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1
Life at ultralow interfacial tension

Interfaces are truly ubiquitous in nature. They play an important role in diverse areas

ranging from the cell [1] to black holes [2]. Characteristic of an interface is its interfacial

tension. Manifestations of the interfacial tension are observed in every day life: the

spherical shapes of drops, the breakup of droplets from a dripping faucet, the meniscus

in a glass of water etc. All these phenomena are a macroscopic demonstration of

the forces between molecules, which has attracted the interest of scientists since the

eighteenth century [3]. Great names of scientific history are associated with important

breakthroughs: Laplace, Young, Lord Kelvin and many others. But it was van der

Waals who gave the first modern thermodynamic description of the interface between

a gas and a liquid at the end of the 19th century [4]. Although it has been questioned

what we actually know more than van der Waals about the gas-liquid interface [5], other

important theoretical discoveries are the thermal roughness of the interface as realized

by Von Smoluchowski in 1908 [6], five years later described by Mandelstam [7] and

rediscovered by Buff, Lovett and Stillinger in 1965 [8]. About ten years later wetting

transitions in the interface at a wall were predicted independently by Cahn [9] and by

Ebner and Saam [10].

In this thesis we will only discuss liquid-gas or fluid-fluid interfaces and not for ex-

ample solid-gas interfaces. The magnitude of the interfacial tension ranges for atomic

and molecular liquids at room temperature from 485 mN/m for mercury, 73 mN/m for

water, to 13 mN/m for trimethylamine [11]. The interfacial tension γ is expressed in

terms of a force per length or in terms of energy over area. The latter dimensions can

be used to understand the following scaling relation for γ [3, 12],

γ ∼ ε

d2
, (1.1)

1



2 1. Life at ultralow interfacial tension

with ε the strength of the molecular interaction (for example following from the Lennard-

Jones potential) and d the characteristic length scale in the interface. Away from the

gas-liquid critical point ε is one/two times the thermal energy kBT (with kB Boltz-

mann’s constant and T the absolute temperature) and d is of the order of the molecular

diameter. For example, liquid argon at 84 K has an experimental interfacial tension of

13.4 mN/m, whereas the scaling relation (1.1) would give 14.6 mN/m using standard

(12,6) Lennard-Jones potential parameters of ε/kB = 124 K and d = 0.342 nm, the

diameter of an argon atom [13]. Close to the critical point the characteristic length

becomes very large and the interfacial tension vanishes. In principle, the interfacial

tension can become ultralow. To study the consequences of such ultralow interfacial

tensions one could therefore use systems that are very close to the critical point, but

here we will follow a different approach, namely by directly increasing the typical size

d. This is done by using colloid-polymer mixtures and brings us to the topic of this

thesis: The study of the behaviour and of the properties of interfaces with an ultralow

interfacial tension.

In this chapter we will introduce colloids in section 1.1 and colloid-polymer mixtures

in section 1.2. In section 1.3 an outlook is given of the possible consequences the ultralow

interfacial tension may have and the scope of the thesis is presented in section 1.4.

1.1. Colloids

“The term colloidal refers to a state of subdivision, implying that the molecules or

polymolecular particles dispersed in a medium have at least in one direction a dimen-

sion roughly between 1 nm and 1 µm, or that in a system discontinuities are found at

distances of that order.”

The above definition for the term colloidal is given by the International Union of

Pure and Applied Chemistry (IUPAC). It sets the size of a colloidal particle in the

submicrometer lengthscale -a very relevant lengthscale in many biological systems-,

whereas atoms are typically subnanometer. A collection of colloidal particles in a solvent

is called a colloidal suspension. The size of the colloids is such that the effect of gravity

on the particles is balanced by thermal energy. Hence, the colloids diffuse by means

of Brownian motion and probe the complete vessel. Since the number of colloids in a

suspension is easily of the order of 1015, these suspensions are ideal model systems in

the study of statistical mechanics [14–16].

The intrinsic length-scale of the colloids has several important consequences and

the main advantages over atoms or molecules is that colloids are “slow, soft and see-

able” [17]. They are slow, since the diffusion coefficient is several orders of magnitude

smaller than the molecular one. They are soft, since they respond to small external
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forces and even thermal fluctuations. And they can be made visible with optical tech-

niques such as light microscopy, since their size is comparable to the wavelength of

light, first fully exploited by Perrin [15,16]. Finally, their interactions can be tuned for

example by changing the solvent, the solvent properties (e.g. the ionic strength) or by

adding a third component (see section 1.2).

1.2. Colloid-polymer mixtures

As mentioned above the colloid-colloid interaction can be varied by adding a third

component to the colloidal suspension. In the work described in this thesis the third

component is a polymer particle. This modifies the colloid-colloid interaction in such a

way that in principle three different phases can (co-)exist [18]; a colloid poor-polymer

rich phase, a colloid rich-polymer poor phase, and an ordered colloid rich-polymer poor

phase. If we consider only the colloids then the first phase resembles a gas, the second

a liquid and the third a crystal phase [19]. Here we will explore the properties of

coexisting colloidal gas-colloidal liquid phases, hereafter simply called gas-liquid phase

coexistence.

In order to obtain a gas-liquid phase separating system the colloid-colloid interaction

must have an attractive minimum comparable to the thermal energy kBT , whereas the

range of the attraction must be of the order of the colloidal diameter σc [19]. In theory,

it is straightforward to calculate what properties a suspension of only colloidal particles

must have in order to obtain a gas-liquid phase separation [20]. The colloids interact
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Figure 1.1. (a) Pair potential between two colloids in a sea of (ideal) polymers
[19] (full curve) and between two argon molecules (dashed curve) interacting
through a (12,6) Lennard-Jones potential [13]. The depth of the attractive
minimum is fixed and set equal. (b) Two colloids with diameter σc in a sea of
polymers with radius of gyration Rg. No polymer is present in the depletion
zones around the colloids.
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(a) (b)

Figure 1.2. (a) Schematic representation of coexisting colloid-rich or liquid
(bottom) and colloid-poor or gas (top) fluid phases. In (b) a photograph
of a phase separated mixture of fluorescently labelled PMMA colloids and
poly(styrene) polymer in decalin is shown, which has been taken under UV-
light. The very sharp interface can be clearly seen.

through a DLVO potential [21,22], named after its originators Derjaguin, Landau, and

independently Verwey and Overbeek, which has a (secondary) attractive minimum at

reasonable distances from the colloid’s surface. In the laboratory, however, a DLVO

potential that leads to gas-liquid coexistence, is hard to realize, although possible [23].

Upon the addition of polymer the required potential is obtained rather easily [19] as

can be seen in figure 1.1(a). Here, the pair potential of two colloids in a sea of polymers

is compared to that of two argon atoms, where we observe that the shapes are rather

similar.

The origin of the gas-liquid phase separation in colloid-polymer mixtures lies in the

entropy-driven attraction between the colloids mediated by the polymers. This inter-

action was first described by Asakura and Oosawa [24, 25] and later independently by

Vrij [19]; a polymer coil is entropically excluded from a region around a (colloidal) sur-

face, which is called the depletion zone. If two such depletion zones overlap there is an

osmotic imbalance pushing the particles together, see figure 1.1(b). If the concentra-

tions of both species are large enough a fluid-fluid (i.e. gas-liquid) demixing transition

may occur [19] of which the resulting phases are shown in figure 1.2, schematically as

well as in an actual sample. This transition is widely accepted to be the analogue of

gas-liquid phase separation in molecular systems (see for example [26]). The thick-

ness of the depletion zone depends on the size and hence the molecular mass of the

polymer, whereas the strength of the attraction depends on the polymer concentration.
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Thus, all interactions are tunable. In addition, the colloid-polymer size ratio sets the

general phase behaviour as shown in the work of Gast et al. [27] and Vincent and co-

workers [28, 29]. Furthermore, the polymer partioning over the phases as well as the

existence of a three-phase region was first addressed by Lekkerkerker [30] and described

within free volume theory [18]. Recent years have shown a focus on several issues; an ex-

act statistical mechanical description of colloid-polymer mixtures and –closely related–

the interface and wetting behaviour of such mixtures (see e.g. the review of Brader,

Schmidt and Evans [31]). Another issue is that of a more realistic description of the

polymers beyond penetrable hard spheres (see the reviews of [26, 32–34]).

1.3. Consequences of an ultralow interfacial tension

The interface of a gas-liquid phase separated colloid-polymer mixture is very sharp as

can be seen in figure 1.2(b). As with molecular interfaces there is an interfacial tension

associated with this interface [3, 12]

γ ∼ ε

d2
∼ kBT

σ2
c

, (1.2)

where since the attraction is entropic, ε is of the order of kBT . Furthermore, away from

the critical point the typical size d is similar to the colloid diameter σc. This leads to

ultralow values for the interfacial tension of 1 µN/m and below as first measured by

Vliegenthart and Lekkerkerker [35], de Hoog and Lekkerkerker [36, 37], and Chen et

al. [38]. The ultralow interfacial tension has several important consequences concerning

both the static and dynamic interface behaviour.

For example, the static properties of the interface are directly affected. At rest the

interface between any two fluids appears to be smooth. Yet thermal motion inevitably

gives rise to statistical fluctuations of the local interface position, leading to a rough

interface [6, 7]. The mean interface roughness LT is proportional to [7]

LT =

√
kBT

γ
, (1.3)

where we see that if γ is a million times smaller, LT is a thousand times larger. The

correlation length L‖ along the interface, i.e. the range over which a disturbance reaches,

is given by [7]

L‖ =

√
γ

g∆ρ
≡ Lc, (1.4)

with g earth’s acceleration and ∆ρ the mass density difference between the two phases.

It is equal to the capillary length Lc, which also sets the typical length scale of a fluid

interface close to a wall (i.e. the mensicus) [39]. Here, an ultralow interfacial tension

decreases the capillary length strongly, which explains why the interface between the

colloidal liquid and colloidal gas phase appears to be flat close to a wall, see figure 1.2(b).
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Table 1.1. Characteristic numbers in a typical molecular system (water/air)
(left) and in a colloidal system (right).

water-air colloidal

interfacial tension γ (N/m) 10−1 10−7

viscosity η (Pa s) 10−3 10−2

density difference ∆ρ (kg/m3) 103 103

roughness LT = L⊥ (m) 10−10 10−7

capillary length Lc = L‖ (m) 10−3 10−5

capillary velocity uc (m/s) 102 10−5

capillary time τ (s) 10−5 100

viscous length Lη (m) 10−8 100

viscous time tη (s) 10−10 105

It can be illuminating to indicate the thermal length with L⊥ to put it into perspective

with the correlation length L‖ along the interface.

The dynamic properties of the interface are affected as well. The interface dynamics

are described by the Navier-Stokes equations [40]

ρDtu = η∇2u −∇p, (1.5)

with ρ the mass density, Dt the material derivative (which denotes ∂/∂t+u ·∇), u the

velocity, η the viscosity and p the pressure. The term on the left hand side captures the

inertial force, the first term on the right hand side the viscous force and the last term the

(capillary) pressure force. The capillary velocity uc is the characteristic velocity when

inertia is unimportant and can be found by equating the capillary with the viscous force

(see for example [41]):

uc ≡ γ/η. (1.6)

The relative importance of inertial vs. viscous forces can be found from the Reynolds

number Re ≡ ρuL/η with L a characteristic lengthscale. With u = uc the Reynolds

number becomes

Re =
γL

η2/ρ
, (1.7)

which we write in this particular form to indicate that both γL and η2/ρ are forces [42].

We see that inertial terms become important at lengths Lη, where Re = 1,

Lη =
η2

ργ
, (1.8)

and at times tη

tη =
Lη

uc
=

η3

ργ2
. (1.9)
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An ultralow interfacial tension postpones the inertial hydrodynamic regime drastically

as can be seen in table 1.1 and the system remains in the viscous hydrodynamic regime

for much longer times. Hence, the left hand side of (1.5) is effectively zero, we end up

with Stokes flow and observe that life at ultralow interfacial tension is equivalent to life

at low Reynolds number [42]. The capillary velocity is the typical velocity in interface

phenomena such as droplet coalescence and snap-off. Because of its small magnitude

detailed observations in time are possible. Finally, the combination of capillary velocity

and capillary length leads to a typical decay time τ of thermal capillary waves [43, 44]

τ =
L‖
uc

=
L‖η
γ

. (1.10)

The characteristic units introduced in this section are summarised and quantified in

table 1.1 and will appear frequently in the chapters ahead.

1.4. Scope of this thesis

In this thesis we will study the behaviour and the properties of interfaces with an

ultralow interfacial tension concerning both the statics and dynamics. The contents

can be roughly divided into two parts. In the first part we will deal with statics,

the second part discusses dynamics. We will describe the colloid-polymer mixtures

and the microscopy setup that have been used in this work in chapter 2. In order to

minimize repetition the systems are hardly discussed in the other chapters. This chapter

will be followed by two theoretical chapters; a calculation of the phase behaviour of

mixtures of colloids and interacting polymers (chapter 3), which is an extension of the

free volume theory developed for mixtures of colloids and ideal polymers [18], and in

chapter 4 the theory is further extended to calculate the interfacial tension and the

wetting behaviour. This theoretical work was motivated by our first experiments on

a mixture of silica colloids and poly(dimethyl) siloxane in cyclohexane, but will be

applied to other experimental systems as well. In the subsequent chapters theory and

experiment are interwoven. The system is studied in the vicinity of a single wall in

chapter 5 (Lc) with a focus on capillary lengths and the wetting state of the system 1.

Both the statics and dynamics of the free interface are studied in chapter 6 (L⊥, L‖ and

τ). The dynamic interface roughness plays a key-role in droplet coalescence, which is

the topic of chapter 7 (Lη, LT , uc), and also in droplet snap-off described in chapter 8

(Lη, LT , uc), where we see first experimental evidence of the effects of thermal noise in

droplet snap-off. The dynamic part ends with a description of phase separation kinetics

and morphology in demixing colloid-polymer mixtures (chapter 9 (uc and Lc)), where

many aspects of the previous two chapters come together. A summary (also in Dutch)

will follow and that will conclude this thesis.

1The experimental key-parameters in the chapters are between brackets.
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2
Introduction to the model colloid-polymer

mixtures and experimental techniques

Abstract

The three different colloid-polymer mixtures used in this thesis and the expe-
rimental techniques to study them are introduced and described in detail. The
first system consists of stearyl coated silica colloids + poly(dimethylsiloxane)
polymer in cyclohexane and the other two consist of fluorescently labelled
poly-(methylmethacrylate) spheres + poly(styrene) polymer in decalin. The
diameter of the colloids has been determined using dynamic and static light
scattering techniques and transmission electron microscopy. Furthermore, den-
sities and rheological properties of polymers and colloids as well as mixtures
have been determined. Phase diagrams have been constructed by preparing
several dilution lines. As techniques we used transmission light and laser scan-
ning confocal microscopy, which setups and properties are described as well.

2.1. Introduction

Finding a good model system can be a difficult process. Many factors have to be

dealt with; first of all, the yield of particle synthesis should be considerable so that a

minimum of about 10 ml of 40 volume % colloids can easily be obtained. Separately,

both colloids and polymers should be stable in the solvent and mixed together the

polymer must be non-adsorbing. The colloid index of refraction should not differ too

much from the solvent index of refraction in order to allow light microscopy and at

the same time minimize van der Waals attractions. Furthermore, the buoyancy of the

colloids has to be such that the chemical potential hardly changes over one particle

diameter σc along the direction of gravity , i.e. σc/lg should be much smaller than one.

9
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Here, lg is the gravitional length of the particles defined as kBT/m∗g with kBT the

thermal energy, m∗ the buoyant mass of the colloids and g earth’s acceleration. The

colloids should be small enough such that the interfacial tension is still considerable (see

(1.2)) and capillary forces are important with respect to for example hydrostatic forces.

Moreover, a sufficiently large polymer must exist to induce gas-liquid phase separation,

i.e. the polymer-colloid size ratio should as a rule of thumb be at least 1/3 [18].

To this end, three different colloid-polymer mixtures have been explored to which

we will refer throughout this thesis. In section 2.2 a mixture of stearyl-coated silica

spheres+poly(dimethylsiloxane) in cyclohexane will be discussed, which has been de-

veloped in the van ’t Hoff laboratory in Utrecht, the Netherlands, over quite some

period of time [36, 37, 45–47]. In section 2.3 two different poly(methylmethacrylate)

colloidal spheres + poly(styrene) polymer in decalin will be shown, which has proven

to be extremely useful especially by the Edinburgh-group, United Kingdom, see for

example [48–55]. The microscopy setups will be discussed in section 2.4. In section 2.5

a verdict over the systems will be returned.

2.2. System 1: SiO2 + PDMS in cyclohexane (SPC13)

This system was originally prepared by Verhaegh et al. [45]. The colloids are com-

mercially available ludox spheres (Ludox AS 40 % Dupont) coated with stearyl al-

cohol (1-octadecanol, Merck, zur synthesis) providing steric stabilisation [56]. The

(dynamic light scattering) radius Rc of the particle was 13 nm with a polydispersity

of 19 % and the density was 1.60 g/ml [36, 47]. The molecular weight Mw of the

poly(dimethylsiloxane) polymers (PDMS, Janssen) was 91.7 kg/mol (Mw/Mn = 1.9,

with Mn the number average molecular weigth) and the density was 0.976 g/ml. The

polymer’s radius of gyration was determined at 14 nm [36, 47]. A calculation of Rg

following Vincent [57] gives 14.1 nm, in good agreement with the measured radius.

The θ-temperature for PDMS in cyclohexane is -80◦C [58], so the polymer is in a good

solvent. No signs were found that the polymer adsorbed on glass walls.

Samples were prepared in several types of optical cuvettes by mixing colloid- and

polymer-stock dispersions and diluting with cyclohexane. Since all densities are known,

mass fractions can be directly converted to volume fractions of colloids, φc = 4
3
πR3

cnc,

and of polymers, φp = 4
3
πR3

gnp, where nc and np are the number densities of colloids

and polymers, respectively. After preparing a colloid-polymer mixture, the system is

homogenized either by hand or with a vortex, which is a reproducible way of homog-

enizing the mixture, although the degree of homogenization is unclear [45]. By visual

inspection one learns that the sample immediately becomes turbid if it is in the unstable

region. After 5 s for samples away from the critical point up to 30 s for sample close

to the critical point gravity starts driving the phases apart leading to strong flow in

the system. Gradually a macroscopic interface is formed after 6-7 minutes for samples
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Figure 2.1. Experimental phase diagram of a mixture of silica colloids and
poly(dimethylsiloxane) polymer with q = 1.08 [36]. The diamonds denote the
binodal, the points I-IV on the dilution line (drawn line) are studied in more
detail in the upcoming chapters. Filled circles are in the two phase region, the
cross is in the one phase region. System 1 SPC13.

away from and 13-14 minutes for samples close to the critical point. It takes, how-

ever, still one up to several hours before most of the drops have coalesced with their

bulk phases [59]. An elaborate study of phase separation kinetics and morphology in

colloid-polymer mixtures is presented in chapter 9.

De Hoog and Lekkerkerker determined the binodal and the tie-lines of this system [36]

following the approach of Bodnar and Oosterbaan [60], which is based on measurements

of the relative amounts of coexisting gas and liquid phases. The phase diagram is shown

in figure 2.1. We will make the comparison with theory in chapter 3, figure 3.5(d). In

principle, the polymer-colloid size ratio q = Rg/Rc = 1.08 allows for the observation of

gas, liquid and crystal phases [18], but only gas-liquid phase coexistence was observed.

Fluid-crystal coexistence was possibly suppressed by the polydispersity of the spheres

as is often the case in systems with small spheres and the system gelled at relatively

high polymer concentrations. This observation can be related to theoretical predictions,

which show that both sphere and polymer polydispersity favour gas-liquid coexistence

and delay the onset of fluid-solid separation [61–64]; These predictions are valid for

ideal polymers, but similar effects have been calculated for interacting, polydisperse

polymer chains on the level of gas-liquid phase separation [65]. Furthermore, de Hoog

and Lekkerkerker extensively characterised the system and measured the viscosities of

the gas and liquid phases [36]. The viscosity of the liquid phase is of the order of 100

mPas and of the gas phase 10 mPas, see the Appendix of this chapter. In addition, they

measured the interfacial tension using the spinning drop technique and by following the
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breakup of a gas cylinder surrounded by liquid [36,37,66]. They measured an interfacial

tension of a few µN/m, as will be discussed in more detail in chapter 5.

Please note that we will refer throughout this thesis to this system as system 1 with

the system’s characteristics as SPC13, i.e. Silica Poly(dimethylsiloxane) in Cyclohexane

with the radius of the colloid equal to 13 nm. A summary of the physical properties of

this system can be found in the Appendix of this chapter.

2.3. Systems 2 and 3: PMMA + PS in decalin (PPD25 and

PPD71)

Two different poly(methylmethacrylate) PMMA-colloids + poly(styrene) polymer

systems were used. The first system of fluorescent PMMA spheres was prepared to-

gether with my colleague Roel Dullens. We followed the method of Bosma et al. [67]

slightly modified by using decalin (Merck, for synthesis) as reaction solvent. The fluo-

rescent dye is 4-methylaminoethylmethacrylate-7-nitrobenzo-2-oxa-1,3-diazol. The (dy-

namic light scattering) radius Rc was 25 nm and the polydispersity was less than 10%,

estimated from scanning electron microscopy images, see figure 2.2. As polymer com-

mercially available poly(styrene) (PS, Fluka) was used with a molecular weight of Mw =

233 kg mol−1 (Mw/Mn = 1.06) and a radius of gyration Rg of ∼ 14 nm (estimated from

data in the literature [57, 68]). The colloidal particles of the second PMMA system,

i.e. system 3 in this thesis, were prepared by Gilles Bosma [69]. The same dye was

incorporated. The (static light scattering) radius Rc was 71 nm and the polydispersity

was around 10%. As depletant polystyrene polymer (Fluka) with a molecular weigth

Figure 2.2. Scanning electron microscopy image of PMMA spheres with a
radius of 25 nm. The scale bar is 500 nm. System 2 PPD25.
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Figure 2.3. Experimental phase diagrams of a mixture of PMMA colloids
and PS polymer in decalin with (a) q = 0.56 (System 2 PPD25) and (b)
q = 0.6 (System 3 PPD71). Indicated are state points where gas-liquid phase
separation occurs (circles), state points in the one-phase region (crosses) and
state points where the system gelled (stars). The lines are an estimate of the
binodal and are drawn to guide the eye. State points to which references are
made in the text are indicated (solid circles and Roman numbers).

of Mw = 2000 kg mol−1 (Mw/Mn < 1.2) has been used; the polymer’s radius of gy-

ration is estimated to be 43 nm from data in the literature [57, 68]. The decalin is

a mixture of 40 % cis and 60 % trans decalin. The θ-temperature of polystyrene in

this solvent is about 16.5◦C [68], which means that the polymer is clearly not in the

full excluded volume interaction limit, see chapter 3. In fact, Martelozzo et al. have

used the temperature dependence of the polymer’s radius of gyration cleverly to steer

the phase behaviour [70]. The samples have been prepared in a similar manner as de-

scribed above (section 2.2). Mass fractions were directly converted to volume fractions

of colloids, φc = 4
3
πR3

cnc, and of polymers, φp = 4
3
πR3

gnp, after the densities of the

species were measured with an Anton-Paar density metre. The first PMMA system did

not display a crystal phase and volume fractions have not been scaled on the freezing

volume fraction as for example done in [71]. For the second PMMA system the same

procedures have been followed as for the first PMMA system. Similar behaviour com-

pared to system 1 SPC13 was observed, although phase separation was on average a bit

slower. For the first PMMA system it took at high polymer concentrations a few hours

before the system phase separated completely, at intermediate concentrations about

15 minutes and very close to the binodal again up to hours. For the second PMMA

system with larger spheres and hence a smaller interfacial tension, phase separation

took at least one hour, but never more than one day. Again, the polymer-colloid size

ratios q = 0.56 for the first and q = 0.6 for the second PMMA system allow for the

observation of gas, liquid and crystal phases [18]. Only gas-liquid phase coexistence
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was observed, see figure 2.3(a) and (b) for the phase diagrams, and the systems gelled

at relatively high polymer concentrations.

The theoretical binodal of the first PMMA system will be shown in chapter 3, fig-

ure 3.5(b). Unfortunately, the method to determine the binodal and tie-lines as pro-

posed by Bodnar and Oosterbaan [60] did not give physically acceptable results. Thus,

the gas-liquid density difference cannot be found directly from the phase diagram and

more direct methods have to be used. We determined densities with an Anton-Paar

density metre, which requires rather much material (about 1 ml per phase). We ob-

tained density differences in the range of 50 to 100 g/l in both PMMA systems for

systems at a moderate distance and away from the critical point. Furthermore, in both

systems, viscosities are of the order of 10 and 40 mPas for the gas and liquid phases,

respectively, and interfacial tensions are of the order of 200 for the first and 50 nN/m

for the second PMMA system. Of course, the interface properties are the topic of the

thesis and the mentioned values are only indicative.

Throughout this thesis we will refer to the first PMMA system as system 2 with the

system’s characteristics as PPD25, i.e. PMMA Poly(styrene) in Decalin with the radius

of the colloid equal to 25 nm. The second PMMA system is referred to as system 3

or PPD71, i.e. PMMA Poly(styrene) in Decalin with the radius of the colloid equal to

71 nm. A summary of the physical properties of these systems can be found in the

Appendix of this chapter.

2.4. Experimental technique

To study the colloid-polymer mixtures we used the following setup, schematically

shown in figure 2.4(a). A transmission light microscope (Nikon Eclipse E400) was placed

horizontally. The setup allows for monitoring using transmission light microscopy as

well as laser scanning confocal microscopy (LSCM). In the transmission mode a CCD

camera can be attached, which has a maximal capturing rate of 50 frames per second.

In the LSCM mode a confocal scanning laser head (Nikon C1) was mounted on the

microscope with a maximal capturing rate of about 1 full frame per second. The main

advantage of confocal over standard (transmission light) microscopy is the considerable

increase of contrast. In addition, the resolution is slightly improved in confocal mi-

croscopy as first realized by its inventor Minsky [72]. These improvements are reached

by using a pinhole before the detector that blocks most of the out-of-focus signal. A

schematic setup of confocal microscopy is shown in figure 2.5(a) [73]. Light from a point

source (for example created by placing an extra (source) pinhole in front of the actual

light source) is focussed by the objective lens onto a spot in the sample, the scattered

light is collected by the collector lens and detected by e.g. a photo multiplier tube. The

objective and collector lens are usually the same (which is cost effective). The sample

is scanned point-per-point.
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Figure 2.4. (a) Schematic microscopy setup. Either in the LSCM-mode or
in the transmission light microscopy mode. (b) One of the types of cuvettes
used. The front glass wall is 0.17 mm thick.

To quantify the advantages of confocal over standard microscopy we will follow the

review of Webb [73] (for similar treatments see [74, 75]) and study the point spread

function (PSF). The PSF for confocal microscopy can be viewed as the probability that

a photon will reach a certain point or that it will be received from that point [73]. First,

we switch from real coordinates around the optical axis, i.e. r (radial) and z (axial), to

optical coordinates, ρ = r 2πNA/λ and ζ = z 2πNA2/nλ, where NA is the numerical

aperture, λ the wavelength of the light in vacuum, and n the index of refraction of

the medium. The numerical aperture describes the angular behaviour of the light cone

passing through the objective lens [73]. The PSF, p(ρ, ζ), is given by

p(ρ, 0) =

(
2J1(ρ)

ρ

)4

, (2.1)

in the plane perpendicular to the optical axis (radially) with J1 the Bessel function of

the first kind and

p(0, ζ) =

(
sin(ζ/4)

ζ/4

)4

, (2.2)

along the optical axis (axially). Both equations are simply the square of the PSF’s of

standard microscopy. The standard microscopy variant of (2.1) defines the Airy disc,

which is where the PSF first drops to zero (p(ρairy, 0) = 0), see also figure 2.5(b).

If another similar source would be positioned at the Airy disc, then the intensity in

between would drop 26 % in standard microscopy (figure 2.5(b)), which defines the

Rayleigh criterion and we use this criterion to calculate the resolution. The radial

resolution (in ρ) is 3.82 for standard and 2.76 for confocal microscopy, whereas the

axial resolution (in ζ) is 13.12 for standard and 9.53 for confocal microscopy. In the

work described in this thesis we frequently use a lens with NA = 1.4, a system with

n ≈ 1.5 and a laser light source with λ = 488 nm, which leads to radial resolutions of

212 nm and 153 nm and axial resolutions of 780 and 566 nm, for standard and confocal

microscopy, respectively. Although the improvement is significant the main advantage
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Figure 2.5. (a) Schematics of the optics of a confocal microscope. The filled
circle is in focus and is imaged in the detector pinhole in contrast to the
open circle. [73] (b) Radial PSF’s for standard microscopy (full curve) and
confocal microscopy (broken curves) of two similar point sources. The star at
the horizontal axis denotes the Rayleigh distance. The dashed curve shows
the considerable contrast improvement in confocal microscopy. The dotted
confocal microscopy curve fulfills the Rayleigh criterion (i.e. the horizontal
line) at smaller separations leading to an improved resolution. PSF plots in
the axial direction show a similar trend.

is that of the increased intensity contrast; for example, at the secondary PSF maximum

of a single scatterer the signal is radially about sixty and axially about twenty times

smaller in confocal microscopy than in standard microscopy. As a result the signal-to-

noise ratio is improved considerably, which makes it possible to discriminate between

bright and dim scatterers in close proximity of each other.

Besides thin glass capillaries, several types of glass cuvettes have been used in the

microscopy setups, such as light microscopy Hellma cuvettes with path lengths vary-

ing between 1 to 5 mm. Special cuvettes were fabricated in the glass workshop, see

figure 2.4(b). These cuvettes have several advantages over the ready-to-use Hellma

cuvettes; they are cheap and airtight, yet can be opened and closed easily. Moreover,

the front glass wall is only 0.17 mm thick allowing the use of high numerical aper-

ture oil-immersion objectives, and it is easy to build all kinds of pedestals inside such

cuvettes.

2.5. Conclusion

As will become clear throughout this thesis the three systems each bring their own ad-

vantages. In the silica system, system 1 SPC13, the interfacial tension is relatively high

and this allows studying certain hydrodynamic effects, such as droplet coalescence and

snap-off, in great detail with a practical length- and timescale. The first PMMA system

with small colloids, system 2 PPD25, will prove to be very useful in the investigation of

wetting behaviour, droplet coalescence and spinodal decomposition. Finally, even the

thermal capillary waves of the “free” interface could be directly observed, but for this
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study the second PMMA system, system 3 PPD71, was more convenient, because the

interfacial tension is even lower than in system 2 and the roughness is therefore much

larger. This last system allows studying not only the hydrodynamic effects in droplet

coalescence, but also the stochastic effects of capillary waves. However, in studying spi-

nodal descomposition or wetting behaviour the relevant lengthscales become too small.

System 1 SPC13 is solely investigated with light microscopy, since the colloids are non-

fluorescent. With light microscopy we can record very fast, but sometimes it leads to

blurry images. Systems 2 PPD25 and 3 PPD71 are mainly studied with LSCM, but

this technique records too slow to follow for example the details of droplet coalescence

in time. Therefore, light microscopy was used in these systems as well. Moreover, the

optical sectioning of LSCM sometimes obscures events, since these might evolve in or

out of focus. Clearly, the transmission light and laser scanning confocal techniques are

complementary.

Thus, we may conclude that the three different colloid-polymer mixtures and the

two optical techniques have their own advantages and this will be exploited to explore

an extensive range of fundamental questions about the static and dynamic interface

behaviour of systems with an ultralow interfacial tension.
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Appendix: physical properties of the model colloid-polymer

mixtures

Table 2.1. Summary of the physical properties of the model colloid-polymer
mixtures. Viscosities of the liquid and gas phases are denoted by ηL and ηG,

respectively.

System 1 SPC13

radius (nm) density (g/ml) Mw (kg/mol) refractive index

colloid silica 13 1.60 1.44

polymer PDMS 14 0.976 91.7

solvent cyclohexane 0.78 1.43

φc φp ∆ρ (g/ml) ηL (mPa/s) ηG (mPa/s) γ (µN/m)

0.24 1.57 0.242 97.1 8.4 ∼ 2 [36]

System 2 PPD25

radius (nm) density (g/ml) Mw (kg/mol) refractive index

colloid PMMA 25 1.17 1.5

polymer PS 14 1.05 233

solvent decalin 0.88 1.48

φc φp ∆ρ (g/ml) ηL (mPa/s) ηG (mPa/s) γ (µN/m)

0.076 0.50 0.053 31 8 0.16

System 3 PPD71

radius (nm) density (g/ml) Mw (kg/mol) refractive index

colloid PMMA 71 1.17 1.5

polymer PS 43 1.05 2000

solvent decalin 0.88 1.48

φc φp ∆ρ (g/ml) ηL (mPa/s) ηG (mPa/s) γ (µN/m)

0.11 0.65 30 12.6 0.1

0.15 0.70 0.096



3
Phase behaviour of mixtures of colloidal

spheres and excluded-volume polymer chains

Abstract

We study the phase behaviour of mixtures of colloidal spheres and polymers
that have an excluded volume interaction dispersed in a (background) solvent
using the concept of free volume theory. The depletion layer thickness is calcu-
lated from the negative adsorption of polymer segments around a sphere. The
correlation length and thermodynamic properties of the excluded volume inter-
acting polymer chains in solution are taken into account by using results from
the renormalization group theory. For small polymer-colloid size ratios the dif-
ference with an ideal description of the polymers is small, while for larger size
ratios the gas-liquid coexistence region shifts in the direction of higher poly-
mer concentrations and at the same time the liquid-crystal coexistence region
becomes more extended. Both the gas-liquid region and the gas-liquid-crystal
region become less extended. These features are compared to experiment.

3.1. Introduction

Mixtures of colloids and non-adsorbing polymers display a rich phase behaviour, in-

volving colloidal “gas” (poor in colloid, rich in polymer), colloidal “liquid” (rich in col-

loid, poor in polymer) and colloidal “crystal” phases (rich in colloid, poor in polymer).

This phase behaviour finds its origin in the interaction between colloidal particles in a

sea of polymers. Between two particles the interaction was first described by Asakura

and Oosawa [24, 25], Vrij [19] and Joanny et al. [76] who showed that there is an os-

motic imbalance pushing the particles together if they are within a certain distance of

each other. Subsequent calculations for the phase behaviour of colloidal spheres and

19
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polymers in a “background” solvent based on perturbation approaches were performed

by Gast et al. [27] and Vincent and co-workers [28, 29]. These approaches succesfully

identified that the topology of the phase diagram depends on the polymer to colloid

size ratio q = Rg/Rc, with Rg the polymer’s radius of gyration and Rc the radius of

the colloid. For a concise review of this early work, see [77]. In these approaches the

polymer partitioning between coexisting phases was not taken into account. This issue

was first adressed by Lekkerkerker [30] and developed using the concept of free volume

theory [18]. It is especially succesful in understanding why one should find a three

phase coexistence region instead of a three phase coexistence line. Extensive computer

simulations [78–80] and exact solutions in one dimension [81–83] validate the free vol-

ume approximation. It qualitatively and for polymers much smaller than the colloids

even quantitatively predicts the correct phase behaviour as can be seen by comparison

with experiments [48–52]. The main limitation of the original free volume approach

is that it considers the polymers as ideal. Recently, other theoretical approaches to

describe colloid-polymer mixtures were explored aiming at a better description of the

polymer [84–87] (for a review, see [88]). In this chapter we extend the free volume

theory to describe the phase behaviour of mixtures of colloidal spheres and polymer

chains with excluded volume interactions. This work was originally motivated by the

observed large discrepancy between the theoretical binodal, which was calculated using

free volume theory for ideal polymers [18], and the experimental binodal for a colloid-

polymer mixture of stearyl coated silica particles and poly(dimethylsiloxane) polymer

in cyclohexane [36], i.e. system 1 SPC13 described in chapter 2. We will also make the

comparison with system 2 PPD25, whereas system 3 PPD71 shows similar results.

In section 3.2 we will briefly explain the thermodynamic framework needed to calcu-

late the phase behaviour using the free volume theory. The theory for ideal polymers

and colloidal spheres of Lekkerkerker et al. [18] and the resulting phase diagrams will

be discussed in section 3.3. In this approach polymers are modelled as penetrable hard

spheres with a radius Rg. Therefore, the polymers are ideal and the depletion layer

thickness around a colloid ∆ is equal to Rg. However, when using the polymer density

profile around a sphere [89,90] and replacing this profile by a step function, ∆ becomes

a function of the curvature q (= Rg/Rc) as will also be shown in section 3.3. In sec-

tion 3.4 we make the transition from ideal polymers to polymers with excluded volume

interactions using results from Renormalization Group (RG) theory [91]. We will use

an expression from Hanke et al. [92] to incorporate curvature effects. In section 3.5 the

resulting phase diagrams are presented and compared to the original free volume theory

and to experimental phase diagrams. We will summarize and conclude our findings in

section 3.6.
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3.2. Free volume theory

The natural thermodynamic potential to use when calculating the phase behaviour

of colloid-polymer mixtures is the semi-grand canonical potential [30]. The colloids are

treated canonically, while the polymers are treated grand canonically as is schematically

shown in figure 3.1. The solvent is treated as background. The semi-grand canonical

potential Ω(N, T, V, µp) can be written as

Ω(N, V, T, µp) = F (N, V, T ) −
∫ µr

p

−∞
Npdµr′

p , (3.1)

in which F (N, V, T ) is the Helmholtz free energy of a pure hard sphere dispersion

and depends on the number of colloidal particles N , the system volume V and the

temperature T . The reservoir is filled with polymers up to a final chemical potential of

polymers µr
p, resulting in Np polymers being pushed into the system. To calculate Np

as a function of µr
p the following assumption is made:

Np(µ
r
p) = nr

p 〈Vfree〉0 = nr
pαV, (3.2)

implying that Np is equal to the number density of polymers in the reservoir nr
p times

the free volume in the unperturbed system 〈Vfree〉0. This free volume is equal to the

free volume fraction α times the system volume V . The free volume fraction can be

found from Scaled Particle Theory [18, 93] and reads

α = (1 − φc) exp
[
−
(
Ad + Bd2 + Cd3

)]
, (3.3)

reservoirsystem

N,V,T,�p

Figure 3.1. Schematic representation of the semi-grand canonical scheme.
The reservoir is filled with polymer and connected to the system via a semi-
permeable membrane. The system contains both polymers and colloids and
its free volume is the total system volume V minus the volume of the depleted
zones. Note that the centres of mass of the polymers cannot penetrate the
depletion zones.
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with d = φc/(1−φc) and the quantities A, B and C functions of the depletion thickness

(in this approach a step function with thickness ∆) divided by Rc:

A = 3
∆

Rc

+ 3
(

∆

Rc

)2

+
(

∆

Rc

)3

B =
9

2

(
∆

Rc

)2

+ 3
(

∆

Rc

)3

C = 3
(

∆

Rc

)3

.

(3.4)

The integration over µr
p in (3.1) can be replaced with an integration over nr

p by

applying the Gibbs-Duhem relation:

dµr
p =

1

nr
p

dΠ =
1

nr
p

(
∂Π

∂nr
p

)
T

dnr
p. (3.5)

Here Π is the osmotic pressure of the polymers. Finally, it is convenient to rewrite (3.1)

in a dimensionless form:

ω̃ = f̃ −
∫ φr

p

0
α

(
∂Π̃

∂φr′
p

)
T

dφr′
p , (3.6)

with ω̃ = Ωvc/kBTV (with kB the Boltzmann constant and vc = 4
3
πR3

c the volume of

a colloid), f̃ = Fvc/kBTV and Π̃ = Πvc/kBT the dimensionless osmotic pressure of

the polymer solution. Furthermore, φr
p is the polymer volume fraction (φr

p = nr
pvp with

vp = 4
3
πR3

g). Equation (3.6) is the central equation in this thermodynamic scheme. The

coexisting phases follow from the conditions (common-tangent procedure)(
∂ω̃1

∂φc1

)
φr

p

= µ̃1(φ
r
p) = µ̃2(φ

r
p) =

(
∂ω̃2

∂φc2

)
φr

p(
∂ω̃1

∂φc1

)
φr

p

φc1 − ω̃1 = P̃1(φ
r
p) = P̃2(φ

r
p) =

(
∂ω̃2

∂φc1

)
φr

p

φc2 − ω̃2

(3.7)

Throughout this chapter we use a very accurate expression for the free energy of the

pure hard sphere system f̃ following from the Carnahan-Starling equation of state [94]:

f̃ = φc ln φc +
4φ2

c − 3φ3
c

(1 − φc)2
− φc. (3.8)

This can be used to describe both gas (G) and liquid (L) phases as well as the fluid

(F ) phase. To describe the crystalline phase (C) we make use of a reference free energy

obtained from computer simulations [95], from which the crystalline free energy f̃c

follows as

f̃c = −P̃c + φcµ̃c = − 3φc

1 − φc/φcp

+ φc

(
2.1306 +

3

1 − φc/φcp

+ 3 ln

[
φc

1 − φc/φcp

])
(3.9)
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with the closest packed volume fraction φcp = π
√

2/6. Except for the thermodynamic

properties of the polymer solution and the depletion layer thickness we have all ingre-

dients to calculate the binodals using (3.7).

3.3. Ideal Polymers

The osmotic pressure of ideal polymers is given by van ’t Hoff’s law Π = npkBT

and the osmotic compressibility ∂Π̃/∂φr
p then simply is 1/q3. The integral in (3.6) now

becomes

∫ φr
p

0
α

(
∂Π̃

∂φr′
p

)
T

dφr′
p =

α

q3
φr

p. (3.10)
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Figure 3.2. (a-c) Phase diagrams for colloid-polymer mixtures with different
polymer-colloid size ratios (respectively, q = 0.1, q = 0.6, q = 1.0) in polymer
reservoir concentration. In (d) the curvature dependence of ∆/Rg as in (3.11)
is plotted. Dashed lines follow from the theory described in [18] (∆ = Rg),
while solid lines are the result when using (3.11). Dotted lines denote triple
points (gas-liquid-crystal coexistence) and open circles denote critical points.
The characters G, L, F and C stand for colloidal gas, liquid, fluid and crystal
phases respectively.
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If ∆ is known we have all the ingredients to calculate the phase behaviour. Lekkerkerker

et al. [18] used ∆ = Rg and thus treated the polymers as penetrable hard spheres with

effective radius Rg. In that case ∆/Rc in (3.4) becomes q.

Although the typical length scale of an ideal polymer solution in the bulk indeed is

the radius of gyration, the typical length scale near a wall or spherical colloidal surface

is different. The depletion thickness near an interface can be calculated if the polymer

density profile is known. The density profile is found by solving the Edwards diffusion

equation [96, 97]. Near a single wall, this profile was calculated by Eisenriegler [98],

leading to ∆ = 2Rg/
√

π. The polymer density profile around a sphere was derived by

Taniguchi et al. [89] and independently by Eisenriegler et al. [90]. In the Appendix

of this chapter the depletion thickness as a function of curvature is derived for ideal

polymers leading to (3.18), i.e.

∆

Rc

=

(
1 +

6√
π

q + 3q2

)1/3

− 1. (3.11)

This expression for ∆/Rc is used in (3.4). In the limit of q → 0, ∆/Rc becomes 2q/
√

π

agreeing with the flat wall case and for larger q, ∆/Rc decreases. Curvature effects are

now included in the free volume approach. The resulting phase diagrams are presented

in figure 3.2. Clearly, the effect of curvature on the general phase behaviour is small in

the ideal case, except for very large q where ∆ 	 Rg.

3.4. Polymers with Excluded Volume Interactions

In good solvents excluded volume interactions between polymer segments have to be

taken into account in order to describe the thermodynamics of the polymers in solution

properly. Thus, we first need an expression for the osmotic compressibility. This can

be found from RG-theory [91] for polymers in the full excluded volume limit and is in

dimensionless form equal to

(
∂Π̃

∂φr
p

)
=

1

q3


1 + 2.629φr

p


1 + 3.251φr

p + 4.151
(
φr

p

)2

1 + 1.480φr
p




0.309

 . (3.12)

Secondly, curvature effects have to be incorporated. Hanke et al. [92] calculated the

insertion energy to place a single colloidal sphere in a sea of excluded volume polymers.

This energy is equal to the total number of polymers depleted from a certain region and

is analyzed in terms of flat and curvature terms. We can calculate a depletion thickness

from this number by making use of a step-function and ∆/Rc becomes

∆

Rc

=

(
1 + 3a

(
Rg

Rc

)
+ 3b

(
Rg

Rc

)2

− 3c
(

Rg

Rc

)3
) 1

3

− 1, (3.13)
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Figure 3.3. (a) Curvature dependence of ∆/Rg and (b) concentration depen-
dence of ∆/Rc following (3.13) (full curves) with modifications explained in the
text and for the ideal case with ∆ = Rg (dashed curves). The concentration
dependence is shown for three different polymer-colloid size ratios, from top
to bottom curves: q = 1.0, 0.6 and 0.1.

with

a =
2√
π

[
1 − 1

4

(
1 − 3

2
ln 2 − π

2
+

π√
3

)]
≈ 1.0710

b = 1 − 5π

8
+

17

36
+

π
√

3

4
≈ 0.8691

c =
1

3
√

π

(
1673π

48
− 551

15
− 40π√

3

)
≈ 0.0399.

(3.14)

Note that (3.13) is the RG-theory result up to third order in curvature and hence

applicable for small q. To incorporate the polymer concentration dependence we replace

Rg with the correlation length in bulk which is in line with the work of Joanny et al. [76].

Expressions for the bulk correlation length as well as the osmotic compressibility are

taken from [91] and we have all the ingredients for (3.6). In figure 3.3(a) we show the

curvature dependence of ∆/Rg, which clearly deviates from the standard ideal case with

∆ = Rg and in figure 3.3(b) the concentration dependence of ∆/Rc is plotted. The

depletion thickness decreases strongly as a function of the polymer concentration.

3.5. Results

In this section we present phase diagrams obtained with the proposed theory for

mixtures of colloidal hard spheres and polymer chains with excluded volume interactions

between the segments in a common solvent. The results are compared with those for

mixtures of ideal polymers mixed with colloidal spheres as described in [18] and with

experimental phase diagrams. In figure 3.4 we present phase diagrams for three different

colloid-polymer size ratios. For q = 0.1 (figure 3.4(a)) the difference between describing
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Figure 3.4. (a-c) Phase diagrams for colloid-polymer mixtures with different
colloid-polymer size ratios (respectively, q = 0.1, q = 0.6, q = 1.0) in reser-
voir polymer concentration. Dashed curves follow from the theory described
in [18] (∆ = Rg), while solid curves are valid for mixtures of excluded volume
polymers and colloids and follow from (3.13) with modifications explained in
the text. (d) Phase diagram in system polymer concentration for q = 0.6.
The light grey area is the three phase region for ideal polymers and the dark
grey area for excluded volume polymers. Dotted lines denote triple points
(gas-liquid-crystal coexistence) and open circles depict critical points.

the polymers as ideal following [18] or with excluded volume interactions is clearly very

small, while the difference is much larger for q = 0.6 and q = 1.0 (figure 3.4(b) and (c)).

Since the depletion thickness ∆ becomes smaller than Rg if q > 0.30 (figure 3.3(a))

and because ∆ decreases rapidly as a function of polymer concentration (figure 3.3(b))

more polymer is needed for gas-liquid phase separation to occur for q = 0.6 and q = 1.0.

Furthermore, the gas-liquid region becomes quickly metastable with respect to gas-

crystal coexistence due to the strongly rising osmotic compressibility (3.12) compared

to the ideal case. Related to this is the observation that gas-liquid coexistence first

becomes stable for q = 0.48, while this is at q = 0.33 for ideal polymers. In fact,

quantitative agreement is found with predictions for star polymer-colloid mixtures by

Dzubiella et al. [99, 100], when comparing to star polymers with two arms, i.e. linear
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Figure 3.5. Comparison of experiment with the ideal theory described in [18]
(dashed curves) and the model proposed here for excluded volume polymers
(full curves) with experimental phase diagrams for (a) q = 0.57 from [50], (b)
q = 0.56 (system 2 PPD25), (c) q = 0.667 from [101] and (d) q = 1.08 from [36]
(system 1 SPC13). The open circles denote critical points. The symbols in (a)
denote the following: filled circle, fluid; diamond, gas plus liquid; cross, gas
plus liquid plus crystal; plus sign, liquid plus crystal; square, gas plus crystal.
The light area is the three phase region for ideal polymers and the dark area
for excluded volume polymers. In (b) state points are indicated where gas-
liquid phase separation occurs (circles), state points in the one-phase region
(crosses) and state points where the system gelled (stars). In (c) and (d) the
open diamonds are the experimental binodal points.

polymer chains. They found stable fluid-fluid demixing for q ≥ 0.5. In figure 3.4(d)

we make the transition to system polymer concentrations for q = 0.6 by multiplying

the reservoir polymer volume fraction φr
p with the free volume fraction in one phase

α(φc1): φp1 = φr
pα(φc1). Here, we see that the liquid-crystal region is much larger than

in the ideal case. In addition, the three phase coexistence region is shifted upwards and

becomes slightly smaller.



28 3. Phase behaviour of mixtures of colloidal spheres and excluded-volume polymer chains

In figure 3.5 we make the comparison with experimental phase diagrams. Ilett et al.

constructed phase diagrams for mixtures of polymethylmethacrylate (PMMA) colloidal

spheres and polystyrene polymer in purely cis-decalin [50] resembling systems 2 PPD25

and 3 PPD71 of chapter 2, but with a lower polymer θ-temperature of 12◦C instead of

16.5◦C [68]. In figure 3.5(a) we compare their constructed phase diagram for Rc = 228

nm and Rg = 130 nm (q = 0.57) with the original free volume theory and with the

extension described in section 3.4 to include excluded volume polymers. Although the

gas-liquid region is underestimated by the extended theory, both the liquid-crystal as

well as the three phase region are much better predicted. In (b) we show results for a

similar system even closer to θ-conditions, i.e. system 2 PPD25 as described in chapter 2.

Here, the ideal polymer model leads to a gas-liquid binodal in closer agreement with

the experimental binodal than the EVI-polymer model. Ramakrishnan et al. [101]

measured the gas-liquid binodal for mixtures of colloidal silica spheres coated with

stearyl alcohol (Rc = 50 nm) and polystyrene polymer in toluene. Here, we compare

the result with polystyrene with a molar mass of 5.5 105 g mol−1 (Rg = 33.37 nm)

resulting in a size ratio q = 0.667 in figure 3.5(c). The dashed curve (the original

theory) clearly predicts too low polymer concentrations at the binodal, while the full

curve (present theory) overestimates the required polymer concentration at the binodal.

In figure 3.5(d) we compare with the experimental phase line of mixtures of small stearyl

coated silica spheres (Rc = 13 nm) and polydimethylsiloxane polymer (Rg = 14 nm)

in cyclohexane with a size ratio q = 1.08, i.e. system 1 SPC13 in chapter 2. De Hoog

and Lekkerkerker [36] determined the binodal by following the method of Bodnar and

Oosterbaan [60]. The dashed curve is the ideal polymer theory result and again the

new theory (full curve) predicts phase separation to occur at much higher polymer

concentration. This full curve is partially dotted where the gas-liquid phase separation

is no longer stable with respect to gas-solid phase separation. However, no gas-solid

phase coexistence was observed experimentally possibly due to suppression by sphere

polydispersity, which is not accounted for in the present theory. Furthermore, the

present theory predicts too high polymer concentration above a certain colloid volume

fraction, the reason for which is unknown.

3.6. Discussion and conclusion

The effects of curvature and of excluded volume polymers on the phase behaviour of

colloid-polymer mixtures have been taken into account by extending the free volume

theory [18]. For ideal polymers curvature effects are included by using the polymer

density profile [89, 90], which has a small effect on the general phase behaviour. For

excluded volume polymers results from RG-theory [91, 92] were used and in that case

both the description with excluded volume polymers and the curvature play a role. For

small size ratios (as shown for q = 0.1) the depletion thickness is approximately Rg;
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curvature effects are weak and the concentration is not yet sufficiently large to decrease

the correlation length significantly with respect to Rg. For q = 0.6 and 1.0 the curvature

effects are stronger and especially the correlation length has dropped significantly at the

polymer concentrations where the system becomes unstable. Thus, the gas-liquid phase

coexistence will shift to larger polymer concentrations for excluded volume polymers as

compared to ideal polymers. At the same time the liquid-crystal region becomes larger,

while the three phase coexistence region becomes less extended.

In comparison with experiment we see that the ideal polymer theory predicts too

low polymer concentrations for gas-liquid phase separation to occur and that our new

model predicts too high polymer concentrations, except for q = 1.08 [36]. Although the

phase diagram for this colloid-polymer mixture was carefully determined, both colloidal

spheres and polymers are rather polydisperse, which certainly affects the location of

the binodal [61–64]. Liquid-crystal coexistence, clearly present in experiment for q =

0.57 [50] (figure 3.5(a)), is almost absent for ideal polymers (a discrepancy of about

a factor of 250 [52]). It appears, however, when using excluded volume polymers. A

significantly more accurate description of the liquid-crystal coexistence region is perhaps

one of the major achievements of the present theory. In addition, we observe that most

experimental gas-liquid binodals lie in between the ideal polymer and the EVI-polymer

predictions. Furthermore, in mixtures of PMMA colloids and poly(styrene) polymer

in decalin the phase behaviour appears to depend on the exact θ-conditions of the

polymer. We conclude that modifying the free volume theory to incorporate excluded

volume polymers is rather straightforward and results in a better description of some

of the significant features in the experimental phase diagrams. More sophisticated

theories are, however, required to obtain a more complete quantitative agreement with

experiments.
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Appendix: Depletion thickness for ideal polymers

Placing a colloidal sphere in a sea of polymers depletes Ndep
p polymers from a certain

volume. This number is equal to the polymer number density np times the volume that

is depleted of polymers, which is the colloid volume vc plus a region around the colloid

found from the polymer concentration profile f(x) = n(x)/nb:

Ndep
p = npvc + np

∫ ∞

Rc

4πx2(1 − f(x))dx. (3.15)

The profile [89,90] gives the local polymer segment density n(x) at a distance x from the

colloidal surface divided by the polymer bulk segment density nb and has the following

form

f(x) =
[

Rc

Rc + x

]2 {( x

Rc

)2

+
2x

Rc

(
erf(z) − 2z2[1 − erf(z)] +

2√
π

z exp(−z2)

)

+2 erf(z) − erf(2z) +
4z√
π

[
exp(−z2) − exp(−4z2)

]

+8 z2
[
1

2
− erf(2z) +

1

2
erf(z)

]}
,

(3.16)

where z = x/2Rg. This polymer profile can be replaced by a step-function and this

defines a depletion thickness ∆, which can be found by solving (3.17) for ∆

npvc + np

∫ ∞

Rc

4πx2(1 − f(x))dx = np
4π

3
(Rc + ∆)3 (3.17)

After doing the integration the resulting curvature dependence of ∆(q) becomes

∆

Rc
=

(
1 +

6q√
π

+ 3q2

)1/3

− 1. (3.18)



4
Interfacial tension and wetting behaviour in

colloid-polymer mixtures: Theory

Abstract

We calculate the interfacial tension and the wetting behaviour in phase sepa-
rated colloid-polymer mixtures both for ideal and excluded volume interacting
polymers. Within the recently developed extension of the free volume theory to
include polymer interactions [Aarts, Tuinier, and Lekkerkerker, J. Phys.: Con-
dens. Matter 14, 7551, 2002], see also chapter 3, the interfacial tension of the
free interface is calculated by adding a van der Waals squared gradient term.
The wetting behaviour at a hard wall is calculated following a Cahn-Fisher-
Nakanishi approach taking the one- and two-body colloid-wall interactions into
account. Comparing results for interacting polymers with those for ideal poly-
mers we find that for interacting polymers the interfacial tension does not
increase as steeply as a function of the gas-liquid colloid density difference.
Furthermore, the wetting transition shifts to higher polymer concentrations,
even to above the triple line. The predictions for both the interfacial tension
and the wetting behaviour are compared to recent experiments.

4.1. Introduction

Mixtures of colloids and non-adsorbing polymer display rich phase behaviour and

are an excellent tool for studying equilibrium properties, phase transition kinetics, and

metastable gel or glass states (for a recent comprehensive review, see [26]). Recently,

the interfacial tension between the coexisting phases received some attention, first ex-

perimentally by measurements of the ultralow interfacial tension of the order of at most

a few µN/m between demixed colloidal “liquid” (rich in colloid, poor in polymer) and

31
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colloidal “gas” (poor in colloid, rich in polymer) phases [35, 36, 38]. This in turn led

to a number of theoretical efforts, starting with a paper by Vrij [102]. Within the

Asakura-Oosawa-Vrij (AOV) model [19, 25], which treats the polymers as ideal mutu-

ally penetrable hard spheres (PHS), Brader and Evans [103] calculated the interfacial

tension using a squared gradient approach. In the work of Brader and Evans the degrees

of freedom of the polymer were integrated out such that an effective one-component

system was obtained, similar but not equal to the semi-grand potential derived using

the free volume theory [18]. The order of magnitude of the resulting interfacial tensions

compares well to the experimental values even though the predicted phase diagram

does not quantitatively correspond to the experimental bulk phase diagram, see the

discussion in chapter 3 about figure 3.5(d). The fact that the experimental bulk phase

diagram is not well described by theory is that in experiment polymers often behave

far from ideal.

Theory preceded experiment in the prediction of the existence of a wetting transition

of the mixtures in contact with a hard planar wall [82]. At this wetting transition the

“liquid” phase starts wetting the wall completely instead of partially and the contact

angle between the interface and the wall changes to zero degrees. Again polymers were

modelled as PHS but they were now explicitly described, hence the colloid-polymer

mixture is treated as a true binary mixture, within the formalism of fundamental mea-

sures theory [104]. For homogeneous phases this density functional reduces exactly to

the aforementioned free volume theory [18]. Moreover, it can be extended to a mixture

in the vicinity of a hard wall. Doing so, in addition to layering transitions, a first-order

wetting transition was found [82]. These results were recently confirmed using computer

simulations by Dijkstra and van Roij [105], again describing polymers as PHS. They

found transitions reasonably close to those of the predictions in [82]. First experiments

on system 1 SPC13, which will be shown in chapter 5, did confirm that the colloidal

liquid phase favours the wall [106] and the accompanying interfacial tension was in rea-

sonably good agreement with previous measurements [36]. Whether or not the liquid

phase was partially or completely wetting could not be concluded in this work, because

of the difficulty in measuring the contact-angles with sufficient accuracy. This was sub-

sequently solved by studying a fluorescent colloid-polymer mixture (system 2 PPD25)

with laser scanning confocal microscopy. No wetting transition was observed, as will

be presented and discussed in chapter 5 [107]. However, in a colloid-polymer mixture

similar to system 1 SPC13 a wetting transition was reported [108, 109]. The authors

mention the difficulty of comparing the experimentally found location of the wetting

transition to the theoretical prediction. The reason for this is that in their experiment

polymers behave far from ideal. Several ways to describe polymers more realistically

are available in literature [87,110–116] mainly focussing on bulk phase behaviour. Here
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Figure 4.1. Two possible configurations for two colloids near a flat hard wall.
The depletion zones are indicated by dashed lines. In (a) we have a colloid-wall
interaction (1) and a colloid-colloid interaction (2) while in (b) we also have a
colloid-colloid-wall interaction (3).

we extend the earlier bulk model of Ref. [111], see chapter 3, to calculate the interfacial

tension and to describe the wetting behaviour now also for interacting polymers.

That the colloidal liquid phase (partially) wets the wall is normally explained with

“classical” AOV-like arguments, hence in terms of overlap volumes and accompanying

interactions (see figure 4.1). Since at contact the overlap-volume between a wall and

a colloid (volume 1 in figure 4.1(a)) is about twice the overlap-volume between two

colloids (volume 2 in figure 4.1(a)) the colloidal liquid phase favours the wall, although

the pair attraction is reduced if two colloids are close to the wall and to each other

(volume 3 in figure 4.1(b)). One of the goals of this work is to put this qualitative view

in a quantitative form using the Cahn theory of wetting [9]. In addition, we want to

explore theoretically the possibilities of observing a wetting transition in experiment,

especially in experimental system 1 SPC13 (chapter 2), since this system initiated this

theoretical work, but also in system 2 PPD25. The accompanying experimental part is

presented in chapter 5.

We work at a semi-grand canonical level, treating the polymers grand canonically and

the colloids canonically. We thus effectively have a one component system of colloids

at a constant chemical potential of the polymer maintained by a reservoir filled with

only polymer. We focus on predictions of the bulk phase behaviour, the interfacial

tension, the wetting transition and the prewetting line for ideal polymers as well as

for excluded volume interacting (EVI) polymer chains. To keep descriptions simple

and straightforward we describe the inhomogeneities with a squared gradient term

as in [103], but with the free volume expression [18] for the bulk free energy. The

interaction with the wall is described up to second order in colloid contact density, i.e.

we follow a Fisher-Nakanishi like [117] extension of the Cahn theory of wetting [9] (for a

recent review see [118]). We present theory for the bulk phase behaviour in section 4.2,

for the free interface in section 4.3 and for the mixture near a flat hard wall in section 4.4.

We summarize our main findings in section 4.5.
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4.2. Bulk phase behaviour

The starting point of our analysis is the thermodynamic potential F (Nc, V, T, µr
p) of

a bulk fluid of Nc colloids in a volume V and with temperature T , in osmotic contact

with a polymer reservoir of chemical potential µr
p (and osmotic pressure Π). Using the

free volume approach of [18] yields

F (Nc, V, T, µr
p) = F0(N, V, T ) − V

∫ nr
p

0
dnr

p
′ α

(
∂Π

∂nr
p
′

)
. (4.1)

In [111], chapter 3, we derived this in detail, showed how to make the extension from

ideal to interacting polymer chains, and gave the necessary expressions explicitly. Here,

we will only briefly repeat some of it. In (4.1) F0 is the free energy of the pure hard

sphere system, i.e. without added polymer, α is the free volume fraction, and nr
p the

polymer number density in the reservoir. The polymer concentration in the system is

given by: np = α nr
p. For F0 we use the Carnahan-Starling equation of state [94] to

describe the fluid, gas and liquid phases and we make use of a reference free energy

obtained from computer simulations [95] to describe the crystalline phase. The osmotic

compressibility (dΠ/dnr
p) depends on the nature of the polymers; for ideal polymers it

equals 1/β with β = 1/kBT and for polymers in the full excluded volume limit we use

expressions from Renormalization Group theory (equation (17.53) from [91]):

β

(
dΠ

dnr
p

)
= 1 + 2.629φr

p


1 + 3.251φr

p + 4.151
(
φr

p

)2

1 + 1.480φr
p




0.309

, (4.2)

with φr
p = nr

pvp and vp = 4
3
πR3

g (Rg is the polymer’s radius of gyration). The free

volume fraction α is given by

α = (1 − φ) exp
[
−
(
Ad + Bd2 + Cd3

)]
, (4.3)

with φ the volume fraction of colloids and d = φ/(1 − φ). The parameters A,B and

C are functions only of the depletion thickness (in this approach a step function with

thickness ∆) divided by the radius of the colloid Rc:

A = 3
∆

Rc

+ 3
(

∆

Rc

)2

+
(

∆

Rc

)3

B =
9

2

(
∆

Rc

)2

+ 3
(

∆

Rc

)3

C = 3
(

∆

Rc

)3

.

(4.4)

For ideal polymers within the PHS approach ∆ simply equals Rg and ∆/Rc becomes q,

the polymer to colloid size ratio. For EVI-polymers we take both curvature (a polymer

can –to some extent– wrap around a colloid) and concentration effects into account. The
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depletion thickness now depends on the size ratio q and on the polymer concentration.

We use results from Hanke et al. [92] to incorporate the curvature dependence:

∆

Rc
=

(
1 + 3a

(
Rg

Rc

)
+ 3b

(
Rg

Rc

)2

− 3c
(

Rg

Rc

)3
) 1

3

− 1, (4.5)

with analytical expressions for a, b and c approximately equal to 1.071, 0.869 and 0.040

respectively. To further incorporate polymer concentration dependence we replace Rg

with the polymer bulk correlation length (equation (19.24) in [91]) which is in line

with the work of Joanny et al. [76]. Having all ingredients for (4.1) we apply common-

tangent constructions (after dividing the free energy by V to switch to free energy

densities) and are thus able to find the coexisting densities (ρL and ρG for liquid and

gas). In chapter 3, figure 3.5(d), we have compared the theoretical predictions to

the experimentally determined binodal for a colloid-polymer mixture with q = 1.08 of

stearyl-coated silica colloids (Rc =13 nm) with poly(dimethylsiloxane) polymer (Rg =14

nm) in cyclohexane [36], i.e. system 1 SPC13 in chapter 2. The predicted binodal for the

mixture with ideal polymers does not agree quantitatively to the experimental binodal.

The binodal for EVI-polymers shifts in the right direction, although it clearly predicts

too high polymer concentrations above a certain colloid volume fraction, the reason for

which is unknown. The overall agreement, however, has improved significantly and such

a more quantitative agreement between the predicted phase behaviour for mixtures with

EVI-polymers compared to experimental systems is a first step in making quantitative

predictions about surface tension and wetting phenomena.

4.3. Interface

To describe the free colloidal liquid-gas interface we start with the functional for the

surface tension γ[ρ]:

γ[ρ] =
∫ ∞

−∞
dz


f(ρ) − µcρ + pc + m

(
dρ

dz

)2

 . (4.6)

Here, z is the distance to the interface, f(ρ) = F/V is the free energy density, for which

we use the semi-grand canonical potential F defined in (4.1) and divide by the volume

V . Together with the second and third term (µc being the chemical potential and pc the

pressure at coexistence) this gives the excess free energy in the interfacial region. The

last term in the integral accounts for density inhomogeneities. This quadratic term with

the squared gradient coefficient m is in fact the first term of an expansion in derivatives

of the density.

The coefficient m is given by the second moment of the direct correlation function

c(r) with r the center to center distance and reads:

mβ =
π

3

∫ ∞

0
dr r4c(r), (4.7)
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Figure 4.2. Ignoring the straight line the area A+B is proportional to the
surface tension following from (4.12). The two minima are the gas liquid coex-
istence points. Adding the straight line, which is given by the l.h.s. of (4.23),
enables one to solve (4.23) graphically. At the wetting transition the areas B
and C must be equal. The arrow indicates the density of liquid phase at the

wall.

Here, we use the mean spherical approximation for the direct correlation function which

only depends on the attractive part of the pair potential u(r) and hence c(r) = 0 for

r < σc (with σc the colloid diameter) and c(r) = −βu(r) for r ≥ σc. For ideal polymers

the pair potential can be written as

u(r) = −kBTnr
pVo(r), (4.8)

with Vo(r) the overlap volume between the two depletion zones. For general q and ideal

polymers modelled as PHS m becomes

mβ

σ5
c

=
π

6
φr

p

[
1 +

7q

4
+

7q2

5
+

7q3

10
+

q4

5
+

q5

40

]
. (4.9)

For EVI-polymers the pair potential can be written as [119]

u(r) = −
∫ nr

p

0
dn′

p

(
∂Π

∂n′
p

)
Vo(r, n

′
p), (4.10)

and m can be calculated numerically.

More sophisticated expressions for c(r) could have been used, for example by rewriting

the direct correlation functions from the density functional in [104] to an effective

colloid-colloid direct correlation function. However, the resulting m can then become

negative at high colloid densities, where the repulsive hard sphere contribution to c(r)

becomes more important than the attractive depletion contribution. This shows that

the expansion in (4.6) in terms of gradients in the density does not converge as also

noted in [103].
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Figure 4.3. Comparison of experimental surface tension with theoretical pre-
dictions. The circles denote surface tensions measured in a colloid-polymer
mixture with size ratio q = 1.08 of which the phase diagram is given in fig-
ure 3.5(d) (system 1 SPC13 in chapter 2). Closed circles represent measure-
ments done by De Hoog and Lekkerkerker using a spinning drop technique [36]
and open circles denote measurements by Aarts et al. obtained by analyzing
the static profile near a vertical hard wall [106] (see chapter 5) on exactly the
same experimental system. The dashed curve is the prediction describing the
polymers as ideal, while describing the polymers as having excluded volume
interactions results in the full curve.

Minimizing the interfacial tension (4.6) with respect to ρ using functional differenti-

ation leads to

2m
d2ρ

dz2
=

df(ρ)

dρ
− µc, (4.11)

which can be used to calculate the equilibrium interfacial tension (without actually

having to know the true shape of the interfacial profile):

γ = 2
∫ ρL

ρG

dρ
√

m (f(ρ) − µcρ + pc). (4.12)

The interfacial tension is thus equal to area A + B in figure 4.2 (ignoring the straight

line of which the meaning will be explained in section 4.4).

In figure 4.3 we present the surface tension obtained from the functional in (4.6) for

ideal polymers with q = 1.0 (dashed curve) and for EVI-polymers with q = 1.08 (full

curve). We chose q = 1.0 for ideal polymers in order to compare our results with existing

theories [82,103] and simulations [105] and we chose q = 1.08 for EVI-polymers to com-

pare with experimental results [36,106]. The change from q = 1.0 to 1.08 leads to better

agreement with experiment, while this change has no serious consequences for the com-

parison with theory. Also shown are experimental interfacial tensions determined by De
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Hoog and Lekkerkerker with a spinning drop apparatus for colloid-polymer mixtures at

q = 1.08 [36] (filled circles). Aarts et al. measured the interfacial tension in exactly the

same system (i.e. system 1 SPC13 in chapter 2) using a different (static) technique [106]

(open circles), which will be presented in chapter 5: the gas-liquid interface was an-

alyzed near a vertical hard wall, where the interface curvature depends only on the

capillary length; by fitting the interfacial profile the interfacial tension was obtained.

The discrepancy between the two experiments shows the difficulty of measuring such

ultra-low interfacial tensions. Clearly, our prediction for the interfacial tension for ideal

polymers (PHS) rises rather fast compared to the experiment, which is not surprising

at all, because there is no good agreement between the predicted and the experimen-

tal phase diagram as was already mentioned in section 4.1 and discussed in section 4.2.

The plot does illustrate, however, clear agreement with predictions by Brader et al. [82],

where fundamental measures theory was used to describe the colloid-polymer mixture.

This agreement justifies the use of squared gradient theory. Furthermore, we would

like to stress the importance of the bulk free energy density on the predicted interfacial

tensions, which is best illustrated by comparing our predictions to those from Brader

and Evans [103]. We describe the density inhomogeneities in the same way as in [103],

but use a different free energy density [18]. As a result, our predictions do not agree

with those of [103], but do agree better with the more sophisticated approach of [82].

For EVI-polymers the predicted interfacial tension slightly underestimates the expe-

rimental data points, although the data taken from [106] are reasonably followed. The

smaller interfacial tensions as well as the shift in the binodal to higher polymer con-

centrations as shown in figure 3.5(d) means that in the description with EVI-polymers

instead of ideal polymers the effect of shrinking depletion zones as a function of polymer

concentration, which leads to smaller overlap volumes and hence smaller attractions,

is more important than the steeply increasing osmotic compressibility as a function

of polymer concentration, which leads to stronger attractions. In fact, recently Louis

and co-workers [120, 121] as well as Vink and Schmidt [122] observed similar trends,

when including polymer-polymer interactions into theory and theory and simulations,

respectively. The interfacial tension decreases with respect to calculations with ideal

polymers.

4.4. Colloid-polymer mixture near a hard wall

The next step is to describe the colloid-polymer mixture near a hard wall. We use

the same expressions as above and add the following terms to the functional in (4.6)

(in which the integration now ranges from 0 to ∞) to incorporate the interactions with



4.4. Colloid-polymer mixture near a hard wall 39

the wall

γ[ρ] =
∫ ∞

0
dz


f(ρ) − µcρ + pc + m

(
dρ

dz

)2

+

∫ ∞

0
dz ρ(z)U2(z)

−1

2

∫ ∞

0
dz
∫

dr ρ(z)ρ(r) U3(z, r) + . . .

(4.13)

Here, U2 is the attractive colloid-wall interaction, U2 ≤ 0, and can be found from (4.10),

in which the overlap volume Vo now depends on the depletion zones of the wall and

the colloid. The next term in (4.13) is a wall-induced correction (hence the minus sign)

to the pair-wise colloid-colloid interaction, which is reduced (compared to its bulk pair

interaction u(r)) in the vicinity of the hard wall. This is illustrated in figure 4.1(b),

where the volume labeled “3” is counted twice (it contributes to u(r) and U2(z)) and

should therefore be subtracted in order to give a proper account of the free volume.

In other words, the system gains free volume only once. This is in fact the first order

correction since three and more particle interactions with the wall are also possible and

become more important for large q. One can easily show that for ideal polymers there

are no volumes 3 when q becomes less than 1
4
. Thus this second term with U3 depends

on overlap volumes of type 3 (see figure 4.1(b)) to be included in (4.10) as Vo. We now

should do this for all positions of the two particles with respect to each other and to

the wall.

Instead of using the explicit form of (4.13) we make the following approximations∫ ∞

0
dz ρ(z)U2(z) ≈ ρ1

∫ ∞

0
dz U2(z) ≡ −ρ1h1, (4.14)

in which we define the contact density as ρ1 ≡ ρ(0) and h1 = −
∫ ∞

0
dz U2(z). In

addition we approximate

−
∫ ∞

0
dz
∫

dr ρ(z)ρ(r) U3(z, r) ≈ −ρ2
1

∫ ∞

0
dz
∫

dr U3(z, r) ≡ ρ2
1g, (4.15)

with g = − ∫∞0 dz
∫

dr U3(z, r). Here we make the same approximation as in (4.14)

and write the correlated density-density product as the density squared. With these

approximations we obtain a Cahn-Fisher-Nakanishi-like functional [9,117] in which the

interaction with the wall is described up to second order in density with clear physical

parameters h1 and g. These are similar to the “surface chemical potential” and the

“surface enhancement parameter” in [117]. Note that the arguments of the integrals

vanish beyond a certain small distance to the wall, since the overlap volumes with

the wall needed to calculate U2 and U3 rapidly decay to zero. Our working functional

therefore reads

γ[ρ] =
∫ ∞

0
dz


f(ρ) − µcρ + pc + m

(
dρ

dz

)2

− ρ1h1 +

1

2
ρ2

1g. (4.16)
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Figure 4.4. The parameters h1 (with symbol) in units of σc/β and g (without
symbol) in units of σ4

c/β for q = 1.0 as a function of polymer concentration
for ideal (dotted) and EVI-polymers (full).

For PHS h1 can be calculated analytically and is given by

h1β

σc

= φr
p

(
1 +

q

2

)
, (4.17)

while for EVI-polymers it depends not only on ∆, but also on the depletion thickness

near a wall, ∆w. This can be found from (4.5) by taking the limit q → 0. In fig-

ure 4.4 we plot h1 as a function of polymer concentration and show that in case of ideal

polymers (dotted line+symbol) this term rises faster than in case of EVI-polymers

(full line+symbol). The next term, g, depends on the triple overlap volume (volume 3

in figure 4.1(b)) and is more difficult to calculate,

g = −
∫

dz
∫

dr U3 =
∫

dz
∫

dr
∫ nr

p

0
dn′

p

(
∂Π

∂n′
p

)
Vo =

∫ nr
p

0
dn′

p

(
∂Π

∂n′
p

)∫
dz
∫

dr Vo.

(4.18)

The resulting geometrical problem is closely related to problems described by Belle-

mans [123] and Fischer [124]. There, however, the problem concerns two hard particles

at a hard wall, while here we have soft particles at a wall which breaks some of the

symmetry and changes the limits of integration. We follow the approach and notation

of Fischer, change to cylindrical coordinates around particle 1 (shown in figure 4.5),

and write the integrals in (4.18)) as∫
dz
∫

dr Vo = 2π
∫

dz1

∫
dz21

∫
dz31

∫
dr2 r2 F3, (4.19)

with F3 the overlap area between two disks at height z31. For EVI-polymers and

general q equation (4.19) can readily be calculated numerically, while for PHS and
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Figure 4.5. Explanation of the notation used in (4.19) following Fischer [124].

the symmetric case of q = 1 the integrals can be rewritten to much simpler integrals

and equation (4.19) becomes
9

280
π2σ7

c (see the Appendix of this chapter), and g reads

gβ

σ4
c

=
9

280
π2σ3

cn
r
p =

27

140
πφr

p. (4.20)

In figure 4.4 we plot g as a function of polymer concentration. Again, in case of ideal

polymers (dotted line) this term rises faster than in case of EVI-polymers (full line).

Moreover, for EVI-polymers g rapidly does not change anymore as a function of polymer

concentration. The consequences of this for wetting will be discussed at the end of this

section.

We now have all the ingredients of (4.16). Minimizing the interfacial tension with

respect to ρ gives rise to the Euler-Lagrange equation

2m
d2ρ

dz2
=

df(ρ)

dρ
− µc (4.21)

with boundary condition

−h1 + gρ1 = 2m
dρ

dz

∣∣∣∣∣
z=0

. (4.22)

The boundary condition appears because of the wall and one has to solve

h1 − gρ1 = 2
√

m (f(ρ1) − µcρ1 + pc), (4.23)

which can be done graphically [9]. At the wetting transition the three interfacial tensions

in play satisfy γGS = γLS+γGL, where γGS and γLS are the gas and liquid-wall interfacial

tensions, respectively, and γGL is the gas-liquid interfacial tension. This means that the

areas B and C from figure 4.2 must be equal, since liquid at the wall (indicated by



42 4. Interfacial tension and wetting behaviour in colloid-polymer mixtures: Theory

(a)

0.0 0.1 0.2 0.3 0.4
0.0

0.5

1.0

1.5

2.0

2.5

0.00 0.01 0.02

1.0

1.5

2.0

�
c

�
p

r

(b)

0.0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

�
c

�
p

r

Figure 4.6. Wetting phase diagrams in polymer reservoir representation with
q = 1 both for (a) ideal and (b) EVI-polymers. The full horizontal lines denote
the location of the wetting transition. Mixtures are partially wetting above
and completely wetting below these lines. The dashed line in (b) depicts the
location of the triple line (crystal-fluid coexistence is not shown for the sake
of clarity). The lines at the left/gas side of the phase diagrams represent
the prewetting line starting from the wetting transition and ending in the
prewetting critical point. The inset in (a) shows a zoom in on this area. The
open circles depict critical points.

the arrow in figure 4.2 with a density higher than the bulk liquid density) costs more

inhomogeneities (area B) which are balanced by a favourable interaction with the wall

(area C).

For mixtures slightly off-coexistence in the gas phase the prewetting line can be

calculated in the same way as the wetting transition [9]. Now, only one true minimum

appears indicating the density of the gas phase and one local minimum indicating the

density of the metastable liquid phase. Again, an equal area construction can be made

to determine the location of the prewetting line, which starts at the wetting transition

and ends in a prewetting critical point [125]. In figure 4.6 we show the theoretical

phase diagram in polymer reservoir representation for q = 1.0 for (a) ideal polymers

and (b) EVI-polymers. For ideal polymers a first order wetting transition is found

at φr
p,w = 1.917 with a prewetting line ending in a prewetting critical point. The

wetting transition takes place rather close to the critical point; for comparison the

triple line is at φr
p,t = 6.081. The triple line is found by the crossing of the gas-liquid

and the fluid-crystal coexistence (calculated as described in section 4.2). In [82] the

wetting transition is found at φr
p,w = 0.85, while in [105] it is found at φr

p,w = 1.05.

Clearly, we find the transition further away from the critical point than in [82, 105],

but it is still much closer to the critical point than to the triple line. Furthermore, we

calculate a prewetting line very close to the binodal whereas in [82, 105] a first order
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wetting transition was found, but not the accompanying prewetting line. In addition,

we find that increasing h1 drives the wetting transition away from the critical point,

while increasing g counteracts this effect. Of course, higher order terms in the contact

density are present for the relatively large size ratio q = 1, where mutual overlapping

depletion zones of three and more particles are likely to occur, and taking these into

account would even give better agreement with the predictions in [82, 105].

In contrast, for EVI-polymers higher order terms contribute little. For example, for

EVI-polymers the g-term does not change anymore with increasing polymer concentra-

tion from the bulk critical point on, see figure 4.4. Moreover, g is very small compared

to the result for ideal polymers (0.050 instead of 0.606 ×φr
p, figure 4.4). This means

that the wetting transition for EVI-polymers is mainly driven by the h1 term. The

direct consequence of this is that the transition occurs far away from the critical point,

at φr
p,w = 4.403 (indicated by the horizontal full line in figure 4.6(b)), which is even

above the triple line, located at φr
p,t = 2.388 (indicated by the horizontal dashed line

in figure 4.6(b)). Note that in our calculations we can ignore the crystal phase and

we are thus able to determine the location of the wetting transition even if it is above

the triple line. Furthermore, the prewetting line is more extended than for ideal poly-

mers and does not follow the binodal so closely. Wijting et al. [108,109] find a wetting

transition in a colloid-polymer mixture similar to system 1 SPC13, but with q = 0.93

and transform the experimental polymer concentration back to a theoretical reservoir

polymer concentration thus locating the wetting transition between 4.3 < φr
p,w < 4.5.

For q = 0.93 we find the transition at φr
p,w = 3.80, which is again above the theoret-

ical triple line. Yet in many experimental systems the crystalline phase seems to be

supressed by colloidal sphere polydispersity.

Finally, we give the results for the experimentally relevant q = 0.6, corresponding

to systems 2 PPD25 and 3 PPD71. Here, a wetting transition is predicted to occur at

φr
p,w = 0.91 for ideal polymers, whereas the transition is located at φr

p,w = 0.60 by the

two component DFT treatment [82]. A different approach, using an analytic formula

for the interfacial free energy of the colloid-polymer mixture in contact with a hard wall

predicts a wetting transition at φr
p,w = 0.87 [126]. Here, details of the layering structure

in the vicinity of the wall are lost, as in our approach. For interacting polymers we find

the wetting transition at φr
p,w = 1.615, again above the triple line. The experimental

relevance of these and the above results will be discussed in extended form in chapter 5.

4.5. Conclusions

We have calculated the interfacial tension of the free interface in phase separated

colloid-polymer mixtures within a squared gradient approach. For ideal polymers we

find reasonable agreement with a much more sophisticated approach [82]. Moreover, by



44 4. Interfacial tension and wetting behaviour in colloid-polymer mixtures: Theory

using a recently developed extension of the free volume theory for ideal polymers to ex-

cluded volume interacting polymers [111], see also chapter 3, the polymer is incorporated

much more realistically into the theory and the predicted bulk phase behaviour agrees

better with experiment. This first step should be taken when one wants to compare

the predicted interfacial tensions with experimental values. Making this comparison for

the interfacial tension we see that the ideal polymer description overestimates, while

the EVI-polymer description underestimates the experimental data. The two different

methods used to measure the interfacial tension in exactly the same system do not agree

completely showing that measuring such ultra-low interfacial tensions is very difficult.

Furthermore, we have put the often used qualitative interpretation of wetting in

colloid-polymer mixtures based on particle wall overlap volumes and hence microscopic

interactions into an insightful, semi-phenomenological, quantitative form within the

Cahn-Fisher-Nakanishi formalism. This way we clearly see which terms drive the tran-

sition to or away from the critical point. For ideal polymers we find that the location of

the wetting transition is somewhat further away from the critical point than predicted

by the theory of [82] and by the computer simulations of [105], but still much closer to

the critical point than to the triple line. We thus see that the two particle-wall term

alone is not enough to drive the transition back towards the critical point and that

higher order terms -although smaller- are important. Again, we can extend this model

to incorporate EVI-polymers. In this case, the two-particle wall term is already very

small, higher order terms are even smaller and hence the wetting transition is driven

away from the critical point by the attractive particle-wall term even to above the triple

line. In experiment, however, a wetting transition is found [108, 109], but in a system

which does not display a crystal phase. We calculated the wetting transition for that

system by ignoring the crystal phase. We then found a wetting transition reasonably

close to the experimentally found one. Furthermore, in [109] it is mentioned that the

pictures of the gas-liquid interface are somewhat fuzzy and we feel that experimentally

the challenge is in accurate measurements of the contact angle as will be discussed in

chapter 5. Theoretically, the challenge is to describe polymers even more realistically

in order to obtain not only a better overall agreement with the experimental bulk phase

behaviour, but also with the measured interfacial tensions.
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Appendix: Equation (4.19) for q = 1

For q = 1 we can calculate equation (4.19) analytically. First we calculate all volumes

of type 3, see figure 4.7(a), as if particles 1 and 2 do not feel each other and next we

subtract all volumes 3 where particles 1 and 2 did penetrate each other. For the first

calculation we do not perform the calculation with z1 as the axis of symmetry, but we

choose the axis of symmetry around a ghost particle, particle 3, at the other side of the

depletion layer, see figure 4.7(b). If particles 1 and 2 lie within the shaded volume, Vs,

in figure 4.7(b), then their depletion zones certainly overlap at the centre of particle

3. Doing this for all positions of particle 3, with z3 the distance of particle 3 to the

depletion wall, gives the first part of the integration:

∫ σc

0
dz3 V 2

s (z3) =
∫ σc

0
dz3

(
π

3
(σc − z3)

2(2σc + z3)
)2

=
11

105
π2σ7

c . (4.24)

This is exactly the same calculation (in a different way) as done by Bellemans in [123].

The second part of the integration can be understood as follows. We let ghost particle 3

scan the volume behind the depletion wall, see figure 4.7(c), but then particle 3 should

always be within a diameter σc of particles 1 and 2, just as particle 1 should be within

σc of 2 and 3, and 2 with respect to 1 and 3. Thus, all particles are identical. One

can easily see that if we put and keep particle 2 behind the wall as in figure 4.7(d) and

let particle 3 scan the overlap volume between particles 1 and 2 behind the wall for

all positions of 1 and 2 -let us call this integration a- that this integration is exactly

the same as letting particle 3 scan before the wall again for all positions of particles 1

and 2, called integration b. Because of symmetry these integrations are exactly equal

to integration c with particles 1 and 2 before and particle 3 behind the wall, depicted

3
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Figure 4.7. Pictures to support the derivation given in this Appendix.
Dashed lines mark depletion zones. The horizontal dashed line marks the
depletion layer of the wall and particle-wall distances are relative to this line.
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in figure 4.7(c), which we want to know. We can easily do integrations a and b together

since the total overlap volume between 1 and 2 is straightforward and a + b becomes:

a + b =
∫ σc

0
dz1

∫ σc−z1

0
dz2 Vo(z1, z2)2π(z1 + z2)z2 =

61

420
π2σ7

c , (4.25)

with Vo(z1, z2) the overlap volume between particles 1 and 2, zx the distance of particle

x to the depletion wall and 2π(z1 + z2)z2dz2 the number of points 2 in a shell around

particle 1. Bellemans calculated a + b + c in [123] in a different way. Now, c = 1
2
(a + b)

and our integration (4.19) becomes(
11

105
− 61

840

)
π2σ7

c =
9

280
π2σ7

c . (4.26)



5
The capillary length and wetting behaviour

in colloid-polymer mixtures: Experiment

Abstract

We study two different gas-liquid phase separating colloid-polymer mixtures
in the vicinity of a vertical hard wall. We use a horizontally placed micro-
scope in either the transmission light or in the laser scanning confocal mode.
The first technique is applied on a non-fluorescent system of silica colloids
and poly(dimethylsiloxane) polymer in cyclohexane and enables us to measure
the capillary length. The second technique is used for a fluorescent system of
poly(methylmethacrylate) colloids and poly(styrene) polymer in decalin and
allows for precise contact angle measurements as well. This colloid-polymer
mixture shows complete wetting for all statepoints measured. The interfacial
profiles are accurately described by the interplay between the Laplace and hy-
drostatic pressure and from this description the capillary lengths are obtained.
For different statepoints approaching the critical point the capillary length
varies from 50 to 5 µm. These results are compared to the theory presented
in chapter 4.

5.1. Introduction

The study of colloid-polymer mixtures in the vicinity of walls is of fundamental as

well as practical importance. Fundamental importance arises from the analogy between

molecular fluid-fluid systems and phase separated colloid-polymer mixtures. In a clas-

sical paper, which also contains references to much earlier work, Vrij pointed out the

importance and relevance of this analogy [19] (for a recent review, see [26]). Moreover,

the depth and range of the interactions are tunable, which makes the mixtures ideal for

47
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testing theories about wetting [127,128]. The origin of the phase separation in colloid-

polymer mixtures lies in the polymer mediated colloid-colloid depletion attraction as

first described by Asakura and Oosawa [24, 25] and Vrij [19]: polymers are excluded

from a region around the colloids for entropical reasons and two colloids within a certain

distance of each other are effectively pushed together by the polymer osmotic pressure.

The coexisting phases in this work are a colloidal liquid (rich in colloid and poor in

polymer) and a colloidal gas (poor in colloid and rich in polymer). The resulting wet-

ting behaviour can be very rich and it recently gained attention from theory [129,130],

experiment [106–109] and simulations [105].

Studying these systems close to walls is of practical importance as well since the food

industry, for example, extensively uses the properties of both colloids and polymers to

induce gelation or creaming [131, 132] and walls clearly play an important role, e.g. in

confining the products, which has implications for the products’ shelf-life. Furthermore,

it is conjectured that in the living cell microcompartmentation is the result of phase

separation and it is evident that wetting properties play a crucial role in the structure

of the cell [133].

Close to a vertical solid surface the interface between two fluids or between a gas

and a liquid is curved. The exact shape of the interfacial profile, i.e. the meniscus, is

determined by the interplay between the Laplace and the hydrostatic pressure. The

characteristic length scale of the meniscus, the capillary length Lc, is given by

Lc =

√
γ

g∆ρ
, (5.1)

with γ the interfacial tension, g earth’s acceleration and ∆ρ the mass density difference

between the bottom and top phase. For molecular fluids the interfacial tension and the

density difference are typically of the order of 10-100 mN/m and 0.1-1 g/ml, respectively,

leading to a capillary length of ∼ 3 mm, which is also the capillary length of water in

contact with clean glass. In colloid-polymer mixtures γ is much smaller, since far away

from the critical point it has a typical magnitude proportional to [3, 12]

γ ∼ kBT

σ2
c

, (5.2)

where kBT is the thermal energy and σc the particle diameter. This order of magnitude

has been confirmed in experiment [35–38, 106, 134], theory [102, 103, 120, 129, 130] and

recently in computer simulations [135,136]. For colloids that are about a hundred times

larger than molecules the capillary length thus becomes approximately a hundred times

smaller, i.e. ∼ 30 µm.

In this chapter the capillary length is measured in two different fluid-fluid phase

separated colloid-polymer mixtures by analyzing the meniscus close to a vertical wall.

This is done by means of transmission light microscopy on a mixture of silica colloids
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and poly(dimethylsiloxane) polymer in cyclohexane, system 1 SPC13, and by means of

laser scanning confocal microscopy on a system of poly(methylmethacrylate) (PMMA)

colloidal spheres and poly(styrene) polymer in decalin, system 2 PPD25 in chapter 2.

This allows us to look at the wetting behaviour as well and see whether or not the system

shows partial or complete wetting, which will be discussed in light of the theoretical

findings in chapter 4. The interfacial tensions determined for system 1 have already

been compared to theory in the previous chapter [130]. In this chapter the measured

capillary lengths in system 2 are compared with theory, that has been presented in

chapter 4. The aim of this work is two-fold: to quantify the measured capillary lengths

and determine the wetting state of the mixture. We will show results for system 1 first

followed by a more elaborate study on system 2.

The chapter is organised as follows. We will start with a description of the expe-

rimental methods in section 5.2. The results will be presented in section 5.3 and the

further analysis and discussion will be given in section 5.4. Concluding remarks are

made in section 5.5.

5.2. Experimental system and technique

In figure 5.1 the experimental phase diagrams are shown for systems 1 SPC13 (a) and

2 PPD25 (b) including the dilution lines along which the capillary lengths have been

determined. Here, φc denotes the colloid volume fraction and φp the polymer volume

fraction with respect to its overlap concentration. In (a) the open symbols denote

the experimental binodal [36], the closed symbols denote the measured statepoints and

the cross indicates a statepoint in the one-phase region. In (b) the full curve denotes

the approximate location of the binodal with stable mixtures to the left (crosses) and

phase-separating mixtures to the right. Capillary lengths have been determined for the

open symbols.

The difference in the location of the experimental binodals is considerable. In (a)

the experimental critical point lies at φcp
c ≈ 0.20, φcp

p ≈ 1.38, in (b) it is estimated to

be at φcp
c ∼ 0.1, φcp

p ∼ 0.36. Especially the difference in the polymer concentration is

remarkable. Such differences are found in general when comparing experimental phase

diagrams for silica spheres + poly(dimethylsiloxane) polymer in cyclohexane (system

1) and PMMA spheres + poly(styrene) polymer in decalin (system 2), see for example

also the phase diagrams in [60] (similar to system 1) and in [50] (similar to system 2, see

also figure 3.5(a)), where such differences are observed for more comparable polymer-to-

colloid size ratios and colloidal polydispersities. A reason for this difference lies perhaps

in the fact that poly(styrene) in decalin is still relatively close to θ-conditions, whereas

poly(dimethylsiloxane) is in the excluded volume limit, as explained in chapter 2.

To study the interfacial properties of the colloid-polymer mixtures we use the mi-

croscopy setup as described in chapter 2. We use the light transmission mode for
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Figure 5.1. Phase diagrams in (φp, φc)-representation for system 1 SPC13
(a) and 2 PPD25 (b) as described in chapter 2. (a) The open symbols denote
the experimental binodal. State points to which references are made in the
text are indicated. Tie-lines are shown as well. (b) Indicated are points where
gas-liquid phase separation occurs (open and filled symbols), and statepoints
in the one-phase region (crosses). Lines A and B are two dilution lines along
which the capillary lengths have been measured. The full curve is an estimate
of the binodal and is drawn to guide the eye.

system 1 SPC13 and the laser scanning confocal mode for system 2 PPD25. Glass

cells (of volume ∼ 1 cm3) were used, both with and without stearyl-coated glass walls,

which did not lead to essential differences, probably since the refractive index difference

between solvent and colloids was very small and van der Waals interactions were thus

minimal. The laser scanning confocal microscope (LSCM) detects the fluorescence of

excited dye in the colloids, while solvent and polymers remain dark. Hence the colloidal

rich phase (liquid) appears bright, whereas the colloidal poor phase (gas) appears dark.

After phase separation had completed, the interface looks very sharp by visual in-

spection even close to a wall, see figure 5.2(a) and (c). Using a microscope enables

resolving the details of the interfacial profile close to the wall and in figure 5.2(b) and

(d) the colloidal liquid phase is seen to favour the wall. The qualitative understanding

of this phenomenon becomes apparent by considering all the depletion zones in play.

The overlap at contact between the depletion zone of a spherical colloidal particle and

a wall is larger than the overlap between the depletion zones of two touching colloidal

spheres (see also figure 4.1). Thus, the colloidal rich phase, the liquid, favours the wall.

In fact, in (d) the liquid phase even wets the wall completely, although it is not yet

clear whether or not the system is in true equilibrium given the thickness of the liquid

layer (∼ 2 µm) and the fact that it does not get considerably thinner higher up in the

sample. Furthermore, LSCM reveals that the connection between the interfacial profile

and the wetting layer appears to have a very small dimple, see the inset in figure 5.2(d).
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Figure 5.2. Photographs of two phase separated colloid-polymer mixtures of
system 1 SPC13 (a), which is slightly tilted to show the interface better, and 2
PPD25 (c) taken under UV-light. (b) and (d) are “blow-ups” of the encircled
regions by means of transmision light microscopy and LSCM, respectively. The
image dimensions are 706x528 µm2 (b) and 350x350 µm2 (d). The inset in (d)
is a zoom in (73x108 µm2) on the region where the interfacial profile joins the
liquid layer at the wall.

The liquid layer at the wall and the dimple will be discussed in section 5.4. Nonethe-

less, even during (the final stages of) phase separation the interfacial profile has a very

similar shape, governed by the balance between the Laplace and the hydrostatic pres-

sure, indicating that mechanical equilibrium rapidly sets in. Wijting et al. [108, 109]

used transmission light microscopy to study the interfacial profile in colloid-polymer

mixtures, but the contour of the profile remained somewhat fuzzy [109]. Their focus

was on the contact angle and no capillary lengths were measured. Clearly, LSCM has

the advantage over light microscopy that a thin slice can be imaged [74], see also the

differences between figure 5.2(b) and (d).

5.3. Results

The shape of the capillary meniscus is described by the interplay between the hy-

drostatic and the Laplace pressure. Close to the wall the disjoining pressure acts on

the wetting film. Within a transition zone both the capillary forces and the surface
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Figure 5.3. Interfacial profiles (symbols) from light microscopy (a, system 1
SPC13) and LSCM (b, system 2 PPD25) from images such as in figure 5.2(b)
and (d) for several different statepoints. In (b) profiles are shown along dilution
line B in figure 5.1(b) corresponding from top to bottom to statepoints 3, 6
and 8. The full curves follow from (5.4). The inset shows the intensity I along
a single column in figure 5.2(d) (symbols) described by a hyperbolic tangent
function (full curve).

force are active [137–139]. Measurements of equilibrium contact angles and interfacial

shapes of bulk liquids should be carried out outside this transition zone. Outside the

transition zone we obtain the following differential equation by equating pressures [39]

∆ρgz = γ/R(z) (5.3)

for the profile at a flat wall with R(z) the radius of curvature at height z above the

interface. The analytic solution for this problem is given in terms of y(z) with y the

distance to the wall and is [39]

y

Lc
=


arccosh

(
2Lc

z

)
− arccosh

(
2Lc

h

)
+

(
4 − h2

L2
c

) 1
2

−
(

4 − z2

L2
c

) 1
2


 , (5.4)

with the capillary rise h ≡ z(0). The shape of the profile only depends on Lc, which

thus can be found by fitting only a part of the profile. By extrapolating the profile to

the wall one also obtains h and by the relation

h2 = 2L2
c(1 − sin θ), (5.5)

the contact angle θ can be measured. From figure 5.2(b) and (d) the interface can be

accurately located. The open circles in figure 5.3 denote the interface from experiment.

In the LSCM experiment the interface can for example be located by fitting the intensity

along a column in the z-direction to a hyperbolic tangent function, which is shown as

an inset in figure 5.3(b), and the position of the wall can be determined using a similar

method. Then we can either fit equation (5.4) directly to this profile with Lc and h

as fitting parameters or define h and fit equation (5.4) with Lc and the position of the
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Table 5.1. Overall volume fractions of colloid (φc) and polymer (φp), gas-
liquid density differences ∆ρ in g/ml, experimental capillary lengths in microns
and interfacial tensions in µN/m. All samples lie on the same dilution line, see
figure 5.1(a). Results for system 1 SPC13.

sample φc φp ∆ρ Lc γ

I 0.25 1.94 0.32 32.9 3.38

II 0.22 1.66 0.26 26.5 1.76

III 0.21 1.59 0.23 16.0 0.58

IV 0.20 1.50 0.20 - -

wall (a constant in the right hand side of (5.4)) as fitting parameters. We here followed

the second option and by comparing the fitted position with the actual position of the

wall it is possible to obtain the actual h and hence the contact angle.

For system 1 SPC13 the experimental interfacial profiles obtained from light mi-

croscopy images are quite well described by (5.4) as can be seen in figure 5.3(a). Ap-

proaching the critical point we observe that the capillary length decreases. It becomes

too difficult to resolve the profile of statepoint IV by light microscopy. From the expe-

rimental binodal and tie-lines (as constructed by de Hoog and Lekkerkerker [36]) the

density differences can be obtained, and via (5.1) the interfacial tensions as well, see

table 5.1. The contact angle depends very sensitively on the exact position of the wall

and can change drastically close to the wall (for example, 30◦ in only 2 µm for sample

II). Since we cannot locate the wall accurately enough with the light microscopy setup

the contact angle remains intangible and we cannot say whether the interface is par-

tially or completely wetting the wall and if there is a wetting transition upon approach

of the critical point.

For system 2 PPD25 the experimental interfacial profiles obtained from LSCM are

very well described by (5.4) as can be seen in figure 5.3(b). The measured capillary

lengths for the dilution lines shown in figure 5.1 are given as a function of the overall

colloid and polymer volume fraction in table 5.2. Following the dilution line from high

to low φc, tie-lines are crossed and the critical point is approached, although the dilution

lines do not intersect this point. As a result the capillary length strongly decreases,

but not all the way down to zero. With the LSCM-technique we succeed in measuring

capillary lengths down to just a few micrometers. As mentioned above, the apparent

contact angle changes drastically close to the wall. This illustrates the necessity of using

a fit-function in order to obtain the contact angle. Furthermore, the position of the

wall must be precisely located. The LSCM technique enables us to measure the contact

angle accurately. We find that all our samples measured show complete wetting.
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Table 5.2. Overall volume fractions of colloid (φc) and polymer (φp) and
experimental capillary lengths in microns for dilution lines A and B, see fig-
ure 5.1(b), obtained for system 2 PPD25.

A B

sample φc φp Lc φc φp Lc

1 0.083 0.83 49.3 0.099 0.62 40.6

2 0.077 0.78 48.6 0.096 0.60 37.0

3 0.071 0.72 39.6 0.092 0.58 33.2

4 0.066 0.67 33.8 0.089 0.56 32.0

5 0.060 0.60 25.2 0.086 0.54 26.6

6 0.056 0.57 21.7 0.083 0.52 25.4

7 0.078 0.48 15.1

8 0.075 0.47 12.2

9 0.074 0.47 9.7

10 0.074 0.46 6.1

5.4. Analysis and discussion

5.4.1. Capillary lengths

The first set of experimental data has been obtained for system 1 SPC13. The gas-

liquid density differences are known for each state-point and the interfacial tension

can thus be extracted from the capillary length measurements using (5.1). We have

compared the interfacial tensions to theory in chapter 4 (see figure 4.3). There, theory

models the polymers as excluded volume interacting (EVI) polymers instead of ideal

polymers since this improves the bulk phase behaviour considerably (see figure 3.5(d)).

The experimental interfacial tensions are reasonably well described by theory.

The second sets of measured capillary lengths have been obtained for system 2

PPD25. Unfortunately, the method of Bodnar and Oosterbaan [60] to determine the

binodal and tie-lines did not give physically acceptable results. Hence, we choose to

make the comparison to theory on the level of the capillary lengths and directly along

the dilution lines as a function of the overall concentration of colloids. The theory

presented in chapter 4, sections 4.2 and 4.3, can be directly used for this purpose.

In chapter 3 it was observed that the EVI-polymer model predicted a binodal at

too high polymer concentrations lying in general above the measured state-points for

system 2. For ideal polymers the calculated binodal was in closer agreement with

the experimental binodal, see figure 3.5(b). Since we want to make the comparison

directly at the level of dilution lines we can only use the ideal polymer description.

In figure 5.4 the theoretical interfacial tension γ, the gas-liquid density difference ∆ρ

and the capillary length Lc using (5.1) are plotted as a function of volume fraction of
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Figure 5.4. Interfacial tension, density difference (in units of 0.1 g/ml) and
the resulting capillary length as a function of the volume fraction of polymer
in the reservoir φr

p with colloid diameter σc = 50 nm as in the experimental
system (PPD25). More experimental details can be found in chapter 2.

polymer in the reservoir. Note that the prediction of the interfacial tension is in good

agreement with density functional theory calculations by Brader et al. [129], where the

colloid-polymer mixture was described as a two-component system within fundamental

measure theory. Furthermore, for homogeneous phases this density functional [104]

reduces to the free volume theory [18], such that the bulk phase behaviour and the

density difference found in the present work, will be found from the density functional

theory as well. Approaching the critical point we find that both γ and ∆ρ decrease

according to their mean-field exponents (i.e. 1.5 and 0.5, respectively), in agreement

with calculations by Brader and Evans [103], leading to a decrease of the capillary

length as well (with an exponent 0.5). It is straightforward to convert the capillary

lengths of figure 5.4 as a function of φr
p into a function of overall φc along a dilution

line. Each capillary length corresponds to a certain tie-line and by determining the

intersection between that particular tie-line in the system variable concentrations (see

chapter 3) and the dilution line, we obtain Lc as a function of φc for that dilution line.

We show the results for dilution lines A and B in figure 5.5. The symbols stem

from the experiment (table 5.2) and the full curves follow from the theory presented in

chapter 4 for the present experimental system and dilution lines. Clearly, the theoretical

prediction is in qualitative agreement with experiment; the theoretical capillary length

has the right order of magnitude and follows a similar shape as a function of φc. Given

the reasonable, but not perfect agreement between the theoretical and experimental

binodal (figure 3.5(b)) the differences are not surprising. In particular, the experimental

data points in figure 5.5(b) strongly decrease, since the dilution line intersects the

experimental binodal relatively close to the experimental critical point (estimated at
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Figure 5.5. Capillary lengths (table 5.2) for dilution lines A (a) and B (b)
(figure 5.1(b)) as a function of the overall concentration of colloids φc. The
symbols follow from measurements as in figure 5.3(b) and the full curves di-
rectly stem from theory without an adjustable parameter. The stars at the
horizontal axes denote the first observations of stable colloid-polymer mix-
tures along dilution lines A and B, which are good indications of the location
of the experimental binodal points that will lie just above the stars. The theo-
retical curves stop at the vertical axis at an overall φc, where the experimental
dilution line intersects the theoretical binodal. Results for system 2 PPD25.

φcp
c ∼ 0.1, φcp

p ∼ 0.36). The theoretical curve is calculated with respect to the theoretical

critical point (located at φcp
c = 0.20, φcp

p = 0.16), which is more to the right in the phase

diagram.

Next, we analyze where the discrepancy between theory and experiment stems from.

Therefore, the gas and liquid densities have been measured for one state-point (φc =

0.076 and φp = 0.50, open circle in figure 5.1(b)). The results are summarized in ta-

ble 5.3. The theoretical and experimental capillary length lie quite close together.

However, both the theoretical density difference and interfacial tension overshoot the

experimental measurements and these effects cancel to some extent. In particular, the

discrepancy of the liquid densities is large, which is a direct consequence of the mismatch

Table 5.3. Comparison between experiment and theory. The capillary
lengths are in µm, the densities in g/ml and the interfacial tensions in µN/m.
Note that the experimental interfacial tension (obtained from the capillary
length) is in good agreement with an analysis of the thermal capillary wave-
spectrum, following the method of [134], for which γ ∼ 0.2 µN/m is obtained.
Results for system 2 PPD25.

Lc ρL ρG ∆ρ γ

Experiment 18 0.942 0.889 0.053 0.16

Theory 23 0.992 0.891 0.101 0.50
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between the theoretical and experimental binodal as shown by the difference in critical

points. Of course, the experimental volume fractions have been found by directly con-

verting the colloid mass fractions, as explained in chapter 2. Since this system does not

display a crystal phase –possibly related to the colloid’s size polydispersity– the volume

fractions have not been scaled on for example the freezing volume fraction [71]. This

could in principle expand the experimental binodal more to the right, but here we have

kept the comparison as direct as possible. It is also possible to calculate the theoretical

interfacial tension for a given density difference. In that case we find γ = 0.053 µN/m,

such that the capillary length would be 10 µm for the statepoint indicated in the table.

The differences between experiment and theory indicate that the applied theory does

not completely capture all the details of the experimental system. This leads to differ-

ences in the binodals as well as in the interfacial tensions. It is unclear what details of

the colloid-polymer mixture have to be included in theory to obtain a more quantitative

agreement with experiment. We will speculate upon this in the next section.

5.4.2. Wetting behaviour

As discussed above we cannot determine the contact angle in system 1 SPC13, but

this is possible in system 2 PPD25. All our samples measured show complete wetting.

This is in contrast with predictions of Brader et al. [129] (see also the extension by

Wessels et al. [140]), who calculated a wetting transition reasonably close to the critical

point both for polymer-colloid size ratio q = 1.0 and q = 0.6, which is close to the

experimental q of 0.56. This was later confirmed by Dijkstra and van Roij [105] in

extensive computer simulations, who found a 20 % different location of the wetting

transition for q = 1.0. In the Cahn-theory presented in chapter 4 we found similar

results, although the transitions were predicted to occur at slightly higher polymer

volume fractions, but still in the measured range of polymer concentrations. However,

in these calculations and simulations the polymer was described as an ideal polymer, i.e.

a mutually penetrable hard sphere. Such a simplified polymer model gives a qualitative

description of the bulk phase behaviour (chapter 3) and of the capillary length, as shown

above, and provides reasonable predictions. Therefore, we feel that the prediction of

a wetting transition within the ideal polymer model can also be a qualitative guide

in the experiment. Quantitatively, however, the wetting transition may well be found

elsewhere.

For example, if polymer-polymer interactions are taken into account, then this has

clear effects on the bulk phase behaviour. Several theories are available in literature that

provide a more realistic description of the polymer when calculating the phase behaviour

(see the reviews of [26,32–34] and references therein, see also the results in chapter 3).

These show in one way or another a shift upwards of the binodal with respect to an ideal

polymer calculation. More recently, several theories predict that the interfacial tension
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decreases when taking polymer interactions into account [120–122, 130] (chapter 4).

Finally, the wetting transition within a Cahn-model [9] for mixtures of colloids and

excluded volume interacting polymers is predicted to occur far away from the critical

point, even to above the triple point (see chapter 4). In sum, the experimental data of

this chapter nor the theory presented in chapter 4 discuss the existence of the wetting

transition, but merely question its exact location in relation with the theoretical models

and the experimental complexity. In [108, 109] a wetting transition was reported in a

colloid-polymer mixture very similar to system 1 SPC13, although the subtleties of the

interfacial profile in reference to the contact angle -as explained above- were perhaps

not fully realised, since contact angles were determined by hand.

Finally, we would like to discuss some experimental phenomena, which are not yet

understood. The liquid layer at the wall is surprisingly thick and does not get consid-

erably thinner higher up in the sample as mentioned in section 5.2. This may indicate

that the system did not yet reach complete equilibrium. Related to this is the obser-

vation that after the liquid drops have stopped dripping down from the dispersion-air

meniscus as described in chapter 8, liquid material remains hanging at the lowest part

of the meniscus at least for over a month. It is difficult to estimate the time needed

to reach complete equilibrium, especially given the intrinsic slowness of colloidal sus-

pensions (chapter 1). For example, in [141] it was shown that under the influence of

gravity a system of colloidal platelets found its equilibrium phase coexistence only after

a year. Furthermore, the connection between the interfacial profile and the wetting

layer shows a very small dimple, see the inset in figure 5.2(d). Several ideas have been

proposed in order to explain the liquid layer at the wall, or the dimple, or both phe-

nomena: an effect of the disjoining pressure [142], or the line tension [138, 143, 144], a

Marangoni effect [145], a size fractionation effect [146], a (very slow) drainage of the

film or an effect of the thermal roughness of the interface. Several of these points are

still open, although the disjoining pressure should be quite considerable to work over

such thick wetting layers. Furthermore, the Marangoni effect and the drainage could

not be confirmed by bleaching experiments of the liquid layer as well as of the bulk

gas and liquid phases, although the diffusion might of course be faster than the flow

in the layer. Attempts are being made to control the temperature more accurately.

Furthermore, we are currently investigating the role of fluctuations on the wetting layer

thickness.

5.5. Conclusion

We studied two different gas-liquid phase separating colloid-polymer mixtures in the

vicinity of a vertical hard wall. The difference between the location of the mixtures’

binodals is somewhat remarkable and possibly a direct consequence of the polymer

properties. Precise measurements of the capillary length are obtained by analyzing
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the interfacial profiles. The profiles are accurately described by the interplay between

the Laplace and the hydrostatic pressure. The interfacial tensions that followed for

system 1 SPC13 were compared in chapter 4 with theory, where a reasonable agreement

was found. No contact angles are measured in this system, since the wall cannot be

located accurately enough with light microscopy. In the more elaborate study for system

2 PPD25 with LSCM the capillary lengths vary between 50 and 5 µm for different

statepoints approaching the binodal. We see that theory, in which the comparison

is direct and descriptions are kept as simple as possible, already gives a qualitative

description of the experimental data without the use of an adjustable parameter. A

more detailed comparison for a single statepoint shows that theory overestimates both

the density difference and the interfacial tension. These effects compensate each other

to some extent when calculating the capillary length.

In system 2 PPD25 the position of the wall can be accurately located, which allows for

precise measurements of the contact angle. We find complete wetting for all statepoints

measured, in contrast with theoretical predictions in which the polymer is modelled as a

mutually penetrable hard sphere. It is unclear what details of the colloid-polymer mix-

ture have to be included in theory in order to obtain an overall quantitative agreement,

not only with the bulk phase behaviour, but also with the interfacial tension and the

precise location of the wetting transition. One may think of taking polymer-polymer

interactions into account, but also sphere and polymer polydispersity might play a role.

Finally, in our experiment not all phenomena are fully understood. Possibly the most

interesting route is to explore the effects of the thermal roughness on the wetting prop-

erties, since this has a rather different character than in molecular systems as will be

discussed in chapter 6.



60 5. The capillary length and wetting behaviour in colloid-polymer mixtures: Experiment



6
Direct visual observation of thermal

capillary waves

Abstract

We studied the free fluid-fluid interface in a phase separated colloid-polymer
dispersion with laser scanning confocal microscopy and directly observed ther-
mally induced capillary waves at the interface in real space. Experimental
results for static and dynamic correlation functions validate the capillary wave
model down to almost the particle level. We are able to obtain the ultra-low
interfacial tension, the capillary length and the capillary time, which are found
to be in agreement with independent measurements.

6.1. Introduction

At rest, the free interface between any two fluids, like that between a liquid and its

vapour, appears to be smooth. Yet thermal motion inevitably gives rise to statistical

fluctuations of the local interface position and hence leads to a rough interface. This

phenomenon was first predicted almost a century ago by von Smoluchowski [6] and

it was Mandelstam who quantitatively described the interface roughness in terms of

thermally excited capillary waves [7]. These capillary waves have been studied with

light [147] and x-ray scattering [148–152]. They play a significant role in modern theories

of interfaces [8, 153, 154] and have been argued to be essential in the rupture of thin

liquid films [155,156] as occurs in droplet coalescence. We show how to tune length- and

timescales, by using colloidal suspensions, in such a way that the fluctuating fluid-fluid

interfaces can be seen directly in real space with a resolution close to the particle size.

61
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This chapter is organised as follows; We will start with a brief derivation of capillary

wave theory in section 6.2 deriving the relevant expressions that we will use to analyse

our data, followed by a description of the experimental system, i.e. system 3 PPD71,

and the experimental methods in section 6.3. Results are presented in section 6.4 and

conclusions will be drawn in section 6.5.

6.2. Theoretical background

We here follow the statistical analysis of interface corrugations, first developed by

Mandelstam [7], as reviewed by Vrij [147]. The work ∆F to create a corrugation at

constant temperature can be written as

∆F = ∆Fg + ∆Fc, (6.1)

where we only consider gravity (∆Fg) and capillary (∆Fc) forces, resulting from the dis-

placement of matter against gravity and the creation of extra interface area, respectively.

Other contributions, for example arising from bending of the interface, are ignored, the

validity of which will be discussed in section 6.5. Clearly, this is a mesoscopic approach,

which is justified if one looks at distortions much larger than the particle size as is done

in light scattering studies on molecular interfaces. The local interface position with

respect to the mean interface position has coordinates r = (x, y, h(x, y)), see figure 6.1.

This Monge parametrization neglects overhang of the interface as well as bubbles of one

phase in the other. To create a corrugation of an area dxdy over a distance h gravity

contributes

δFg =
∫ h

0
h′ g∆ρ dxdy dh′ =

1

2
g∆ρ h2 dxdy (6.2)

with g earth’s acceleration, and ∆ρ the mass density difference. The interfacial tension

γ contributes

δFc = γ∆A = γdxdy
(√

1 + h2
x + h2

y − 1
)
≈ 1

2
γ dxdy (h2

x + h2
y), (6.3)
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Figure 6.1. (a) Schematic depiction of a curved interface. A point at the
interface r is written in terms of (x, y, h(x, y)), i.e. the Monge parametrization.
(b) A 2D slice out of (a). The projected angle θ′ is related to the interface
derivative hx via hx = tan θ.
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with hi ≡ ∂h/∂i and i = x, y. Integrating over the total interface area L × L gives

∆Fg =
1

2
g∆ρ

∫ ∫
dxdy h2, (6.4)

and

∆Fc =
1

2
γ
∫ ∫

dxdy (h2
x + h2

y). (6.5)

The height h can be expanded in a Fourier series in a square with length L as

h =
∑
k

hk ei(kxx+kyy) (6.6)

with hk the Fourier coefficients and k = (kx, ky). The summation runs over all Fourier

modes kx and ky. Using Parseval’s identity it can readily be shown that

∆F =
1

2
L2
∑
k

|hk|2
(
g∆ρ + γk2

)
, (6.7)

with k2 = k2
x + k2

y and k = |k|. Mandelstam made use of the equipartition theorem

which states that the work necessary to create each mode is equal to kBT/2, with kB

Boltzmann’s constant and T the absolute temperature. Thus, in the capillary wave

spectrum each Fourier component hk of the interface displacement contributes

〈|hk|2〉 =
kBT

γL2

1

k2 + L−2
‖

, (6.8)

where the brackets on the left hand side denote a thermal average and L‖ is the lateral

correlation length (i.e. the capillary length Lc (chapter 1), which we give a different

symbol in this chapter since it has the character of a correlation length). It is given

through

L‖ =
√

γ/(g∆ρ). (6.9)

From (6.8) and again applying Parseval’s theorem the mean square interfacial roughness

is found to be

〈h2〉 =
kBT

4πγ
ln


k2

max + L−2
‖

k2
min + L−2

‖


 , (6.10)

with kmin = 2π/L and kmax = 2π/lm. L denotes the physical system size and lm is a

microscopic length [8]. Thus, the interfacial roughness LT = L⊥ =
√
〈h2〉 is proportional

to
√

kBT/γ.

Since the interface is constantly subject to random forces the distribution P (h) of

the interface heights is described by a Gaussian with (6.10) its variance σ2. This means

the distribution is given by

P (h) =
1√

2πσ2
e−h2/2σ2

. (6.11)
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Figure 6.2. Static (a) and dynamic (b) height correlation functions gh as a
function of x/L‖ and t/τ in units of kBT/2πγ. The symbols denote calculations
in which kmax is set to 2π/σc leading to k̄max = 44, the full curves are for
k̄max = ∞.

The next step is to look at derivatives of h for example in the x-direction [157], i.e. hx,

in which we are particularly interested since we only have information on h(x, 0) as will

be shown below. Given the cylindrical symmetry of the interface this does not pose a

problem and it is possible to obtain all information. Again, the distribution of hx is

Gaussian. The derivative stands in direct connection to the (projected) angle θ′ normal

to the interface (see figure 6.1(b))

hx = tan θ. (6.12)

It can be shown that the distribution in one dimension of the absolute value of θ′ is

given by [157]

P [θ′] =
2√

2πσ′2
e−

1
2

tan2 θ′
σ′2

cos2 θ′
(6.13)

with σ′2 ≡ 〈tan2 θ〉 the variance. The special form of this equation is a result of the

Jacobian of the transformation of hx to θ using ∂hx(θ)/∂θ = 1/ cos2 θ. With the above

equations we will verify if the interface can be described as a Gaussian interface.

The above equations relate to single points h at the interface. More information on

the physical properties of the interface can (easier) be obtained by looking at correlation

functions. The time dependent height-height correlation function is constructed as

gh(x, t) = 〈[h(x′, t′)][h(x′ + x, t′ + t)]〉. (6.14)

Here, h(x) ≡ h(x, y = 0), t is the time and the angular brackets denote averages over

primed quantities. The corresponding static correlation function, gh(x) ≡ gh(x, t = 0),
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is obtained by Fourier transforming (6.8). We can write

gh(x) =
∑
k

kBT

γL2

1

k2 + L−2
‖

eik·s =
kBT

γL2

L2

(2π)2

∫
dk

1

k2 + L−2
‖

eik·s, (6.15)

where we have switched from a summation to an integration and s = (x, y). Next, we

change to cylindrical coordinates and perform the integration over φ

gh =
kBT

γ

1

(2π)2

∫
dk

k

k2 + L−2
‖

∫ 2π

0
dφ eikx cos φ =

kBT

γ

2π

(2π)2

∫
dk

k

k2 + L−2
‖

J0(kx).

(6.16)

The symbol J0 denotes the Bessel function of the first kind. The integration over k is

performed from kmin to kmax, see just below (6.10). We can directly set kmin to zero,

since 2π/L ∼ 0. Setting kmax to ∞ allows performing the integration and (6.16) then

becomes

gh(x) =
kBT

2πγ
K0

(
x

L‖

)
, (6.17)

where K0 is the modified Bessel function of the second kind as a function of x/L‖. We

can test the effect of setting kmax to infinity. We change to k̄ = kL‖ in (6.16) and use

kmax = 2π/σc as a reasonable cutoff with σc the colloid diameter. As will be shown

below L‖ is at least a couple of microns and here we will fix it at a minimal value of

1 µm, whereas σc = 142 nm, such that k̄max is at least ∼ 44. In figure 6.2(a) we plot

equation (6.16) with k̄max = 44 and equation (6.17). Only at a distance x/L‖ < 0.05

clear differences can be observed between the two functions. Furthermore, the curve

obtained with finite cut-off shows some fine structure. We thus conclude that (6.17)

holds for distances x larger than a small-distance cutoff of the order of the particle size.

The dynamic correlation function at a fixed position is defined as gh(t) ≡ gh(x = 0, t).

Capillary wave theory in the overdamped regime [43,44] predicts modes with wavevector

k to decay according to exp(−t(γk+g∆ρ/k)/2η), with the viscosity η as defined below.

We are in the overdamped regime at lengths L smaller than [44]

L < 8π
(ρL + ρG)

γ

(
ηL

ρL

)2

∝ Lη. (6.18)

Here, ρx is the mass density and ηx the viscosity of the liquid (x = L) or gas (x = G)

phase. The viscous length Lη is of the order of meters for colloid-polymer mixtures as

shown in chapter 1. Including this in the capillary wave spectrum of (6.8) we can again

perform the Fourier transformation to real space. Since we work at a fixed position

exp(ik · s) = 1 , we can directly write

gh(t) =
kBT

2πγ

∫ k̄max

0
dk̄

k̄

1 + k̄2
exp(−(k̄ + k̄−1)t/2τ), (6.19)
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where τ is given by [43, 44]

τ = L‖
η

γ
= L‖

ηL + ηG

γ
. (6.20)

Note that in the original paper [134] we erroneously omitted the factor 2 in the exponent

of (6.19). Again, we can test whether or not kmax can be set to ∞ in the integral in

(6.19). In figure 6.2(b) we make a similar plot as in (a). Clearly, only at very small

times a small deviation can be expected. We now have derived the set of equations that

will be used in this chapter. Of course, many extensions are possible, in particular by

looking at angle correlation functions [157].

In molecular fluids γ is of the order of 10 − 100 mN/m and ∆ρ is about 102 −
103 kg/m3. Therefore, the interface roughness L⊥ ∼ 0.3 nm, whereas the correlation

length L‖ ∼ 3 mm resulting in extreme ratios of roughness-to-correlation length of

10−7, only accessible through scattering techniques and a real challenge for theories

describing the interface. Furthermore, it is clear that in general in molecular fluids

L ≥ L‖ � L⊥ � lm. Here we exploit the scaling up of lengths when going from

molecules to mesoscopic colloidal particles of size 140 nm in order to directly observe

capillary waves in real space.

Adding polymer to a colloidal suspension may induce a fluid-fluid demixing transition

that is widely accepted to be the mesoscopic analogue of the liquid-gas phase transition

in atomic substances [26]. The coexisting phases are a colloidal liquid (rich in colloid

and poor in polymer) and a colloidal gas (poor in colloid and rich in polymer). The

origin of the phase separation lies in the entropy-driven attraction between the colloids,

which is mediated by the polymers [19,24]. It is known from experiment [36,37,106] and

theory [102,103,129], that in such systems the interfacial tension scales as γ ∼ kBT/σ2
c ,

with σc the particle size, leading to ultra-low values for γ (∼ 1 µN/m and below).

This, in turn, implies that using colloidal suspensions scales up the interface roughness

and simultaneously scales down the correlation length. Interestingly, it also implies

that L � L‖ ≥ L⊥ � lm in contrast to molecular fluids. With the current system

(as detailed below) we succeed to bring both the roughness and the correlation length

in the µm-regime. In addition, the interplay between ultra-low interfacial tension and

relatively large viscosity, η, sets the capillary velocity γ/η (see for example [41]) in

the range of µm/s, as opposed to typical velocities of the order of 10 m/s in molecular

fluids. The associated characteristic time for the decay of interfacial fluctuations, which

we refer to as the capillary time, is given by (6.20). In the case of colloids it becomes

of the order of seconds. Thus, through the appropriate choice of the colloid diameter

we can trace the statics and dynamics of the capillary waves at a free interface with

optical microscopy.
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6.3. Experimental methods

We used fluorescently labeled poly(methylmethacrylate) (PMMA) colloidal spheres

[67] with radius Rc = 71 nm (obtained from static light scattering) and size poly-

dispersity � 10%. The polymer was commercially available polystyrene (Fluka) with

molecular weight Mw = 2 · 106 g mol−1 (Mw/Mn < 1.2, where Mn is number-average

molecular weight) and radius of gyration Rg ∼ 43 nm (estimated from data in the

literature [57, 68]). The underlying phase diagram is shown in figure 6.3. Details are

given in chapter 2 for system 3 PPD71, section 2.3. Each measurement was done after

one day of equilibration. The microscope was aligned by making use of the interface,

which serves as a spirit level. We checked that the system was well equilibrated by fol-

lowing the recovery of intensity after bleaching a space region in the gas and/or liquid

phase. The recovery appeared to be governed solely through diffusion of particles with-

out any indications of drift (e.g. through convection). Different data sets were acquired

at many different state points following several dilution lines. The data sets consisted

of approximately 5.1 105 interface data points when images were scanned as fast as

possible (about 5 frames per second), and about 1.5 105 when a delay time between

consecutive images was used (of about 10 s) to get rid of some of the time correlation.

Pictures, such as those in figure 6.4, represent an intensity distribution of fluorescent

light, I(x, z, t), at a certain time t with x the horizontal (along the interface) and z the

vertical (opposite to gravity) components of the space vector. The microscope records
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Figure 6.3. Experimental phase diagram of a mixture of PMMA colloids
and PS polymer in decalin with q = 0.6, System 3 PPD71. Indicated are state
points where gas-liquid phase separation occurs (open and solid circles) and
state points in the one-phase region (crosses). The line is an estimate of the
binodal and is drawn to guide the eye. State points to which references are
made in the text are indicated (solid circles and Roman numbers).
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Figure 6.4. Capillary waves at the free liquid-gas interface in a phase-
separated colloid-polymer mixture imaged with laser scanning confocal mi-
croscopy at four different statepoints approaching the critical point (from top
to bottom: statepoints I, VI, VIII and IX, see figure 6.3). The focal (viewing)
plane is perpendicular to the interface and only a very thin slice (of thickness
∼ 0.6 µm) is imaged (see the inset). Gravity points downwards and the size of
each image is 17.5 × 85 µm2. Thermally excited capillary waves corrugate the
interface and their amplitude increases upon approaching the critical point.
The bright dots at the right indicate the surface location h(x) obtained with

our method.

the fluorescence of excited dye within the colloids, hence the colloid-rich (liquid) phase

appears bright and the colloid-poor (gas) phase appears dark. I(x, z, t) is a direct

measure of the local and instantaneous distribution of colloidal particles and provides

the starting point for a statistical analysis. Due to the finite resolution [74] we can

access length scales ∼ 2Rc, and we neglect effects induced by the finite time needed

to scan each frame, and take I as an instantaneous snapshot (justified by comparing

the colloid self-diffusion time with the scanning time). Thus, the real space pictures in

figure 6.4 show the structure of a gas-liquid interface practically at the particle scale.

We rely on the concept of a local interface between both phases. In the spirit of a Gibbs

dividing surface we define an interface position hb(x, t) (now with respect to the bottom

of the image, instead of the mean interface position as in section 6.2) such that in one

column of vertical length Lz the total intensity can be written as

∫ Lz

0
dzI(x, z, t) = IL(x)hb(x, t) + IG(x)(Lz − hb(x, t)). (6.21)
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Here, the values IG(x) and IL(x) are the average bulk intensities in the gas and liquid

phase, respectively, and are taken to be functions of x to account for the microscope

objective properties. In practice, integrals in the notation are sums over pixels and

we have checked that the results of the subsequent analysis in correlation functions do

not depend sensitively on the precise definitions of IG and IL. The resulting “height”

function hb(x) (shown as the bright spots in figure 6.4) describes the interface position

quite accurately. From top to bottom in figure 6.4 we approach the critical point and

both the capillary waves and density fluctuations increase, while the density (intensity)

difference between the two phases decreases.

For each frame the average interface position is h̄b(t) ≡ 〈hb(x
′, t)〉. We now define

a new height function that describes the deviations from the mean interface position

h(x, t) = hb(x, t) − h̄b(t).

6.4. Results and discussion

The distribution of heights is shown in figure 6.5(a) for three different statepoints.

The width of the distribution for statepoint I is about twice the particle diameter,

the order of which is in good agreement with scaling arguments (1.2) as well as with

(6.10). As one approaches the critical point the distributions get broader up to 7

times the particle diameter for statepoint VIII, but the shape remains that of a normal

distribution. The next step is to look at derivatives of h(x, t) [157]. In figure 6.5(b)

histograms are plotted of the absolute value of θ′ for three different statepoints (as in

figure 6.5(a)). One can either fit the data to equation (6.13) with the variance as fitting

parameter or obtain the variance directly from 〈tan2 θ〉. Here, we have plotted both

methods. The agreement is yet another confirmation that the interface can be described
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Figure 6.5. (a) Height and (b) angle distributions for three different state
points: I (open circles), V (plusses) and VIII (triangles). In (a) full curves
are Gaussian fits. In (b) we either fitted the variance in (6.13) (full curves) or
obtained the variance directly from experiment (dashed curves).
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Figure 6.6. Correlation functions characterising the free (colloid) liquid-gas
interface as obtained from quantitative analysis of LSCM pictures. (a) Static
height-height correlation function gh(x) as a function of the (lateral) distance
x for statepoints I, V, VI and VIII (figure 6.3) approaching the critical point.
Experimental results (symbols) are compared with predictions from the capil-
lary wave model (lines). (b) Dynamical height-height correlation function at
fixed position, gh(t), as a function of time t for the same statepoints.

within a Gaussian interface model. As the critical point is approached the peak in the

angle distribution shifts from 0◦ to 75◦, since the interface roughness increases and the

correlation length decreases. Since σ′2 depends strongly on the molecular interactions, it

is in principle possible to obtain the interfacial tension more accurately and to determine

the microscopic cut-off, i.e. the microscopic length lm in (6.10) [157].

However, the physical interpretation of figure 6.5 is limited due to the finite resolution

of the confocal technique as well as our interface location procedure. Each height h(x, t)

appears to consist of the actual height plus a delta correlated “noise” term ∆(x, t) with

properties such that 〈∆(x′, t′)〉 = 0, and 〈h(x′, t′)∆(x′, t′)〉 = 0 averaged over either x′

or t′. Furthermore, 〈∆(x′, t′)∆(x′ + x, t′ + t)〉 = σ2
∆δ(x)δ(t) with δ the delta function.

Thus, from figure 6.5 we see that the interface roughness is Gaussian, but the actual

physics –although present as can be observed from the trends in the figure– is blurred

by the small noise term. To cope with this we construct correlation functions. It is easy

to see that such a correlation function does not suffer from the delta-correlated noise,

except when both x = 0 and t = 0.

The static and dynamic correlation functions, i.e. equations (6.17) and (6.19), de-

scribe the experimental data points very well, as can be clearly seen in figure 6.6(a) and

(b) for various statepoints with only two physical parameters (γ, L‖ in the static case

and γ, τ in the dynamic case). No bending term in (6.8) was needed in the analysis.

Note that in the original paper [134] the y-axis was given in units of pixels squared

and not as indicated in µm2, but the analysis was not affected by this. Results for the
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Figure 6.7. (a) Interfacial tension γ as a function of the overall colloid pack-
ing fraction φc obtained from gh(x) (crosses: slow frame rate, pluses: fast
frame rate), and gh(t) (circles). (b) The capillary length L‖ as a function of
φc obtained from gh(x). (c) The capillary time τ as a function of φc obtained
from gh(t). Results stem from statepoints I-IX, see figure 6.3. The dashed
lines are to guide the eye.

interfacial tension, capillary length, and capillary time are displayed in figure 6.7(a),

(b) and (c), respectively. The relation of these quantities through (6.20) allows for an

independent check of the consistency of our measurements. For example, for statepoint

I: γ = 100 nN/m, L‖ = 15 µm and ηL + ηG = (30 + 12.6) mPas, leading via (6.20)

to a capillary time of 6 s. From the dynamical correlation function we find τ = 4 s.

Note that, in contrast to [134], τ as given in equations (6.19) and (6.20) and plotted in

figure 6.7(c) should be the reference quantity. This differs from the time used in [134]

by a factor of 2. Still the agreement with the independent check remains satisfactory.

6.5. Conclusions

Using a colloid-polymer mixture allows to carefully tune the interface properties and

as a result the thermal capillary waves at a free interface are observed visually by means

of LSCM. From the fluorescence intensity difference the interface can easily be located
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and the height functions are constructed. By analysing the height fluctuations as well

as the derivatives of these we see that the interface roughness can be described within

a Gaussian model. To deal with small noisy contributions to the height function space

and time correlation functions are determined. The quality of the fits in describing

the correlation functions and the internal agreement validate the capillary wave model

practically down to the particle level. The present work opens up a wide range of

possibilities, e.g. to study temperature gradients and mass transport across the interface

at a scale of the thermal roughness, to explore the effects of thermal capillary waves on

droplet coalescence (chapter 7) and snap-off (chapter 8), on heterogeneous catalysis, on

wetting behaviour, to study the freezing of capillary waves at the gel-line, etc.

For example, one of the interesting consequences for wetting behaviour is that in most

molecular situations the system size L is larger than or comparable to the correlation

length of the capillary waves L‖. This length is much larger than a reasonable wetting

layer thickness lw, which in turn is larger than the thermal roughness L⊥. Thus we find

L � L‖ � lw > L⊥, whereas in colloid-polymer mixtures we would expect L � L‖ >

lw � L⊥.

Another possibly interesting route would be to study even larger colloids to do the

analysis really at the particle level. Recently, we have exploited a mixture of large

PMMA particles of diameter 400 nm and poly(styrene) polymer with a radius of gy-

ration of 200 nm (Mw = 23 106 g/mol). Here we do see the particles in the capillary

waves separately, figure 6.8. Unfortunately, gravity spoils the phase behaviour and the

systems ends up in a gas-solid equilibrium, a problem that in principle can be solved

by density matching the colloids.

(a) (b)

Figure 6.8. LSCM images (60x60µm2) of a gas-liquid interface (a) and of
a gas-crystal interface (b). The individual particles can be clearly observed.
The left interface is dynamically rough, whereas in the right interface the first
crystal layer appears to be fluid-like.



7
Hydrodynamics of droplet coalescence

Abstract

We study the coalescence of a drop with its bulk phase in fluid-fluid demixing
colloid-polymer mixtures. The process takes places in three consecutive stages:
(i) drainage of the continuous film between droplet and bulk phase, (ii) breakup
of the film, and (iii) the growth of the connection. The first stage is compared
with existing theories on drainage, where we show several limiting cases. We
observe that drainage becomes very slow and eventually the breakup of the film
is induced by thermal capillary waves. The waiting time for a certain height
fluctuation, which turns out to be an important parameter for the kinetics
of the process, can be directly obtained from experiment. Van der Waals
forces need not be invoked. During the third stage we observe that the radius
of the connecting neck grows linearly with time both for gas bubbles and
liquid droplets with an order of magnitude that is in good agreement with the
capillary velocity.

7.1. Introduction

The process of droplet coalescence is frequently observed in every day life. Whenever

two miscible liquid drops or a liquid drop and its liquid bulk come into contact they

may coalesce. This has important consequences, e.g. the droplet size distribution in

rain is (among other processes) determined by the coalescence probability [158]. The

coalescence reduces the total interface area and is driven by interfacial tension. The

phenomenon has been studied since the 19th century [159] and it is a classical example

of a free surface problem in fluid dynamics. It is of practical importance as well; in

many industrial applications –such as printing and sintering processes– coalescence

plays a crucial role (to be either avoided or induced). Recent developments in the

73
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Figure 7.1. Schematic drawing of the consecutive stages of droplet coale-
scence from left to right, top to bottom. Shown is the drainage of the continu-
ous phase (i) (top row), the first connection is made (ii) and the radius of the
neck grows in time (iii) (bottom row).

field of microfluidics [160], in which fluids are manipulated on a microscopic level and

miniature chemical reactions can be carried out on a chip, raise a further need to study

this phenomenon.

In the present chapter we will focus on the consecutive stages of droplet coalescence.

We make use of the properties of colloid-polymer mixtures to be able to follow the details

of coalescence in time with microscopy. Phase separated colloid-polymer mixtures are

well known to display behaviour analogous to molecular fluid-fluid systems. The origin

of the phase separation in colloid-polymer mixtures lies in the entropy-driven attraction

between the colloids, which is mediated by the polymers [19,24]. The coexisting phases

are a colloidal liquid (rich in colloid and poor in polymer) and a colloidal gas (poor

in colloid and rich in polymer). After preparing a sample in the two-phase region

individual droplets of either the liquid or the gas coalesce with their bulk phases at

the final stages of phase separation. This allows to study this process, which consists

of three stages: (i) film drainage of the continuous phase between the droplet and the

free interface, (ii) rupture of the film, and (iii) extrusion of the droplet material into its

bulk phase, see figure 7.1 for a schematic drawing of these steps.

The first stage (i) has been studied for quite some time [161–165], although it theo-

retically still poses some difficulties [166]. In many studies the drainage is followed close

to the point of film rupture (ii) and step (ii) in relation with step (i) is studied [161,167]

and the role of van der Waals forces is investigated [155,168]. Recently, significant the-

oretical [169] and numerical [170] progress has been made in the description of the neck

growth, step (iii), and in understanding the singularity that occurs during coalescence.

Very recently, experiments have observed the initial viscous coalescence [171], as well

as the inertial coalescence [172, 173], which follows the viscous coalescence.
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The big advantage of using colloid-polymer mixtures over molecular fluids finds its

origin in the ultralow interfacial tension of demixed colloid-polymer mixtures. The

typical magnitude of the interfacial tension γ is proportional to [3, 12]

γ ∼ kBT

d2
(7.1)

with kBT the thermal energy and d the typical length scale at the interface, similar

to the particle diameter σc far away from the critical point. This order of magnitude

has been confirmed in experiment [35–38, 106, 134], theory [102, 103, 120, 129, 130] and

recently in computer simulations [135, 136]. As a result the thermal roughness of the

interface LT =
√

kBT/γ can become of the order of (sub)microns and it is therefore

possible to study step (ii) on the scale of capillary fluctuations. Furthermore, from

the Reynolds number Re = ρuL/η with ρ the mass density, u the velocity, L the

characteristic length and η the viscosity, we can estimate at what length inertia becomes

as important as viscous dissipation (see chapter 9 for a more elaborate derivation). At

small length- and timescales the velocity u of interface motion is always proportional

to u ∼ γ/η. At Re = 1 inertial terms become important, thus at lengths

Lη =
η2

ργ
, (7.2)

and times

tη =
L

u
=

η3

ργ2
. (7.3)

For ordinary water with γ = 73 mN/m, η = 1 mPas, and ρ = 1 g/ml, inertial terms

come into play at Lη = 10−8 m, which is reached in tη = 2 10−10 s, an intractably

short time and length. Thus, the initial viscous regime of step (iii) is hard to observe in

the laboratory for ordinary molecular liquids. To tackle this problem it is in principle

possible to follow two routes: either increase the viscosity or decrease the interfacial

tension. Here, we follow the latter option and decrease the interfacial tension between

a factor 105 and 108 as compared to the interfacial tension of water.

We show results for several colloid-polymer mixtures, systems 1 SPC13, 2 PPD25

and 3 PPD71, described in detail in chapter 2, where also the statepoints are indicated.

These yield similar results, which points at generic behaviour. The consecutive steps

are described in section 7.2 for step (i), section 7.3 for step (ii) and section 7.4 for step

(iii). Conclusions are drawn in section 7.5.

7.2. Film drainage

In the first stage of droplet coalescence the drop approaches the bulk phase, see fig-

ure 7.2. Here, we show results for system 1 SPC13 (top row), which is a colloid-polymer

mixture of silica colloids and poly(dimethylsiloxane) polymer in cyclohexane, and for
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0 s 1.2 s 2.9 s 5.8 s

0 s 15 s 29 s 45 s

Figure 7.2. Step (i) in droplet coalescence in system 1 SPC13 statepoint III
(a-d) and system 3 PPD71 statepoint VII (e-h) (chapter 2) as observed with
transmission light microscopy (top row) and laser scanning confocal microscopy
(LSCM) (bottom row). (a-d) The image size is 264x264 µm2 and Rd = 26 µm.
As time proceeds the shape of the drop as well as the bottom interface get
distorted (b). The thin film drains very slowly (c, d) and only after about 14.5
s from panel (a) the drop coalesces. (e-h) The image size is 48x48 µm2 and
Rd = 10 µm. The gas bubble displays similar behaviour as the liquid drop.

system 3 PPD71 (bottom row), which contains large PMMA colloids and poly(styrene)

polymer in decalin. Initially, both the drop and the interface of the bulk phase (this

interface is hereafter referred to as the surface) are undistorted, figure 7.2(a) and (e).

In the vicinity of the surface, however, the droplet slows down and both the drop and

the surface are distorted, see figure 7.2(b) and (f). At longer times (c-d, g-h) the defor-

mations become more pronounced, the film drains very slowly until the film ruptures.

Far away from the bulk phase a droplet of radius Rd sediments or rises at constant

velocity us. It will not be deformed if the capillary number Ca

Ca =
ηus

γ
, (7.4)

remains smaller than unity [174]. The sedimentation velocity us is proportional to

g∆ρR2
d/η and we thus obtain from the capillary number the Bond number Bo [174]

Bo =
g∆ρR2

d

γ
, (7.5)

with g earth’s acceleration and ∆ρ the buoyancy. Thus, we do not expect deformations

if Bo < 1, i.e. Rd < Lc, the capillary length. Indeed, in experiment most droplets

remain spherical while sedimenting1, in fact even drops with Rd slightly larger than Lc

(figure 7.2(a) and (e)). A more precise treatment of the sedimentation velocity of a

1We here use “sedimenting” as a general term, which also applies for rising gas bubbles.
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viscous sphere surrounded by a viscous medium leads to (see e.g. [40])

us =
2

3

g∆ρR2
d

ηo

ηo + ηi

2ηo + 3ηi

. (7.6)

Here, ηo is the viscosity outside the drop and ηi is the viscosity inside the drop. If ηi � ηo

the well-known Stokes friction for a hard sphere is obtained: f = F/us = 6πηoRd with

F the force acting on the sphere. If ηi = 0 we obtain the friction for an air bubble:

f = 4πηoRd.

For a solid sphere approaching a solid or free non-deformable surface exact treatments

are given in [175], which describe both the undistorted fall of (7.6) and the velocity close

to the surface. The friction factor can be written as f = 6πηoRdλ with λ(h/R) the

correction to the Stokes friction. In the asymptotic limit of h = 0, where h is the

minimal distance between sphere and surface, it becomes

λ =
Rd

h
and λ =

1

4

Rd

h
(7.7)

for a solid surface and for a planar free surface, respectively. These limiting equations

can be found from lubrication equations as well [176, 177]. Note that the factor 4

difference between a solid and a fluid interface is often observed in these types of

problems. For a solid sphere approaching a deformable surface Hartland has derived

expressions from lubrication theory valid for small sphere-surface separations [178]. He

finds that h ∝ t−1/2. These results have later been confirmed by Jones and Wilson [166].

However, in the experiment both the fluid drop and the fluid interface become dis-

torted at a certain separation (figure 7.2), which is approximately the drop diameter.

Furthermore, fluid circulates in the drop since it has a finite viscosity, which tends to

speed up drainage as compared to a solid sphere, and there is some constriction in the

film thickness at its periphery, which slows down drainage. These last two effects are

properly treated by Jones and Wilson [166], who point out that these effects are not

captured in simple lubrication theories. They predict several asymptotic regimes, which

have been confirmed by Yantsios and Davis [179] using extended lubrication theories.

No full analytical treatment can be obtained and the main problem in comparison with

the present experimental data is that the asymptotic limits become valid for very small

separations [179].

In figure 7.3 we show the minimal drop-surface separation h as a function of time t.

The time t = 0 is defined at h = σd, i.e. t(h = σd) = 0. The event for a liquid drop in

system 1 SPC13 is plotted, which corresponds to figure 7.2(a-d). The top curve (plusses)

is the minimal distance between drop and surface, the middle curve (open circles) is the

distance between drop and (initially) undisturbed surface and the bottom curve (open

squares) is the position of the surface with respect to its undisturbed position, see also

the inset of figure 7.3(a). In figure 7.3(b) a similar event is plotted, but in this case for

a gas bubble (open symbols and plusses) and for a liquid drop (filled circles) in system
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Figure 7.3. Interface positions as a function of time for drops in system 1
SPC13, statepoint III (a) and 2 PPD25, statepoint I (b) (chapter 2). (a) The
event for a liquid drop with Rd = 26 µm. The inset explains what the symbols
denote, see also the explanation in the text. (b) The event for a gas drop
with Rd = 15 µm (symbols as in (a)) and for a liquid drop with Rd = 16 µm
(for clarity, only filled circles as the circles in (a)). (c) Minimal separation
(from the plusses in (a,b)) in terms of σd as a function of reduced time. Data
of systems 1,2 and 3 collapse (six different data sets are shown). (d) The
correction to the Stokes friction factor as a function of h/σd. At distances
h < σd the friction increases rapidly. The full curve comes from theory for a
solid sphere sedimenting to a free non-deformable surface [175], which reaches
the asymptotic value of (7.7). The full curves in (a-c) are linear fits to the first
few data points.

2 PPD25, which is a mixture of small PMMA colloids and poly(styrene) polymer in

decalin, see chapter 2. The difference in timescales between (a) and (b) is considerable

and stems mainly from the difference in gas-liquid density contrast, which is much

larger in system 1 SPC13, figure 7.3(a). In (b) the difference between gas and liquid

is a result of the difference in gas and liquid viscosity, where the liquid viscosity ηL is
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larger than the gas viscosity ηG. However, the shapes of the curves are very similar. In

all cases the displacement is initially linear with time. For the events plotted in (b) the

viscosities and density difference have been measured precisely, see table 2.1, and the

initial linear velocities of the rising gas bubble and falling liquid droplet are in good

agreement with equation (7.6). For example, we find for the liquid drop 4.3 µm/s from

experiment and 4.2 µm/s from (7.6), for the gas bubble this is 1.2 µm/s and 1.1 µm/s.

In figure 7.3(c) several data sets for liquid drops are rescaled by plotting h/σd vs.

t×F/fσd, with f following from (7.6). Thus, the initial slopes are scaled by taking the

density difference as well as the inner and outer viscosity into account. We then clearly

observe that data from systems 1, 2, and 3, and for different drop diameters ranging

from 13 to 52 µm fall right on top of a mastercurve. Data of gas bubbles fall on a

similar, but slightly different mastercurve as well. The agreement with the mastercurve

for t > 0 is somewhat remarkable, since the distortions are considerable and surface

tension is expected to play a role here as well through the Bond number [166]. The

difference in the surface tension is easily one order of magnitude. This scaling implies

that the problem only depends on h/σd.

In figure 7.3(d) we plot the Stokes’ correction λ as a function of h/σd. The data are

obtained by averaging and then differentiating the curves for liquid drops of system 2

PPD25. Here, we took the minimal drop-surface separation curves corresponding to

the plusses in the inset of figure 7.3(a). Far away from the surface λ is a constant

with value 0.93 in agreement with (7.6), just below the Stokes value of 1 for a hard

freely sedimenting sphere. Considerable differences start occuring for h/σd = 1 and

below. For such times t > 0 the friction increases due to solvent backflow and drop and

surface deform. The increase in friction is in reasonable agreement with predictions for

a solid sphere approaching a non-deformable surface [175]. This is of course somewhat

remarkable since the problem tackled in [175] is a related, but different one. Although

many approximate and asymptotic solutions have been found in literature (see for

example the review of Stone [174] and references therein), it is difficult to use these on

our data since it is unclear when exactly the solutions may be applied.

At very small h the velocities become very low. Here, the shape of the drop depends

on the interfacial tension and the density difference alone [162, 180]. This exterior

problem can be solved within a quasi static treatment and the shape (figure 7.4) is set

by

γ

g∆ρ
≡ L2

c =
l − z

2( 2
a
− 1

b
)
. (7.8)

Here, 1/b and 1/a are the curvatures at and opposite to the apex. This relation can

be derived by considering the pressure balance, PA = PB and PC = PD, since points in



80 7. Hydrodynamics of droplet coalescence
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z
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Figure 7.4. Explanation of the notation used in the derivation of (7.8) and
an example of a liquid drop with Rd = 19 µm, a = 28 µm, b = 24 µm and
l− z = 20 µm (system 2 PPD25, statepoint I) from which the capillary length
can be obtained.

the same phase at the same height are in mechanical equilibrium. We learn that

PB = PC − ρLlg +
4γ

a
− 2γ

b
, (7.9)

and

PA = PD − ρLzg − ρG(l − z)g, (7.10)

from which (7.8) readily follows. From these simple geometric quantities the capillary

length can be obtained. For example, from the shape of the droplet shown in figure 7.4

(system 2, statepoint I) the capillary length is 18 µm to be compared with 17.6 µm

found by analysing the interfacial profile close to a vertical hard wall, see chapter 5.

7.3. Film breakup

The role of thermal capillary waves in the second stage of droplet coalescence has

long been a topic of speculation [155,156]. The actual breakup of the film between drop

and bulk phase (step (ii)) is elusive in molecular fluids; here it is evident that capillary

waves induce the spontaneous breakup, which occurs when two opposite bulges at the

two interfaces meet (not necessarily symmetrically), see figure 7.5. The probability for

such an event depends on the interface roughness and on the interface correlation length

and time. The question is what time we have to wait for a height fluctuation h ≥ h∗

to occur on a certain surface area.

From experiment it is possible to obtain the waiting times as a function of the ob-

served length L, where we have followed ideas from Smoluchowski [181] and Becker [182].

After locating the interface position as descibed in chapter 6, we construct a space-time

plot in the following manner; if h(x, t) > h∗ the value is 1 (white), otherwise it remains

0 (black), see figure 7.6(a) for an example of statepoint V of system 3 PPD71 with

h∗ = 0.41 µm. Next, we divide the system along x in a number of patches with length

L. If at any point in this patch a white pixel is found the complete patch turns white,
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-60 s 15 s-20 s 0 s

-19 s 4 s-5 s 0 s

Figure 7.5. Coalescence of colloidal liquid droplets with the bulk liquid phase
in system 3 PPD71. Top row, coalescence of a droplet of diameter 16.5 µm for
state point I (far away from the critical point); bottom row, coalescence of a
droplet of diameter 21.8 µm for state point VIII (close to the critical point).
The three consecutive steps of the coalescence event can be followed in time (as
indicated, where t=0 now corresponds to the instant of film breakup). Clearly,
the capillary waves at both interfaces induce the breakup of the confined gas
layer. The white circle marks the typical shape as predicted by Eggers et
al. [169]. In the series in the bottom row, the arrow denotes the place of film
breakup. In this case, a second connection is made and the gas phase is being
trapped in the liquid phase.

which means that at that time in that patch a fluctuation of at least the predefined

height has occured. This leads to images as in figure 7.6(b), which is for the same

statepoint as in (a), but now with h∗ = 0.82 µm. In this case we took L = 17.5 µm.

We now identify the waiting time θ(h∗) as the average time the patches are 0. We can

thus write

θ(h∗) =
M∆t

k
, (7.11)

where M is the total number of empty patches, ∆t the time between subsequent patches

and k the number of jumps from 0 to 1. In constructing the waiting times it was found

that these are very sensitive to noise. To cope with this we have averaged over 1000

frames. Furthermore, along the x coordinate we span 140 µm, but only the inner 105

µm is used, which is slightly less noisy. In figure 7.6(c) we have plotted the waiting times

as a function of h∗ for three different statepoints approaching the critical point, from

left to right statepoints I, V, and VII (see chapter 2, figure 2.3(b)). Clearly, the waiting

times rise steeply as a function of h∗. Analysing fluctuations smaller than a certain

h∗ leads to a symmetric situation as shown by the open symbols in figure 7.6(c). In
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Figure 7.6. (a) Space-time plot for statepoint V, system 3 PPD71, with
h∗ = 0.41 µm. The x spans 140 µm and t spans 112 s (of the maximum of 223
s). In (b) a space-time plot is shown for the same statepoint as in (a), but for
h∗ = 0.82 µm. Here, x spans 105 µm and t spans 86 s. The patches have a
length L of 17.5 µm. In (c) the data points are for L=17.5 µm and for three
different statepoints: I (squares), V (circles) and VII (triangles) approaching
the critical point. The filled squares are for a mirror event of the open squares
with negative excursions and plotted against |h∗|. The vertical line indicates
h∗ = 1 µm.

chapter 6 it was already shown that the height distributions are symmetrical (Gaussian)

distributions.

In the experiment it is observed that the connection in droplet coalescence is typically

made at film thicknesses of ∼ 1 µm for samples reasonably close to the critical point.

As can be seen from the waiting times in figure 7.6(c) such a fluctuation typically occurs

in a couple of seconds. Since the droplet “sees” a certain area, the connection at such

thicknesses does not seem unreasonable. For samples away from the critical point the

roughness is less pronounced and the film rupture indeed occurs at smaller separations.

In general we observe that at a certain droplet-surface separation, drainage becomes so

slow that a spontaneous connection mediated by the capillary waves is more likely to

occur. Since at these lengthscales and in these organic mixtures van der Waals forces

are minimal we do not need to invoke such forces to explain the coalescence, more

precisely the first connection. This is still an open debate in molecular fluids [183],
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although very recently experiments indicate that in molecular fluids the connection is

brought about solely by van der Waals forces [168].

7.4. Neck growth

At the connection a liquid bridge is formed and the radius of the neck increases

in time, see figure 7.7. The opening speed of the bridge results from a competition

between the capillary forces driving the coalescence, and the viscous forces slowing it

down. Equating these two forces (i.e. setting the capillary number to unity in (7.4))

leads to a time dependence of the radius of the neck Rn as [169]

Rn(t) ∝ γ

ηi
t. (7.12)

This coalescence mechanism leads to very large speeds in ordinary molecular fluids: for

water the capillary velocity is about 70 m/s. The full theory predicts only logarithmic

corrections to this. Eggers et al. [169, 170] find

Rn(t) = − γ

πηi
t ln

(
γ

ηiRd
t

)
, (7.13)

for a viscous drop in inviscid surroundings. The shape of this solution remains the same

when the viscosity of the surrounding phase is incorporated in the problem.

At longer times it is either the viscous or the inertial forces that slow down the

coalescence. This depends on the relative importance of these two forces and can be

0 s 3 s1 s 2 s

0 s 3.18 s1.42 s 2.24 s

Figure 7.7. Neck growth in coalescence (system 2 PPD25, statepoint I) for
a liquid drop with Rd = 15 µm (top row, image size 59x59 µm2, LSCM) and
a gas bubble of Rd = 16 µm (bottom row, image size 69x69 µm2, transmission
light microcsopy). The gas bubble breaks more symmetrically in comparison
with the liquid drop. The typical retracting shape in the top row can again be
observed [169], see also figure 7.5.
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(a) (b)

(d) (e) (f)

(c)

Figure 7.8. In (a-d) two connections are made and gas phase is left behind.
The instabilities on the gas cylinder can be clearly observed (c,d). The image
size is 128x128 µm2. The total time span is 2.6 s. (e,f) Assymetry in growth
after a first connection at the periphery of the draining film. The image size
is 128x128 µm2 and the time difference is 0.26 s. The white arrows point at
connections. System 1 SPC13, statepoint III.

found from the Reynolds number Re, as explained in the introduction of this chapter

(section 7.1). If inertia is dominant, i.e. Re > 1, the radius increases as [169, 170]

Rn(t) ∝
(

γR

ρ

)1/4 √
t. (7.14)

But in colloid-polymer mixtures this occurs at lengths Lη and times tη, on the order of

meters and hours due to the ultra-low interfacial tension. It is therefore very unlikely

that this square root regime will be reached. To the contrary, the first –linear– regime

of viscous coalescence is very hard to observe for molecular fluids, since the initial

velocities are huge (70 m/s) and only by increasing the viscosity drastically and using

ultrafast cameras the initial regime is now observed in molecular fluids as well [171,184].

Here, however, we explore the option of using a system with an ultralow interfacial

tension [184].

In figure 7.7 we show a coalescing liquid drop captured with LSCM (top row) and

a coalescing gas bubble captured with transmission light microscopy (bottom row)

for system 2 PPD25. Although the contrast with LSCM is much better than with

light microscopy the coalescence is too fast to be followed with LSCM in great detail.

In principle, this could be solved by using system 3 PPD71, which has even slower

dynamics, but in this system first connections are often made at several points at more
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Figure 7.9. Radius of the neck Rn as a function of time for gas bubbles (open
symbols; three different events with Rd= 16, 17 and 18 µm) and liquid droplets
(closed symbols; two different events with Rd = 15 and 17 µm). The full
curves are linear fits to the data. The linear behaviour can be observed up to
several times ηiRd/γ in contrast to experiments with molecular fluids [171,184].
System 2 PPD25, statepoint I.

or less the same time, which makes the determination of the opening speed somewhat

difficult. Furthermore, in that case an instability may occur and a droplet of the film

phase is trapped in the bulk phase, as shown here for system 1 in figure 7.8 (a-d), in

line with predictions by Eggers et al. [169]. In addition, with LSCM it is difficult to

determine if the growth is in or out of the field of focus. Finally, we observe that the

coalescence can occur anywhere in the contacting drop bulk area. For gas droplets the

first connection is often made in the top of the gas droplet, which leads to a symmetric

breakup. For liquid drops the first connection is made anywhere at this area, but more

often at the periphery in line with the predictions of Jones and Wilson [166] about

the precise shape during drainage, who show that at the periphery the drop-surface

separation is minimal. The difference between gas and liquid drops points to subtle

differences in the shape of the drop and surface during drainage (step (i)). If the first

connection is not on the central symmetry axis this may lead to an assymetric neck

growth after a certain time, see figure 7.8(e) and (f). Here, we explore system 2 PPD25

with light microscopy.

Figure 7.9 shows the radius of the neck Rn as a function of time. The top data

correspond to coalescing gas bubbles, the bottom data to coalescing liquid droplets.

Clearly, a linear dependence is observed with no signs of a logarithmic correction,

possibly since the logarithmic regime only occurs at very small times after coalescence

[169]. The slope of the lines are 5.7 µm/s for the gas bubbles and 2.1 µm/s for the liquid

droplets. For this statepoint the interfacial tension has been accurately determined by

measuring the density difference and then the capillary length in several ways: by
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0 s 13 s3 s 5 s

0 s 6 s1 s 3 s

Figure 7.10. By bleaching either the droplet (top row, 56x56 µm2) or the bulk
liquid phase (bottom row, 41x41 µm2) the coalescence event can be followed
in great detail. The drop forms a hemisphere in the bulk phase and spreads
by diffusion. System 2 PPD25, statepoint I.

analyzing the shape of a drop resting at the interface (see (7.8)) and the shape of the

interfacial profile close to a wall (chapter 5). From these methods the interfacial tension

is found to be 0.16 µN/m. The viscosities of liquid and gas phases were measured with

an Anton Paar Physica MCR300 rheometer and we found ηL = 31 mPas and ηG = 8

mPas. Applying the scaling relation (7.12) we expect coalescing velocities of the order of

20 µm/s for the gas bubble and 5.2 µm/s for the liquid drop without taking the viscosity

of the outer fluid into account. Thus, for this statepoint the prefactor in equation (7.12)

is around 0.3 for gas droplet coalescence and around 0.4 for liquid droplet coalescence.

Hence, the gas bubble is slowed down more by its relatively viscous surroundings than

the liquid droplet. Clearly, the observed velocities are set by the capillary velocity.

However, making a quantitative prediction for the viscosity ratios such as the one in

the current experiment remains a theoretical challenge.

0 s 29 s3 s 28 s

Figure 7.11. The liquid drops push their material into the thin liquid film,
which distorts the interface at the gas bubble side as well. The image size is
84x84 µm2. System 2 PPD25, statepoint I.
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Another discussion in the hydrodynamics of coalescence is where the droplet material

goes and what the flow pattern is; the surface free energy gained is transformed into

flow, which redistributes the material. By bleaching either the coalescing drop or the

bulk phase in which the drop is coalescing, it is possible to follow the liquid material

into the bulk phase, see figure 7.10. Clearly, the interfaces first retract and in the next

step the liquid material is pushed into the bulk phase. It forms a clear hemisphere

independent of where the first connection takes place. The liquid drop material than

has to spread due to diffusion which is a relatively slow process, see chapter 9 for

measurements of the diffusion coefficients. In fact, by carefully inspecting the events

shown in figure 7.10 we observe that in the top row the crucial wave fluctuation is done

by the bulk phase, while in the bottom row it originates from the droplet. Another

coalescence scheme also provides information. In figure 7.11 a liquid drop coalesces on

top of a gas bubble that is close to coalescence. Due to the flow of the liquid material

into the thin draining liquid film we see the film being distorted up to a level where the

interface becomes flat. These observations may contribute to a further understanding

of the hydrodynamics of coalescence.

7.5. Conclusion

We have shown the three consecutive stages in droplet coalescence in fluid-fluid phase

separated colloid-polymer mixtures. The data can be obtained in a single system with

light and laser scanning confocal microscopy and comparing results for three differ-

ent colloid-polymer mixtures shows that the behaviour is rather general. In stage (i)

drainage of the continuous film between droplet and bulk phase occurs. The mini-

mal distance between droplet and surface can be scaled for liquid drops as well as gas

drops onto a single mastercurve after taking the gas-liquid density difference and the

viscosities into account. This is somewhat remarkable, given the wide range of in-

termediate structures formed ranging from spherical drop and flat surface to strongly

deformed drop and surface. From these data the friction factor can be obtained. At

large separations it is in good agreement with the modified Stokes equation for a freely

sedimenting/rising fluid drop, whereas it rises considerably at small distances. There,

the order of magnitude of the friction factor is in reasonable agreement with theory

for a solid sphere approaching a free non-deformable surface [175]. The coalescence

continues via the breakup of the film (ii), which is elusive in molecular fluids. Here,

it is observed that the breakup itself is a stochastic process dominated by the thermal

capillary waves. The waiting time for a certain fluctuation to occur is crucial; It can

be directly obtained from experiment. From these measurements it is very likely that

a fluctuation of ∼ 1 µm at a certain area occurs within a couple of seconds. We are

currently incorporating these findings in a theoretical model. In fact, going from sys-

tem 1 to 3 we observe that stage (ii) is reached fastest in system 3 PPD71, where the
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interface roughness is more pronounced and the thin intervening film does not have

to drain until very small dimensions. During the third stage (iii) we observe that the

neck of the connection grows linearly with time. This is a relatively fast process with

respect to drainage over a distance of for example the drop diameter. The order of

magnitude of the coalescence velocity is well understood from hydrodynamic scaling

arguments and it is proportional to the capillary velocity. We may conclude that the

breakup itself is a stochastic process by capillary waves and that before and after the

breakup, hydrodynamics is important.



8
Droplet snap-off affected by thermal noise

Abstract

We report measurements on droplet snap-off in fluid-fluid phase separated
colloid-polymer mixtures. The process occurs spontaneously during phase se-
paration and provides a convenient, non-interfering way to study the pheno-
menon. Since the interfacial tension is ultralow, the thermal roughness is more
pronounced than in molecular systems and we study the possibility of observ-
ing a regime where thermal noise is dominant over interfacial tension. To this
end we focus on the shape at snap-off, the number of satellite drops formed,
and the radius of the neck as a function of time.

8.1. Introduction

The process of drop formation is frequently observed in every day life. One possible

route to create drops is by means of snap-off for example occuring in a dripping faucet,

which gives rise to rich and beautiful phenomena. As the radius of the neck decreases,

a singularity develops due to the infinite curvature at the point of snap-off [185]. This

has generated much interest not only from a physical point of view, but also since

one expects that at the singularity lengthscales become arbitrarely small and hence

give rise to universal scaling behaviour independent of initial or boundary conditions

[186–188]. This has indeed been confirmed in experiment [189] and theory/simulations

[190], although in some cases non-universality has been observed [191]. Both just before

and after the point of snap-off molecular scales are reached. At such small scales thermal

fluctuations start playing a role and recently simulations and theory have shown that

this thermal noise greatly influences the observed behaviour [192, 193]. Experiments

that observe this scale appear very difficult. Here we show first indicative experimental

results of snap-off events in colloid-polymer mixtures influenced by thermal fluctuations.
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(a) (b) (c)






�

(d)

Figure 8.1. Schematic drawing of the typical geometries in inviscid (a), vis-
cous (b) and thermal noise (c) breakup. In (d) the opening angles are indicated.

We use several colloid-polymer mixtures to study the droplet snap-off. Such mixtures

are often used as model systems for molecular fluids with the advantage that colloids

give rise to more accessible time- and lengthscales. This is because the interfacial tension

γ, which is the driving term in many hydrodynamic phenomena, is much lower than in

molecular systems. Typically, it has a magnitude proportional to [3, 12] γ ∼ kBT/d2

with kBT the thermal energy and d the typical length scale at the interface, similar to

the particle diameter σc away from the critical point. This order of magnitude has been

confirmed in experiment [35–38,106,134], theory [102,103,120,129,130] and computer

simulations [135,136]. For colloids it typically leads to interfacial tensions of µN/m and

below. This has several consequences; the thermal roughness LT scales up

LT =

√
kBT

γ
, (8.1)

and may become of the order of microns. The hydrodynamic inertial regime is reached

at a lengthscale Lη of,

Lη =
η2

ργ
, (8.2)

and is scaled up to several meters. Here, η is the viscosity and ρ the mass density.

Furthermore, the competition between gravity or hydrostatic pressure and interfacial

tension sets the capillary length scale Lc

Lc =

√
γ

g∆ρ
(8.3)

with ∆ρ the mass density difference between drop and surrounding fluid and g earth’s

acceleration. This length is brought down to tens of microns. Finally, another length-

scale is of importance as well in the study of droplet snap-off, i.e. the observation

lengthscale Lobs. The observation lengthscale is of the order of 1 micron in standard

optical microscopy setups and can be even smaller in more advanced setups.
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The time dependence t of the minimal radius of the snapping neck h can generally

be written as [185]

h(t) ∝ (ts − t)α. (8.4)

Here, ts denotes the time at snap-off and the exponent α depends on which hydrody-

namics are dominant. For inviscid coalescence, in which inertial terms are dominant,

α = 2/3 [185,194]. This is valid at lengths where Lobs > Lη > LT , which is for instance

the case in water. In addition, a cone+spherical cap geometry is predicted at the mo-

ment of snap-off, see figure 8.1(a), with opening angles (figure 8.1(d)) of θ = 112.8◦ and

φ = 18.1◦ [195, 196]. In more viscous fluids such as glycerol we find Lη > Lobs > LT .

Viscosity is dominant and α = 1 [185,190,197]. A thin thread + drop shape is predicted

close to snap-off, see figure 8.1(b), and the opening angles are θ = 78◦ and φ = 6◦ [197].

The values for α can also be obtained following the scaling approach presented in chap-

ter 9. In colloid-polymer mixtures it is now possible to get in the range Lη > Lobs ∼ LT ,

which has several interesting consequences [192]. Thermal noise becomes important and

even dominant and theory predicts a power law with α = 0.42 [193]. Furthermore, sim-

ulations [192] and theory [193] predict that at snap-off the shape of the drop and thread

becomes much more symmetric like a double cone-neck (hourglass shape) with roughly

equal opening angles, see figure 8.1(c). Finally, hardly any satellite drops are predicted

to be formed at snap-off, implying that with thermal noise the size distribution of snap-

ping drops becomes slightly broader and single peaked, instead of two distinct sharp

peaks (main and satellite drops) [192, 193]. In all of the above predictions gravity is

absent, but in colloid-polymer mixtures gravity may play a role, since the capillary

length Lc is relatively small (see also the discussion in section 7.2).

8.2. Experiment

During the initial stages of phase separation (see chapter 9) liquid phase is formed

throughout the mixture. Close to the macroscopic air-dispersion meniscus liquid phase

nucleates at the interface, see figure 8.2. In addition, material is also present at the

glass walls above the meniscus due to homogenization by shaking and liquid phase

subsequently drips down to the meniscus as well (figure 8.2(c)). Since this macroscopic

meniscus is slightly curved, the drops glide to the lowest part of the interface and at a

certain critical size start dripping down. This behaviour has been observed in all three

colloid-polymer mixtures studied in this thesis, but also in e.g. a mixture of xanthan

(bio)polymer and teflon spheres in water [198]. The dripping drops are being formed

in a spontaneous, but highly reproducible manner. Here, we study the detachements of

the droplets; we show results for system 1 SPC13 in detail, which is a mixture of silica

colloids and poly(dimethylsiloxane) polymer in cyclohexane. The colloid is relatively

small, such that the interfacial tension is relatively large. Furthermore, we show first
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(a) 1 min (b) 11 min (c) 12 min

Figure 8.2. Collection of liquid material during phase separation at the lower
side of (a,b) and at the wall above (c) the air-dispersion meniscus. The white
bars are placed inside the meniscus. The drops are liquid phase. In (b) gas is
trapped inside the liquid cylinder. Times are in minutes after homogenization
of the sample. Image sizes are 705x890 µm2 (a,b) and 515x325 µm2 (c). System
1 SPC13, statepoints II (a,b) and I (c) (chapter 2).

results for system 3 PPD71, which is a mixture of PMMA colloids and poly(styrene)

polymer in decalin. Here, the colloids are relatively large and the interfacial tension is

thus small. The physical properties of these systems are presented in chapter 2. We

observe that system 2 PPD25 shows similar behaviour as system 1.

System 1 has been studied with the transmission light microscopy setup as described

in chapter 2. It is equipped with a CCD camera with a capturing rate of 50 frames per

second. Although the refractive indices of liquid and gas phase are rather similar the

interface can be clearly observed. System 3 has been studied with the LSCM setup,

see chapter 2 as well. We are interested in the minimal neck radius as a function of

time t to snap-off. The interface between gas and liquid phase can easily be located

automatically using routines written in IDL [199], see the Appendix of this chapter.

8.3. Results

In figure 8.3 we show snapping droplets for systems 1 SPC13 (a) and 3 PPD71 (b,c).

Clearly, the shapes at snap-off are rather different. In (a) the shape is assymetric, and

we find on average θ1 = 62◦±3.4◦ and φ1 = 1.8◦±1.2◦ (see figure 8.1(d) for the definition

of angles). After the large drop snapped off, the filament also detaches from the top as

shown in figure 8.4. The neck at the top part gets thinner and snaps off in a way that is

apparently similar as the first drop, as also observed in inviscid coalescence [188]. Here,

θ2 = 64◦ ± 3.9◦ and φ2 = 3.6◦ ± 1.7◦, where φ2 is the opening angle of the filament and

corresponds to φ1, just as θ2 corresponds to θ1. Theory predicts θ = 78◦ and φ = 6◦ for

the capillary breakup of a viscous thread surrounded by another viscous fluid [197], in

reasonable agreement with experiment. Now, in figure 8.3(b) and (c) the roughness by

thermal fluctuations can be clearly observed and the shape at snap-off is much more

symmetric, especially for the event in (c), in line with simulations [192] and theory [193].

Here, a double cone-neck shape is predicted. In addition, the number of crests and



8.3. Results 93

(a) (b) (c)

Figure 8.3. Snap-off events for system 1 (SPC13, statepoint III) (a), and
system 3 (PPD71, statepoint VII) (b) and (c). In (a) the neck shape is highly
assymetric. The image size is 154x528 µm2. In (b) and (c) two different events
are shown. At snap-off (indicated by the arrows) the neck shapes are rather
different than in (a). In (b) only two and in (c) zero satellite droplets will be
formed. In the top of the image the glass stick can be seen (see the top arrow),
which acts as a collector of liquid material and facilitates the snap-off. The
image size is 59x235 (b) and 59x223 (c) µm2.

throughs at the filament typically increases. Finally, hardly any satellite drops are

being formed in system 3, in clear contrast with system 1, see figure 8.5. In sum, the

observations in system 3 are in line with predictions by Moseler and Landman [192]

and Eggers [193], see especially figures 3A-C in [192].

To further quantify the differences it is possible to determine the exponent α of

snap-off, see equation (8.4). Unfortunately, the time resolution with LSCM is not

yet sufficient to determine the exponent α accurately for system 3, though we need the

optical resolution of LSCM given the importance of Lobs as discussed in the introduction.

Therefore, we now are only able to determine α in system 1.

From the image analysis it is easy to find the centre of the droplet as a function

of time. In figure 8.6 we plot the vertical distance between the centre of the drop at

time t with respect to its position at ts. Here, several events are plotted. The top

line is of a large drop with a final diameter of 63 µm. Initially, the drop accelerates,

until it reaches a constant velocity at about 1.5 s before ts. The open symbols stem

from a different event with a drop of equal size. The data lie on top of each other

underlining the reproducibility of the events. In addition, the shape of the neck changes
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(a) 1.2 s (c) 4.84 s(b) 3.46 s (d) 5.82 s

Figure 8.4. Second snap-off following after the first snap-off. The remaining
filament immediately becomes Rayleigh unstable and the instabilities grow in
time. The image size is 154x528 µm2. Times are with respect to the first
snap-off event, i.e. figure 8.3(a). System 1 SPC13, statepoint III.

from roughly parabolic/symmetric (figure 8.6(b)) to assymetric (figure 8.6(c)) around

the time that a constant velocity is reached. Please note that this discussion about

the neck geometry is different from the discussion about the neck shape at snap-off

(section 8.1), since this occurs well before snap-off. Such a change in shape has been

observed in experiments on a glycerin-water mixture as well, but there this effect was

analyzed in terms of inertia [200], which is very unlikely in colloid-polymer mixtures,

since Lη is on the order of meters, see section 8.1. The two other lines are for two

smaller snapping droplets with final diameters of 41 µm (top) and 31 µm (bottom).

The shape of the curves are similar, although their final velocities are reached closer

to ts. The final velocity of the large droplets is somewhat larger than the velocity of

sedimenting droplets close (but not too close) to the flat interface, see chapter 7.

In figure 8.7 we plot the minimal neck radius h as a function of time to snap-off for

the first (a) and second (b) snap-off. In (a) three different events are plotted, two large

droplets snapping off and one small droplet. The data of the large droplets fall on top of

each other, whereas the data corresponding to the small droplet join the general curve

closer to the time to snap-off. Since close to ts the three events follow the same curve,

we conclude that there is a proper separation of lengthscales close to snap-off and the
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(b) 1.28s(a) 0.4 s 7 s(c)

Figure 8.5. Formation of satellite droplets after the snap-off of the first
(large) liquid droplet. In (a) and (b) the image size is 242x527 µm2 and shown
are data for system 1 SPC13, statepoint I. In (c) the image size is 59x235 µm2

and data are for system 3 PPD71, statepoint VII. Times are with respect to

ts.

initial conditions do not influence this part. In fact, this behaviour is verified for many

more events (> 10) and is also observed in system 2 PPD25. For sake of clarity we only

show a few events for system 1 SPC13. The snap-off event is seen to be divided into

different regimes. Far away from the point of snap-off the droplet is still accelerating
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(b) -3.24 s

(a)

(c) -1.5 s

Figure 8.6. (a) Position of the centre of the drop with respect to its position
at snap-off. The top curve and the symbols correspond to drops of diameter
63 µm. The middle and bottom curve are for drops of 41 µm and 31 µm,
respectively. The large drops reach an almost constant velocity about 1.5
s before snap-off, indicated by the drawn line. The smaller drops reach a
constant velocity closer to ts. In (b) and (c) the subtle change of geometry of
the neck shape is shown. In (b) the interfacial profile is still roughly parabolic
and symmetric, whereas in (c), which is just after the transition point, it has
flattened off, similar to observations in [200]. Times are with respect to ts and
data are for system 1 SPC13, statepoint III.
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Figure 8.7. Radius of the neck as a function of time for several droplets for
the first (a) and second (b) snap-off event. In (a) the full lines denote α = 1.
The exact point of snap-off has some uncertainty due to the finite time and
space resolution. The data in (b) fall on top of the data in (a) close to snap-off.
Data for system 1 SPC13, statepoint III.

while falling. Here, the radius of the neck is larger than the capillary length Lc, which

is 16 µm for this statepoint. The neck shrinks with a constant velocity of about 10

µm/s. At a certain point the slope changes, which is also close to the point where

a constant sedimentation velocity is reached and a transition in geometry of the neck

is observed. In this regime the neck shrinks linear in time as well with a velocity of

about 3.7 µm/s. Theory for a viscous drop in inviscid surroundings predicts velocities

of 0.071 γ/η for symmetric snap-off with a parabolic neck shape [201] and 0.03 γ/η for

assymetric snap-off [190], as observed in [200]. Here, the magnitude of the two velocities

is much larger, since the capillary velocity γ/η is of the order of 10 µm/s, although their

ratio is (perhaps coincidentally) close to the theoretical one. Moreover, the effects of

the outer viscosity and especially of gravity have not been included in these theories.

Since the sedimentation velocity of the drops is larger than the capillary velocity, both

gravity and interfacial tension are expected to play a role in snap-off. Finally, in these

linear regimes the exponent α is clearly equal to 1, indicated by the full lines.

The second snap-off, that in the top of the liquid cylinder (figure 8.4), can be analysed

in a similar fashion and leads to figure 8.7(b), where three different events are shown.

The data collapse on figure 8.7(a) close to snap-off, but further away the difference

is large. In this case, we do not observe a linear dependence. In fact, the shape of

the curve corresponds reasonably well to α = 0.42, which is the prediction for snap-off

dominated by thermal noise [193], but it is uncertain if this prediction applies for the

second snap-off as well [202]. Furthermore, it is unclear where the difference in power-

law behaviour between the first and second snap-off stems from. However, in the first
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case a large droplet pulls the shrinking neck, whereas in the second snap-off the neck’s

position remains at the same spot. The effect of gravity on snap-off is currently being

taken into account in extensive calculations/simulations [202].

8.4. Concluding remarks

In phase separating colloid-polymer mixtures liquid phase spontaneously formed in

the top of the mixture and slowly started dripping down during many hours after the

macroscopic gas-liquid interface had emerged. This provides a convenient way to study

the process of droplet snap-off in full detail in systems with ultralow interfacial tensions.

The driving forces for snap-off are small and video speed camera-equipment can be used.

In system 1 SPC13, where the interfacial tension is relatively large and the thermal

roughness therefore small, we observe a long thread-drop shape at snap-off as well as

the formation of many satellite droplets, although this number decreases closer to the

critical point. The large snapping drops reach a constant velocity about 1.5 s before

the snap-off occurs. At that instant, the minimal neck radius as a function of time

shows a change of slope and the geometry of the neck shape changes as well. The

linear dependence of the neck radius corresponds to an exponent α of 1. In the second

snap-off we observe different behaviour. In these snap-off events the effects of gravity

may play an important role, which is currently under investigation. Although we are

orders of magnitude closer to “molecular” lengths than in presently available molecular

experiments, the effects of thermal noise seem to be minimal. This might have to do

with an optical limitation: the thermal length LT is of the order of 0.1 µm for the

present statepoint, whereas the optical resolution is about 1 µm, i.e. Lobs > LT .

In a system where thermal noise is more pronounced and Lη > Lobs ∼ LT , i.e. system

3 PPD71, we do observe that hardly any satellite droplets are formed. Furthermore,

the appearance of the snap-off event is very similar to predictions by Moseler and

Landman [192]. We will combine LSCM and transmission light microscopy data to

accurately determine the exponent α in this system as well.
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Appendix: Routine to track the snap-off of droplets

The interface of the falling droplet can easily be located automatically since at the

interface the intensity is minimal. The maximal radius, i.e. the radius of the droplet,

is used to track the falling droplet. It sets the boundaries between which the search for

the minimal neck radius occurs. The neck radius can then easily be followed in time,

see the images in figure 8.8.

2h

z

-3.44 s -1.84 s-2.48 s -0.48 s

Figure 8.8. Analysis used to track the snap-off event. The horizontal bottom
line indicates the maximum diameter of the snapping droplet and is used to
locate the droplet’s center. Once the center is found, the horizontal and vertical
lines are set as well. In the enclosed rectangle the minimal neck radius is
searched. The located minimum is indicated by the middle horizontal line.
In the next frame the rectangle is slightly expanded, the interfacial profile is
searched from opposite sides and the procedure is repeated. The image size is
154x528 µm2 and times are with respect to ts. System 1 SPC13, statepoint

III.



9
Interfacial dynamics in demixing systems

with ultralow interfacial tension

Abstract

We report measurements on fluid-fluid phase separation in a colloid-polymer
mixture, which can be followed in great detail due to the ultralow interfacial
tension. The use of the real-space technique laser scanning confocal microscopy
leads to clear, well defined images making quantitative comparisons to theory
possible and being highly instructive. Simple scaling arguments are given why
in experiment three steps of the phase separation can be observed: an inter-
facial tension driven coarsening, gravity driven flow, and finally the interface
formation. All these processes are observed in a single experiment. The first
stage can be quantitatively described by viscous hydrodynamics. Coarsening
occurs through pinch-off events. The second stage begins at a typical size of
∼ 2π times the capillary length reminiscent of the Rayleigh-Taylor instability.
The liquid phase breaks up and becomes discontinuous. There is strong di-
rectional flow in the system, but the Reynolds number remains much smaller
than unity. Finally, the macroscopic interface is formed growing upwards with
a velocity comparable to the coarsening velocity in the initial stage. Again,
viscous hydrodynamics apply with a characteristic velocity of the interfacial
tension over the viscosity.

9.1. Introduction

The study of the morphology and kinetics of phase separation processes follows a long

tradition and remains of fundamental importance [203]. The early initial stages of the

phase separation are determined by the underlying free energy landscape, whereas the
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observed morphology kinetically depends on characteristic fluid properties as well [204],

of which the viscosity and interfacial tension are the most important ones. Here, we

present a real-space study of the effects of an ultralow interfacial tension on the phase

separation kinetics in a fluid-fluid demixing colloid-polymer mixture. This is not only of

fundamental importance, but has industrial relevance as well. For example, in the food

industry extensive use is made of the properties of polymers, e.g. to invoke gelation [131],

and adding these to food suspensions leads effectively to colloid-polymer mixtures [132].

Phase separating colloid-polymer mixtures are well known to display similar be-

haviour as molecular fluid-fluid demixing systems [205]. The coexisting phases are

a colloidal liquid (rich in colloid and poor in polymer) and a colloidal gas (poor in col-

loid and rich in polymer). The origin of the phase separation lies in the entropy-driven

attraction between the colloids, which is mediated by the polymers [19,24]. It is known

from experiment [36, 37, 106, 134] and theory [102, 103, 129], that in such systems the

interfacial tension γ scales as γ ∼ kBT/σ2
c , with kBT the thermal energy and σc the

particle diameter, leading to ultralow values for the interfacial tension.

We use laser scanning confocal microscopy (LSCM) to follow the processes of phase

separation. This real-space technique leads to clear, well defined images of the several

stages of phase separation. Hence, the purpose of this work is to study the effects of

the ultralow interfacial tension and present images which we believe to be instructive

and might assist in a further development in theories on demixing.

Experimentally, the phase separation process can roughly be divided in three stages,

which will be made apparent by a consideration of the relevant length- and timescales in

demixing systems (section 9.2). Once sharp interfaces have been formed the interfacial

tension drives the coarsening of the spinodal structure (section 9.4), which is followed

by a gravity driven collapse and flow of the spinodal network (section 9.5), and finally

a sharp macroscopic interface is formed and the phase separation has completed (sec-

tion 9.6). These sections will be preceded by a brief description of the experimental

system and methods (section 9.3) and our findings will be summarised in section 9.7.

9.2. Length- and timescales

In the unstable region of the phase diagram each density fluctuation in an intially ho-

mogeneous system is energetically favourable, but fluctuations with large wavelengths

and hence shallow density gradients are thermodynamically more favourable, whereas

for short wavelengths particles only have to diffuse over short distances. This competi-

tion leads to a fastest growing mode qm within the framework of Cahn-Hilliard theory

of [206–209]

q2
m = − 1

2κ

(
∂µ

∂n

)
. (9.1)
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Here, κ is the Cahn-Hilliard square gradient coefficient [206, 207] (like the van der

Waals square gradient coefficient), n is the overall number density and µ the chemical

potential. The wavelength L ≡ 2π/qm that follows from (9.1) is a few times the particle

diameter d for colloid-polymer mixtures away from the critical point, as for example can

be verified by using theory presented in Ref. [130], see also chapter 4. As time proceeds

the system approaches its equilibrium densities and the gradients in the density get

steeper [210].

At the same time the system coarsens and L grows in the diffusive regime as [211]

L(t) =

(
kBT

η
t

)1/3

. (9.2)

A simple way to understand this diffusive coarsening is by considering the velocity of

an object of size L driven by chemical potential gradients of magnitude ∝ kBT/L, i.e.

dL

dt
=

−∇µ

f
∝ kBT/L

ηL
, (9.3)

with f the friction of magnitude ηL and η the viscosity. Integrating (9.3) immediately

leads to (9.2).

Upon the formation of sharp interfaces the interfacial tension γ starts playing a role.

Here, we will follow didactic derivations of especially Siggia [211] and Bray [212]. A

more extended scaling analysis is given by Kendon et al. [213]. The dynamics are

governed by the Navier-Stokes equations

ρDtu = η∇2u −∇p − g∆ρe3. (9.4)

The left hand side of (9.4), with ρ the mass density, Dt the material derivative and u

the velocity, captures the inertial terms and is much smaller than the viscous dissipation

-the first term of the right hand side of (9.4)- if the Reynolds number is small. The

last term accounts for the hydrostatic pressure with g earth’s acceleration, ∆ρ the mass

density difference between the two phases and e3 a unit vector pointing along gravity.

For small L gravity is not yet important and the interplay between viscous dissipation

and gradients in the pressure p due to the Laplace pressure,

η∇2u ∝ η
1

L2
u and ∇p ∝ 1

L

γ

L
, (9.5)

leads to a (capillary) velocity in the viscous hydrodynamic regime of

uc ∝ γ

η
, (9.6)

of which the prefactor was estimated to be 0.1 [211]. In extensive computer simulations

of two incompressible fluids of maximal symmetry, i.e. identical viscosity, density and

volume fraction, the prefactor was found to be 0.072 [213,214]. The magnitude of this
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interface velocity becomes comparable to the diffusive coarsening velocity of (9.3) at a

cross-over length of [211]

L ∝
√

kBT

γ
≡ LT , (9.7)

which is also the thermal length (chapter 1). From there on the system coarsens linearly

with time proportional to (9.6).

At a Reynolds number Re = ρuL/η of order one inertial terms start playing a role.

Using the capillary velocity (9.6) as characteristic velocity we find that at a cross-over

length of

Lη ∝ η2

ργ
, (9.8)

the inertial hydrodynamic regime is entered (see for example [212]). The balance be-

tween gradients in pressure (see (9.5)) and inertia,

ρDtu ∝ ρ
L

t2
, (9.9)

then leads to a coarsening of [212]

L(t) ∝
(

γ

ρ
t2
)1/3

. (9.10)

This t2/3-regime was first predicted by Furukawa [215]. Finally, the gravity term in (9.4)

becomes as large as the Laplace pressure (9.5) at [211],

L ∝
√

γ

g∆ρ
≡ Lc, (9.11)

which is precisely the capillary length Lc and the phase separation becomes gravity

driven.

During this gravity driven flow we find in our experiment that one of the phases

becomes discontinuous -in our case the heavy liquid phase- and the interface emerges

at the bottom of the container. Individual droplets sediment towards the emerging

interface. They form a structure of droplets on top of each other which resembles a

foam. For ultralow interfacial tensions the coalescence is governed by viscous forces and

inertial terms do not play a role, see chapter 7. In that case the capillary velocity (9.6)

again sets the scale and after all droplets of both phases have coalesced the system has

fully phase separated.

In molecular systems, where the interfacial tension is relatively large, inertial terms

may be expected to become important at lengths smaller than the capillary length. See

for estimates of the lengths in both molecular and colloid-polymer mixtures table 1.1

[106]. However, in experiments with molecular fluids the inertial regime has not yet

been observed [203]. Of course, the prefactor of (9.6) used in the estimate of (9.8)
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postpones the inertial regime to larger lengthscales, though this factor alone does not

suffice as explanation. In the aforementioned simulations [213, 214, 216], in which the

inertial regime is observed, it is found that the cross-over does not occur at Re = 1, but

at much larger Reynolds numbers, a further explanation of the lack of experimental

evidence for the occurence of the inertial regime. In contrast to molecular systems,

colloidal systems are expected to remain for long periods of time in the viscous regime

and -following the above scaling arguments- gravity driven flow occurs well before the

inertial regime. Furthermore, in the case of colloid-polymer mixtures inertial terms do

not play a role either during the interface formation.

9.3. Experimental system and method

We will focus on a system consisting of small poly(methylmethacrylate) (PMMA)

spheres with a radius of Rc=25 nm and poly(styrene) polymer with a radius of gyration

Rg = 14 nm, i.e. system 2 PPD25, chapter 2. Samples were prepared by mixing colloid-

and polymer-stock dispersions and diluting with decalin. The resulting macroscopic

interface always was very sharp. See figure 2.3(a) for the complete phase diagram

[107]. To study the colloid-polymer mixtures we used a laser scanning confocal head

(Nikon C1) mounted on a horizontally placed light microscope (Nikon Eclipse E400),

see figure 2.4(a). The microscope detects the fluorescence of excited dye in the colloids,

while solvent and polymers remain dark. Hence the colloidal rich phase (liquid) appears

bright, whereas the colloidal poor phase (gas) appears dark. We used low numerical

aperture objectives in order to have a larger field of view and to obtain some three

dimensional information instead of imaging only a very thin slice. Since the relavant

lengthscales are not of the order of the particle diameter as in most LSCM-studies,

but of the order of at least several µm the sectional power of the LSCM can still be

exploited.

In the present chapter we focus on a sample with φc = 0.076 and φp = 0.50 (statepoint

I in figure 2.3(a)), which is reasonably close to the critical point. The complete phase

separation took about 20 minutes, of which the initial coarsening took 50 s (section 9.4),

the gravity driven flow in the middle of the sample 5 minutes (section 9.5) and the

interface formation the remaining time (section 9.6). Other statepoints show basically

similar behaviour, except if close to the binodal the metastable region is entered where

phase separation proceeds via nucleation and growth.

The system has been extensively characterized; we obtained an interfacial tension of

γ = 2 10−7 N/m by analyzing the thermally induced capillary waves in a similar manner

as done in [134], see chapter 6, and a capillary length of Lc = 17.6 µm by measuring

the colloidal gas-colloidal liquid interfacial profile close to a wall [106], see chapter 5.

The densities of the gas and liquid phases have been measured with an Anton-Paar

density meter resulting in a density difference of ∆ρ = 53 kg/m3 and via (9.11) to
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γ = 1.6 10−7 N/m, in good agreement with the capillary wave approach. We will use

the value obtained from the capillary length, since this method is more suited for this

relatively large interfacial tension than the capillary wave approach. Furthermore, the

viscosities of the two phases have been measured on an Anton Paar Physica MCR300

rheometer giving ηG = 8 mPa s for the gas (G) phase and ηL = 31 mPa s for the liquid

(L) phase.

The diffusion coefficients in the gas and liquid phase have been measured by per-

forming real-space fluorescence recovery after photobleaching experiments (real-space

FRAP) [107,217]. Since this technique is not standard yet, the experimental details are

given in the Appendix of this chapter explicitly. The diffusion coefficient in the liquid

phase is DL = 4.9 10−13 m2/s and in the gas phase DG = 1.9 10−12 m2/s, measured

after phase separation had completed.

During the homogenization of the colloid-polymer mixture air bubbles can be present

in the system. When they escape the spinodal structure is destroyed and this immedi-

ately leads to individual drops. Besides that, in the top of the sample drops are formed

much earlier. Therefore, we carefully homogenized the sample to minimize the number

of air bubbles and always imaged at the final interface position.

9.4. Initial phase separation

Directly after homogenization the phase separation starts. From the bicontinuous

structure in figure 9.1 it is immediately clear that the system separates through spinodal

decomposition. Already in the first images, which are taken 3 s after homogenization,

the interfaces are sharp and the system coarsens linearly with time as will be shown

below. This is similar to the observations made in [45], where the focus of the work

lay on the initial stage of phase separation. From the estimates of (9.1) and (9.7) we

find that the linear Cahn-Hilliard regime takes a very short time, as does the diffusive

regime with the t1/3 coarsening. Colloids only have to diffuse over a few times their

own diameter before the viscous hydrodynamic regime is reached. From the colloidal

diffusion coefficients in the gas and liquid phase –as measured by the real space FRAP

technique– we see that the viscous regime is reached in less than a second and therefore

the preceding regimes are not observed.

The system can coarsen via coalescence or pinch-off events. In 2D such events are

similar, but in 3D they are distinctly different and here the system mostly coarsens

through pinch-off. In the bottom row of figure 9.1 such an event is marked and the

insets in figure 9.1(e) show a zoom in on this event. During a pinch-off the liquid

bridge drains and snaps more or less symmetrically at a certain point. According to

simulations by Cates and co-workers [216] the retracting tips might evaporate a bit,

but we do not have sufficient space and time resolution to determine this. There is

no recoil and an overdamped relaxation. Many more similar events can be observed,
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(a) (b) (c)

(d)

(e)

(f)

Figure 9.1. LSCM images (1400x1400 µm2) of a phase separating colloid-
polymer mixture. Gravity points downwards (in all images). Directly after
homogenization a spinodal structure is observed (a, t =3 s), which immediately
coarsens in time (b, t = 7 s) and (c, t = 11 s). From (d, t = 22 s) it is evident
that coarsening occurs through pinch-off instead of coalescence and one can
follow such events in time (e, t = 33 s) and (f, t = 45 s). The white circle
marks such an event. The insets (109x109 µm2) zoom in on the pinch-off event
(from left to right, t = 29, 33, 37 s).

especially of snapping liquid necks surrounded by gas phase, since the liquid has a

stronger fluorescence than the gas phase.

The collective overdamped motion of the interface leads to a coarsening of the spino-

dal structure. One possible way to analyze the structure was clearly demonstrated by

Hashimoto et al. [218], who -for one of the first times- performed LSCM experiments

on spinodally demixing polymer mixtures and paid special attention to the topology

of the spinodal structure. Here, we are interested in the coarsening rate, which can

best be quantified by performing discrete Fourier transforms of the LSCM-images, see

for example figure 9.2(a), which shows the Fourier transform of figure 9.1(c). The

Fourier transforms are radially averaged, see figure 9.2(b). In fact, the structure fac-

tors obtained in such a manner scale dynamically in time. Although we perform a

Fourier transform on a 2D image Guenon et al. [219] showed that the resulting radially

averaged “structure factor” agrees remarkably well with results from light scattering

experiments, where the interfaces and not the domains are seen. Binder and Stauffer
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Figure 9.2. (a) Discrete Fourier transform of the LSCM image in fig-
ure 9.1(c). (b) Radial averages of the Fourier transforms for times 7, 11 and
22 s showing a shift in the position of the maximum intensity to smaller k val-
ues. One pixel in k-space corresponds to 2π over the image width Limage. The
intensity increase at small k-values stems from instrument properties and con-
tains no relevant physical information. (c) Dynamical scaling of the structure
factor as a function of I/Imax vs. k/kmax for the radial averages of (b). The
full line is the prediction for off-critical demixing systems by Furukawa (9.13).
From the positions of the maximum intensity the characteristic length L can
be obtained, which is plotted as a function of time in (d), where the full line
is a linear fit up to the first 30 s.

predicted that the structure factor, which we recognize here directly as I(k, t), should

scale dynamically as [220]

I(k, t) = k−3
maxF (k/kmax) (9.12)

with kmax the time-dependent wave-vector at the maximum intensity Imax ≡ I(kmax, t)

at time t and with F a universal scaling function. This scaling is not directly observed

here, and it has been suggested [221–223] to divide the left hand side of (9.12) by∫
I(k′, t)k

′2dk′, which is explained in [45]. This integral is hard to perform in this real

space experiment due to lack of statistics and effects of the objective properties. By
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dividing I(k, t) by Imax this problem is circumvented and I(k, t)/Imax collapses onto a

single master curve as a function of k/kmax(t), as shown in figure 9.1(c). The shape

of the curve is quite well described by Furukawa’s theory [224] for off-critical demixing

systems,

I = Imax

(
3(k/kmax)

2

2 + (k/kmax)6

)
. (9.13)

The position of the maximum intensity shifts inwards as a function of time. The

position kmax corresponds to a length L = Limage/kmax, where Limage is the image

width. In figure 9.2(d) L is plotted as a function of time. There is an initial linear

increase in time; L coarsens with a velocity of 1.94 µm/s over the first 30 s. For

longer times determining the typical size L by Fourier transforming becomes more

unreliable. From (9.6) and the quantities for the interfacial tension and the viscosities

(section 9.3) a velocity of γ/ηL ∼ 5.2 µm/s up to γ/ηG ∼ 20 µm/s is obtained, which is

directly connected to the measured coarsening velocity, but in a complicated manner.

As mentioned in section 9.2 direct simulations [213,214] point to a prefactor of 0.072 in

(9.6), but the simulations were performed for a symmetric fluid-fluid mixture of equal

viscosity, which is not the experimental situation. Considering the spinodal structure as

constructed from many individual fluid (both gas and liquid) cylinders can shed some

light on the different terms at play. The breakup rate of a viscous cylinder surrounded

by another viscous fluid depends on both the viscosities, the initial distortions and the

radius of the cylinder [225]. Taking only the inner viscosity into account can give a

reasonable estimate of the breakup rate [37, 66] and leads to γ/ηL for liquid and γ/ηG

for gas cylinders. In case of a cylinder the prefactor of (9.6) can become of the order of

0.01 or smaller [66], but the prefactor might be much larger given the already heavily

curved (i.e. distorted) interconnected structure in the spinodal case. Finally, since

there is eventually approximately 70 % gas and 30 % liquid phase, the gas phase must

consist of thicker “cylinders”, which break up slower. Since both phases initially stay

continuous, both breakup rates, and hence both velocities (γ/ηL and γ/ηG), might play

a role. The measured velocity is thus a non-trivial combination of the aforementioned

terms, eventually leading to 1.94 µm/s.

9.5. Gravity driven flow

The spinodal structure starts to collapse under its own weight after about 36 s at

L = 75 µm. There is still some coarsening. From about 49 s, i.e. L ∼ 100 µm the

scattering rings flatten off and there is clear gravity driven flow, see figure 9.3(a). The

cross-over from the visous regime to the gravity driven regime is not sharp, but takes

about 15 s. Since relatively heavy and light material are mixed together the gravity

driven flow is reminiscent of the Rayleigh-Taylor instability [40, 226]. In our case the
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(a) (b) (c)

(d) (e) (f)

Figure 9.3. LSCM-images (1400x1400 µm2) of gravity driven flow in a phase
separating colloid-polymer mixture. In (a, t = 56 s) the spinodal structure is
collapsing under its own weight leading to strong flow in (b, c and d: t = 72,
89 and 106 s). Not much coarsening occurs. In (d) the onset to a transition
with vertical lanes is observed. In (e, t = 134 s) and (f, t = 178 s) individual
droplets become more apparent. The white box in (e) marks a Rayleigh insta-

bility.

fastest growing mode of the Rayleigh-Taylor instability is much larger than the capillary

length, but modes with wavelengths of 2πLc are already unstable, in good agreement

with the observations and the scaling estimate (9.11).

From then on there is a strong flow as well as backflow in the system, see figure 9.3(b)

and (c). Sedimenting objects drag other objects along with them leading to directional

flow (lane-like structures) and larger sedimenting objects. The largest droplet shaped

objects have a maximum size of ∼ 200 µm and sediment with a velocity of up to about

70 µm/s. The Reynolds number, however, remains much smaller than one (∼ 10−3).

There is not much coarsening in the width of the lanes as can be seen by comparing

the structures in figure 9.3(c) and (d). The vertical lanes have a width of about 100

µm decreasing to 30 µm at later times. For the present statepoint the liquid phase

is the minority phase occupying approximately 30 % of the volume. It breaks up,

whereas the gas phase remains continuous. During the flow a transition to regular

lanes of heavy phase going down and light phase going up can occur as seen in a

mixture of teflon spheres and xanthan polymer [198, 227] and in a mixture of silica
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colloids and poly(dimethylsiloxane) in cyclohexane [106]. Recently, Wysocki and Löwen

theoretically studied similar phenomena in driven colloidal mixtures and found for not

too large driving forces good agreement with the classical Rayleigh-Taylor instability

[228]. Such formation of lanes clearly is a very efficient way to phase separate. In

experiments under shear such lanes are often observed, see for example [203, 229, 230],

and in the present system the onset of the transition is observed, see figure 9.3(d),

but does not reach the point of distinct lanes. Apparently, either gravity is not strong

enough to drive this transition or it takes too long, such that most of the material has

already separated.

During the flow not many individual drops are formed. Only at the final stages of

the flow more and more droplets can be observed, see figure 9.3(e) and (f). The liquid

cylinders are then thin enough that a Rayleigh instability [40] can grow and cause

breakup, indicated by the white box in figure 9.3(e). Furthermore, the sedimenting

objects disturb each other and this causes additional breakups.

9.6. Macroscopic interface formation

In the present example, the interface grows from the bottom. The elongated drops

become more spherical again close to the forming interface, while the gravity driven

structure is still present well above the interface. At the end of the gravity driven

flow drops coalesce with their bulk phase, see figure 9.4. Gas droplets inside the liquid

phase follow the same pattern. The coalescence is a three step process; the continuous

phase drains, a first connection is made, and the material is pushed into the bulk

phase, see chapter 7. The first step is time consuming. In the second step the dynamic

roughness of the fluid interfaces plays an important role and facilitate the formation of

a connection [134]. Moreover, rising gas bubbles induce the breakup as well as can be

seen in figure 9.4(e), (f) and (g). In the third step the dynamics are initially governed

by viscous hydrodynamics leading to a linear time dependence of the coalescence [169].

Since the interfacial tension is so small, this remains the case and inertia does not

become important. In case of molecular fluids it normally does [170].

In the last stages of the interface formation the interface rises with a velocity of

approximately 1.5 µm/s very similar to the coarsening velocity in the viscous hydrody-

namic regime, i.e. proportional to (9.6). Structurally, it is similar to the collapse of an

inverse foam. Finally, a sharp interface is formed, see figure 9.4(d). Some individual

drops still have to coalesce, especially small droplets. Their sedimentation velocity (6.4

µm/s for a droplet of radius 20.5 µm) is in good agreement with the modified Stokes

equation for sedimenting spheres with a finite viscosity [40], see chapter 7.
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(c)

(b)(a) (e)

(d)

(f)

(g)

Figure 9.4. LSCM-images (1400x1400 µm2) of interface formation in a
colloid-polymer mixture taken after 9, 13, 16 and 20 minutes after homoge-
nization (a-d). In (e-g) an example (171x171 µm2) is shown of a coalescence
event induced by the gas bubble with (f) 5 s and (g) 15 s after (e).

9.7. Conclusion

Simple scaling arguments have been given for the consecutive stages of fluid-fluid

phase separation in a colloid-polymer mixture. In principle a different route is expected

to be followed than in molecular systems, where the inertial regime is entered before

gravity driven flow, although in experiments with molecular fluids the inertial regime

has not yet been observed. The scaling arguments make evident that in experiment

three succesive steps can be observed. In the first step the spinodal pattern coarsened by

means of pinch-off events. The preceding linear Cahn-Hilliard regime and the diffusive

regime were experimentally not observed. Colloids only have to diffuse over a few times

their own particle diameter to reach the viscous regime and this is rapidly so, as can be

understood from the diffusion coefficients, which have been measured by the real space

FRAP technique. In fact, only in a few systems the linear Cahn-Hilliard regime has

been observed, e.g. in polymer-polymer systems [231–233], and the crossover between

the diffusive and the viscous regime has been observed for example in [234, 235] for

binary fluid mixtures.
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By Fourier transforming the LSCM images the characteristic size L was seen to

increase linearly with time proportional to γ/η (9.6), the characteristic velocity in the

viscous hydrodynamic regime, although the prefactor and the precise definition of η in

(9.6) are difficult to estimate given the large number of terms at play and the complexity

of the spinodal structure. At typical size L ∼ 2πLc the structure collapsed due to gravity

reminiscent of the Rayleigh-Taylor instability. There was still some coarsening. The

minority phase, the liquid, broke up and became discontinuous for reasons possibly

related to the breakup rates of fluid cylinders. Due to the flow the liquid and gas

material quickly separated and the interface grew upwards via droplet coalescence.

The growth rate was similar to the coarsening rate in the initial stage and the system

remained in the viscous hydrodynamic regime. Finally, the use of LSCM leads to

clear and well-defined images, especially in comparison to light microscopy where we

had observed similar behaviour [106], which only was fully understood after the LSCM

experiments on a comparable system had been performed. We hope that the beauty and

quality of the images are instructive and might inspire further theoretical development.
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Appendix: Real-space fluorescence recovery after photo-

bleaching

The diffusion coefficients of colloids in the liquid and gas phase have been determined

by real-space fluorescence recovery after photo-bleaching experiments in the following

manner. We bleached a cuboid of (x, y)-dimensions 40 µm2 and of thickness ∼ 5 µm by

illuminating the sample with a 405 nm laser. Here, we used a high numerical aperture

lens (NA 1.4, 100x) to bleach with sharper edges. The dye incorporated in the particles

was easily destroyed. The subsequent recovery of intensity was monitored by using a

488 nm laser. Figure 9.5 shows the bleached cube at time t = 0 s (a) and after 28 s

(b). We integrated the fluorescent intensities along the four (x, y) sides of the cube,

corrected for the objective properties by dividing with the fluorescent intensity far away

from the cube, and then normalized the intensity profiles. Averaging in the x direction

of figure 9.5(a) gives the profiles along the y direction shown in figure 9.5(c). The other

two profiles contain similar information. In [217] Simeonova and Kegel show the details

of this technique and derive that the intensity profile along one side at time t can ideally

be described by

I(x; t) =
1

2

(
1 − erf

[
x − x0

2
√

Dt

])
, (9.14)

with D the diffusion coefficient. In practice, broadening of the profile contained in

the square root-term is also caused by the objective properties and we therefore write√
Dt + b =

√
C instead of

√
Dt with b a constant. The full lines in figure 9.5(c) are

the fits to (9.14) with x0 and C as fitting parameters. By plotting the fitted width

C against time, see figure 9.5(d), we obtain from the slopes a diffusion coefficient of

DL = 4.9 10−13 m2/s for the liquid (L) phase. The diffusion coefficient of the gas

can be measured in a similar way, but since the diffusion is much faster, it is more

difficult to measure. In figure 9.5(d) the top two lines correspond to the measured

widths for the gas (G) phase followed over a shorter time period. The linear fits give

DG = 1.9 10−12 m2/s, i.e. 3.7 times faster than diffusion in the liquid phase. The order

of magnitude of the diffusion coefficients is in good agreement with the prediction from

Stokes-Einstein behaviour. Note that a similar technique can in principle also be used

to study diffusion across an interface or in wetting layers.
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Figure 9.5. (a-b) LSCM images (140x140 µm2) of bleached cubes in the
liquid phase at t = 0 s (a) and t = 28 s (b). In (c) the intensity profiles along
y of the image in (a) are shown. The line is a fit to (9.14). In (d) the square
root of the width of the profile is plotted as a function of time (minus the time
t0 between bleaching and the first recorded image) both for the liquid (circles)
and the gas phase (squares) and for the top (filled symbols) and bottom (open
symbols) sides. The full line is a linear fit. The slopes of these lines correspond
to the diffusion coefficients in liquid and gas phase. The LSCM scans pixel per
pixel from left to right and top to bottom, which takes quite some time when
bleaching the cube. This explains the offset for the two lines in the same phase,
whereas the difference between liquid and gas is a direct consequence of the
difference in diffusion coefficients (DL < DG).
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[126] P.P.F. Wessels, M. Schmidt, and H. Löwen. J. Phys.: Condens. Matter, 16:L1, 2004.
[127] P.G. De Gennes. Rev. Mod. Phys., 57:827, 1985.
[128] S. Dietrich. In C. Comb and J.L. Lebowitz, editors, Phase transitions and critical phenomena,

volume 12, pages 1–218. Academic, New York, 1988.
[129] J. M. Brader, R. Evans, M. Schmidt, and H. Löwen. J. Phys.: Condens. Matter, 14:L1, 2002.
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Summary

This thesis reports on a study of the behaviour and properties of interfaces with an

ultralow interfacial tension. In the first chapter it is explained that an ultralow inter-

facial tension has several important consequences both for the statics and dynamics

of interfaces; some lengthscales increase, whereas others decrease. At the same time

the system becomes intrinsically slow and it is concluded that for the dynamics life at

ultralow interfacial tension is similar to life at low Reynolds number. The above makes

the study relevant from a fundamental point of view. The experimental systems are

colloid-polymer mixtures, which are also used for example in the food industry. Similar

mixtures are present in the living cell as well. This gives the present study industrial

as well as biological relevance.

In chapter 2 the model colloid-polymer mixtures are introduced, i.e. a silica colloid +

poly(dimethylsiloxane) mixture in cyclohexane and two different poly(methylmethacry-

late) + poly(styrene) mixtures in decalin. Furthermore, the experimental setup is

described, which consists of a horizontally placed microscope used either in the trans-

mission or in the laser scanning confocal mode. It turns out that the techniques as well

as the mixtures are complementary.

The observations of the phase behaviour of the first experimental system inspired

the theory presented in chapter 3. Here, we extend the free volume theory for mixtures

of hard sphere colloids and ideal polymers to include curvature effects and polymer-

polymer interactions. As a result more polymer is needed to induce gas-liquid phase

separation. In addition, the fluid-crystal coexistence region becomes more pronounced.

The experimental binodals lie between the ideal and the interacting polymer theory.

The theoretical model of chapter 3 is extended further to calculate the interfacial

tension and the wetting behaviour (chapter 4). The interacting polymer model lowers

the gas-liquid interfacial tension and predicts the wetting transition to occur at higher

polymer concentrations as compared to the ideal polymer model. These predictions are

compared to experiment in the next chapter.

In chapter 5 we experimentally study the gas-liquid interface in the vicinity of a ver-

tical hard wall. The interfacial profile is accurately described by the interplay between

the Laplace and the hydrostatic pressure. From this description the capillary length

is obtained, which is at most tens of microns. The magnitude of the capillary length

is compared to theory, where qualitative agreement is found. Determining the wetting

state of the system turns out to be a subtle experimental task, but once the location of
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the wall is accurately determined, the contact angle is found as well. It turns out that

the system shows complete wetting for all statepoints measured.

In chapter 6 we show how to tune length- and timescales, by using colloidal suspen-

sions, in such a way that the fluctuating fluid-fluid interface can be seen directly in

real space with a resolution close to the particle size. Experimental results for static

and dynamic correlation functions validate the capillary wave model down to almost

the particle level. We are able to obtain the ultra-low interfacial tension, the capillary

length and the capillary time, which are found to be in agreement with independent

measurements.

It turns out that capillary waves play a crucial role in droplet coalescence (chapter 7).

The coalescence is a three step process: (i) drainage of the continuous film between

droplet and bulk phase, (ii) breakup of the film, and (iii) the growth of the connection.

We observe that drainage becomes very slow and eventually the breakup of the film is

induced by thermal capillary waves. The waiting time for a certain height fluctuation

is an important parameter for the kinetics of the process and can be directly obtained

from experiment. Van der Waals forces need not be invoked. During the third stage

we observe that the radius of the connecting neck grows linearly with time both for gas

bubbles and liquid droplets with an order of magnitude that is in good agreement with

the capillary velocity.

The thermal roughness is also believed to be important in droplet snap-off processes.

In chapter 8 we study the possibility of observing a regime where thermal noise domi-

nates over interfacial tension. To this end we study a colloid-polymer mixture with a

relatively high and a mixture with a relatively low interfacial tension. In the first system

the shape of the neck at snap-off, the number of satellite drops, and the radius of the

neck as a function of time are all in agreement with the situation that the interfacial

tension is dominant. In the second system the symmetry and appearance at snap-off

does suggest that thermal noise becomes dominant.

In the final chapter, chapter 9, we are able to follow the phase separation process in

great detail due to the ultralow interfacial tension. Simple scaling arguments are given

why in experiment three steps of the phase separation can be observed: an interfacial

tension driven coarsening, gravity driven flow, and finally the interface formation. All

these stages can be observed in a single experiment. The first stage can be quantitatively

described by viscous hydrodynamics. Coarsening occurs through pinch-off events. The

second stage begins at a typical size of 2π times the capillary length reminiscent of the

Rayleigh-Taylor instability. The liquid phase breaks up and becomes discontinuous.

There is strong directional flow in the system. Finally, the macroscopic interface is

formed growing upwards with a velocity comparable to the coarsening velocity in the

initial stage. Again, viscous hydrodynamics apply with a characteristic velocity of the

interfacial tension over the viscosity.



Samenvatting voor iedereen

Oppervlakken ofwel grensvlakken zijn overal aanwezig en spelen een belangrijke rol op

grote en kleine schaal. Ieder oppervlak heeft een bepaalde spanning, die oppervlakte– of

grensvlakspanning wordt genoemd. Deze grensvlakspanning is microscopisch gezien het

gevolg van krachten tussen moleculen, maar uit zich macroscopisch op vele manieren.

Zo kunnen door de grensvlakspanning sommige insecten zoals schaatsenrijdertjes over

water lopen, zijn druppels rond en staat het water-oppervlak gekromd aan een glaswand.

De relatie tussen interacties op een microscopische schaal, maar verschijnselen op een

macroscopische schaal heeft vele beroemde mensen uit de wetenschap aangesproken,

waaronder de Nederlander Johannes Diderik van der Waals, die in 1892 voor het eerst

een sluitende theoretische beschrijving van het gas-vloeistof grensvlak gaf. In dit proef-

schrift zijn we vanuit een fundamenteel oogpunt verder op deze relatie ingegaan door

systemen te bestuderen met een zeer lage grensvlakspanning.

Een echt lage grensvlakspanning kan op verschillende manieren worden gerealiseerd,

maar de beste manier is door gebruik te maken van een modelsysteem van het gas-

vloeistof grensvlak. Dit modelsysteem bestaat uit een mengsel van kleine bollen en

lange ketens in een oplosmiddel. De bolletjes zijn dusdanig klein dat ze niet zomaar

naar beneden zinken, maar onder invloed van de temperatuur voortdurend in beweging

zijn (de Brownse beweging). Ze worden collöıden genoemd en zijn een miljoen keer

kleiner dan een centimeter. De ketens zijn zo dun als de oplosmiddel-moleculen, maar

zo lang als de collöıden groot zijn. Ze vormen in het oplosmiddel een soort zeer open

kluwen wol en worden polymeer genoemd. Dit collöıd-polymeer mengsel is schematisch

weergegeven in figuur 1. Wanneer de concentraties van zowel collöıden als polymeren

hoog genoeg zijn, zal het systeem zich spontaan scheiden in een fase rijk aan collöıden,

maar arm aan polymeren, en een fase arm aan collöıden, maar rijk aan polymeren.

Deze collöıd-rijke fase lijkt in zekere zin op een vloeistof, terwijl de collöıd-arme fase

op een gas lijkt. Deze mengsels worden ook veel gebruikt in de voedingsmiddelen-

industrie. Bovendien komen in de (menselijke) cel soortgelijke deeltjes voor. Dit geeft

het onderzoek naast een fundamentele, ook een industriële en biologische relevantie.

In het onderzoek beschreven in dit proefschrift hebben we gebruik gemaakt van ver-

schillende collöıd-polymeer mengsels. Hun karakteristieke eigenschappen staan beschre-

ven in hoofdstuk 2. Daarbij is de grootte van de collöıden belangrijk, aangezien dit de
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Figuur 1. (a) Schematische weergave van een fasegescheiden collöıd-polymeer
mengsel. De bovenste fase lijkt op een gas van collöıden, terwijl de onderste
fase op een vloeistof van collöıden lijkt. In (b) is een foto te zien van een
fasegescheiden collöıd-polymeer mengsel. Als we op het grensvlak van (b) in-
zoomen, verwachten we dat dit grensvlak vlakbij de wand omhoog komt, zoals
schematisch weergegeven is in (c). Dit is in ons onderzoek ook aangetoond
(hoofdstuk 5), waarbij de randhoek overigens voortdurend 0◦ blijkt te zijn.

grensvlakspanning bepaalt. Vervolgens is het grensvlak bestudeerd met zowel licht mi-

croscopie als confocale microscopie. De laatste is een moderne microscopie techniek,

waarbij veel nauwkeuriger kan worden gekeken.

Alvorens het grensvlak daadwerkelijk te bestuderen, wilden we eerst vanuit een theo-

retisch oogpunt het fasegedrag beter begrijpen. In een bekend theoretisch model voor de

fasescheiding wordt het polymeer zeer eenvoudig beschreven en in hoofdstuk 3 hebben

we dit model uitgebreid en het polymeer realistischer beschreven. Een belangrijk gevolg

hiervan is dat er in de realistischere polymeer-beschrijving meer polymeer nodig is om

het systeem te doen ontmengen. Het blijkt dat het experiment vaak tussen het een-

voudige en het verbeterde model in ligt, wat aangeeft dat het kwantitatief beschrijven

van het fasegedrag zeer lastig is.

Vervolgens hebben we dit model verder uitgebreid om ook de grensvlakspanning te

kunnen berekenen. Dit is gedaan in hoofdstuk 4. Daarbij hebben we gebruik gemaakt

van de Van der Waals-theorie. Het blijkt dat de grensvlakspanning lager is, wanneer

het polymeer realistischer wordt beschreven. Bovendien hebben we ook de randhoek

berekend, die het gas-vloeistof grensvlak met een harde wand maakt, zoals aangegeven

in figuur 1 (c). Vanaf een bepaalde concentratie aan polymeer blijkt dat de rand-

hoek niet langer 0◦ is, wat volledige bevochtiging wordt genoemd, maar groter dan 0◦

wordt, wat gedeeltelijke bevochtiging wordt genoemd. Deze overgang vindt bij hogere

polymeer-concentraties plaats, wanneer het polymeer realistischer wordt beschreven.
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Figuur 2. Bovenste rij: De golvende ruwheid van een grensvlak waargenomen
met een krachtige microscoop. Het beeld is slechts 17.5 µm bij 80 µm. Onder-
ste rij: Een collöıdale vloeistof druppel, die samenvloeit met de bulk vloeistof-
fase. De schaalbar is 5 µm. De druppel is 22 µm groot. De drie opeenvol-
gende stappen van samenvloeien zijn duidelijk te zien. De eerste connectie die
wordt gemaakt is erg dun (aangegeven door het pijltje). Er worden zelfs twee
verbindingen gemaakt, wat ervoor zorgt dat gasfase wordt “ingevangen”.

In hoofdstuk 5 zijn de eerste experimenten beschreven. Daartoe zijn verschillende

collöıd-polymeer mengsels vlakbij een wand bestudeerd (figuur 1) met de twee micro-

scopie technieken. Het blijkt dat de kromming van het grensvlak van het gas-vloeistof

systeem bepaald wordt door een balans tussen twee verschillende krachten, namelijk de

zwaartekracht en de kracht ten gevolge van de grensvlakspanning. Door hier gebruik

van te maken kan een karakteristieke lengte worden bepaald, die de capillaire lengte

wordt genoemd, zelfs al is deze lengte duizend keer kleiner dan in systemen met een

hoge grensvlakspanning. Bovendien blijkt dat het systeem altijd volledig bevochtigend

is, in tegenspraak met de theoretische modellen, wat aangeeft dat de theorie nog verder

ontwikkeld moet worden.

Vervolgens is het vrije grensvlak bestudeerd in hoofdstuk 6. Het is al lang bekend dat

de temperatuur, die de collöıden in beweging houdt, ook het grensvlak laat bewegen.

Dit wordt echter tegengegaan door de grensvlakspanning. Aangezien de grensvlakspan-

ning in normale (moleculaire) systemen relatief groot is, zorgt dit ervoor dat de ther-

mische beweging van het grensvlak extreem klein is en zelfs niet met behulp van een

microscoop kan worden waargenomen. Aangezien in ons systeem de grensvlakspanning

echter heel klein kan worden, wordt de beweging van het grensvlak door de tempera-

tuur toch aanzienlijk en blijkt dat de dynamische ruwheid inderdaad direct kan worden

waargenomen. De ruwheid wordt opgebouwd uit zogenaamde capillaire golven. Dit is
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te zien in figuur 2. Het blijkt hierbij dat ons beeld van zo’n ruw grensvlak verrassend

goed werkt.

Zoals te zien is in figuur 2 speelt de golvende ruwheid van het grensvlak ook een

belangrijke rol in de druppel-coalescentie (hoofdstuk 7). Het proces van druppel-

coalescentie verloopt in drie stappen. In de eerste stap stroomt het laagje gas tussen

druppel en bulk fase weg, in de tweede stap ontstaat er een verbinding tussen druppel

en bulk vloeistof en in de derde stap wordt de druppel in de vloeistof uitgeknepen. In

moleculaire vloeistoffen is de tweede stap ongrijpbaar gezien de kleine fluctuaties, maar

het derde plaatje in de onderste rij van figuur 2 laat nu voor het eerst duidelijk zien dat

er een zeer dunne verbinding wordt gemaakt tussen twee elkaar toevallig ontmoetende

golfjes. In het vierde plaatje is goed te zien dat de verbinding gegroeid is. Het blijkt in

dit geval dat de groei lineair gaat met de tijd. Dit lineaire regime is zeer lastig te meten

in moleculaire vloeistoffen, maar kan hier dankzij de ultralage grensvlakspanning goed

worden bestudeerd.

Het blijkt dat de ruwheid van het grensvlak ook een belangrijke rol speelt in het

opbreken van druppels, het tegenovergestelde proces van de druppel-coalescentie. Dit

wordt beschreven in hoofdstuk 8. Hierin is te zien dat wanneer de grensvlakspanning

laag genoeg is, het opbreken zich anders manifesteert. Dit is nu voor het eerst kwalitatief

waargenomen in het experiment, maar de kwantitatieve analyse laat vooralsnog op zich

wachten.

Dit proefschrift besluit met een beschrijving van de daadwerkelijke ontmenging in

hoofdstuk 9. In dit ontmeng-proces zijn zowel de vorming als de coalescentie van

druppels heel belangrijk. Opnieuw blijkt dat alles in detail kan worden bestudeerd

dankzij de lage grensvlakspanning. Het blijkt dat de krachtenbalans die de snelheden

bepaalt in de druppelcoalescentie en druppelvorming, ook de snelheid bepaalt in de

vorming van de ontmengende structuren. Bovendien valt het gehele proces met behulp

van een zeer beperkt aantal vloeistof-eigenschappen goed te beschrijven.
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