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Real alternative to quantum gravity in loop space

R. Loll
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We show that the Hamiltonian constraint of four-dimensional Lorentzian gravity, defined on a space of real,
SU(2)-valued connections, in spite of its nonpolynomiality possesses a natural quantum analogue in a lattice-
discretized formulation of the theory. This opens the way for a systematic search of its zero eigenvectors. The
unambiguous and well-defined kinematical scalar product is that of tli2)$jduge theory. We also comment
on various aspects of the continuum thed§0556-282(196)01818-9

PACS numbe(s): 04.60.Ds, 04.60.Nc

In spite of considerable advances in our understanding ofshtekar’s choice isv=1, 8= —i, which makes the second,
the canonical quantization of gravity, based on the use ofionpolynomial term drop out of the Hamiltonian. The draw-
complex connection variablgd] and quantum representa- back is that, according to formuld), the connection vari-
tions on spaces of Wilson lood2], some basic problems able A} is now complex. Our real version of connection
have remained unsolved. First, despite the apparent simpligravity consists in choosing=1 andg= —1 [5]. The func-
ity and polynomiality of the Hamiltonian in this approach, tional forms for the remaining spatial diffeomorphism con-
even at a formal level, only a feand for the most part straintsEZFX,=0 and Gauss law constrain®,E?=0 are
physically uninteresting solutions to the Wheeler-DeWitt independent of the choice af and 8. (As usual, we denote
equation have been found in any loop representation. Segne field strength of the connectidy, by F and its covariant
ond, treatment of the reality conditiort@hich have to be gerjvative byV.) Their treatment therefore does not have to
imposed on the SL(Z)-valued basic variables to recover pe changed with respect to the usual, complex formulation.
real Einsteinian gravitycontinues to be troublesome in the |, particular, we will continue to use Wilson loop variables

quantum  theory. [The heat kernel measure 0N iy the quantum theory. In the real formulation, E8) be-
SL(2,)-wave functions used if3,4] provides a kinematic -gmes

scalar product for complex Wilson loogsiodulo a possible
hidden metric dependengebut does not incorporate cor- HﬁzeiJkEﬁEfpgb—Hpoﬁ (3
rectly the reality conditions for Ashtekar gravity.

Faced with these difficulties, it may be time to rememberretaining a “potential” term(which is a misnomer since it
that there exists a version of Hamiltonian gravity in terms ofdepends both on coordinates and momger8tarting from a
real connection variable$5] (for a corresponding action form equivalent to Eq(2) [formula (14) in Barbero’s paper
principle, se€[6]), and to reevaluate the achievements and5]] for HP®, one finds after some algebra that it may be
drawbacks of the complex formulation as compared to thiseexpressed as a polynomialAnandE, up to determinantal
real alternative. There is a “unified” derivation of the two factors, namely,
connection representations in the classical theory: starting

_ byb
from the 3+1 formulation in terms of a canonically conju- HP= (deEE) 277a1a3a477b1b3b4(Ez3E|a4Em3En4

gate pair P{,K}) of SO(3)-valued variables, wherB? de- oD b —aob a b
notes a dreibein (with density weight 1) and —2E B ECENECE (Vo BT (Vp,EN, (4)

KL= (1/Vg)KapP"" is (whenever the Gauss law constraints

are satisfieflthe extrinsic curvature with one index raised, ancli_ utp to terms prﬁportmn?l t? the GfatLr‘]SS law ?onsftralntls.
one may define a canonical transformation et us now recall some téatures or the complex formula-

tion with the HamiltonianH®= e*EFEPFY,. There exist

Ed=aP?, simple solutions td1%¥ =0 in the loop representation, both
_ _ _ in the formal continuum approad®] and on the latticg4],
AL=T,+BK}, (1)  where the loop stat# depends orismooth nonintersecting

_ _ _ _ _ loops (see alsd 7] for a generalization within a lattice lan-
whereI'=I'(P) is the spin connection compatible with,  guage. This is a straightforward consequence of the anti-
anda and g are two nonvanishing constants. In terms of thesymmetry ofH® in the spatial indices and b. However,

new variables, one has these solutions are probably not interesting from a physical
i b i b point of view, because they correspond to zero eigenstates of
{A(X),Ej(y)} = aB{Ky(X),Py(y)} the volume operatdi8,9]. Apart from the state found if10],
_ —a,B(S} 5253(x—y). we are not aware of any nontrivi@h this sensgsolutions

that have been found by tackling the equatl%bﬁ‘lf=0 di-

The Hamiltonian constraint function in terms do%,E) reads  rectly.
Other interesting features of the complex formulation are

EPEPF S, —[(2/8%+2) JEFPEPN (AL —T L) (AL—T}). that all four diffeomorphism constraints can be solved by
(2 making a so-called Capovilla-Dell-Jacobs¢8DJ) ansatz
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[11], and that there exists a formal solution to the Wheelerthe Haar measurég. The basic commutators are
DeWitt equation(with a specific factor ordering foH?), S B A Dt

given by the exponential of the Chern-Simons action for the [Va"(n,&),Vc™(m,b)]=0,

complex connectiorA [12]. However, in the absence of a Ao n _ B Gy o
proper treatment of the reality conditions, the significance of [Pi (n,&),Va~(M,b)]=— (i/2) dymbab7ia~ Ve~ (M,b),
these properties for the full gravitational theory has remained _ oA . . .
unclear. There is a version of the CDJ ansatz in the rediP; (n,8),Va%(m,b)]= = (i/2) 8, m+1025Va%(M,b) 7ig°,

theory[13], but the remaining Gauss law constraints are con- )
siderably more difficult. The real Chern-Simons term does R ) N .

not seem to play a special ralapart from being a generating [P (n,a),pj (M,b)]= %i6ymdapeijkPr(n,a),
functional for theB field, B3=$»*"°F._ like in the com- it A al

plex theory. This also implies that the solutions to the [pi"(n.a),p; (M,b)]=0,

Hamiltonian related to knot invariantsbtained by a formal
loop transform of the Chern-Simons term from the connec
tion to the loop representatigd4]) do not carry over to the

real theory. The absence of these “nice” features from th

wheree;;, are the structure constants of @ Our normal-
ization for the SW2) generators 7; is such that
in ,7j]1= €ijc T and A= A, 7i/2. Taking into account the ex-

real theory may lead one to wonder whether they may not ggansmns
away also in the complex case once reality conditions are V,B(D)=1,8+aA, B+ 0(a?)
properly taken into account. A A DA ’
The (quantum Hamiltonian H® of the complex theory p?(6)=a2Eb+O(a3) (6)
I 1

has a natural representation in terms of loop functions, since

the components of the field strendthboth in the continuum  of the corresponding classical quantities for small lattice
[2] and on the |att|Cé15] can be obtained by Considering Spacinga’ one derives the expansion

infinitesimal planar Wilson loops. We will show below that a ) A R

similar statement holds for the real Hamiltoniei, i.e., in 3T 7,V(n,b)p;"(n+1;,8)7;V(n,b) "*]—p;"(n,&)

spite of its nonpolynomiality, the potential term has a natural

representation on quantum loop states, at least in the lattice =a3(g,Ef+ eijkAbjE§)+O(a4)=a3VbEi°+ oah. (7
formulation. This makes the search for zero eigenvectors of

H® accessible numerically. Clearly the potential term pre-The prefactor—1/2 occurs because of #itrj=—24; .

sents a computational complication, which however in the For reasons of symmetry we will from now on use the
absence of any explicit solutions BIEW =0 seems to be a averaged momengg :=(p;" +p; )/2 and their quantum ver-
matter of degree rather than one of principle. The big advanSions. Motivated by Ed(7), we may represent the quantum
tage of the real formulation is the presence of a well-definegovariant derivativeV ,E{" by the lattice operator

and unambiguous scalar product on Wilson loop functionals . ~ “ AT .

in the quantum theory, that induced by the Haar measure of z TH[7iV(n,b)p;(n+15,¢)7;V(n,b)""]—pi(n,c). (8

SUQ). Note, however, that this operator is well defined only on

The following discussion will take place within the dis- . NN
crete lattice framework, with occasional comments on a post—hose Wilson loop states that for each occupied lif.c)

sible continuum formulation. Furthermore, we will focus on have also the neighboring “parallel” link(n+1;,c) occu-

the discussion of the potential term, which is new with re-Pied:[A lattice Wilson loop is a gauge-invariant function of

spect to previous treatmenfts5,4,7. It may be worthwhile ~the form TV(I)V(l2) ... V(l)), with y=lyo 50 .. .ol a

noticing that in the lattice approach, both the state space arfd0Sed loop of lattice linkg. _

the operators get regulated simultaneously, since they share This happens because the left-hand side of expresgjon

the same suppofiin terms of lattice linky in discretizing s a finite difference. If one op;(n+1;,c) andp;(n,c) but

the state space, we get a regularization of the Hamiltoniafiot the other vanishes on a state the result of the action of

“for free.” Eq. (8) on W for small lattice spacing@ is of lower order in
Recall now the basic ingredients of the Hamiltonian lat-a& and diverges in the limit as— 0. In particular, loop states

tice formulation for theories based on a space of connectiongith only sparse intersections have a singular behavior under

[16]. Our lattice will be a cubidNX NX N lattice, with peri-  the action of the covariant derivative operat8). Moreover,

odic boundary conditions. The basic operators associategince we do not want to distinguish any particular direction

with each lattice linkl are in our case an SP)-link ho-  on the lattice, we will, instead of Ed8), use the averaged

lonomy V (represented by multiplication by), together ~ VErsion

with its inverseV~1, and a pair of canonical momentum ~ L ~q

operatorsp;” andp; wherei is an adjoint index. The op- a{TLnV(n,b)p;(n+15,¢)7V(n,b) 7]

erator f)f’(n,é) isf baseo_l at the verten, z_ind _is associated —Tr[TiV(n—ig,6)’1bj(n—ig,é)er(n—15,6)]}. ©)

with the link | oriented in the positiva direction. By con-

trast, p; (n+1;,a) is based at the vertex displaced by oneA remark similar to the one made above concerning the al-

lattice unit in thea direction, and associated with the inverse lowed loop states applies to this operator as well.

link 171(a)=I(—a). The wave functions are elements of To obtain a well-defined lattice operatét®, we still

x,L2(SU(2) dg), with the product taken over all links, and must take care about the determinantal factor Eyef.
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As shown in [9,17, deE=(1/3!) 7. *EFEPE;  [[deE][ [8]. Since the naive local quantum operat@ts
possesses a natural quantum lattice  analoguganishes at all points of a loop state without intersections,
6(”)1=%Uabafijkf’i(n,é)laj(n,ﬁ)f’k(nyé)- Since the latter is 1/detE is ill defined almost everywhere on a typical loop

a self-adjoint operator, there exists a Hilbert space basis ifit&te- In ]fh‘; c?ntmuum there tr;]us S‘Tem to be nohgoog, ana-
which it is diagonal. For the gauge-invariant sector, this basif°9ues of the lattice states with “volume everywhere.” A

is most easily constructed in terms of so-called spin networlay out of this may be to either use smeared-out wave func-

; ; ; C tions and/or regularize the quantum operators appropriately.
states, certaifant)symmetrized, real linear combinations of Alternatively, one may multiply the Hamiltoniah™ by a
Wilson loop states.

; . L . factor (deE)2. Classically, this changes the constraint alge-
A spin network associates a positive “occupation num-

.o i ) . : bra at most by terms proportional to the constraints. In par-
ber \.N'th each lattice I|nk,_ which may be mterp_reteql aS ticular, the commutator of two Hamiltonians is just rescaled
counting the number diunoriented flux lines of basic spin-

by a factor of (deE)“. Quantum-mechanically, however, op-
1 representations along the link, and also keeps track of th@?/ator orderiné prc)>ble?ns may appear. y P

way in which those flux lines can be contracted gauge- possibly the problem is not as serious as it seems since
invariantly at the vertice¢see[18] for more details A con- .along smooth pieces of loop whereetdl vanishes, also

crete way of constructing elements of the spin network basi 201 pot .
is to begin with sets of Wilson loops with fixed occupation fdeE) HP” does, and one may be able to regularize the

numbers and arbitrary intertwiners, and then select linearlction of HP to a finite value. Another problem, also rel-
independent sets of intertwiners at the vertioehich gen- ~ €vant to the lattice approach, is thattd has many zero-
erally, in terms of a loop language, are still related by Man-volume eigenstates even at loop intersectigh47]. Hence
delstam constraints the question is whether one can consistently restrict the Hil-
In terms of such states, the diagonalization of the operabert space so that the action P is always well defined
tors D(n) is reduced to the diagonalization within finite- (recall that [H",detE]#0). For example, no immediate
dimensional subspaces of the Hilbert space. In the resultingroblems arise if one chooses a factor ordering-8t" with
diagonal basis we can meaningfully define quantum reprethe deE terms to the right and discards all zero-volume
sentations of arbitrary functions of (d®&tin terms of their  states by hand.
eigenvalues(Investigations of the spectrum ¢fwo related To summarize: there is a well-defined regularized, self-
but not identical versions pthe volume operator have been adjoint operator expression for the real Hamilton{&h on
performed in[17,19.) In particular, if we restrict ourselves the lattice, at least on a large subsector of the Hilbert space
to eigenstates with nonvanishing eigenvalues, we can quawnf gauge-invariant functions. This operator is subject to the
tize (deE) 2 on the lattice. There is no immediate analogueusual ambiguities with regard to factor ordering and addition
of this construction in the continuum, although one can deof higher-order terms in the lattice spaciag For example,
fine a quantized version of the classical volume functionwe may choose

() = — €5 TV, P3) 791 (1,8) B (1,0) = 7, 7,5,0,[ P(1,83) B1(N,84) Prn((N,D3) Pi(1, B)
—Zf)m(n,ég)f)n(n,é4)f)k(n,Bg)f)|(n,64)]ﬁk(n,éz)ﬁm(n,62)
XA nV(n—15,,8,) " Pe(n—15,,80) 7V (n— 13 ,82) — 71 V(N,8,) ps(n+15,81) 7oV(N,B) 1]

X T 7aV(n—13,,b,) " 1py(n—15,,b1) nV(n— 15 ,b,) — 7,V(n,b,) pe(n+1,,b1) 7V(n,b,) 1ID(n) "2 (10)

for the Hamiltonian localized around a vertaxIn Eqg. (10), some technical problems that have to be addressed for its
all spatial indices a, B, etc., are summed over, and solution. Consider the action of a local lattice Hamiltonian
V(n,P3p) is the holonomy associated with a plaquette loopH ™3(n) on a spin network stat&. Since the momentum

in the a-b plane. operators do not change the occupation numpeds links,

Note that the Hamiltonian of metric gravitglso contain- it & priori looks as if this action would result in a set of loop
ing inverse powers of dgt=|deE|) cannot be treated in a States withAj; {0,+ 1,+ 2}, depending on the contributions
similar way. The construction above dependedigrihe re-  V(link) to the various links in a neighborhood nf coming
formulation of canonical gravity in terms of connection vari- from the kinetic and potential parts of the Hamiltonian. Un-
ables, henceii) the possibility of choosing a gauge- fortunately, life is not as simple.
invariant Hilbert space of Wilson loops, therefoféi) the Take, for example, the action of the polynomial @rbf
diagonalization of the operatof3(n) in terms of spin net-  jpotop g spin network state. Our computations show that the
work states, together witfiv) a natural regularization of the egyiting terms generically do not form a set of states that
covariant derivative terms iklP% combine in a simple way to give orfer a small number of

Having thus set the stage for a systematic investigation o§pin networks, because the operator action does not preserve
the eigenvalue problerkl ™3 =0, we will now describe the total(anti-)symmetry over link permutations of the spin
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network. The result must always be expressible as a unique Coming back to the continuum theory, one can show that
linear combination of spin network states, but it turns outthe linearized limit of the real connection formulation coin-
that this decomposition in general contains states whose ogides with that of the complex or{ef. the treatment of usual
cupation numbers differ from those of the original stdte  Ashtekar gravity in[21]). In the real case, the linearized
within a whole range of values. For instance, the action ofsersions of the kinetic and potential terms in E8). become
O(n) on a state? with occupation numbey; for some link  proportional to each other and add up to the expected result.
l; based at the vertex may result in a sum of spin network Likewise, the larges limit, as, for example, discussed in
states with j;’s taking any one of the positive values [22] is unchanged. For th&—0 limit [23], this does not
jit4jit2]i.ji—2,....Moreover, through retracings of the necessarily seem to be the case.

form V(n’,2)V(n’,&) ~*=1 occurring during the decompo-  Our real treatmentor an appropriate continuous ana-
sition of OW into independent spin networks, even links may|ogue can be viewed as complementary to another approach
be affected that where not acted on directly®gn) in the that has recently been suggested for dealing with the com-
first place. This reveals a somewhat unpleasant property gflex version of the theory, namely, making use of a “gener-
the spin network states which in a sense are “maximallyalized Wick transform”[24]. In this ansatz, one tries to de-
nonlocal” (as opposed to sets of maximally localized Wilsonfine 3 transformationW= expC, with C=(m/2)fKLER
Ioop_fun.ctions that one may f‘?“’Of in.certgin ga_uge—theoreti(between two Hilbert spaces where in one the Hamiltonian
applications[20]), especially in conjunction with our re- has the simple fornh_IE:EijkEiaE;:)ng and in the other the

uirement of selecting only spin networks with nonzero vol- ;
ﬂme at every vertex gonlysp more complicated form of the real theory. As far as we un-

We therefore conclude that the investigation of the specderstand, the difficulties in making the operawrwell de-
trum of H* /2 requires the presence of an efficient algorithmfined in the continuum quantum theory are roughly compa-
for generating independent spin network states and compui‘-”‘ble to those of constructing the continuum Hamiltonian
ing inner products of such states. We reckon that even in thel“. (Note that, like the phase space functio@alalso the
discretized lattice version the spectral problem is sufficientlypotential termHP® can be written in terms of Poisson com-
complicated so as to make further approximations necessargnutators of the quantitie§(de€) " Y?HE, [/deE, Aia and
Since we can calculate matrix elements of the HamiltoniarEi’fl) However, even if these could be overcome, the problem

explicitly, we can neglect small contributions, depending onof finding nontrivial solutions to the Wheeler-DeWitt equa-
suitable perturbation parameters such as those characteriziggn would still remain.

the spin network states or related to the bare gravitational

coup”ng constants. More details on our investigation of The author is indebted to F. Barbero for numerous discus-

these issues will appear elsewhere.

sions on real connection gravity.
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