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Most recent models of the immune network are based upon a phenomenological log 
bell-shaped interaction function. This function depends on a single parameter, the “field,” 
which is the sum of all ligand concentrations weighted by their respective affinities. The 
typical behavior of these models is dominated by percolation, a phenomenon in which a 
local stimulus spreads globally throughout the network. 

The usual reason for employing a log bell-shaped interaction function is that B cells are 
activated by cross-linking of their surface immunoglobulin receptors. Here we formally 
derive a new phenomenological log bell-shaped function from the chemistry of receptor 
cross-linking by bivalent ligand. Specifying how this new function depends on the ligand 
concentrations requires two fields: a binding field and a cross-linking field. 

When we compare the activation functions for ligand-receptor pairs with different 
affinities, the one-field and the two-field functions differ markedly. In the case of the 
one-field activation function, its graph is shifted to increasingly higher concentration as the 
affinity decreases but keeps its width and height. In the case of the two-field activation 
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function, the graph of a low-affinity interaction is nested within the graphs of all higher- 
affinity interactions. 

We show that this difference in the relations among activation functions for different 
affinities radically changes the network behavior. In models that described B cell prolifera- 
tion using the one-field activation function, network behavior was dominated by low-affinity 
interactions. Conversely, in our new model, the high-affinity interactions are the most 
significant. As a consequence, percolation is no longer the only typical network behavior. 

Introduction. Jerne’s (1974) hypothesis that the immune system functions 
by means of a network of idiotypic interactions has been investigated 
extensively by theoretical biologists. Theoretical models that can account 
for memory, tolerance and repertoire selection (Hoffmann, 1980; De Boer 
and Hogeweg, 1989a; Weisbuch et al., 1990; De Boer and Perelson, 1991) 
have been developed and they have interesting self-organizing properties 
(De Boer and Perelson, 1991; De Boer et al., 1992a, b, 1993~; Stewart and 
Varela, 1991). 

The fundamental problem with idiotypic memory in these models is that 
of percolation (De Boer and Hogeweg, 1989b; Perelson, 1989), which is the 
spread of a stimulus throughout the network. We have shown that in a 
network with a Cayley tree topology memory can remain localized, i.e. need 
not percolate (Weisbuch et al., 1990; Anderson et al., 1993) This result, 
however, is not robust because percolation is prevalent in Cayley trees with 
different affinities assigned to different branches and in trees whose topol- 
ogy is slightly modified by the addition of short odd loops (Neumann and 
Weisbuch, 1992a, b; Boutet de Monvel and Martin, 1995). 

Many recent idiotypic network models are based upon a phenomenologi- 
cal log bell-shaped function determining B cell activation as a function of 
the total concentration of ligand, or more precisely of the “field” (De Boer, 
1988; De Boer and Hogeweg, 1989a, b; Weisbuch et al., 1990; De Boer and 
Perelson, 1991; De Boer et al., 1992a, b; De Boer et al., 1993a-c; Anderson 
et al., 1993). This log bell-shaped function is frequently interpreted as a 
phenomenological description of the fraction of B cell receptors cross- 
linked by ligand (Perelson, 1984). Other authors have based the interaction 
function on the regulation of B cell proliferation and maturation (Varela et 
al., 1988; Stewart and Varela, 1989; Varela and Coutinho, 1991; Sulzer et 
al., 1993). These models are based upon a proliferation and a maturation 
function, each of which is based upon a single field. 

Faro and Velasco (1993, 1994) and we in the companion paper (Sulzer et 
al., 19951, show that dose-response functions based upon a single field are 
deficient in that they do not capture essential features of receptor cross- 
linking. In the companion paper we derived a new log bell-shaped activa- 
tion function in which a “binding field” and a “cross-linking field” appear. 
We show that this new function generates markedly different behavior from 
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previous one-field proliferation functions when receptor-ligand interac- 
tions with different affinities are compared. The only model in which two 
fields are used is the shape space model of Segel and Perelson (1988, 1989, 
1990). This model has certain similarities to the model studied here, 
although the reasons for employing multiple fields are quite different. 

If one accepts the view that B cell activation (or B cell proliferation and 
maturation) is determined by receptor cross-linking, we think our new 
function is much more realistic, Disturbingly, we here show that this new 
function markedly changes the behavior of idiotypic network models. 

Previous “Single Field” Models. Our previous idiotypic network models 
were all based upon systems developed around the basic population equa- 
tion 

db, 
dt = m + bi(Pf(hi) -d), (1) 

where m is the rate of creation of B cells from the bone marrow, d is the 
per capita B cell death rate, and pf(h,) is the proliferation rate, where p 
denotes the maximum proliferation rate. In these models B cells proliferate 
according to a phenomenological log bell-shaped function of the form 

f(hi) = hi 8 
e-1 -thi f?+hi’ 

@a) 

where 0 is a constant that defines the range of field values that leads to net 
clonal expansion, and the (one and only) field hi is defined as a weighted 
sum of all B cell populations, i.e. 

hi = zJijbj, 
i 

(2b) 

with the constant Jij often referred to as the “affinity” of the interaction 
between b, and bj (see below). Equations like these were originally pro- 
posed by De Boer (1988) and De Boer and Hogeweg (1989a, b). The 
particular form of the bell-shaped function in equation (2a) is due to the 
non-dimensionalization of De Boer et al. (1993a). 

This model has been called the “B model” (De Boer et al., 1993a). The B 
model assumes implicitly that the antibody concentration of a clone varies 
proportionally to its B cell concentration. Thus, the model is complete 
when we have specified the processes that change the B cell concentrations, 
i.e. equation (1). The more realistic “AB models” account for the dynamics 
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of antibodies, as well, which stimulate other B cells, i.e. hi = Cj Jijaj, where 
aj is the antibody produced by bj. These models have been studied 
extensively (De Boer et al., 1993a, b; Anderson et al., 1993). They are also 
based upon a single field. 

The function f(h) defined by equation (2a) is symmetric and bell-shaped 
when plotted as a function of log(h). Therefore it seemed an appropriate 
phenomenological description of the activation of B cells by cross-linking 
(DeLisi and Perelson, 1976; Perelson and DeLisi, 1980; Perelson, 1981). We 
derive below that equations (2a) and (2b) are no longer appropriate in the 
case of multiple ligands differing in binding affinity and in cross-linking 
affinity. Thus, in idiotypic networks equations (2a) and (2b) seem to be 
realistic only when either all affinities are the same or when the cross- 
linking affinity is constant and independent of the binding affinity. We 
derive a new phenomenological bell-shaped function which we can set to 
either closely mimic the behavior of equations (2a) and (2b) or to allow for 
the new, i.e. more realistic, description of the cross-linking process. 

Cross-linking and Cellular Response. In Sulzer et al. (1995) we derived an 
expression for the total concentration of cross-links on a B cell that is 
stimulated by a collection of bivalent ligands. This analysis proceeded 
analogously to classical derivations for the case of one ligand (DeLisi and 
Perelson, 1976; Perelson and DeLisi, 1980; Perelson, 1981). In its non-di- 
mensional form, we write for the equilibrium concentration of cross-links 
on a B cell with receptors of type i, 

1+24-4iX& 
xi = 

24 ’ 

where 

si = H.x,i 

(1 + Hij2 

Hi = xKijLj 
i 

and 

Hx,i = CKijKx,ijLj. 

(3) 

(da) 

(4b) 

(4c) 

Here xi is the fraction of receptor sites in cross-links on a cell of type i, Lj 
is the concentration of ligand j, Kij is the “binding affinity” of receptors i 
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for ligand j and KX,ii is the non-dimensional “cross-linking affinity” of 
singly bound ligand j for receptor i.’ In deriving equation (3) we have used 
the excess ligand approximation (Sulzer et al., 1995), i.e. we have assumed 
that the concentration of ligand greatly exceeds the concentration of 
receptor sites, so that ligand is not noticeably depleted during binding. 

The total concentration of cross-links depends on two “fields.” The first, 
the binding field Hi, is a linear combination of all ligand concentrations 
weighted by their binding affinity. The second, the cross-linking field HX,i, 
weights all ligand concentrations by the product of their binding and 
cross-linking affinities. Because binding and cross-linking both involve 
receptor ligand interactions, one expects that the binding affinity and the 
cross-linking affinity are related. 

In the companion paper we proposed that decreasing the binding affinity 
by a factor 0 I K I 1 decreases the cross-linking affinity by a factor K~. 
In other words, for an interaction of a receptor of type i with a ligand of 
type A 

K,, = f$jK and KX,ij = Ki7j)KX, (5) 

where K and K, represent “maximal” affinities for the collection of N 
receptors and A4 ligands under consideration. Notice that this implies 

Both for the sake of simplicity and because all ligands and receptors being 
studied are immunoglobulin molecules, we have assumed that the relation- 
ship between binding and cross-linking affinity is homogeneous over all 
receptor-ligand interactions, i.e. we have assumed that 7 is constant and 
hence independent of i and j. 

Two simple examples are 7 = 0, which says that the cross-linking affinity 
is constant and independent of the binding affinity, and 77 = 1, which says 
that binding and cross-linking affinities are proportional to each other. 
Both cases are discussed in more detail in Sulzer et al. (1995). 

’ Here K, is non-dimensional and is identical to K: R,, where Kk has units of area (e.g. centimeters 
squared), when R, is the total number of receptor sites per unit area (cf. Sulzer et al., 1995). We 
express our results in terms of the non-dimensional cross-linking affinity, since we assume that the 
receptor density is fairly constant on B cells. When we speak of cross-linking affinities below, we always 
refer to the non-dimensional form, K,. 
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Notice that ~~~ is a non-dimensional affinity, i.e. ~~~ = Kij/K. Thus, we 
can redefine the fields in terms of non-dimensional quantities as 

hi = Hi = C Kijli (6a) 

and 

where 

i 

Hx,i = Kxhx,ip (6b) 

h,,i = c K;+‘I,. 

i 

Here lj = KL, is a non-dimensional ligand concentration and K, is the 
non-dimensional cross-linking constant already introduced above (cf. Sulzer 
et al., 1995). 

Simplification. The square root in equation (3) leads to complications in 
various manipulations. Our objective here is to simplify equation (3) and 
derive an expression for B cell activation that can be used conveniently in 
idiotypic network models. When xi is plotted versus the total ligand 
concentration L = Cj Lj on a logarithmic scale, the curve is bell-shaped. 
Since xi is a monotonic function of Si, the log bell-shaped nature of the 
cross-linking function is determined by Si only and, as we show in Sulzer et 
al. (1995), Si itself is a log bell-shaped function of L. 

Plotting xi in equation (3) as a function of Si, one obtains a curve 
resembling a saturation function (see the heavy line in Fig. la>. The 
simplification that we propose is to replace equation (3) by a standard 
saturation function of Si, i.e. by 

‘i 

xi= 2+4’ (7) 

Both equations (3) and (7) have the same limiting behavior for 6i + 03, 
xi + 1. The value of the saturation constant in equation (7) was found by 
solving equation (3) for xi = l/2. In Fig. la the light line depicts equation 
(7). The approximation is reasonably good, but somewhat steeper than the 
exact function. 

Stimulation of B cells by ligand is known to depend on receptor cross- 
linking (cf. Fanger et al., 1970; Shearer and Parker, 1975; Weiner et al., 
1976; Monroe and Cambier, 1983). However, the exact dependence is not 



IDIOTYPIC INTERACTIONS BASED ON CROSS-LINKING 291 

1 

X 

0.5 

0 

6 
(a) 

1 

f (x) 

0.5 

0 

10 
-5 

1 

h 
(b) 

105 

Figure 1. (a) the fraction of receptor sites cross-linked, x, plotted versus 6. The 
heavy line depicts equation (31, the exact equilibrium function; the light line is 
the approximation given by equation (7). (b) The B cell proliferation function, 
equation (10, plotted as a function of the field h for w = 0.01, 0.1, 1 and 10. 

The last two curves can hardly be distinguished. 

known. We assume that the proliferation rate of a B cell is proportional to 
a saturation function of the equilibrium concentration of cross-links on its 
surface: 

F(q) = -& = 6i 

1 
26+ sic1 + S) ’ 

(8) 

where 6 is the concentration of cross-links required for half-maximal 
stimulation. If 6 is small, then the model assumes that only a small fraction 
of a B cell’s receptors need to be cross-linked to stimulate the cell into 
proliferation. Conversely, if 6 is large, then a large fraction of a cell’s 
receptors need to be cross-linked. Substituting equations (4a)--(6c) into (81, 
and writing in terms of the non-dimensional fields, equations (6a) and (6~1, 
we obtain 

f(h,,# hi) = 
Phx,i 

~(1 + hij2 + h,,i ’ 
(9) 

where p = l/(1 + 6) and o = 23/[K,(l+ S)]. 
The parameter w scales the width and the height of the graph of the 

function. The smaller w is the wider the graph and the higher its maximum. 
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In order to have o influence the width only, we rescale equation (9) so that _ 
its maximum, at f(1, l), equals 1. This gives 

f(/r.,/&) = (l+ 40)hxG 
o(1 + /zi)2 +/Q - 

This now defines our new log bell-shaped function with 
by equations (6a) and (6~). 

For n = 0, i.e. for constant cross-linking affinity, the 

(10) 

hi and h,,i defined 

binding and cross- 
linking fields are identical, h = h,,i = hi, and equation (10) simplifies to 

f(h) Ef(h,h) = (’ + 4w)h 
w(l+h)2+h’ 

(11) 

This function is plotted in Fig. lb as function of h. It has its maximum at 
h = 1, 0 If(h) 2 1, and is bell-shaped on a log scale. This function is thus 
similar to the functions of a single field previously used in idiotypic network 
models (cf. De Boer, 1988; De Boer and Hogeweg, 1989a, b; Weisbuch et 
al., 1990; De Boer and Perelson, 1991; De Boer et al., 1992a, b; De Boer et 
al., 1993a-c; Anderson et al., 1993) and will be used here as a surrogate for 
functions of a single field. 

The two-field function defined by equation (10) has a certain similarity to 
the function studied by Segel and Perelson (1988, 1989, 1990). They defined 
a proliferation function that depended on two fields, 
and h,, a suppressive field, i.e. 

f(h,,h,) = hA 
(p +qh,) +h,’ 

where p and q were constants. Thus the major difference is that in 

h, an activating field, 

equation (10) the equivalent of the suppressive field, hi, enters quadrati- 
cally rather than linearly. 

Affinity. Here we consider the influence of the value of the parameter K, 
the “affinity,“2 on the properties of the bell-shaped proliferation function. 
For illustrative purposes, we shall only consider the interaction of a single 
ligand at non-dimensional concentration 1 with B cell immunoglobulin 

* Note that the characterization of interactions by a single affinity is possible only in the homoge- 
neous case (viii = q for all i and j). 
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receptors. In this case, equation (10) becomes 

f(l) = 
(1 + 40)KI 

( WK- “)( 1 + Id)2 + K! ’ 
(12) 

In Fig. 2 we plot this new bell-shaped function versus the ligand concentra- 
tion 1. In Fig. 2a we set 7 = 0, which corresponds to the previously used 
one-field proliferation function; in Fig. 2b we consider the new two-field 
function for the case 7) = 1. For K = 1, depicted by the heavy lines in Fig. 2, 
both functions are identical. For values of K < 1 the functions become 
drastically different. The light lines in Fig. 2a show that decreasing K 

corresponds to shifting the graph to higher ligand concentrations without 
changing its shape. Thus, when 7 = 0, a low interaction strength can always 
be compensated for by a higher concentration. For the two-field function, 
Fig. 2b, we find that the curves for K < 1 (light lines) are always embedded 
within the heavy line of the curve for K = 1. Thus as K decreases, the 
maximum of the new function still shifts toward higher concentrations, but 
because the maximum value also decreases, the function remains restricted 
within the domain of all graphs with larger K. This is studied more 
extensively for the cross-linking function, equation (31, in Sulzer et al. 

(1995). 
Summarizing, we have assumed that cross-linking affinities are propor- 

tional to binding affinities and have developed a new phenomenological 
proliferation function based on receptor cross-linking. Because binding 

f(l) 0.5 

0 

10 
-5 

IO5 10 
-5 

105 

(a) (bt 

Figure 2. The behavior of the new two-field bell-shaped function equation (12) 
as a function of the ligand concentration 1 for w = 0.1. The affinity of the ligand 

varies from left to right; K = 1,0.3,0.1. (a) 77 = 0; (b) 77 = 1. 
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affinity and cross-linking affinity are proportional, the maximum of the 
cross-linking function decreases when the affinity decreases. This implies 
that if the rate of B cell proliferation is a monotonically increasing function 
of the amount of receptor cross-linking, then there exists a critical mini- 
mum affinity below which the B cells fail to proliferate. This seems a 
realistic feature (Unman, 1972; Riley and Klinman, 1986; Mongini et al., 
19911, which is incorporated into this proliferation function and which was 
absent from the previous proliferation functions that were based upon a 
single field. In what follows we study the new proliferation function, defined 
by equation (lo), for the special case of 77 = 1. We also compare the 
behavior of systems with 17 = 1 to the behavior seen when 7 = 0. 

Interaction strength. In idiotypic network models one generally speaks of 
the affinity of the interaction between two clones in the network. If B cell 
interactions are governed by anti-idiotypic antibodies cross-linking B cell 
receptors, this is formally incorrect. Such interactions between cells are 
governed by two affinities: the binding affinity and the cross-linking affinity. 
In the models one usually defines an 
interaction between clone i and clone 

“interaction strength” Jij for the 
j (see equation (2b)). Thus interac- 

tion strength, Jij, is thought to be closely related to the binding affinity, ~~~~ 
between the antibodies of clones i and j. 

Here we show that for responses induced by cross-linking such an 
“interaction strengthy3 can best be defined as K?+ ’ 

the binding affinity, ~~~~ and cross-linking affinity: ~3. 

i.e. as the product of 
This is motivated by 

the observation that in order to cross-link receptors, an antibody must 
undergo both binding and cross-linking reactions, and thus the product of 
the affinities of these two steps should determine the outcome of the 
interaction. For the previous one-field response function, the proliferation 
rate at low concentrations of ligand was proportional to the interaction 
strength. This seems like a desirable property. The two-field response 
function, equation (121, can be approximated for ~1 -e 1 by 

f(l) = Cl+ 4w) o + K9+11, (13) 

and hence for I+ 0, f(l) a K ?+I1 Thus defining the interaction strength . 

Jij E Kg+', we find that proliferation at low ligand concentrations is propor- 
tional to the interaction strength. 

3Again, the definition of an interaction strength makes sense only in the homogeneous case (cf. 
comment on “affinity” above). 
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Idiotypic Networks. 
Idiotype-anti-idioype pair. The implications of the new two-field bell- 

shaped functions are investigated in the simplest possible network: 

b, ++ b,. 

This scheme depicts a pair of B cell cones recognizing each other. We 
define the binding affinity of the idiotypic interaction as K = K,~ = Key, and 
hence, 

h x,1 = Jb h, = KbZ, h,,, = Jb,, h, = Kb,, (14) 

where J= KI+?. Further we replace f(h) in equation (1) by f(h,,i, hi), 
equation (lo), to obtain our new model. For r~ = 0 we expect this new B 
model to be virtually identical to the previous ones. In Fig. 3 we depict the 
null clines of the model for 71 = 0 (i.e. Fig. 3a-c) and 77 = 1 (i.e. Fig. 3d-f). 

For the highest affinity interaction, J = K = 1, the two null cline pictures 
are identical. The new model has the same five steady states as we 

(a) (b) 

Figure 3. Null clines of the B model. Parameters m = lo-‘, p = 2, d = 1 and 
w = 0.1. In (a) the virgin, immune and suppressed state are marked as V, I and 
S, respectively. The left, middle and right planes are for ~~~ = 1, K12 = & and 

K12 = 0.1, respectively. Panels (a)-(c) are for 17 = 0; (d)-(f) are for T= 1. 
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previously described (De Boer, 1988; De Boer and Nogeweg, 1989a; Weis- 
buch et al., 1990; De Boer et al., 1993a). Three of the steady states are 
stable and we called them virgin, immune and suppressed. They are marked 
as V, I, and S in Fig. 3a. In the top row of Fig. 3, i.e. for q = 0, we see that 
upon decreasing the interaction strength to J = K = 0.1 or J = K = 0.01 all 
of the steady states continue to exist. Moreover, the immune and sup- 
pressed states move to higher concentrations. Thus a decrease in interac- 
tion strength is compensated for by increasing the concentration. Con- 
versely, for 7 = 1 we see that for J = 0.1 and K = 0.3 the steady states still 
exist. However, the immune and the suppressed states have approached 
one another. Thus the concentration of a clone in the immune state 
decreases with decreasing interaction strength, whereas that of a sup- 
pressed clone increases. For J = 0.01 and K = 0.1 the four high concentra- 
tion steady states have disappeared; the interaction strength is below its 
critical minimum. 

Equilibria. The equilibrium fields of the idiotypic network models are 
typically located in the rising and the falling part of the bell-shaped 
function (Weisbuch et al., 1990; De Boer et al., 1992a, 1993a). Here we 
develop a rule of thumb for understanding the equilibria. By only consider- 
ing the equilibria for the high-affinity interaction J = K = 1 (Fig. 3a and d), 
we write h = h, and resort to equation (11) for the bell-shaped function. 
The equilibria of the B model, equation (l), can be found by approximating 
m = 0 and by approximating f(h) for small fields, i.e. h -=z 1, and for large 
fields, i.e. h >> 1. 

For small fields we find an equilibrium when 

f(h)-(1+4+-&-f. 
P 

(15) 

For large fields we find an equilibrium when 

f(h) = (l+ 4w)L = d 
l+ho p’ 

(16) 

The small and large field approximations can be rewritten as 

h-l/@ and h=O, (17a, b) 

respectively, where 

@E 
p(l+40)-d 

dw 
(18) 

Numerically these approximations turned out to be reasonable. 
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A necessary condition for the existence of the virgin state is that a virgin 
B cell population of m/d cells must be too small to initiate the prolifera- 
tion of another clone, i.e. 

m 1 
-K-. 
d 0 

(19) 

Cuyley tree. The percolation problem in immune networks prompted 
Weisbuch et al. (1990) to study networks with a Cayley tree topology. In a 
Cayley tree each clone interacts with precisely z other clones (z is called 
the coordination number of the lattice). The idea is that if the immune 
state of a clone b, is sustained by several clones of the b, level, then each 
of the b, clones can remain small enough such that it does not stimulate 
the b, level. In the original analysis we only used trees with identical 
connection strengths, e.g. Jij = 1, for all i and j. Thus, we expect the old 
results to carry over to the new model. 

We assume that an antigen a, stimulates clone b, with maximum affinity. 
This selects b, as the root of the Cayley tree. Because Jii = 1 Vi, j, the 
fields 

h, =h,,, =zb,+a, (20) 

h, = hx,, = b, + (2 - l)b, (21) 

or in general 

hi=h,,i=bi_, + (z- l)bi+l. cm 
Following Weisbuch et al. (1990) we define one ordinary differential equa- 
tion of the form of equation (1) for each level of the Cayley tree. (This 
description is exact due to the fundamental symmetry of the Cayley tree, 
i.e. identical coordination numbers through all levels and identical interac- 
tion strengths.) We also have to specify a dynamics for the antigen. For 
simplicity we consider a non-growing antigen which is eliminated by inter- 
acting with b, at rate e. Thus, 

da1 -= 
dt 

-ea,b,. (23) 

Note that when equilibrium is reached, a, = 0, which implies that the 
equilibrium field of b, is given by 

h, =h,,, =zb,. (24) 
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In Fig. 4a we show how stimulation with a, in the virgin state gives rise to 
a localized immune state in which a, = 0, b, = 0, b, = l/z13 and b, = b, = 
*.. = b, = m/d. The condition for the existence of such a localized memory 
state is derived by observing that if b, is in the immune state, then its field 
by equation (17) must equal l/O. Thus, 

h,=zb,=$, hence b, = A, (25a, b) 

where 0 is defined by equation (18). For the state to be localized, we 
require that b, fails to proliferate when b, = l/(zO). This occurs when 

h,=b,+(z-l)b,<$. 

Assuming b4 remains in the virgin state, b4 = m/d, we obtain 

(27) 

which is just the condition for the existence of the virgin state in the Cayley 
tree [cf. equation (19)]. Thus, if parameters are such that the Cayley tree 
has a virgin state, the localized memory equilibrium will exist. Note that 

b5 

b2, 
bl 

(b) 
Figure 4. Immune responses in a Cayley tree of nine levels with equal affinities 
K = 1 and a coordination number z = 3; parameters as in Fig. 3. The value of 17 
is not significant because K = 1. We introduce an antigen a,(O) = 1 when the 
system is in the virgin state. (a) Localized memory is attained when e = 0.1. (b) 

Percolation for e = 5. 

6.9 
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condition (27) for the existence of the virgin state is less restrictive on the 
Cayley tree than for a pair of mutually interacting clones, equation (19). 

The fact that a localized immune steady state exists does not imply that it 
is attained during an immune response of b, to an antigen. Weisbuch et al. 
(1990) showed percolation behavior in the presence of a stable localized 
memory equilibrium. We provide such an example in Fig. 4b where we 
increase the rate e at which antigen is eliminated. 

Previous work by Neumann and Weisbuch (1992a, b) on the parameter 
conditions for attaining the memory equilibrium proved that the Cayley 
tree results are not robust. Trees that were based upon connections with 
markedly different affinities tend to give rise to percolation. It would 
therefore be most interesting to repeat their analysis for our new model. 
Neumann and Weisbuch (1992a, b) used a window automaton to approxi- 
mate the one-field bell-shaped function. Our new two-field function, whose 
height varies with affinity, would require a different window automaton for 
each affinity that is used, and hence the analysis would be difficult. 

Selection for high a&fir&y. The previous analyses of Cayley tree networks 
were very sensitive to the interaction strengths !ij because in the one-field 
model equilibrium concentrations increased with decreasing interaction 
strength. Thus the networks “selected” for low interaction strengths. This 
can be illustrated by a three-clone network with b, connected to both b, 
and b, with different affinities, i.e. 

where b, interacts with b, with high affinity and with b, with low affinity. 
Assume the dynamics are given by equation (1) and that b, is stimulated by 
an antigen a2 obeying 

We complete the network by defining the fields as 

h x,l=hl=b2, h,,,=a,+b,+Jb, 

h, = a2 + b, + Kb3, h,,, = Jb,, h, = KbZ, 

(28) 

(29) 

where J= K’+” < 1. 
We stimulate the network in the virgin state b, = b, = b, = m/d, with 

a,(O) = 1 as an initial condition. The time plots in Fig. 5 show that the 
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Figure 5. Selection of low versus high affinity: network dynamics. Parameters as 
in Fig. 3, but ~~~ = Kzl = 1 and ~~~ = ~~~ = 0.1. We introduce an antigen for b, 
when the system is in the virgin state. (a) 7 = 0 and the network selects the 
low-affinity pair b,-b,. (b) 17 = 1 and the network selects the high affinity pair 

b,-b,. 

response of b, to the antigen first stimulates the proliferation of b, and 
then, when b, has grown sufficiently large, the proliferation of b, is 
stimulated. In the model with 7) = 0, b, over-suppresses b,, i.e. h, = b, z+ 0, 
and the system attains an immune state with the low-affinity b,-b, pair 
maintaining itself, with b, in high concentration and b, in moderate 
concentration. In the model with 7 = 1, the behavior is dramatically differ- 
ent. The clone b,, which interacts with b, with low affinity, remains small 
and the system moves to a state in which the high-affinity pair b,-b, forms 
a normal immune state, with b, high and b, moderate, as if b, were not 
present. 

This difference can be understood as follows. At equilibrium f(h,,l, h,) 
=d/p and fU+, h3) = d/p. Comparing the fields in equation (29) we 
conclude that, in general, b, and b, cannot simultaneously be at equilib- 
rium with b,, since both their fields depend on b, with different interaction 
constants. Therefore we ask: Given that b, and b, are approaching 
equilibrium with each other, will b, increase or decrease? Because b, is 
stimulated by antigen, b, is larger than b, and the equilibrium under 
consideration is b, = 0 ZP b, = l/O. 

Figure 6 illustrates that for v = 0 and K not too small (e.g. K = 0.1 in Fig. 
6), the stimulus for b, is indeed larger than that for b,, i.e. f(hx,3, h3) > 
f(h,,l, h,) = d/p. Thus b, grows, inducing further growth of b,, which 
over-suppresses b,, in turn. Note that if K < 0e2, b, at equilibrium will fail 
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Figure 6. Selection of low versus high affinity: proliferation functions. We 
compare the proliferation function f(h, I) h,) of clone 1 interacting with clone 2 
via a high-affinity interaction (K = 1; left, solid curve), with the proliferation 
function f(h+ h,) of clone 3 interacting with clone 2 via a low-affinity 
interaction (K = 0.1) for 7 = 0 (right, upper light curve) and n = 1 (right, lower 
light curve). For the high-affinity interaction, K = 1, the proliferation function of 
clone 1 is identical for n = 0 and n = 1. We assume clone 2 has a fixed value and 
that clones 1 and 2 are at equilibrium. This equilibrium, for both values of n, is 
given by f(l) = d/p = 0.5. The horizontal line denotes d/p = 0.5. The equilib- 
rium value of I= b, is indicated by the vertical dashed line. For the low-affinity 
interaction between clones 2 and 3 the situation is different. If n = 0, the 
proliferation function for clone 3 exceeds that of clone 1; thus clone 3 will 
expand disrupting and, eventually, replacing the equilibrium between clone 1 
and clone 2. If n = 1, the proliferation function of clone 3 is below that of clone 
1. Thus, clone 3 does not receive enough stimulation to overcome its death rate 

and clone 3 will die out. 

to stimulate b, (cf. equation (19)) and the b,-b, equilibrium is stable (this is 
the “affinity gap” discussed by Neumann and Weisbuch, 1992b). 

On the other hand, when q= 1, the stimulus for b, is always lower than 
that for b, (see Figs. 2b and 6). Hence the 6,-b, equilibrium is stable. In 
the companion paper (Sulzer et al., 1995) we proved that cross-linking 
curves and response functions which are monotonic functions of the num- 
ber of cross-links are nested within each other for 77 2 1. Thus, whenever 
77 2 1, high-affinity idiotypic equilibria are stable in the presence of low- 
affinity interactions. 

We summarize this behavior by saying that when 77 = 0 (i.e. in the old 
model), low-affinity interactions get selected, and when 7 = 1, high-affinity 
interactions get selected. This has important implications for networks with 
many clones and many different affinities. 



302 R. J. DE BOER et al. 

Shape space. A powerful concept for studying immune networks is that 
of shape space (Perelson and Oster, 1979). Segel and Perelson (1988) used 
this concept to construct networks by identifying the variable region of the 
immunoglobulin receptor with some generalized low-dimensional shape. 
Each idiotype was thus defined as a point in shape space. The field of the 
idiotype was then defined over the local neighborhood of the point corre- 
sponding to the exact complementary shape. 

For simplicity we here consider a one-dimensional shape space that is 
composed of two complementary sets of molecules. These can be thought 
of, for instance, as sets of negatively and positively charged molecules, 
respectively. Calling one set b+ and the other b-, we define clones b+ and 
b,: to be exactly complementary when i = j, where i, j = 1,2,. . . , n. The 
binding affinity ~~~ between two clones falls off as a Gaussian function of 
the distance to the exact complement, i.e. 

~~~ =g(i,j) = exp[ -(i -j)2/a2], (30) 

where a is the standard deviation of the Gaussian. Note that when i =j 
the affinity ~~~ = 1. We truncate the Gaussian, 

~~~ =g(i, j) = g<i, j) if f(i, j) > E 
0 otherwise, 

(31) 

in order to define a “minimal affinity” of E. The interaction strength Jij is 
again defined as K;+ 1), i.e. as g(i, j)‘+ ?. 

In the absence of competition between the B cells of each clone for 
binding to anti-antibodies, i.e. under the excess ligand approximation (cf. 
Sulzer et al., 1995), truncation of the Gaussian is actually required in the 
old model (De Boer et al., 1992a). We have shown above that the network 
with 7 = 0 selects for the lowest affinity. If the Gaussian is not truncated, 
the lowest affinity is infinitely distant from the exact complement and thus 
such a network places great importance on infinite range interactions (De 
Boer et al., 1992a). In the new model with 77 = 1 truncation of the Gaussian 
at a sufficiently small value of E does not have any effect (apart from 
speeding up the computations). 

The B cells in shape space can also be stimulated by antigens. The shapes 
of the antigens are represented as points in the same one-dimensional 
shape space of molecules, and their concentrations are denoted a: and 
a,. The antigens activate the B cells and are eliminated by them according 
to the same truncated Gaussian function (equation (31)). They obey the 
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differential equations 

da; - = -ea+hq+ 
dt 

and da, 
- = -eai:hy-, 

dt 
(321 

where 

h;+= kg(i, j)b,r and hq-= kgti, j)bj+. (33) 
i i 

Note that the rate of elimination of the antigen is taken to be proportional 
to the sum of the B cells weighted by their binding affinity ~~~ = g(i, j) 
because antigen elimination does not depend on cross-linking. 

The cross-linking and binding fields for the B cells can be defined as 

hz,i = kg(i, j)“‘[ a,:+ by] and h+= ig(i, j)[a? +b,~] (34) 

for the bf set and as 

h;,i = kg(i, j)‘+“[a,? +b,T] and hi= tg(i, j)[at +bT] (3% 

for the b- set. 
Except for the two sets, this model is similar to that of De Boer et al. 

(1992a). Thus, instead of writing it as a discrete sum, the model could as 
well be written as coupled partial differential equations. In De Boer et al. 
(1992a) we showed that the uniform virgin state of the system, i.e. b+ = b; 
= m/d and a+= a,= 0, exists and is stable when m/d is sufficiently small. 
Employing the condition on the existence of the virgin state, equation (191, 
we also obtain a stable uniform virgin state in our new model. This steady 
state is used as an initial condition. 

The typical behavior of the old shape space model is percolation. This is 
illustrated in Fig. 7a, where q = 0. We perturb the virgin state by setting the 
concentration of a randomly chosen antigen to 1 (i.e. a& = 1). This gener- 
ates a travelling wave solution that ultimately affects all of the clones in the 
shape space (Fig. 7a). The system eventually attains a uniform state in 
which one set of B cells is immune and the other is suppressed (not shown). 
This behavior changes dramatically in the new model (q = 1). Perturbing 
the same clone in the same way, we obtain one localized peak around b+ 
and bi (Fig. 7b, left peak). This corresponds to a localized immune state 
(cf. the Cayley tree results). It is possible to give additional random 
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Figure 7. Distribution of clones in shape space. Parameters as in Fig. 3, but 
m = 10m4, e = 0.1, n = 200 and (T= 5. The light line depicts the distribution of 
the b+ clones. The heavy line depicts that of the b- clones in a bottom up 
manner, i.e. for the heavy line the y-axis runs from -4 at the top to 4 at the 
bottom. We introduce a randomly selected antigen when the system is in the 
virgin state. (a) Distribution at t = 100 for m = 10p4, n = 0; (b) distribution at 
t = 200 for m = 10e4, n = 1. In (c) we introduce two antigens and show the 
distribution at t = 200 for m = 10m3, n = 1. In Cd) we introduce no antigen, but 
rather use bi+= b;= 1 as initial condition and show the distribution at t = 2000 

forn=l. 

perturbations and obtain additional localized peaks (see the right peak at 
i = 198 Fig. 7b). Several memories can thus be stored. 

For different parameter settings the behavior may be more complicated. 
For a tenfold increase of the source, i.e. m = 10e3, the system attains a 
localized immune state that is composed of two peaks around the location 
where the antigen was introduced (see Fig. 7~). For m = 10e3 and a wider 
Gaussian, (T = 10, we obtain percolation (not shown). 
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Starting the new model with a stimulatory random initial condition in 
which bi = 1, we obtain a pattern with regularly spaced peaks (see Fig. 7d). 
The spacing of the peaks seems to be related to the width of our Gaussian 
function. Peaks spaced at a sufficient distance are indeed expected to 
become independent of one another because the new model has an affinity 
cut-off below which clones hardly influence each other. Thus, the new 
model does not have the large scale pattern formation of “clusters” or 
“ridges” of immune or suppressed clones that we described for the previous 
model (De Boer et al., 1992a). Rather it attains a repertoire of independent 
“localized” peaks. 

Mathematically, however, pattern formation seems more interesting in 
the new model because our new function allows for the “long range 
suppression” and the “short range activation” (Meinhardt, 1982; Levin and 
Segel, 1985) known to be important in the formation of Turing patterns 
(Turing, 1953). In th e new bell-shaped function, increasing h reduces S 
(see equation 2(a)) and hence reduces f(h,, h), whereas increasing h, 
increases 6 and hence increases f(h,, h). Thus we may speak of h as a 
“suppressive field.” Because g(i, j) < 1, h, for 77 > 0 will involve a narrower 
Gaussian than h and hence suppression will indeed have a “longer range” 
than activation. It would be interesting to investigate this further along the 
lines of Segel and Perelson (1988) and De Boer et al. (1992a). 

The reduction of percolation in this shape space model can also be 
understood from Fig. 8 in which we plot the stimulation of a clone as a 
function of its distance to a suppressive ligand concentration. Thus, we plot 

f 

0.8 

0.6 

0.4 

0.2 

0 

Figure 8. The degree of stimulation in shape :pace, f(h:,, h:), as a function of 
the distance to a suppressive ligand. Parameters b;= 0 = 18 (cf. equation (18)), 

u = 1 and w = 0.1. The light line denotes 7 = 0; the heavy line 77 = 1. 
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f(h&,h’) as a f unction of i in a situation with a fixed (suppressive) 
concentration of b,= 0 = 18. For n = 0 (i.e. the light line) the stimulation 
increases with distance: by moving outward, clones can escape suppression. 
Conversely, for 7 = 1 (i.e. the heavy line) the stimulus can only decrease 
with distance. 

Random networks. Given our lack of knowledge about the structure of 
idiotypic networks, it is interesting to consider idiotypic networks with 
randomly chosen symmetric interactions. Following De Boer and Hogeweg 
(1989b) we define the connectivity C as the average number of non-zero 
interactions per clone. The classical results of Erdiis and Renyi (1960) 
proved that for C > 1 all clones tend to be connected to one another in one 
large graph (see also De Boer and Hogeweg, 1989b; Perelson, 1989). Here 
we study networks governed by an affinity matrix formed by assigning 
random values between 0 and 1, chosen from the uniform distribution, to 
randomly selected matrix elements ~~~ = ~~~ until an average connectivity of 
C is attained. Antigens are included in the network. For simplicity we 
assume that each antigen interacts with exactly one B cell clone and that 
this interaction is of maximum affinity. Thus for each antigen 

(36) 

As before, each B cell experiences two fields 

hX,i=~i+ iK$+“bj and h,=~i+ iKijbj* 

i i 
(37) 

Substitution of these fields in equation (11, with equation (10) as a prolifer- 
ation function, defines our random network. 

By choosing m/d -SC l/O we guarantee that the network has a global 
stable virgin state bi = m/d [cf. equation (19)]. We perturb the virgin state 
by setting a randomly selected antigen concentration a, = 1. This selects bi 
as the Abl level, all clones connected to bi as the Ab2 level, etc. 

In the one-field model such a stimulation usually gives rise to percolation 
(De Boer and Hogeweg, 1989b). This is confirmed by setting q = 0. In Fig. 
9a we observe that the first clone that is randomly selected by the antigen 
evokes a second wave of proliferating Ab2 clones. Some of these become 
large. Subsequently, a third wave of Ab3 clones proliferates. Many of them 
become very large. Ultimately 90% of the clones are affected (i.e. have a 
value of hi > 0.1). 
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Figure 9. Immune responses in random networks. Parameters as in Fig. 3, 
n = 100, C = 20. At t = 20 we set a randomly selected antigen to ai = 1. In panel 
(a) we find percolation for 77 = 0; in panel (b) we observe a localized response 

because 7 = 1. 
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Studying the new model by setting q = 1 we obtain a localized immune 
response (see Fig. 9b). Stimulating the same system with the same randomly 
chosen antigen, we observe that initially the first and second wave are the 
same. The difference is the absence of the large clones in the second wave 
and, as a consequence, the reduced expansion of the Abl clone. There is no 
percolation and we obtain a damped oscillation in which 15% of the clones 
are affected (i.e. have a value of hi > 0.1). This actual number of 15% is 
determined by the network size: in large networks a smaller percentage is 
affected. It is therefore possible to stimulate with another antigen at a 
later time and have another memory stored in the random network. 

The large clones in the second wave in Fig. 9a have to be those that have 
a low affinity for the Abl clone. When 7 = 0, low-affinity interactions give 
rise to high population levels (see Fig. 5). Thus, we conclude that it is the 
selection for high-affinity interactions in the new model that prevents 
percolation from occurring. This is confirmed by studying the same network 
and setting all random interactions to ~~~ = Jij = 1. Such networks also give 
localized responses (not shown). 

The fact that random networks can give rise to localized responses (e.g. 
Fig. 9b) is explained by the Cayley tree analysis. In a random network each 
Abl tends to be connected to several Ab2 clones. Together they sustain the 
proliferation of the Abl clone, and each of them remains small enough not 
to stimulate the Ab3 level. 
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When q= 1 there is still a large part of parameter space in which the 
Ab2 clones do activate the Ab3 level. For example, increasing the source 
(i.e. m) or changing the antigen dynamics (i.e. by changing e or by taking 
another antigen equation) may lead to transiently high Ab2 levels during 
which the Ab3 level is activated and percolation is observed (not shown). 
Thus, random networks have either percolation or localized responses as 
their typical behavior. 

Discussion. We have demonstrated that the two-field bell-shaped prolifer- 
ation function introduced by Sulzer et al. (1995), derived from a physical 
chemical model of receptor cross-linking in circumstances where ligands 
with different affinity interact with B cells, behaves radically different from 
the phenomenological bell-shaped function previously used in idiotypic 
network models. The basic difference in behavior generated by the single- 
field and the dual-field interaction functions is that in the single-field case 
B cell populations with low affinity for their idiotype regulator can escape 
idiotypic suppression. In the two-field case they cannot (see Figs. 2, 6 and 
S), i.e. these networks no longer select for low-affinity interactions. As a 
consequence, single-field models are sensitive to percolation and two-field 
models favor localized immune responses. 

This difference is important in any network having interactions with 
different affinities. Here we have illustrated the change in behavior of 
shape space models and random networks. There exists a large body of 
literature studying single-field immune network models having different 
affinities. This includes shape space models (Stewart and Varela, 1989; De 
Boer et al., 1992a; Detours et al., 1994), bit string models (De Boer and 
Perelson, 1991), Cayley tree models (Neumann and Weisbuch, 1992a, b), 
random networks (De Boer and Hogeweg, 1989b) and the models with 
autobodies (Stewart and Varela, 1990). The results of these previous 
publications are likely to be affected by choosing the more realistic two-field 
interaction function. 

One exception seem to be the shape space models that describe just the 
presence and absence of clones (Stewart and Varela, 1991; De Boer et al., 
1992b). In these systems repertoire selection is studied by assuming that a 
clone is only maintained in the repertoire if it is connected to sufficient but 
not too many other clones. Hence these models are not based upon the 
concentrations of the clones, but just on their presence. Our new function 
can easily be implemented in these models by considering a wider Gaussian 
(i.e. a larger neighborhood) for the suppression than for the activation. We 
checked that the cellular automaton model of De Boer et al. (1992b) has 
similar pattern formation when this is implemented (not shown). 
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Percolation remains the dominant behavior of network models with a 
structure that varies in time. In such models, clones are created randomly 
and deleted when they become too small (De Boer and Perelson, 1991). 
The percolation in such variable structure models is due to the long 
transients that are caused by the stochasticity of the random recruitment. 
To test this, we have simulated the random model of equation (37) with a 
stochastic recruitment of clones. Thus we set the continuous source m = 0, 
start with all b - i = 0, and slightly increase the values of the b - i’s at 
randomly chosen time intervals. The typical behavior of such a stochastic 
model is percolation (not shown). Since bone marrow recruitment in the 
immune system is a stochastic process, percolation could indeed be the 
most realistic network behavior. 

The original shape space model proposed by Segel and Perelson (1988) 
employs a two-field interaction function. Their model was phenomenologi- 
cal and based upon the idea that a B cell might have receptors that 
transduce activation and inhibition signals. They thus defined a field for the 
“activation” receptors and a field for the “suppression” receptors on a B 
cell. The two fields were defined by having a wider Gaussian function for 
the suppressive receptors. This was based upon the notion that long range 
inhibition and short range activation are required for pattern formation 
(Meinhardt, 1982; Levin and Segel, 1985); however, this turned out not to 
be the case in immume networks (Segel and Perelson, 1990). Interestingly, 
the particular proliferation function studied by Segel and Perelson (1988) 
resembles the new cross-linking-based function studied here, if we interpret 
h as the suppressive field and h, as the stimulatory field. We showed that 
for 77 > 0, h has a wider range than h, and thus in our model, “suppression” 
naturally has a wider range than “activation.” Consequently, it would be 
interesting to repeat our earlier analysis (De Boer et al., 1992a) to see if we 
find pattern wavelengths in agreement with Fig. 7. 

What improvement did we achieve over previous phenomenological 
activation functions? Here we have considered idiotypic networks in the 
case where B cell activation increases with the degree of receptor cross- 
linking. Quantitatively describing cross-linking requires two fields. There 
is general consensus that cross-linking is involved in generating signals 
required for B cell activation (proliferation) and tolerance induction 
(cf. Mongini et al., 1991; Teale and Klinman, 1980; Dintzis et al., 1985). 
The suppression of B cells at high ligand (i.e. anti-idiotype) concentra- 
tions, however, need not be due to a reduction of cross-links. Other proc- 
esses that may play a role are the differential regulation of proliferation 
and maturation at different ligand concentrations (note the opposite as- 
sumptions of Varela et al., 1988 and Sulzer et al., 1993 on this issue), and 
the co-cross-linking of immunoglobulin and Fc receptors (Wofsy and Gold- 
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stein, 1990). However, whether or not cross-linking is involved in high 
dose suppression does not determine whether a single-field or dual-field 
proliferation function is the most appropriate to use; ultimately this issue 
will have to be decided by experiment. 

It is disturbing that the behavior of immune networks depends so 
crucially on the choice of the model. The two-field interaction function 
proposed here remains a gross over-simplification of the process of B cell 
activation. Nevertheless, users of single-field interaction functions need to 
be aware of the fact that using it has important implications for network 
behavior and that such functions are just one of a number of possible 
choices. It therefore seems crucial to learn more about the immunology of 
idiotypic interactions: is cross-linking involved in suppression and are 
low-affinity interactions selected for at high ligand concentrations? 

In conclusion, we have proposed a new interaction function for idiotypic 
network models. This function, based on separate binding and cross-linking 
affinities, conforms better with the physical chemistry or receptor cross- 
linking than previous phenomenological interaction functions. We have 
studied various examples from the literature and have shown that this new 
function reduces the percolation problem inherent in most network models. 
We stress, however, that percolation remains one of the possible behaviors, 
and is dominant in networks with stochastic recruitment. Examples of other 
work that we have been involved in that are likely to be affected by 
implementing the two-field activation function are the De Boer and Perel- 
son (1991) bit string model for repertoire selection and meta-dynamics, and 
the Weisbuch and Perelson (1991) model for idiotypic selection of somatic 
mutants. 

Portions of this work were performed under the auspices of the U.S. 
Department of Energy. It was supported by NIH grant RR06555 (A.S.P.) 
and the Santa Fe Institute Theoretical Immunology Program through a 
grant from the Joseph P. and Jeanne M. Sullivan Foundation. 
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