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Real alternative to quantum gravity in loop space
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We show that the Hamiltonian constraint of four-dimensional Lorentzian gravity, defined on a space of r
SU~2!-valued connections, in spite of its nonpolynomiality possesses a natural quantum analogue in a la
discretized formulation of the theory. This opens the way for a systematic search of its zero eigenvectors
unambiguous and well-defined kinematical scalar product is that of the SU~2!-gauge theory. We also comment
on various aspects of the continuum theory.@S0556-2821~96!01818-8#
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In spite of considerable advances in our understanding
the canonical quantization of gravity, based on the use
complex connection variables@1# and quantum representa
tions on spaces of Wilson loops@2#, some basic problems
have remained unsolved. First, despite the apparent simp
ity and polynomiality of the Hamiltonian in this approach
even at a formal level, only a few~and for the most part
physically uninteresting! solutions to the Wheeler-DeWitt
equation have been found in any loop representation. S
ond, treatment of the reality conditions~which have to be
imposed on the SL(2,C” )-valued basic variables to recove
real Einsteinian gravity! continues to be troublesome in th
quantum theory. @The heat kernel measure o
SL(2,C” )-wave functions used in@3,4# provides a kinematic
scalar product for complex Wilson loops~modulo a possible
hidden metric dependence!, but does not incorporate cor
rectly the reality conditions for Ashtekar gravity.#

Faced with these difficulties, it may be time to rememb
that there exists a version of Hamiltonian gravity in terms
real connection variables@5# ~for a corresponding action
principle, see@6#!, and to reevaluate the achievements a
drawbacks of the complex formulation as compared to t
real alternative. There is a ‘‘unified’’ derivation of the tw
connection representations in the classical theory: star
from the 311 formulation in terms of a canonically conju
gate pair (Pi

a ,Ka
i ) of SO~3!-valued variables, wherePi

a de-
notes a dreibein ~with density weight 1) and
Ka
i 5(1/Ag)KabP

bi is ~whenever the Gauss law constrain
are satisfied! the extrinsic curvature with one index raise
one may define a canonical transformation

Ei
a5aPi

a ,

Aa
i 5Ga

i 1bKa
i , ~1!

whereG[G(P) is the spin connection compatible withP,
anda andb are two nonvanishing constants. In terms of t
new variables, one has

$Aa
i ~x!,Ej

b~y!%5ab$Ka
i ~x!,Pj

b~y!%

52abd j
ida

bd3~x2y!.

The Hamiltonian constraint function in terms of (A,E) reads

e i jkEi
aEj

bFab
k 2@~2/b212!#Ei

@aEj
b]~Aa

i 2Ga
i !~Ab

j 2Gb
j !.

~2!
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Ashtekar’s choice isa51, b52 i , which makes the second,
nonpolynomial term drop out of the Hamiltonian. The draw
back is that, according to formula~1!, the connection vari-
able Aa

i is now complex. Our real version of connection
gravity consists in choosinga51 andb521 @5#. The func-
tional forms for the remaining spatial diffeomorphism con
straintsEk

aFab
k 50 and Gauss law constraints¹aEi

a50 are
independent of the choice ofa andb. ~As usual, we denote
the field strength of the connectionAa

i by F and its covariant
derivative by¹.! Their treatment therefore does not have to
be changed with respect to the usual, complex formulatio
In particular, we will continue to use Wilson loop variables
in the quantum theory. In the real formulation, Eq.~2! be-
comes

HR5e i jkEi
aEj

bFab
k 2Hpot, ~3!

retaining a ‘‘potential’’ term~which is a misnomer since it
depends both on coordinates and momenta!. Starting from a
form equivalent to Eq.~2! @formula ~14! in Barbero’s paper
@5## for Hpot, one finds after some algebra that it may be
reexpressed as a polynomial inA andE, up to determinantal
factors, namely,

Hpot5~detE!22ha1a3a4
hb1b3b4

~Ek
a3El

a4Em
b3En

b4

22Em
a3En

a4Ek
b3El

b4!Ek
a2Em

b2~¹a2
El
a1!~¹b2

En
b1!, ~4!

and up to terms proportional to the Gauss law constraints.
Let us now recall some features of the complex formula

tion with the HamiltonianHC”5e i jkEi
aEj

bFab
k . There exist

simple solutions toĤC”C50 in the loop representation, both
in the formal continuum approach@2# and on the lattice@4#,
where the loop stateC depends on~smooth! nonintersecting
loops ~see also@7# for a generalization within a lattice lan-
guage!. This is a straightforward consequence of the ant
symmetry ofHC” in the spatial indicesa and b. However,
these solutions are probably not interesting from a physic
point of view, because they correspond to zero eigenstates
the volume operator@8,9#. Apart from the state found in@10#,
we are not aware of any nontrivial~in this sense! solutions
that have been found by tackling the equationĤC”C50 di-
rectly.

Other interesting features of the complex formulation ar
that all four diffeomorphism constraints can be solved b
making a so-called Capovilla-Dell-Jacobson~CDJ! ansatz
5381 © 1996 The American Physical Society
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5382 54BRIEF REPORTS
@11#, and that there exists a formal solution to the Wheel
DeWitt equation~with a specific factor ordering forĤC” ),
given by the exponential of the Chern-Simons action for t
complex connectionA @12#. However, in the absence of a
proper treatment of the reality conditions, the significance
these properties for the full gravitational theory has remain
unclear. There is a version of the CDJ ansatz in the r
theory@13#, but the remaining Gauss law constraints are co
siderably more difficult. The real Chern-Simons term do
not seem to play a special role~apart from being a generating

functional for theB field, Bai5 1
2habcFbc

i like in the com-
plex theory!. This also implies that the solutions to th
Hamiltonian related to knot invariants~obtained by a formal
loop transform of the Chern-Simons term from the conne
tion to the loop representation@14#! do not carry over to the
real theory. The absence of these ‘‘nice’’ features from t
real theory may lead one to wonder whether they may not
away also in the complex case once reality conditions
properly taken into account.

The ~quantum! HamiltonianHC” of the complex theory
has a natural representation in terms of loop functions, si
the components of the field strengthF both in the continuum
@2# and on the lattice@15# can be obtained by considerin
infinitesimal planar Wilson loops. We will show below that
similar statement holds for the real HamiltonianHR, i.e., in
spite of its nonpolynomiality, the potential term has a natu
representation on quantum loop states, at least in the la
formulation. This makes the search for zero eigenvectors
ĤR accessible numerically. Clearly the potential term pr
sents a computational complication, which however in t
absence of any explicit solutions ofĤC”C50 seems to be a
matter of degree rather than one of principle. The big adv
tage of the real formulation is the presence of a well-defin
and unambiguous scalar product on Wilson loop function
in the quantum theory, that induced by the Haar measure
SU~2!.

The following discussion will take place within the dis
crete lattice framework, with occasional comments on a p
sible continuum formulation. Furthermore, we will focus o
the discussion of the potential term, which is new with r
spect to previous treatments@15,4,7#. It may be worthwhile
noticing that in the lattice approach, both the state space
the operators get regulated simultaneously, since they s
the same support~in terms of lattice links!; in discretizing
the state space, we get a regularization of the Hamilton
‘‘for free.’’

Recall now the basic ingredients of the Hamiltonian la
tice formulation for theories based on a space of connecti
@16#. Our lattice will be a cubicN3N3N lattice, with peri-
odic boundary conditions. The basic operators associa
with each lattice linkl are in our case an SU~2!-link ho-
lonomy V̂ ~represented by multiplication byV), together
with its inverseV̂21, and a pair of canonical momentum
operatorsp̂i

1 and p̂i
2 where i is an adjoint index. The op-

erator p̂i
1(n,â) is based at the vertexn, and is associated

with the link l oriented in the positiveâ direction. By con-
trast, p̂i

2(n11̂â ,â) is based at the vertex displaced by on
lattice unit in theâ direction, and associated with the invers
link l21(â)5 l (2â). The wave functions are elements o
3 lL

2
„SU(2),dg…, with the product taken over all links, and
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the Haar measuredg. The basic commutators are

@V̂A
B~n,â!,V̂C

D~m,b̂!#50,

@ p̂i
1~n,â!,V̂A

C~m,b̂!#52 ~ i /2! dnmd âb̂t iA
BV̂B

C~m,b̂!,

@ p̂i
2~n,â!,V̂A

C~m,b̂!#52~ i /2!dn,m11d âb̂V̂A
B~m,b̂!t iB

C,
~5!

@ p̂i
6~n,â!,p̂ j

6~m,b̂!#56 idnmd âb̂e i jk p̂k~n,â!,

@ p̂i
1~n,â!,p̂ j

2~m,b̂!#50,

wheree i jk are the structure constants of SU~2!. Our normal-
ization for the SU~2! generators t i is such that
@t i ,t j #5e i jktk andAa5Aa

i t i /2. Taking into account the ex-
pansions

VA
B~ b̂!51A

B1aAbA
B1O~a2!,

pi
6~ b̂!5a2Ei

b1O~a3! ~6!

of the corresponding classical quantities for small lattic
spacinga, one derives the expansion

2 1
2 Tr@t iV~n,b̂!pj

6~n11̂b̂ ,ĉ!t jV~n,b̂!21#2pi
6~n,ĉ!

5a3~]bEi
c1e i jkAb jEk

c!1O~a4!5a3¹bEi
c1O~a4!. ~7!

The prefactor21/2 occurs because of Trt it j522d i j .
For reasons of symmetry we will from now on use th

averaged momentapi :5(pi
11pi

2)/2 and their quantum ver-
sions. Motivated by Eq.~7!, we may represent the quantum
covariant derivative¹̂bEi

c by the lattice operator

2 1
2 Tr@t iV~n,b̂! p̂ j~n11̂b̂ ,ĉ!t jV~n,b̂!21#2 p̂i~n,ĉ!. ~8!

Note, however, that this operator is well defined only o
those Wilson loop states that for each occupied linkl (n,ĉ)
have also the neighboring ‘‘parallel’’ linkl (n11̂b̂ ,ĉ) occu-
pied. @A lattice Wilson loop is a gauge-invariant function of
the form TrV( l 1)V( l 2) . . .V( l k), with g5 l 1+ l 2+ . . . + l k a
closed loop of lattice links.#

This happens because the left-hand side of expression~7!
is a finite difference. If one ofp̂ j (n11̂b̂ ,ĉ) and p̂i(n,ĉ) but
not the other vanishes on a stateC, the result of the action of
Eq. ~8! onC for small lattice spacinga is of lower order in
a and diverges in the limit asa→0. In particular, loop states
with only sparse intersections have a singular behavior und
the action of the covariant derivative operator~8!. Moreover,
since we do not want to distinguish any particular directio
on the lattice, we will, instead of Eq.~8!, use the averaged
version

2 1
4 $Tr@t iV~n,b̂! p̂ j~n11̂b̂ ,ĉ!t jV~n,b̂!21#

2Tr@t iV~n21̂b̂ ,b̂!21p̂ j~n21̂b̂ ,ĉ!t jV~n21̂b̂ ,b̂!#%. ~9!

A remark similar to the one made above concerning the a
lowed loop states applies to this operator as well.

To obtain a well-defined lattice operatorĤpot, we still
must take care about the determinantal factor (detE)22.
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As shown in @9,17#, detE5(1/3!)habce
i jkEi

aEj
bEk

c

possesses a natural quantum lattice analog

D̂(n):5 1
6habce

i jk p̂i(n,â) p̂ j (n,b̂) p̂k(n,ĉ). Since the latter is
a self-adjoint operator, there exists a Hilbert space basis
which it is diagonal. For the gauge-invariant sector, this ba
is most easily constructed in terms of so-called spin netwo
states, certain~anti!symmetrized, real linear combinations o
Wilson loop states.

A spin network associates a positive ‘‘occupation num
ber’’ with each lattice link, which may be interpreted a
counting the number of~unoriented! flux lines of basic spin-
1
2 representations along the link, and also keeps track of
way in which those flux lines can be contracted gaug
invariantly at the vertices~see@18# for more details!. A con-
crete way of constructing elements of the spin network ba
is to begin with sets of Wilson loops with fixed occupatio
numbers and arbitrary intertwiners, and then select linea
independent sets of intertwiners at the vertices~which gen-
erally, in terms of a loop language, are still related by Ma
delstam constraints!.

In terms of such states, the diagonalization of the ope
tors D̂(n) is reduced to the diagonalization within finite
dimensional subspaces of the Hilbert space. In the result
diagonal basis we can meaningfully define quantum rep
sentations of arbitrary functions of (detE) in terms of their
eigenvalues.~Investigations of the spectrum of~two related
but not identical versions of! the volume operator have been
performed in@17,19#.! In particular, if we restrict ourselves
to eigenstates with nonvanishing eigenvalues, we can qu
tize (detE)22 on the lattice. There is no immediate analogu
of this construction in the continuum, although one can d
fine a quantized version of the classical volume functio
ue
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*AudetEu @8#. Since the naive local quantum operator dˆetE
vanishes at all points of a loop state without intersection
1/d̂etE is ill defined almost everywhere on a typical loop
state. In the continuum there thus seem to be no good an
logues of the lattice states with ‘‘volume everywhere.’’ A
way out of this may be to either use smeared-out wave fun
tions and/or regularize the quantum operators appropriate
Alternatively, one may multiply the HamiltonianHR by a
factor (detE)2. Classically, this changes the constraint alge
bra at most by terms proportional to the constraints. In pa
ticular, the commutator of two Hamiltonians is just rescale
by a factor of (detE)4. Quantum-mechanically, however, op-
erator ordering problems may appear.

Possibly the problem is not as serious as it seems sin
along smooth pieces of loop where dˆetE vanishes, also
(̂detE)2Ĥpot does, and one may be able to regularize th
action of Ĥpot to a finite value. Another problem, also rel-
evant to the lattice approach, is that dˆetE has many zero-
volume eigenstates even at loop intersections@9,17#. Hence
the question is whether one can consistently restrict the H
bert space so that the action ofĤpot is always well defined
~recall that @ĤR,d̂etE#Þ0). For example, no immediate
problems arise if one chooses a factor ordering forĤpot with
the detE terms to the right and discards all zero-volume
states by hand.

To summarize: there is a well-defined regularized, sel
adjoint operator expression for the real Hamiltonian~3! on
the lattice, at least on a large subsector of the Hilbert spa
of gauge-invariant functions. This operator is subject to th
usual ambiguities with regard to factor ordering and additio
of higher-order terms in the lattice spacinga. For example,
we may choose
ĤR, latt~n!52e i jkTr@V̂~n,Pâb̂!tk# p̂i~n,â! p̂ j~n,b̂!2ha1a3a4
hb1b3b4

@ p̂k~n,â3! p̂l~n,â4! p̂m~n,b̂3! p̂n~n,b̂4!

22p̂m~n,â3! p̂n~n,â4! p̂k~n,b̂3! p̂l~n,b̂4!# p̂k~n,â2! p̂m~n,b̂2!

31
4Tr@t l V̂~n21̂â2,â2!

21p̂s~n21̂â2,â1!tsV̂~n21̂â2,â2!2t l V̂~n,â2! p̂s~n11̂â2,â1!tsV̂~n,â2!
21#

3Tr@tnV̂~n21̂b̂2,b̂2!
21p̂t~n21̂b̂2,b̂1!t tV̂~n21̂b̂2,b̂2!2tnV̂~n,b̂2! p̂t~n11̂b̂2,b̂1!t tV̂~n,b̂2!

21#D̂~n!22 ~10!
its
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for the Hamiltonian localized around a vertexn. In Eq. ~10!,
all spatial indices â, b̂, etc., are summed over, an
V(n,Pâb̂) is the holonomy associated with a plaquette lo
in the â-b̂ plane.

Note that the Hamiltonian of metric gravity~also contain-
ing inverse powers of detg5udetEu) cannot be treated in a
similar way. The construction above depended on~i! the re-
formulation of canonical gravity in terms of connection var
ables, hence,~ii ! the possibility of choosing a gauge
invariant Hilbert space of Wilson loops, therefore,~iii ! the
diagonalization of the operatorsD̂(n) in terms of spin net-
work states, together with~iv! a natural regularization of the
covariant derivative terms inĤpot.

Having thus set the stage for a systematic investigation
the eigenvalue problemĤR, lattC50, we will now describe
d
op

i-
-

of

some technical problems that have to be addressed for
solution. Consider the action of a local lattice Hamiltonia
ĤR, latt(n) on a spin network stateC. Since the momentum
operators do not change the occupation numbersj i of links,
it a priori looks as if this action would result in a set of loop
states withD j iP$0,11,12%, depending on the contributions
V̂~link! to the various links in a neighborhood ofn, coming
from the kinetic and potential parts of the Hamiltonian. Un
fortunately, life is not as simple.

Take, for example, the action of the polynomial partÔ of
Ĥpot on a spin network state. Our computations show that t
resulting terms generically do not form a set of states th
combine in a simple way to give one~or a small number of!
spin networks, because the operator action does not prese
the total~anti-!symmetry over link permutations of the spin
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network. The result must always be expressible as a uni
linear combination of spin network states, but it turns o
that this decomposition in general contains states whose
cupation numbers differ from those of the original stateC
within a whole range of values. For instance, the action
Ô(n) on a stateC with occupation numberj i for some link
l i based at the vertexn may result in a sum of spin network
states with j i ’s taking any one of the positive value
j i14,j i12,j i , j i22, . . . .Moreover, through retracings of the
form V(n8,â)V(n8,â)21[1 occurring during the decompo
sition of ÔC into independent spin networks, even links ma
be affected that where not acted on directly byÔ(n) in the
first place. This reveals a somewhat unpleasant property
the spin network states which in a sense are ‘‘maxima
nonlocal’’ ~as opposed to sets of maximally localized Wilso
loop functions that one may favor in certain gauge-theore
applications@20#!, especially in conjunction with our re-
quirement of selecting only spin networks with nonzero vo
ume at every vertex.

We therefore conclude that the investigation of the sp
trum of ĤR, latt requires the presence of an efficient algorith
for generating independent spin network states and com
ing inner products of such states. We reckon that even in
discretized lattice version the spectral problem is sufficien
complicated so as to make further approximations necess
Since we can calculate matrix elements of the Hamilton
explicitly, we can neglect small contributions, depending
suitable perturbation parameters such as those character
the spin network states or related to the bare gravitatio
coupling constantG. More details on our investigation o
these issues will appear elsewhere.
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Coming back to the continuum theory, one can show th
the linearized limit of the real connection formulation coin-
cides with that of the complex one~cf. the treatment of usual
Ashtekar gravity in@21#!. In the real case, the linearized
versions of the kinetic and potential terms in Eq.~3! become
proportional to each other and add up to the expected resu
Likewise, the large-G limit, as, for example, discussed in
@22#, is unchanged. For theG→0 limit @23#, this does not
necessarily seem to be the case.

Our real treatment~or an appropriate continuous ana-
logue! can be viewed as complementary to another approa
that has recently been suggested for dealing with the com
plex version of the theory, namely, making use of a ‘‘gener
alized Wick transform’’@24#. In this ansatz, one tries to de-
fine a transformationŴ5expĈ, with C5(p/2)*Ka

i Ei
a

between two Hilbert spaces where in one the Hamiltonia
has the simple formHE5e i jkEi

aEj
bFab

k and in the other the
more complicated form of the real theory. As far as we un
derstand, the difficulties in making the operatorŴ well de-
fined in the continuum quantum theory are roughly compa
rable to those of constructing the continuum Hamiltonia
ĤR. ~Note that, like the phase space functionalC, also the
potential termHpot can be written in terms of Poisson com-
mutators of the quantities*(detE)21/2HE, *AdetE, Aa

i and
Ei
a ) However, even if these could be overcome, the proble

of finding nontrivial solutions to the Wheeler-DeWitt equa-
tion would still remain.

The author is indebted to F. Barbero for numerous discu
sions on real connection gravity.
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@10# B. Brügmannet al., Phys. Rev. Lett.68, 431 ~1992!.
@11# R. Capovillaet al., Phys. Rev. Lett.63, 2325~1989!.
@12# H. Kodama, Phys. Rev. D42, 2548~1990!.
@13# J.F. Barbero G., Class. Quantum Grav.12, L5 ~1995!.
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