4. PLASTICITY

In Fig. 4 we show the time evolution of a network incorporating the self-limitation
r(b) with 03= 106. The variance is equal to that studied in Figs 2 and 3, i.e. a =
0-045. As a non-uniform initial condition, we now assign to each population a
value that is randomly distributed around the suppressed state with 10% standard
deviation. The main difference with the results shown in Figs 2 and 3 is that an
equilibrium distribution is now attained. In the equilibrium some populations are
close to the maximum 03. while other populations attain values around the immune
and suppressed states. As was to be expected, the autobody close to the origin x =
0 grows to the maximum level. One can calculate the affinity at which the autobody

Ii
I -^4
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(a) (b

x
FIG. 4. Time evolution of a network governed by eqn (26c) with fixed boundaries. Parameters as in

Fig. 2 except 03=106. In the initial state populations are randomly distributed around 02 with 10%
standard deviation. The B cell distributions attained at t= 0, 5, 10 are shown in (a), those attained at 1--
15, 20, 25 are shown in (b).
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will be located. From eqn (26a), in order to stimulate itself 01 <rb< 02. From (26c),
b(p-1)03. Since maximal growth is attained at eb =,/0,02, the autobody population
is expected to be centered around

(p 1)03'

which for our parameters is E= 103/106= 10-3. Further, since E=g(2x1), we find for
the parameters in Fig. 4, xl = 0.095.

In Fig. 5 we display a number of different equilibrium distributions as a function
of the standard deviation a. (Note that A and N vary with a, but that this should
not affect the results.) The main result is that the smaller the variance the more peaks
there are in the repertoire. Interestingly, we find an organization that goes beyond
the level of individual peaks. We find clusters of clones that are all distributed around
either the immune or the suppressed state. The size of the clusters is much larger
than the width of the Gaussian. The entire cluster interacts with another cluster at
the opposite part of the shape-space. We may thus speak of a cluster of idiotypes
and a cluster of anti-idiotypes. If the idiotypic cluster is in the immune state, the
anti-idiotype cluster is in the suppressed state (and vice versa). Within each cluster
we find an array of peaks and valleys of clone sizes distributed around the average
state. Clones in interacting clusters behave in a co-ordinated way. While the network
is slowly attaining an equilibrium distribution, idiotypic and anti-idiotypic clusters
oscillate as if they were two interacting antibody species (not shown).

We have noted earlier in the bitstring models that clones may organize into larger
units that have similar properties in the network (De Boer & Perelson, 1991). The
present results suggests that these clusters may be of any size [see e.g. Figs 5(a) and
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( c

FIG. 5. The distributions of B cell population sizes (light lines) and fields (heavy lines) for the network
of Fig. 4, showing how the results depend on the range of interaction in shape-space, i.e. on a. Parameters
as in Fig. 2 except 0, = 106. Displayed is the equilibrium repertoire attained at t = 1000. (a) a = 0.016,
A = 0.003,N=316. (b) cr = 0.022, A =0,004, N=224. (c) a = 0.032, A =0.006, N= 158. (d) = 0.045, A=
0-009, N=112. The size of a is indicated by a heawy horizontal line running from a to a at the top of
the figure.

6]. An interesting implication is that one should be able to formulate a model in
terms of interactions between clusters of clones.

For a =0.016, we display in Fig. 6 two different equilibrium distributions. The
only difference between Figs 5(a), 6(a) and (b) is the (random) initial condition.
Varying only the random number seed used to generate the initial random distribu-
tion, we have simulated a total of ten of these networks. Each of these attained a
different equilibrium distribution. The distribution of antibodies present in an animal
is called its repertoire. We conclude that the immune repertoire of this shape-space
model has a high degree of plasticity. The immunological implication of this is that
external influences, such as self or foreign antigens, may easily influence the repertoire
of the network. One common feature of all the repertoires that are attained is the
large autobody located around the origin of the shape-space.
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FIG. 6. Steady-state B cell population distributions for the model studied in Fig. 5(a). Parameters as
in Fig. 5 except a =0.016, A=0.003, N= 316. (a) and (b) differ from Fig. 5(a) only in the seed of the
random number generator used to generate the initial population distribution. (c) and (d) show the same
networks as (a) and (b) but with three self antigens located at x= 0.20, 0.21, 0.33 (arrows).

3.5. SELF ANTIGENS

Coutinho (1989) and Holmberg et al. (1989) argue that the interaction between
the environment of self-antigens and the developing immune network determines
repertoire selection. Having found considerable plasticity in potential repertoires, we
indeed expect that self-antigens will influence the selection of the actual repertoire.
We now investigate this matter.

Within the shape-space framework, any particular antigen will also have a shape
x, where -L<x<L, and its concentration a(x) will influence the field of complemen-
tary B cell clones. Complete incorporation of antigen would modify eqn (3) into

h(x, b) = g(x, t)+ a(.Z' , I)] dZ, (27)
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and would require an additional equation for a specifying antigen dynamics. For
self-antigens, which we expect to be present at constant concentration, so that Oa/
01=0, no new equation need be added. Further, self-antigens are thought to induce
tolerance or non-responsiveness in clones that recognize them (cf. Goodnow et al.,
1988, 1990). To model this, for any self antigen of shape x we eliminate clones of
shapes in the range (x a, x+ a). Clones within this region are deleted from the
repertoire by omitting the source from the bone marrow (i.e. tn,= 0). Thus, tolerance
induces holes of a width 2cr in the repertoire. In Fig. 6(c) and (d) we show the same
networks with the same initial conditions as the ones shown in Fig. 6(a) and (b),
respectively, but in the presence of three randomly chosen self antigens located at
x = 0.20, 0.21, 0-33. Because the repertoires in Fig. 6(a) and (b) differ from those in
Fig. 6(c) and (d), we conclude that the self antigens do influence repertoire selection.
Depending on how the deleted clones fit in the repertoire, this difference may either
be substantial, as between Fig. 6(a) and (c), or may be minor, as betwen Fig.
6(b) and (d). Additionally, because the same three self-antigens select the different
repertoires in Fig. 6(c)-(d), we conclude that even a self-referential repertoire may
be sufficiently plastic to be able to reflect further environmental differences.

We have also studied the response to foreign antigens by implementing eqn (27).
If an antigen is introduced in a stimulatory concentration, and contains sufficiently
many epitopes (i.e. different shapes), it modifies the repertoire (not shown). Cout-
inho's and Holmberg's view is that immune responses to antigens do not come from
the network but stem from the clonally organized compartment of the immune
system. We show below that some idiotypes remain functionally disconnected from
the network. Such shapes may therefore account for an immune response typical of a
clonally organized immune system. Interestingly, whenever perturbations by antigens
modify the repertoire, the disconnected shapes may become functionally connected
to the network. This may account for a form of memory (Coutinho, 1989; De Boer
& Perelson, 1991).

3.6. CLONAL ORGANIZATION

The question of whether or not the immune system combines a functional idiotypic
network with a set of clones functionally disconnected from the network can be
addressed by searching for regions in shape-space in which both the field and the B
cell populations are small, indicating that B cells exist in the virgin state. Such cells
would not be stimulated by the network and hence would be available to respond to
antigen as perceived in the classical picture of clonal selection theory.

Virgin regions exist in the repertoires shown in Figs 2-6. They tend to be located
adjacent to the high peaks (of order 03) in the repertoire. The mere existence of these
"virgin" regions fails to provide a conclusive answer to our question about the
organization of the immune system, because the virgin regions occupy only a small
proportion of the shape-space. We believe this may be an artifact due to the low
dimensionality of the shape-space. Below, this question is addressed further with a
2-D shape-space model.
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4. 2-D Shape-space--A Lattice Model

4.1. FURTHER SIMPLIFICATION

As a first step toward examining higher dimensional shape spaces, we shall consider
a 2-D shape-space. The calculations required are considerably more time consuming
than for the 1-D case, so that it is expedient to simplify our model. To this end we
simplify eqn (1) by setting m=0. (Previously we assumed that m« 01.) Thus, B cell
dynamics are now regarded as governed by

1 ab
[h(x; b)] 1. (28a)

b at

Changing variables to B= In b, we obtain

OBat=pf [h(x; B)] 1, (28b)

where for each shape x
rL

B)=h(x; g(x, ei" a.
-L

Changing to logarithmic variables has the advantage that the variation in the rate
of increase of each population now cannot be large, for

aB
1 1.

at

Since (28b) is much less stiff than (28a), we can simplify eqn (28b) into the mapping

B(x, t +1)= B(x, t)+ pf [h(x; B)] 1, (28c)

which is equivalent to using an Euler integration method with step size one.
We now generalize our considerations to a 2-D lattice mapping with shape vari-

ables x and y that are integers, N<x, y<N. We propose a circular shape-space,
i.e. one that is bounded by x2+ y2< N2. (The rationale for this is that shapes with
extreme values of both x and y should be rare.) The field is now given by

h(x, y; B) = A2 E g(x, y, j)e8("1), x2 + y2 N2. (29)
i,,e

y)2 n2, i2 +./2In (29), C(x, y) {i,jI(i+ x)2 is the portion of the
circle centered at (x, -y) with radius n that lies within the circular shape space of
radius N. The function g(x, y, j) is the two-dimensional Gaussian

g(x, y, i,j)= (2if a2)-' exp {A2Rx 02+ ti)1/2a2) (30)

Note that (29) incorporates fixed boundary conditions: the clones outside x2

N2 make no contribution to any of the fields.

'i),

1 <--<p

<N2,

Ot
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To complete our model at this stage, the mapping (28c) is made two-dimensional.
Moreover, we require that populations B(x, y) never become smaller than zero (note

that B=0 corresponds to b = 1, i.e. to one B cell). This yields

B(x, y, t + 1)= max [0, B(x, y, t)+ pf[h(x, y; B)] 1],

4.3. THE 2-D LATTICE MAPPING

x2 + y2 N2. (31)

The standard way of formulating a discrete time lattice model is to develop transi-
tion rules that depend on some finite (and usually local) neighborhood of each cell

in the lattice. The fact that we do not consider a standard local neighborhood,
but instead the neighborhood around the cell having complementary co-ordinates,
introduces non-locality in the lattice. Hence, processes in one region in the lattice
influence processes in other distant regions.

Since the model of (29-31) is defined in terms of an infinite Gaussian function, we
introduce a cut-off point below which interactions are assumed negligible. To imple-

ment the cut-off, we truncate the 2-D Gaussian so that terms with amplitude below
10-3 are set to zero. This implies that the field is non-zero only over a neighborhood
of a certain radius. By eqn (30) this radius depends on the parameters a and A.

The introduction of an affinity cut-off seems realistic because interactions at affini-

ties below 104 rvi-I or 5 x 104 N4-1 do not seem to lead to B cell stimulation (Fish et
al., 1989; Riley & Klinman, 1986; Klinman, 1972). Additionally, we have seen in

eqns (25e-26a) that the minimal affinity E limits the maximal size that each individual
population can attain. Thus an affinity cut-off of E= 10-3, defining the smallest
possible self-stimulation, sets the maximum self-stimulatory population to roughly

02/ 6=107. Since the maximum population size and the minimum affinity are coupled

this way, we seem to have two choices for preventing populations growing extremely
large. The most natural choice in the lattice mapping seems to be a finite neighbor-
hood. The most natural choice in the discrete approximation to the continuous PDE
model seems to be the maximum population size. See Appendix for some technical

subtleties that arise because we have set m=0.
We have studied the lattice mapping forN A = 0.02, (L=1), p= 2, 01= 102,

02= 104, and several values of a. Figures 7-9 display the distribution of clone and
field sizes that were attained after 500 time steps for a = 0-022, 0.031, 0.063. The

radius of the circular neighborhood was n=4, 5, 8 in these three cases, respectively.

At t= 0 each square in the lattice was assigned a random value distributed around

the maximum of the bell shaped function, i.e. B In ,16-A, with 10% standard
deviation. At each location (x, y) the gray scale indicates the size of the clone B(x, y)

(left panels) and the size of the field In h(x, y) (right panels). The gray scales displayed

in Figs 7-9 display roughly circular patterns. The patterns are reminiscent of those
typically found in reaction-diffusion systems. Were we to use the standard square
local neighborhood, instead of the circular Gaussian neighborhood used here, the

patterns would be more rectangular.
The pattern formation depends on the non-locality that is introduced by the com-

plementary neighborhoods. If we change the neighborhood relation into the standard
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FIG. 7. 2-D patterns in the lattice mapping, eqn (31), after 500 iterations. Parameters: p= 2, 01-102,
02 = 04, L= I. N = 50, A =0.02, a = 0.022. (a) Population sizes: black corresponds to B=20, light gray
corresponds to B=0. (b) Field sizes: black corresponds to In h = 17, white corresponds to In = 0 .
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FIG. 9. As Fig. 7, but cr -= 0.063. (a) Population sizes. (b) Field sizes (here black corresponds to
In It= 15).
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local neighborhood, we find no pattern at all. Conversely, if we assume complemen-
tarity in one direction, but a local neighborhood in the other direction, we find
patterns that are very similar to the patterns shown in Figs 7-9. Different matching
rules in different directions allow different properties of the binding site to be
expressed. The interpretation of complementarity could for instance be a geometrical

fit; the interpretation of a local neighborhood could fcr instance be hydrophobicity.
Other properties, such as charge, require other (non-local) neighbor relations.

The distributions of clone sizes and field values in Figs 7-9 form landscapes of
roughly circular hills and valleys. These patterns resemble the distributions of the
1-D shape-space shown in Figs 2-6 in a number of ways. First, the field patterns are
wider and rounder than that of the clone patterns. Second, the ridges and hills in the
2-D clone patterns correspond to the peaks and clusters in the 1-D clone patterns.
Superimposing the clone and the field distributions reveals that the large clones are
typically located at intermediate field values, i.e. at values between 01 and 02. Thus,

the dark ridges of large clones correspond to contour lines of intermediate height in
the field landscape. Third, as the variance of the Gaussian is made smaller, more
peaks and valleys appear. Thus, the scale of the pattern increases with a.

The t = 500 distributions displayed in Figs 7-9 are not in a steady state. To illustrate

this, we show in Fig. 10(a)-(d), how clone sizes at four points in the shape-space
vary with time. As can be seen, the clone sizes fluctuate over several orders of
magnitude, in 2-4 weeks. Some points may remain empty [i.e. B(x, y)=0] over
comparable periods of time, as illustrated in Fig. 10. The oscillatory behavior does
not seem to depend on the variance a2. Inspection of the global pattern as it evolves
in time reveals that the landscape of hills and valleys changes slowly (not shown),
typically over several months. Thus, although clone sizes change on a rapid time
scale, the global pattern seems to be more conserved and changes on a slower time
scale. The same is true in the 1-D shape-space. We have described above how the
clusters may oscillate for a long time withopt changing their location in space.

4.4. CLONAL ORGANIZATION

In the 1-D shape-space and in the 2-D lattice mapping we have scored the number
of shapes that have a field and a clone size that are smaller than 01/10. We call these

the disconnected clones. Such shapes are only poorly stimulated by the network, and
correspond to clones that would behave according to the tenets of classical antigen-
driven clonal selection theory (Burnet, 1959). As a function of a, we plot in Fig. 11
the average percentage of disconnected clones in 1-D (0) and in 2-D () shape-
spaces. For both the 1-D and the 2-D shape-space, increasing a increases the percent-

age of disconnected clones. This may seem counterintuitive because an increase in a,

i.e. the cross-reactivity of each clone, should increase the connectedness of the net-
work. The explanation seems to be that increasing a causes the scale of the patterns

to increase. This creates large valleys where both clones and fields are small.
Even more striking is the difference between the 1-D and the 2-D shape-space.

Apparently, increasing the dimension of the space increases the scale of the patterns,

and hence the percentage of disconnected clones. An extrapolation from Fig. 11 into
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FIG. 10. Dynamic changes in the population size of the clone located at (N/2, N/2) in the lattice
mapping of Fig. 7 for various values of a. (a) a =0.016. (b) a=0.032. (c) a =0-045. (d) a =0.063.

a higher dimensional shape-space would predict that it should be possible to obtain
a substantial percentage of disconnected clones. Whether this percentage can
approach the 80-90% of disconnected clones that Coutinho (1989) and Holmberg
et al. (1989) estimate remains unknown.

The effect of an increase in dimensionality is two-fold. First, for equal values of
a, a 2-D shape-space has a higher percentage of disconnected clones. Second, com-
paring Fig. 5(c) with Fig. 8, for both of which a =0.032 we see that, the 2-D shape-
space seems to allow for more local peaks. Thus, if the number of local peaks were
to correspond to the number of specificities in the repertoire, it would seem that the
2-D shape-space allows for a higher value of a. Figure 11 suggests that this would
increase the percentage of disconnected clones.

5. Discussion

We have modified an earlier shape-space model (Segel & Perelson, 1988) so as to
take into account the bell-shaped B cell activation function that has characterized
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FIG. I I. The average percentage of disconnected clones at t= 500 in I-D (0) and 2-D () shape-
spaces. Each () is the average of four 2-D simulations, each (0) is the average of five I-D simulations.

much recent network modeling (cf. De Boer, 1988; De Boer & Hogeweg, 1989a-c;

De Boer et al., 1990; De Boer & Perelson, 1991; Weisbuch et al., 1990; Perelson &

Weisbuch, 1992). Whereas the original Segel-Perelson model had only one uniform
steady state, the virgin state, this mod91 has three: virgin, immune and suppressed.

We have argued previously (Segel & Perelson, 1988) that one important characteristic
of the virgin state is that it be stable but not too stable. Stability is important so that

small random perturbations do not excite the system. However, the virgin state

should not be so stable that a large perturbation, say by antigen, leads to no appreci-

able response. For the current model, we have shown that the virgin state is stable

to both uniform and sinusoidal perturbations. To keep this state from being too
stable requires setting the parameters of the system near the stability boundary. This

can easily be done by adjusting O. the threshold for activation in the bell-shaped

function.
In addition to the virgin state, our model has immune and suppressed states

that are sustained by network activity. We showed that homogeneous immune and

suppressed states are unstable to sinusoidal perturbation. Thus, the entire immune

system cannot remain in a homogeneous activated state. Perturbing the system from

either the homogeneous, immune, or suppressed state leads to the formation of a

pattern of activity in shape-space, with, roughly speaking, some clones immune, some

suppressed, and others virgin. The generation of pattern in this system does not rely

upon short-range activation and long-range inhibition.

0.4
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Segel & Perelson (1988) considered a model that was similar in many respects to
the model considered here. Their basic equation was similar to (1), but included
two exponentials limiting the total number of B cells and the maximum clone size,
respectively. Their definition of the field [corresponding to eqns (3) and (4)] was the
same as those used here. Instead of employing the biphasic function (2), Segel &
Perelson (1988) treated activation a and suppression s separately. Different standard
deviations aa and a, were used in calculating the fields ha and h., for activation and
suppression, respectively. Segel and Perelson were seeking a reaction-diffusion type
instability of the uniform state. Hence, they assumed a long range inhibition and a
short range activation (a5> aa), although later they showed that this assumption
could be reversed and the effect would be the same (Segel & Pere !son, 1990). It
should be borne in mind, however, that the requirement of relatively long-range
inhibition in reaction-diffusion theory is a consequence of the effort to bring about
instability to small perturbations at a "most dangerous" wavelength that is positive.
In particular "most dangerous" perturbations of infinite or zero wavelengths are
usually regarded as unacceptable in reaction-diffusion theory. The reason is that if
linear theory predicts instability at an intermediate wavelength then one has a good
idea of the pattern wavelength that in fact emerges from the non-linear equations
without resorting to extremely demanding non-linear calculations. Thus, one can
without difficulty compare one's predictions with observed patterns.

The situation is different in the present instance. Here a primary goal is not to
predict observed instability patterns but rather is to arrange conditions so that the
virgin state is stable but not too stable. Hence, it is quite admissible to consider
instabilities at zero or infinite wavelength in seeking the stability boundary. There is
therefore no reason to restrict oneself to relatively long range inhibition, and indeed
our model contains only a single "range". Note that there is still a pattern that
develops from the infinite wavelength instability of the suppressed state, a pattern
that is strongly influenced by non-linear effects.

In previous models in which antibodies or B cells were characterized as being in
levels, Abl, Ab2, . . . , where antibodies on level 1 are complementary to those on
level 2, etc, we found that immune and suppressed states tend to alternate. For
example, Abl immune, Ab2 suppressed, Ab, virgin, i= 3, 4, ... was a possible (local-
ized) steady state (Weisbuch et al., 1990). Depending on network topology and
parameter values, "percolating" states could also occur in which the entire immune
system is activated; e.g. Abi immune, Ab2 suppressed, Ab3 immune, Aba suppressed,
etc. (De Boer & Hogeweg, 1989b). The characteristic of all these possible steady
states is that clones in the immune state that have high population tend to suppress
clones connected to them, but the suppressed clones settle at population levels
sufficiently higher than virgin that they can sustain the activation of the immune
clone. In our current model there is no a priori assignment of clones to levels, yet we
still see that in patterns that form spontaneously clusters of immune clones will lie
in regions of shape-space that are complementary to clusters of suppressed clones.
This is not surprising since the bell-shaped activation function requires an immune
clone to see a low field as generated by a suppressed population, and a suppressed
clone to see a high field of the type generated by an immune clone. What is surprising
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is that we find localized regions of shape-space, of width much larger than the field
sensed by any single clone, in which all clones are activated. Further, this region is
complementary in shape to a region of roughly equal width in which all clones are

suppressed [Fig. 6(a)]. These higher order localized structures seem to be emergent

properties of our model.
Another interesting feature of the patterns developed by the model is that for small

values of a there is not one stable pattern but many possible ones. The pattern of
clone sizes reflects the antibody repertoire of an animal. Thus, our model is consistent

with many possible repertoires, the one actually present in an animal being dependent

of the presence of self-antigen, encounters with foreign antigen and any other feature

that can affect the initial conditions applied in the model. These observations are
consistent with each animal having a unique potential immune system reactivity that

is dependent upon its history of antigenic exposure.
To further characterize patterns in shape-space we developed a 2-D lattice map-

ping. The results obtained with these 2-D shape-spaces bear resemblance to recent

results obtained by Stewart & Varela (1991) with a different 2-D shape-space model.
Technically the two models differ significantly. First, Stewart & Varela consider only

two complementary idiotype species, black and white, that interact whenever their

distance in shape-space is sufficiently small. Second, their model neglects population
dynamics. That is, rather than dealing with gray scales that indicate population sizes,

they regard clones as either present or absent. Clones are present if they receive a
degree of stimulation that falls between two thresholds (that are comparable to our

01 and 02). Patterns evolve by the introduction of novel shapes from the bone
marrow. Novel shapes are only incorporated if their field falls within the stimulation

window. If they are incorporated they change the fields of nearby clones. This, in

turn, can lead to the elimination of those clones having a field outside the window.

The pattern is updated until a coherent field is found. In contrast, since our shape-

space incorporates all possible shapes, we assume that new cells emerging from the

bone marrow are not unique, and thus may be merged with one of the pre-existing

populations. Thus, in our model pattern changes are driven by changes in population

size, and not by the introduction of novel clones per se.
In our simplest model of idiotypic B cell proliferation cell populations grow extre-

mely large to compensate for low-affinity interactions. Since interaction terms are

typically of the form affinity x concentration, the effect may be realistic. Two proper-

ties of the model that are responsible for the extremely large populations are unrealis-

tic however. First, as we have argued above, we need an affinity cut-off to account

for the fact that low affinity antibodies are unable to stimulate B cells, even at high

concentrations. However, because affinities of IgG antibodies may vary over six

orders of magnitude, our model would still allow populations to grow by six orders

of magnitude. This remains unrealistic. Antibodies of type IgM, which tend to be

found in early networks, typically are all of low affinity, e.g. 104-105 NC' and thus

this discrepancy in population levels may not appear for IgM interactions. Second,

and more important, these artificially high population levels are probably due to the

fact that in our model stimulated B cells fail to stop proliferating, although experi-

ments suggest that B cells at a maximum go through eight rounds of cell division
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(cf. Klinman et al., 1974). Usually, activated B cells mature into plasma cells, which
produce antibody but do not divide. If our model were to incorporate B cell matura-
tion into a non-dividing end-stage cell, as has been done in earlier models (Bell,
1970,1971; Perelson et al., 1976,1978), we would achieve a model in which the
individual populations remain bounded without the aid of the population limitation
that we have introduced here. The relative roles of various means for population
limitation remain to be assessed.

Whether or not the immune network is able to combine a fully connected network
with a clonal organization of part of the repertoire is partly answered by the current
shape-space analysis. We do find regions of the shape-space where the field is so low
that clones remain virgin. Clones in these regions are capable of responding to foreign
antigens according to the tenets of classical clonal selection theory. The low ratios
between virgin and stimulated clones that we find seem to be at variance with the
ratios reported in the empirical literature, i.e. 10-20% in the network and 80-90%
disconnected clones. However, the results suggest that shape-spaces of higher dimen-
sion might support large scale patterns that contain a higher percentage of discon-
nected clones. This is to be addressed in future research.

The work described here was performed under the auspices of the U.S. Department of
Energy, and supported in part by NIH Grants AI 28433 and RR06555, the U.S.-Israel Bina-
tional Science Foundation Grant 89-00146, and by the Santa Fe Institute through their Theo-
retical Immunology Program. We thank Dr John Stewart for discussing his workwith Varela
on their 2-D shape-space formalism, and making their unpublished manuscipt available to us.
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APPENDIX

To transform our differential equation model into a mapping we omitted the
source of cells from the bone marrow, i.e. we set m=0. Since the source was small
in any case, i.e. m« 01, this seems to be a reasonable assumption. However, stimulat-
ing the differential equation model eqn (25) for mi= 0, gave us very different results
from those shown in Fig. 5 for m,= 1. Instead of having peaks centered around
maxima of either 01, 02, or 03, all peaks had a maximum of about 03. Simulating
a 2-D lattice mapping in which we incorporated a maximum population size of In 03,
the only peaks that were attained were comprised of clones at In 03.

We give two indications that setting m,=0 reduces the plasticity of the system
because it eliminates steady-state solutions. First, the virgin state normally as b=m,
collapses to the origin. This leads to the elimination of all virgin clones as well as
solutions that depend on virgin clones to maintain other clones in a non-virgin state.
As an example, consider the possible steady states of the two species system

db,
di= in+ bl[Pf(Jilbi+ J12b2) 1]=0,

db2
b2[ pf (.1 4"12b J22b2) I ]= 0,

dt

where we have set J21 = J12 To determine the steady state, we substitute eqn (2) for
f(h) into eqn (A.1) and solve the resulting quadratic equation for b2. Substituting
into eqn (A.2), rearranging and squaring to remove radicals, we obtain a 12th-order
polynomial equation for the steady-state value of bi . Setting m=0 converts this
polynomial into 67 times a sixth-order polynomial. Thus six solutions collapse into
the trivial solution /31= 0 when m=0. This shows that one loses non-trivial solutions
by eliminating the source.

= m +

(A.I)

(A.2)
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Second, we numerically studied a similar system with three populations where the
second species was connected to species one and three. The interaction matrix, J,
was given by

/ 0 0.5 0

1).J = 0.5 0

1 0 1 0

Here the coupling between b2 and b3 is twice that of b2 with bi . In the presence of a
source term one of the equilibria of this system is an immune state of b2 that is
maintained by both bi and b3. For m=10, we find b2r.t.., 202, 131 201, and b3;z: 0.501
[Fig. A 1(a)]. In order to suppress bl , b2 needs to be of order 202, since at a suppress-
ive steady state with p= 2

02 1 1

f01)= 02+ 0.5b2p 2.

Since b2= 202 doubles the suppression on b3, b3 attains a population size that is
intermediate between the suppressed and the virgin state. Such an intermediate state
can only exist if m>0. This is illustrated in Fig. A I (a), which shows the equilibrium
population levels of the three populations as a function of m. Decreasing m decreases
b3 until it disappears. Note that it is b3 that is excluded, i.e. it is again the lowest
affinity interaction that dominates.
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FIG. Al. The equilibrium populations in a 3-D or 2-D network as a function of the source in. Param-

eters: p= 2, 01= KO, 02 = 104. (a) In a 3-D network the clone with the highest affinity disappears when
in= O. (b) In a 2-D subnetwork with a high affinity, i.e. J12 =J21 =0. J23 =J:42 = (heavy lines), or a low
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For comparison, we show in Fig. A I (b) the same immune state in the absence of
b3, for J12 = J21 = 0.5 (the light lines), and in the absence of b, , for J23 = J32 = 1 (the
heavy lines).

These findings suggest that eliminating the source term may significantly reduce
the number of equilibria. In particular the coexistence of several clones of different
affinity around either the immune or the suppressed state may become unlikely.


