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Based on the hypothesis that tissue partitioning of volatile
organic compounds (VOCs) is due to lipophilic and hydrophilic
interactions with tissue components, empirical relations are estab-
lished between olive 0il (P i), Saline (Paineir), and tissue partition
coefficients (Psueair) fOr human and rat tissues. Reported values of
partition coefficients of a wide range of VOCs with distinct chem-
ical structures (n = 137) have been compiled from the literature.
Bilinear regression analysis shows that partition coefficients of
VOCs in human blood, brain, fat, liver, kidney, and muscle tissues
are well described by a linear combination of P;..; and P ine.air With
tissue-specific regression coefficients. The regression coefficient
associated with the hydrophilic component of VOC partitioning in
rat tissues is systematically higher than that of human tissues. For
the human model, tissue concentrations calculated from predicted
partition coefficients are generally within a factor 4 of tissue
concentrations calculated from experimentally observed partition
coefficients. These results demonstrate that, without prior knowl-
edge of tissue composition, it is possible to obtain estimates of
human tissue partition coefficients of VOCs with an accuracy that
is in the same range as that commonly used in risk
assessment.  © 2000 Academic Press

Key Words: Organic solvents; tissue partition coefficients; hu-
man PBPK modeling.

used to describe the relation between inhalation exposure
and tissue concentrations of VOCs (Andersen, 1991; Krishne
and Andersen, 1994; Gargasal., 1995). However, a specific

brain compartment is often lacking in PBPK models. The
detailed modeling of brain concentrations is hampered by
general lack of knowledge of brain tissue partition coefficients

Partitioning between blood and a specific tissue depends
the relative affinities of a compound for blood and for the
tissue. For volatile substances it is more convenient to dete
mine tissue:air partition coefficients (Sato and Nakajima
1979a), and blood:tissue partition coefficients are defined :
the ratio of the blood:air partition coefficien® (y.q..) and the
tissue:air partition coefficientss.e.i)- Since the relative pro-
portions and the basic composition of tissue constituents va
among tissues, the prediction of tissue partitioning on a ration
basis requires detailed knowledge of tissue composition (Po
lin and Krishnan, 1995a,b). However, a simplified approacl
supposes that tissue partitioning of nonreactive chemicals
determined completely by lipophilic and hydrophilic interac-
tions of compounds with tissue constituents. It has been shov
before that such a simple approach successfully applies to a
of 12 volatile anesthetics. The,....r Of these volatile anes-
thetics in human tissues can be described as linear combir
tions of Pgine.air aNA Pyjve oitar (Droz, 1978).

Demonstration of the applicability of this approach to tissue
partitioning of VOCs in general would provide a basis for
predicting tissue partitioning without prior knowledge of the
tissue composition. Despite the neurotoxic potential of VOCs

Knowledge of the distribution of chemicals over differenhuman tissue partition coefficients for industrial importan

body compartments contributes to the understanding of the riziganic solvents, e.g., the alkylbenzenes, appear to be lacki
of toxic effects. Ambient exposure to volatile organic comin the literature and, in general, brain tissue partition coeffi
pounds (VOCs), particularly in the occupational setting, mayients have been reported for a limited number of compounc
cause adverse, neurotoxic effects (reviewed by Mikkelsemly. Since brain concentrations may be a key issue for the ris
1997; White and Proctor, 1997). Despite their neurotoxic passessment of VOCs, detailed knowledge on VOC partitionin
tential, only a few studies have addressed the relation betwéerrain tissue is required.
exposure and brain concentrations of VOCs, which constitute aHere we have compiled published values of partition coef
large, heterogeneous class of chemicals. Alternatively, phyfieients for a large number of VOCs in olive oil and saline, as
ologically based pharmacokinetic (PBPK) models have bearll as partition coefficients in rat and human blood, fat, brain
liver, muscle, and kidney tissues. Using linear regression ane
*To whom correspondence should be addressed. Fax: 31 30 253 50/§iS, empirical relations are established between the partitio
E-mail: H.Vijverberg@RITOX.vet.uu.nl. ing of VOCs in tissues, olive oil, and saline, based on th
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approach used for volatile anesthetics before (Droz, 1978)_ Tdakility of the estimated regression coefficients for the prediction of tissu
results demonstrate that VOC partitioning into tissues can Pféz::?h”m‘i:saeif'Cézr;i'sihigé)a“o g;graeg:i;es‘: |2$j Obse;Vn%dt‘é:";?sa"r‘]’f’\‘/ziztmf
dESCI"I[?ed by a Im_ear combination ,Of the saline and oil pé.ll’tltl%?fd 2.5 and 37.5 percentilzgrwere determineds?:;?agach tissue. All regressi
coefficients with tissue- and species-dependent coefficientsanaiyses were performed using SigmaPlot 3.02 software (Jandel Scienti
Software, SPSS Inc., Chicago, IL).
METHODS
RESULTS

Partition coefficients. Values 0ofP e giiairy Psaine:ain @NAP ssue-air FOr human
and rat blood, fat, brain, liver, muscle, and kidney were compiled from variotéii and Saline Partition Coefficients
sources. The reported values are compiled in Table 1. ValuePB f@i.ai
P aiine:an @Nd humarP 0.0 fOr various organic solvents were first reported by Al values of Py @NdP e Of VOCS, obtained from the

Droz (1978) and by Sato and Nakajima (1979a,b). Stevedrél. (1973) literature and compiled in Table 1](= 137) aregraphically
compiled human tissue partition coefficients for various anesthetics. Paterson !

and Mackay (1989) compiled water solubility values for some compouncxg.resente‘j in Fig. 1. From the CIUSte”ng of points near th
Extensive data sets containing partition coefficients for various human tiss@dgin in Fig. 1 it is clear that many of the VOCs have
and a large number of compounds were reported by Fiserova-Bergerala relatively smallP;.,, and Pgne.ar Values. Compounds which
(1984), Perbelliniet aI (1985), and Fiserova-Bergerova and Diaz (1986)are h|gh|y ||poph|||c or h|gh|y hydrophmc a|Ways have small
Some sources contglned values of hur®gg,q..; for a_few compounds only. corresponding’sahnmor Poian respectively. Only a few com
These values were included when the corresponéifg, and Pe.ar Were .

reported as well (Johanson and Dgius, 1988; Jaaberg and Johanson, 1995; pounds, €.g., Z'bUtOXyethanO| (Flg. 1, Compound 112)’ con
Nihlén and Johanson, 1995). A large set of rat tissue partition coefficients withne intermediate lipophilicity and hydrophilicity. Due to the
corresponding values dP . and Peane.r for various VOCs published by inverse relation between oil and saline partition coefficients
Gargaset al. (1989) was included and extended with rat tissue partitiopgints are found in a region of the plane limited by a hyperbolit

coefficients for ethylbenzene (Tarddt al., 1997). Kanekoet al. (1994) urve. Although water-soluble VOCs are underrepresented

reported rat data for alcohols and esters, which were compiled and suppl|e | fd h fthe d . .
mented with additional values for ketones by Poulin and Krishnan (19964, e total set of data, the scatter of the data (see Fig. 1, ins

Pierceet al. (1996) reported partition coefficients of aromatic hydrocarbons indicates that the correlation between oil and saline partitio
human and rat fat tissue. Values for human and rat tissue partition coefficieogefficients is small for the data compiled and tRat,, and

of volatile anesthetics and related compounds, e.g., fluorinated alkanes, pre, - are largely independent descriptors of VOC properties
scattered over various references (Eger and Eger, 1985; Coburn and Eger,

1986; Fassoulaki and Eger, 1986; Lermeinal., 1986, 1987; Eger, 1987; Human Tissue Partition Coefficients
Strum and Eger, 1987; Yasudaal.,1989; Taheret al.,1993; Chortkoffet al.,

1994; Egeret al,, 1994; Liuet al,, 1994; Fanget al., 1996, 1997a,b). TWo  pynerimental values of partition coefficients of VOCs, avail-
compounds with extremely low water, oil, and tissue partition coefficients,

perfluoropropane and perfluoropentane (Egfeal., 1994), were not included able_from the_ literature, in hum_an b'°9“' (: 109) anchuman
in Table 1. In general, reported partition coefficients have been deterinined@t, liver, brain, muscle, and kidney tissues £ 28-41; see
vitro by headspace gas chromatography at 37°C in a vial equilibration techable 1) were used in regression analysis. For each of tt

nique (Sato and Nakajima, 1979a) or by a modification of this method (Gardagman tissues the relation betwdp,,...-and the correspond
et al.,1989). In the compilation of saline partition coefficients it was noted th

. e : . . e Poiar and Pginear Was evaluated by bilinear regression
in many cases partitioning in saline and in water is considered to be |dent|jg.g a":a" 0 E Sa""e]'_a'r Th - yi@ P 9 d
Although Porear may be slightly lower tharP ..., (Stewardet al,, 1973 according to Eq. (1). The regressions ®f.ar Puainan an

Lermanet al., 1983), they are considered equivalent here. When values Bhoodar @€ plotted in three-dimensional graphs in Fig-@r fat
partition coefficients were available from multiple sources, the mean wtissue and blood the slopes of the regression planes are mai

calculated and used in this study. determined by, and «s, respectively. Although the slope of
Regression analysis. PysqeriS described as a bilinear functionBfiair - the regression plane of brain tissue partition coefficients i
andP sainer (Droz, 1978) according to: intermediate between those of blood and fat tissue partitio
coefficients,a, appears to be the main regression coefficien
for brain tissue partitioning. Predict®...;values for human
The coefficientsy, anda. in Eq. (1) represent the tissue-specific contribution§Nuscle and kidney are within planes with an intermediat
of the lipophilic and hydrophilic interactions to the solubility of the compounderientation similar to that for brain (hot shown). The results o
in tissue. The constamt was included in the equation to avoid errors in thehe regressions for human tissue partition coefficients (Table .
slope of the regression plane, which occurred in fitting the same equation V%HOW that, except for fat, tissue partitioning is mainly predicte(

Plissue:air= QoPolive oitair T @sPsaiine:air T C- (1)

zero intercept. Although has no specific physical meaning it may be require theP rding to large val £ over small val
to compensate for systematic errors in tissue, oil, or saline partition coe Y TN saiine:an ACCO glolarge values at over small values

cients. Tissue partitioning according to Eq. (1) was fitted using weight&f o- FQ" all tiSSU'e'S, except liver, the regressions yielded goc
bilinear regression; i.e., each tissue partition coefficient value was divided @grrelation coefficients R = 0.92-0.99), and theross-
its own value to ensure equal weights of individual compounds in the regresgrrelation between the estimated values of the parameters
sions. Estimated values of the regression coefficientand a and of the and a, was very small <(<0_04)_ For human liver, onlyszo has

constantc are reported with their coefficients of variation (CV, %), anciJ det ined. Partiti fficient ilable for h
regressions are presented with their correlation coefficigty (Cross-cor een determined. Fartiion Coethicients avallable Tor huma

relation between fitted parameters was also monitored to judge the qualit/iM€r Were strongly piased toward more ”p_OPhi"C CQmpoundf
the regressions and possible redundancy of parameters. To analyze the af@@e Table 1 and Fig. 3). Therefore, a reliable estimate,of
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distributions do not deviate from normap (> 0.10). The
means of the logarithmic ratios do not differ from O statisti-
cally, with the exception of blood and fap(= 0.03 and0.02,
respectively). These deviations are caused by a few outliel

log P

e.g., ethylene for fat (Fig. 3, compound 8). In order to asse:
0110 78 o the reliability of the predicted values, the 2.5 and 97.5 percer
tiles of the ratios of predicted and reported partition coeffi
cients were calculated for each tissue. The resulting 95
confidence range is indicated in each panel of Fig. 3. Tissl
concentrations were calculated from the quotient of predicte
and from the quotient of experimentg c..:aNdP yood-air ThE
tissue concentrations predicted by the model are within a fact
of 4.0 from the tissue concentrations calculated from exper
mental data for 95% of the compounds for human brair
muscle, kidney, and fat tissue. The results indicate that tf
partitioning of VOCs in human tissues can be calculated on tf
FIG. 1. Scatter plot ofP . VS Penesr fOr all compounds presented in basis of saline and olive oil partitioning according to Eq. (1)
Table 1 f = 137). Thenumbered points refer to specific compounds in Tablgyith a good predictive power.
1. The inset shows the scatter of data points in a log—log presentation. Equation (1) was also applied to data on the partitionin:
of four terpenes (Fallet al., 1990) and four gases (Steward
could not be obtained and a linear regression was performed&rfl-, 1973) in human blood. Both chemical classes are nc
Puerar and P, Values to obtain estimates of, and c for included in the data of Table 1. The ratios of predictec
human liver R? = 0.88). With theexception of fat tissue, the Versus experimenta® ... were 1.4 fora-pinene, 1.4 for
estimated values of the intercapivere all smaller than 1. The B-pinene, 1.1 for 3-carene, and 1.0 for limonene. For th
intercepts showed large coefficients of variation and a larg@ses, the ratios of predicted versus experimeRigl.
cross-correlation with the other regression parameteésq2), were 1.3 for Kr, 0.9 for Xe, 2.9 for nitrogen, and 1.0 for
illustrative of the minor contribution of this parameter to tissugitrous oxide. These results provide support for a mor
partitioning. general applicability of Eq. (1) to blood partitioning of
The equations fitted to tissue partitioning of VOCs hawveolatile organic compounds. Partition coefficients of the
been internally validated from plots of the logarithm of thg@ases in other human tissues are very small (Stewted.,
ratio of predicted and observed values. Figure 3 is a douldl®73) and are in the same order of magnitude as the fitte
logarithmic plot againstP,,,; and againstP....» For all interceptc (Table 2). This results in overestimation of the
tissues, the data points are scattered around zero and theiman tissue partition coefficients for gases.

20 1 )

Psaline:air

oo 111 log P
10 4 108

clive oit:air

o112

11
° 122 63 62

Q (x 10°
40( )

0 10 20 30
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olive oil:air

brain fat
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‘_4-,.<<';‘ 0
3000 SRGetLoN % 3000 3000 3000 3000

2000 000 20
4000 1000 » ,20 1000 1000 00 .
0 e ? . 0 @2
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FIG.2. Three-dimensional representation of the bilinear regression be®ggenP .i..» and reported values of hum&3,q.ain Porainain @NAP 4 @Ccording
to Eq. (1). The grids represent the fitted planes of predicted partition coefficients and the dots represent experimental values. ldenticailysspaecgi/gn
in the horizontal and vertical planes. Note that the orientation of the plane fitted for brain tissue partitioning is intermediate between trabifivedaid fat
tissue partitioning. Vertical lines are drawn from the horizontal plane to indicate the position of the data points.
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TABLE 2
Results of Bilinear Regressions for the Partitioning of VOCs into Human Tissues Fitted According to Eq. (1)
Tissue n a, CV (%) as CV (%) c CV (%) R?
Blood 109 0.0072 18 0.898 2 0.03 2094 0.99
Fat 41 0.447 6 0.075 33 6.59 88 0.92
Brain 35 0.020 16 0.380 3 0.94 69 0.98
Liver 28 0.028 8 nd nd 0.79 47 0.88
Muscle 35 0.014 20 0.384 3 0.94 64 0.99
Kidney 34 0.011 22 0.400 3 0.69 7 0.98

Note.The number of compounds used in the regressinttie regression coefficiends andas, and the constarmttogether with their coefficients of variation
(CV) are tabulated. The correlation coefficients of the regressiRfisdre also indicated. nd, not determined.

blood

fat

human P,

tissue:air

log predicted/experimental

Rat Tissue Partition Coefficients

For rat blood, fat, liver, and muscle, large numbens=
76-92) ofpartition coefficients of VOCs are available from
the literature (Table 1). However, data for rat bran= 19)
and kidney 6 = 16) appear to be less abundant. The regres
sion planes obtained by fitting Eqg. (1) to the data R,

P prainain @NAPyo0qa @re plotted in three-dimensional graphs in
Fig. 4. Qualitatively, the results are similar to those obtaine
for human tissue partition coefficients (see Fig. 2). The slope
of the planes describing fat tissue and blood partitioning ar
determined mainly by, and «,, respectively. For brain and
other tissues intermediate slopes withas the main regression
coefficient were obtained. The results of the regressions a
summarized in Table 3. The quality of the regressions for re
15 tissues was not as good as that for human tissues, as indica
by slightly lower correlation coefficientsRf = 0.82-0.93).
The cross-correlation between the fitted parametgrand o
was <0.03. The estimated values of the intercept were gene
ally small, with the exception of the value for rat fat, which was
estimated to be 9.4 and the coefficients of cross-correlatic
between the values estimated for the intercept and for the tv
other regression parameters ranged from 0.06 to 0.11. For |
kidney and brain, the intercept could not be determined rel

L ably, because of the lack of data on VOCs with srig]L,;, and

[}

§ """‘“;5:3?‘ """" o '°d°‘l§ """""""" 2.5 P.aineair Values (see Table 1 and Fig. Bespite the qualitative
g NN A CRCTHE: Y e 1.9 resemblance of the regressions of rat and human data, Tabl
4 shows a marked quantitative difference in the estimated valu

1 of a.. Estimates ofx for rat brain, liver, muscle, and kidney
> U S 23 are all in a narrow range and are approximately twofold th
.‘5 " AL FE o 1.8 corresponding values af, obtained for human tissues (see
=~ % ot Table 2). Double logarithmic plots of the ratio of predicted anc
S % 5 32 7T 64 2 $339 73355 observed values show that the data points are scattered arol
log P, logP_ zero for all tissues (Fig. 5), and their distributions do not

olkair salinear deviate from normal | > 0.10), except for rat fat p =

FIG. 3. Double-log representation of the ratio of predicted and exper.03). Themeans of the logarithmic ratios do not differ from
mentally determine® jsse.-2gainsP o and againsP .. for human blood,  Q statistically with the exception of bloog(< 0.0001), fat
fat, brain, liver, muscle, and kidney as indicated. Results are presented in = 0.01), andmuscle p = 0.02). These deviations are

dimensions for a clear insight into the distribution of all points relative to th
fitted regression planes. The 2.5 and 97.5 percentiles are drawn (dashed Iiﬁ

g,ﬁgsed by outliers, e.gna-ethane n-butane, and-decane for

and the values of the percentiles are indicated at the right for each tissQi0d (Compqunds 1, 2, anq 7, resPECtiveW?- Outliers for fa
Outliers are identified by their compound numbers. and muscle tissues are 1-nitropropane, 2-nitropropane (col
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brain

_ ] 1500 1500

1000 11000 |

Ptissue:air
Jge:enssud

500 500

FIG. 4. Three-dimensional representation of the bilinear regression betiggn Paine.» and reported values of r&oouain Pbrainain @NAPaq @ccording
to Eq. (1). The grids represent the fitted planes of predicted partition coefficients and the dots represent experimental values. Identicallysspacgi/gn
in the horizontal and vertical planes. The orientation of the plane fitted for brain tissue partitioning is intermediate between that fitted fiod fiéddisue
partitioning. Note that the regression of R ..., depends more steeply &..: than the regression of hum#h,.i..: (see Fig. 2). Vertical lines are drawn
from the horizontal plane to indicate the position of the data points.

pounds 69 and 70), and several esters (compounds 127-188ljability of the predictions made by the model, particularly
The 2.5 and 97.5 percentiles of the ratios of predicted afat human tissues, show that this approach is applicable
reported partition coefficients were calculated. The resultinglatile compounds in general. In addition, the evaluation o
95% confidence range is indicated in each panel of Fig. BOC partitioning in six different human tissues and in the
Predicted concentrations in liver, muscle, kidney, and fat tissHemologous rat tissues allows for making comparisons b
were within a factor of 5.0 from concentrations calculated frofjyeen tissues and between the two species.

experimental values for 95% of the compounds. Other studies describing empirical relations between tissu
oil, and saline partition coefficients, e.g., for chlorinated al
DISCUSSION kanes in human blood (Sato and Nakajima, 1979b) and ft

The present results show that it is possible to predict tisspggcs in several rat tissues (Gargasal., 1989), have per-

partition coefficients of VOCs from a simple linear combina- rmeq regres.sions on Ig'gar.ithmi'ca'lly transformed data usin
tion of olive oil and saline partitioning, which is very similar tofduations for tissue partitioning similar to Eq. (1). However, :
the method used before to predict partitioning of anestheticsTHIO" Problem with the use of logarithmic equations of the
human tissues (Droz, 1978). Regression coefficients are e¥R€ [09Pussicar = @10gPoiar + b 10g Psanearis that the tissue
mated from data on a large set of VOCs, selected only B{rtition coefficient is implicitly assumed to be proportional to
availability in the literature and not by the chemical nature dhe product of water and oil partition coefficients (iBuscuear
the compounds. The good quality of the regressions and theoiiar * Psaine:ain OF Pissuessaine® Poiar). The meaning of such

TABLE 3
Results of Bilinear Regressions for the Partitioning of VOCs into Rat Tissues Fitted According to Eqg. (1)
Tissue n a, CV (%) as CV (%) c CV (%) R?
Blood 92 0.0054 19 0.931 4 1.16 87 0.93
Fat 76 0.594 4 0.085 46 9.40 116 0.86
Brain 19 0.054 27 0.832 6 nd nd 0.90
Liver 77 0.026 11 0.878 5 2.36 96 0.92
Muscle 76 0.010 17 0.772 5 0.29 532 0.82
Kidney 16 0.097 21 0.826 6 nd nd 0.91

Note.The number of compounds used in the regressnttie regression coefficiends anda,, and the constamttogether with their coefficients of variation
(CV) are tabulated. The correlation coefficients of the regressiBfisdre also indicated. nd, not determined.



214 MEULENBERG AND VIJVERBERG
rat Py oo appeared to be redundant to a certain extent, because it cau
log predicted/experimental one order of magnitude increase in the cross-correlation coe
ficients of the fitted parameters and failed to improve the
correlation coefficients of the fits. However, neglecting the
constant resulted in the underestimation of the mean tissl
partition coefficients by up to 20%. Although the physical
meaning of the constant is unclear, it may compensate fi
small systematic deviations in tissue partitioning or for smal
systematic errors in the values of reported partition coeffi
cients. The relatively large values estimated for the intercep
10 -1 10 for human and rat fat (Tables 2 and 3) cannot be explained
1 present. It should be noted, however, that the fat partitio
—————— o o--------26 coefficients of compounds included in the regressions are ge
01 Tt %eg erally large.
For the majority of compounds80%) P e Values were
1 collected from the literature. For the remaining compound
either P .o VAlues were reported~10%) or it is unclear
whether the published values represéhear OF Psaineai
(~10%). For volatile anesthetics, it has been shown the
Painear = 0.87—0.97P, e (Stewardet al., 1973; Renzi and
Waud, 1977; Hallidayet al., 1977; Lermaret al., 1983). The

blood

fat

liver

[¢}) - -]
3 ’_uw%a_%__‘ ol P_’—W ’ magnitude of the difference is similar to that of the experimen
g ... . AP A - __°__°_+?g’____‘1_3.8 tal error in the determination of the partition coefficient (e.g.
129 -1 129 see Sato and Nakajima, 1979a,b). The small difference b
17 tween P erair aNd P e @and the minority of compounds to
__________ o 082 44 which this applies indicates that the error introduced by ignor
o %1’_ _%2.3 ing the difference will not affect the results significantly.
-y ‘1 . In an alternative approach, VOC tissue partitioning is sup
5 4 3 2 1 0 |21 012 3 4 posed to involve partitioning into specific tissue components
log P, log P ar i.e., water, phospholipids, and neutral lipids (Poulin and Krish

_ ' _ nan, 1995a,b, 1996a,b). The solubility of compounds in th
FIG. 5. Double-log representation of the ratio of predicted and exper;arious tissue fractions, estimated from partition coefficients i

mentally determine s againsPoiq and agaiNsP suneqfOr rat blood, fat, — \_4ctanel or vegetable oil and in water, is used to calculat
brain, liver, muscle, and kidney as indicated. Results are presented in two

dimensions for a clear insight into the distribution of all points relative to pssue partitioning. Reversible interactions with proteins o
fitted regression planes. The 2.5 and 97.5 percentiles are drawn (dashed liRgnoglobin included in a study on blood partitioning are
and the values of the percentiles are indicated at the right for each tisssepposed to be due to the presence of hydrophobic bindii
Outliers are identified by their compound numberEthane (compound 1), pockets and the contribution of covalent interactions to VO(
which lies .beyond the borders qf the graph, has been indicated by arroﬁ’értitioning is considered negligible (Poulin and Krishnan
together with the value of the ratio (11.5). . .

1996b). The more detailed approach may contribute to unra

eling processes and mechanisms involved in tissue partitio
a proportional relation between tissue:saline and oil:air partirg. However, the more complex equations used (Poulin ar
tion coefficients is not clear. Fitting power functions to th&rishnan, 1995a) can be reduced to the simple form of Eq. (1
nontransformed data of Table 1 by nonlinear regression, asTrs shows that, for the prediction of VOC tissue partition
alternative for logarithmic transformation, did not result in aoefficients in practice, prior knowledge of tissue compositiot
significant improvement of the fits, generally yielded exponeig not required. Advantages of the simple approach are that
values close to 1, and caused a marked increase in crasmsiders partitioning in tissues as a whole and that very fe
correlation between the fitted parameters, indicating that taesumptions are required for the determination of regressi
addition of the exponents in the equation caused redundancyaefficients from experimental data. A disadvantage is that tf
the parameters. dimensionless regression coefficientsand «,, despite their

Inclusion of the constant termin Eq. (1) did not improve relation to the relative proportions of hydrophilic and hydro-

the linear regressions and did not cause significant changeglimbic tissue constituents, are not associated with a speci
a, and a,. With the exception of fat tissue, the magnitude gfrocess or mechanism.
the fitted constant was consistently small and its CV value wasThe results (Tables 2 and 3) demonstrate that the regressi
consistently large (up to over 1000%). The constaintEq. (1) of VOC blood patrtition coefficients is mainly determined by
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a,, and the regression of VOC fat tissue partition coefficientiataset used for the regressions in the present study m

is mainly determined byx,. The marked differences in theobscure more subtle species differences in tissue partitic

regression coefficients for blood and fat are coherent witoefficients. However, this does not detract from the point the

differences in tissue water and lipid contents. The regressiontbé present approach shows that it is possible to obtain a fair

VOC partitioning in other tissues is intermediate but alwaysccurate prediction of tissue concentrations of VOCs withot

with a major component determined lhy,. Differences in prior knowledge of particular properties of the chemical clas

estimated regression coefficients for brain, liver, muscle, aadd without prior knowledge on tissue composition.

kidney are less prominent than those for blood and fat. TheThe reliability of the predictions, as assessed from the rati

values obtained fow, are remarkably constant within specie®f predicted and experimental values, indicates that it is po

and are an order of magnitude larger than valuespfvhich sible to predict the concentration of VOCs in human tissue

are more variable but also less accurate as indicated by theith an accuracy of a factor of 4.0 and in rat tissues with al

larger CV values. It is concluded that, within species, theccuracy of a factor of 5.0. Thus, the concentrations of 95% ¢

partitioning of the less lipophilic VOCs into brain, liver, musthe VOCs considered in this study are predicted with an acci

cle, and kidney is little tissue-dependent. Partitioning of lracy that appears to be sufficiently high to be used in hume

pophilic VOCs in these tissues will be moderately tissueisk assessment. Reliable prediction of tissue partition coeff

dependent within species, as indicated by 3- to 10-foldents will enable systematic PBPK modeling of exposure

differences in estimated values®f for human and rat tissues,related brain concentrations of VOCs, which is essential t

respectively. obtain insight into the relation between brain concentration
A comparison between the two species shows a large, camd adverse neurotoxic effects.

sistent difference i values, which range between 0.380 and

0.400 for human brain, liver, muscle, and kidney and between ACKNOWLEDGMENTS

0.772 and 0.878 for the corresponding rat tissues. Literature

sources did not always reveal whether fresh or frozen tissue¥/e thank Dfsd- Joost de tJongh,t FI’OOP Herme_”ts- ?_2‘_1 Wtouc:ef Vaesf_for US_e‘

H H e H H on n mmen n man ript. | Wi Inanci

were used for the .determmatlon of partition coefflglents. Sln.ési§cu§rst§d sbyathe %)utchePI:ltfgrm fgr Aletle:JnSe;:tivpes to ;nisr:alyTe:tiSng (IiACDE;
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