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C 1

I

Abstract

We introduce the field of picosecond ultrasonics, sketch its development and explain the
underlying principle of operation. The application of short strain packets is addressed in
diverse research areas such as semiconductor technology, nano-imaging, and fundamental
condensed-matter physics. A new and unconventional way to generate and detect coher-
ent, longitudinal acoustic wavepackets of high amplitude and with terahertz-frequency
components is presented and will be the topic of this thesis.

1.1 Historical perspective

Ever since the early days of mankind, short strain pulses have been used to mold
and characterize condensed matter [1]. Starting with pieces of stone, craftsman-
ship readily evolved with the discovery of metals and alloys, which allowed for
plastic deformations without losing their internal strength. The products of this
evolution can still be admired in museums all over the world. On the other hand,
materials characterization by simply tapping has evolved into a wide range of so-
phisticated echoscopic methods, that find their application in fields as diverse as
seismology, underwater navigation, medicine, and nondestructive testing [2, 3].

The spectrum of sound waves covers a window of over 15 orders of mag-
nitude. Figure 1.1 shows this acoustic frequency spectrum together with some
important applications in technology and everyday life. As the acoustic frequency
scales up, the corresponding wavelength shifts down to regimes that are of inter-
est for modern technological applications. Next to the separation in frequency,
one can distinguish sources of sound by their degree of coherence. Similar to the
difference between a laser and a light bulb in optics, a coherent packet of sound

11



12 Chapter 1 Introduction

F 1.1 Acoustic-wave spectrum between 100 and 1015 Hz, with corresponding time
scale in seconds. Shaded blocks denote the typical application windows of sound waves
in technology and everyday life. Rectangle denotes the frequency range of the picosecond
acoustic pulses that form the topic of this thesis.

will have properties that are fundamentally different from an incoherent spectrum
of vibrations. In this thesis we will limit ourselves to the generation mechanisms
for coherent longitudinal acoustic waves, and more specifically the formation of
short, stable acoustic pulses.

For many years, the frequency limits for coherent acoustic pulse generation
have been merely technological. The development of high-frequency acoustic vi-
brations can be traced back to the discovery of the piezoelectric effect by Pierre
Curie [4]. After many years of research of acoustics in liquids, the first appli-
cations of ultrasound in condensed matter were developed by Sokolov [5]. The
field of solid-state ultrasonics was greatly accelerated by the development of high-
quality piezoelectric transducers [6], and was extended into the gigahertz regime
by Bömmel and Dransfeld [7] using microwave cavities. Although frequency
generation up to 114 GHz has been reported [8], the conventional electro-acoustic
methods reach their practical limit around several tens of gigahertz. In 1975, Grill
and Weis [9] reported surface generation of coherent phonons in the terahertz
range using direct absorption of infrared laser radiation by a piezoelectric crystal.
Although these results were not reproduced, it showed that other avenues exist to
generate coherent terahertz phonons.

Among the variety of methods, one avenue of research deserves some special
attention by its close connection to the experiments described later on in this the-
sis. This involves the interactions between high-frequency acoustic waves and the
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electronic levels of impurity atoms embedded in the host lattice. The interaction
between ultrasonic waves and the Zeeman-split ground-state levels of paramag-
netic impurity ions was developed experimentally by Shiren [10], and described
theoretically by Jacobsen and Stevens [11]. Tucker [12] showed that, after inver-
sion of the electronic system, it may release its energy in the form of stimulated
emission of phonons. An important step forward was made by replacing the para-
magnetic ions with transition metal ions [13], which have excited-state levels that
are connected through a single-phonon transition at terahertz frequencies. Several
experiments were performed on stimulated phonon-emission in various systems
[13–16], but most of them could be explained by incoherent rate-equations. The
question of coherence of the emitted terahertz phonons was only addressed by
Overwijk et al. [17], who managed to switch between incoherent and coherent
phonon emission by changing the concentration of excited impurity ions.

A completely new field of ultrasonics was opened up by the introduction of pi-
cosecond pulsed lasers [18, 19], allowing for relatively direct generation of pres-
sure pulses in an absorbing material. For application as a transducer material,
metallic films are very suitable because of their short optical absorption length
and the fast response of the lattice via the thermoelastic mechanism. Strain wave-
packets are ultimately limited in width by this skin depth, that corresponds to an
acoustic frequency spectrum up to several hundreds of gigahertz [19, 20]. How-
ever, the finite electronic transport and heat diffusion during the first moments
after excitation [21–23] limit the generation of these high-frequency components
to only the thinnest of metallic films.

1.2 Picosecond Ultrasonics

As an extension of conventional ultrasonics into the nanometer size-regime, the
method of picosecond ultrasonics has found wide application as an imaging tool
in scientific and industrial environments [20–33]. The small width of the strain
pulses sets a limit to the spatial resolution that can otherwise only be achieved
using x-ray radiation. Most of the early publications in this field used thin metal
films for the generation and detection of picosecond strain pulses. A brief over-
view of the experimental work on different metallic transducers can be found in
Ref. [28].

Compared to the extensive studies of metal films, the field of acoustic-pulse
formation in semiconductor materials is relatively new and unexplored. Ultrafast
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F 1.2 (a) Possible applications of picosecond strain pulses in the analysis of thin
films and nanostructures. Numbers correspond to topics in text. (b) Principle of pi-
cosecond ultrasonics, using ultrafast optical excitation and detection of either the reflected
echoes or the transmitted wavepacket.

excitation of quantum wells and multilayer structures has nevertheless demon-
strated the formation of localized (‘Zone Folded Phonons’) and extended coher-
ent acoustic vibrations at terahertz frequencies [34–40]. One of the main advan-
tages of using epitaxially grown structures for terahertz-phonon experiments is
the atomic-scale flatness of the interfaces inside the grown structures.

Now that picosecond ultrasonics has become an accepted and well-developed
tool, some initial explorations have been made to find out whether it can be ap-
plied on a much broader scale. Figure 1.2(a) shows some perspectives for the
application of ultrashort strain pulses, categorized according to the following sub-
jects:

1. Analysis of thin-film and nanostructured media: Currently this is the
principle research area that is actively being studied. Next to the analy-
sis of one-dimensional multilayer structures (‘nano-seismology’), attempts
have been made to characterize the acoustic behavior of composite and na-
nostructured media [25–27]. Additionally, the shape of the generated strain
pulses is used to deduce the electron dynamics [22, 23, 28], and to study the
wavelength-dependent elasto-optic coupling parameters [29] of the metal
film.
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2. Embedded structures and Quantum wells: Picosecond strain pulses al-
low for the characterization of buried layers inside an epitaxially grown
structure [34]. Piezoelectric quantum wells hold promise as a novel source
for coherent terahertz phonons [40, 41], and conversively, are likely to pro-
duce electromagnetic terahertz-radiation under ultrafast strain modulation.
Magnetically doped quantum-wells form a sensitive probe for phonon dy-
namics and may be used to detect ultrashort strain pulses [42].

3. Imaging of single nano-objects: The combination of ultrafast probing and
confocal or near-field microscopy [43, 44] allows for a detailed study of
the dynamics of small structures and their mechanical coupling to the en-
vironment [45, 46]. The development of combined techniques for imaging
on the nanometer-scale with subpicosecond time resolution is a very active
area since many technologies are nowadays operating in this range, close to
the fundamental limits of the material excitations.

4. Coherent phonons in two-level media: Coherent electron-phonon interac-
tions and amplification of the strain field are accessible using local two-level
systems embedded in a host matrix [47–50]. One of the challenging goals
of this direction of research may be the construction of the acoustical ana-
logue of the opticalLASER, resulting in a high-intensity terahertz phonon
source.

5. Long-distance propagation and far-field imaging: Propagation of strain
pulses over long distances can yield invaluable information on fundamental
material properties like phonon dispersion, ultrasonic attenuation and lattice
anharmonicity [30, 32, 33]. Additionally, propagation of high-amplitude
pulses over long distances results in pulse distortion and soliton formation
[31, 51], which will be the topic of this thesis. After this special nonlinear
development, the pulses may again be used to excite embedded structures
or surface layers on the other side of the crystal, or excite two-level sys-
tems. Finally, special far-field techniques are being developed to map out
the diffraction of a reflected pulse from a nano-object [52], allowing for the
full 2-dimensional reconstruction of the image.

All the above examples rely on the concept of nanometer-sized strain wave-
packets generated by ultrashort optical pulses. The principle of operation is shown
in Fig. 1.2(b). The optical pulses are used to excite the electron gas via intra- or
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interband absorption in the first few nanometers of the metal film. The excess en-
ergy in the promoted electrons is redistributed over the other carriers via electron-
electron interactions within tens of femtoseconds, and subsequently transferred
to the lattice through electron-phonon coupling within less than a picosecond.
Depending on the exact mechanism involved, either thermo-elasticity for metals
or nonthermal bond-switching processes for semiconductors [53], this energy is
converted into a coherent compression or expansion of the lattice. In the case of
a metal film, the local changes in electron density set up a coherent, longitudinal
contraction in the absorption layer. When the area of excitation is much larger
than the optical skin depth, a plane-wave compressional wave is launched in both
directions perpendicular to the surface. The part travelling to the stress-free sur-
face is reflected with a phase change, resulting in a release wave following the
compression, which pulls the lattice back to its initial state. At an interface or
embedded objects inside the material, part of the bipolar wavepacket is reflected
back in the direction of the surface. These acoustic echoes can be detected at the
surface using time-resolved reflectometry or interferometry and yield information
on the internal structure, even if the material is optically opaque. Since the early
work at Brown University [18, 19], various elegant methods have been devel-
oped to detect surface vibrations in the time domain. The most popular one is the
method of transient reflectometry, where the absolute change in reflectivity of a
film is detected during the passage of a strain pulse. The signal obtained in this
way is usually dominated by the elasto-optic effect, and may depend on the optical
probe-wavelength [26, 29]. An early approach to study the actual surface motion
was made using probe-beam deflection measurements [21], where the strained re-
gion produces locally a tilting of the surface, that can be detected by measuring
the angle of reflection using a quadrant photodetector. This method was soon after
replaced by more advanced, interferometric techniques, that allow for the separate
measurement of both phase and amplitude modulation of the reflected signal for
a plane surface displacement [33, 54].

1.3 Scope and outline of this thesis

When these picosecond acoustic pulses were allowed to travel over millimeter
distances at low temperatures, it was discovered that the pulses became severely
distorted by the dispersion of the crystalline lattice [30, 31]. Thus, for the first
time, it seems that the limit for high-frequency acoustic wavepackets is set by
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fundamental physics rather than technological issues. However, there exists a
regime in which even shorter coherent strain pulses are made, that can travel over
long distances without distortion by the phonon dispersion. This mechanism is
explained below.

In a high-amplitude, coherent strain pulse of very short duration, the deforma-
tion of the lattice will be so large that the velocity of sound starts to depend signif-
icantly on the local pressure. Most solids show an increase in sound velocity with
applied pressure, resulting in a nonlinear propagation effect calledself-steepening.
Effectively, this means that the peak of the strain pulse travels faster than and even-
tually overtakes the leading edge of the pulse, resulting in a shock-wave. It was
already predicted by Breazale and Ford [55] that, for a piezoelectrically generated
ultrasonic wave in the gigahertz regime, such a discontinuity would only develop
after a travelled distance of about 500 cm. However, for a picosecond strain pulse
containing frequency components around 100 GHz, this condition for the critical
distance drops dramatically and experiments are well within reach.

The combination of high strain values on short length scales sets the stage for a
range of striking nonlinear acoustic phenomena. When the picosecond strain pulse
steepens and eventually forms a shock wave by the nonlinearity, high-frequency
strain components are generated at the shock front. At this point, the phonon
dispersion takes over and delays these new, high-frequency components with re-
spect to the lower frequencies in the wavepacket, causing a strong disruption of
the shock wavefront. The combined action of dispersion and nonlinearity in the
wavepacket development now sets up a system in which stable,solitary waves are
formed [56]. These soliton wavepackets are intrinsically stabilized by the balance
between nonlinearity and dispersion and thus are extraordinary robust to weak
external disturbances.

In a conventional picosecond ultrasonics setup, only a minute fraction of the
intensity of an optical laser pulse (typically 0.1 mJ/cm2) is converted to a coher-
ent acoustic strain of the order of 10−5, depending on the transducer used. At
these low strains nonlinear effects are of no importance unless the strain pulse is
allowed to propagate over long distances. In a pioneering series of experiments
in large crystals at low temperatures, Haoet al. [32] demonstrated that indeed a
propagation distance of millimeters is sufficient to convert a relatively low-strain
wave packet into a soliton and an oscillating tail. These results were shown to
be consistent with simulations based on the Korteweg-de Vries (KdV) equation in
one dimension, signifying that the lattice itself provides sufficient dispersion for
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soliton development.
As we will show, extension to higher strains leads to the development of soli-

tons after propagation over much shorter distances, as well as the generation of
extremely fast solitons and soliton trains [51]. In water basins and liquid-gas
mixtures, breakup of long-wavelength disturbances has been demonstrated exper-
imentally into soliton trains of considerably higher frequencies [57, 58]. Until
now, no attempts have been made to explore similar phenomena in the field of ul-
trashort acoustic pulses in solids. Recent experiments have shown atomic motion
under high impulsive strain [59–61] and the development of shock waves in metal
films [62, 63]. However, those experiments only focused on the propagation over
micrometer distances, much too short to obtain ultrafast soliton trains.

In this thesis, we present experiments that are aimed at understanding the
development of ultrashort strain solitons over a long propagation distance. We
increase the amplitude of the strain pulses relative to those in picosecond ultra-
sonics by almost two orders of magnitude using optical excitation by mJ optical
pulses from an amplified Ti:sapphire laser. Further, new and unconventional tech-
niques, at least for the field of picosecond ultrasonics, are introduced to monitor
the wavepacket development in thebulk of a transparent crystal. After the intro-
duction of the theory behind ultrashort strain solitons in Chapter 2, we use for the
first time a Brillouin scattering setup to detect modelocked strain wavepackets in
lead molybdate in Chapter 3. Subsequently, the same method of Brillouin scatter-
ing is applied in Chapters 4 and 5 to monitor the development of gigahertz strain
components of a high-amplitude, picosecond acoustic wavepacket as it evolves
into a train of ultrashort strain solitons in sapphire. In another series of experi-
ments, presented in Chapters 6 and 7, the coherent interactions between ultrashort
strain solitons and terahertz electronic two-level systems is investigated in opti-
cally excited ruby. Finally, in Chapter 8, we present the details of our developed
low repetition-rate pump-probe setup for ultrafast reflectometry and transmission
experiments.

Next to the main line presented in the chapters, we have chosen to separate
some specialized themes in the form of three appendices. Appendix A is dedicated
to the numerical simulations that were performed to explain our results on Bril-
louin scattering in sapphire in Chapter 4. Appendix B is used to introduce some of
the physics of the phonon-induced electronic transition of the ruby phonon spec-
trometer and to obtain an estimate for the transition matrix element. Finally, in
Appendix C we estimate the role of the rarefaction part, that does not produce
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solitons but does contain terahertz frequency components, on the experiments in
this thesis.
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T   

Abstract

We review some of the concepts of nonlinear elasticity that are the basis of the theory of
strain solitons. The governing equations are derived from the starting point of continuum
elasticity. It is shown for one dimension and for moderate strains that the multidimen-
sional formulation of finite strain lattice dynamics reduces to the well-known Korteweg-
de Vries equation. The soliton solutions for this equation, as well as the formation of
soliton trains from an initial disturbance, are examined in the context of the experiments
in this thesis.

2.1 Introduction

In this chapter we present a short overview over the classical theory of nonlinear
elasticity for finite deformations. In contrast to the theory of infinitesimal elas-
ticity, that was already well-developed in the beginning of the twentieth century
[1], extension to intermediate strains was taken up seriously in the early fifties
[2]. Closely related to the theory of fluid mechanics, solid-state models have been
developed in the continuum limit and in the language of the bulk elasticity pa-
rameters. This results in a dispersionless theory, and lattice dispersion can only
be included a posteriori, in an artificial way. Therefore we also present as an
intermezzo a path to the nonlinear dispersive wave equation starting from a mi-
croscopic picture. Then, after transformation to travelling coordinates, we readily
arrive at the well-known Korteweg-de Vries (KdV) equation, that has stable solu-
tions in the form ofsolitary waves [3, 4]. It is shown that an initial compressional
strain pulse breaks up into a train of such solitons. For this purpose, we briefly
introduce the idea behind the inverse scattering theory, without going deeply into

21
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the mathematical details. Rather, some expressions are presented that are directly
applicable to our experiments on picosecond strain pulses in sapphire. Finally,
we consider the effect of temperature on the wavepacket development and briefly
present the theory for shock waves using the Burgers equation.

2.2 Nonlinear elasticity theory

2.2.1 General formulation

In this overview of nonlinear elasticity theory we follow the derivation and nomen-
clature as presented in the review of Wallace [5]. First, a set of curvilinear coor-
dinates is introduced and the local deformation and strain variables are derived in
this basis. Throughout the text we will be using the Einstein summation conven-
tion.

Let us consider an undeformed solid in which a point is denoted by the vector
�r = r j�a j with respect to the basis{�a j} of the crystal. In an arbitrary deformed
state, the position of the vector changes to�r ′ = �r + �u(�r, t), with �u(�r, t) the local
displacement vector corresponding to the deformation [see Fig. 2.1]. The above
definitions also allow for transformations that do not distort the internal mate-
rial structure, like uniform translation and rotation. A good definition of local
deformation that filters out these simple transformations is the length change, or
deformation∆, of a local vector∆�r = �r2 − �r1 [c.f. Fig. 2.1]:

∆ = |∆�r ′|2 − |∆�r |2

= 2ηi j ∆ri ∆r j . (2.1)

The right hand side of Eq. (2.1) has been obtained by expanding the squared terms
using�u(�r2, t) − �u(�r1, t) = ∇�u(�r, t) ∆�r. The matrix connecting the initial configura-
tion�r to the deformation∆ is called the strain matrixη, and follows from Eq. (2.1)
as

ηi j =
1
2

(ui j + u ji + uikuk j) , (2.2)

where

ui j =
∂ui

∂r j
(2.3)
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F 2.1 Representation of arbitrary deformation of an elastic solid. Definition are
shown of vectors{�r,∆�r} and {�r ′,∆�r ′} in undeformed and deformed state, respectively,
and local transformation vector�u.

describes the displacement gradient matrix elements. The above description holds
as long as variations in the displacement gradients take place on a length scale
much larger than the differential elements∆�r. In practice this means that the
strain must be smooth on the scale of the interatomic distances in the solid.

The important consequence of Eq. (2.1) is that related quantities like the free
energy at finite strain can be expressed in terms of the undeformed coordinates�r
and the strain matrixη. For example, one can expand the internal energyΦ per
unit of mass in terms of strain according to

ρΦS (�r, η) = ρΦ0 +Ci jηi j +
1
2

Ci jklηi jηkl +
1
6

Ci jklmnηi jηklηmn + · · · . (2.4)

Hereρ is the mass density and the subscriptS denotes that the deformation takes
place at constant entropy, i.e. under adiabatic conditions. The constantsC are
the elasticity constants of first, second and third order, respectively, defined by
the first- and higher-order partial derivatives of the internal energy to the strain
elements,Ci j = ∂ΦS /∂ηi j, Ci jkl = ∂

2ΦS /∂ηi j∂ηkl, etc.
For a simple, one dimensional spring, one can calculate the force resulting

from a compression by taking the derivative of the internal energy to the displace-
ment (Hooke’s law). On a similar vein, one can calculate the induced stresses
from the strain in the material using simple thermodynamic considerations. Ac-
cording to the second law of thermodynamics, for a process at constant entropy
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ρdΦS = dW. The workdW in a deformed state can be derived by applying an ad-
ditional infinitesimal, homogeneous change in strain∆ηi j. Thus, in simple terms
the stresses can be obtained by calculating the derivative of the work to the strain
in the deformed coordinates. For the general formalism we refer again to Wallace
[5], and give the resulting stress-strain relation for a stress-free initial state:

Ti j = ρ
∂ΦS (�r, η)
∂ηi j

. (2.5)

The equation of motion for finite strains can now be formulated in terms of this
stress tensor and the mass densityρ. The Euler-Lagrange equations of motion for
the generalized coordinates�r ′(�r, t) in the independent variables�r andt read

∂

∂t
∂L
∂ṙ′i
+
∂

∂rk

∂L
∂αik

= 0 , (2.6)

with the abbreviationαik = ∂r′i/∂rk. The Lagrangian density can be written as the
difference of kinetic and potential energy, which for adiabatic deformation gives

L =
1
2
ρṙ′i ṙ

′
i − ρΦS (�r, t) . (2.7)

Combining Eqs. (2.6) and (2.7), one arrives at the equation of motion

ρr̈′i = ρ
∂

∂rk

(
∂ΦS

∂ηlm

)
∂ηlm

∂αik
. (2.8)

Using the relation∂ηlm/∂αik = δilδkm for a stress-free initial state [5], one can
simplify the equation of motion, Eq. (2.8), to a generalized form of Newton’s law

ρüi =
∂

∂rk
Tik . (2.9)

Here we have replaced the higher order derivative of�r ′ by that of the displacement
vector�u, which is allowed by its definition in Eq. (2.1). With the combination
of Eq. (2.9), the stress-strain relation Eq. (2.5), and the free energy expansion
Eq. (2.4), we now have all the ingredients to compose a nonlinear acoustic wave
equation. Keeping only terms up to second order in derivatives ofu, this equation
of motion can be rearranged into the form
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ρüi =
∂u jk

∂rl

(
Ci jkl + upqAi jklpq

)
. (2.10)

It should be noted that the termAi jklmn contains a combination of third-orderand
second order elastic constants:

Ai jklpq = C jlpqδik +Ci jqlδkp +C jkqlδip +Ci jklpq . (2.11)

The second-order coefficients in this expression are a consequence of the pres-
ence of the quadratic term in the definition of strain, Eq. (2.2). Therefore, these
contributions to the nonlinear term in the propagation equation, Eq. (2.10), are
sometimes referred to as thegeometrical nonlinearity, whereas the third order
constants are called thephysical nonlinearity. One may convert the elastic con-
stants in Eq. (2.10) to tabulated values in Voigt notation [6] by the reduction of
pairs of indices according to 11→ 1,22→ 2, and so on.

2.2.2 Reduction to single dimension

In the case of one-dimensional propagation along an axis of high symmetryz, the
equation of motion, Eq. (2.10), reduces to the simple form

ρutt = γuzz + αuzuzz , (2.12)

where the subscripts denote differentiation. The last term on the right side is the
quadratic nonlinearity, owing to the geometric nonlinearity and the cubic terms
in the inter-atomic potential. The nonlinearity coefficientα depends only on the
propagation direction in the crystal. For the [0001]-direction in a trigonal crystal
like sapphire, the two constants of Eq. (2.12) take on the form

γ = C33, α = (3C33+C333) , (2.13)

where the coefficientsC33 andC333 are the second- and third-order elastic mod-
uli in the [0001]-direction. For most solids, the contribution of the third order
modulus is larger than the geometric term and has a negative sign, yielding an
α < 0.

Up to this point we have not taken into account any dispersion in the equation
of motion. In the case of longitudinal acoustic lattice vibrations (LA phonons) in
a trigonal crystalline solid in the direction of thec axis ([0001]), the dispersion
due to discreteness of the lattice can be written as [7]
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ω =

√
4C33

M
sin|ka/2| . (2.14)

As we will be dealing with vibrations of small wavevector , i.e. in the center of
the Brillouin zone, it is sufficient to approximate this dispersion relation by its first
two nonzero expansion terms

ω = c0k − βk3

β =
c0a2

24
=

c3
0

6ω2
max
,

(2.15)

whereωmax = (4C33/M)1/2 is the LA angular frequency at the edge of the Bril-
louin zone, andc0 = (C33a2/M)1/2 denotes the sound velocity. This dispersive
correction can be put into Eq. (2.12), leading to a fourth order spatial derivative
(see e.g. Ref [8]). At this point it is convenient to switch from the displacement
coordinateu to a uniaxial component of the acoustic strain, further denoted as
s. This is done by differentiation of Eq. (2.12) with respect to thez-coordinate.
Given the initial wave packet att = 0 of amplitudes0 and shapeφ(z), the resulting
boundary value problem including dispersion, reads

stt − c2
0szz −

α

ρ

∂

∂z
(ssz) + 2c0βszzzz = 0

s(z , t = 0) = s0 φ(z) .

(2.16)

Finally it is convenient to transform to a moving frame coordinate system, de-
fined by the parameterst′ = t, y = z − c0t. After substitution of these variables
we arrive at terms consisting of only one derivative with respect to the travelling
coordinatey, except for one term having a double time derivativest′t′ . Neglecting
this term will not change the behavior up to first order, as this is a ‘slow’ coor-
dinate with respect to the evolution of the wave packet. Integrating the resulting
expression once, we finally obtain the equation

st′ +
α

2ρc0
ssy − βsyyy = 0

s(y, t′ = 0) = s0 φ(y) .
(2.17)

This is the well-known Korteweg-de Vries (KdV) equation, describing for ex-
ample the formation of stable wave packets (solitons) in a narrow water channel
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[3]. In the experimental configuration in the sapphire crystal,α < 0 andβ > 0,
resulting in soliton development fors < 0, i.e. for compressional strain pulses.

2.3 Microscopic model

Before continuing with the solutions of the problem of nonlinear wavepacket de-
velopment, we wish to spend some words to an alternative approach to derive the
nonlinear dispersive wave equation. In the previous section, we have reviewed the
classical theory of finite elasticity, leading to a fully three-dimensional, nonlin-
ear wave equation for arbitrary crystallographic symmetry. After reduction to one
dimension, phonon dispersion was added by means of a correctiona-posteriori.
For the problem of ultrashort strain packets in a crystalline lattice, it may well
be worth the effort to consider a derivation that maintains the discrete character
of the atomic lattice. The theory of nonlinear lattices has been developed since
the early work of Fermi, Pasta and Ulam [9], but has soon focused on analytical
model systems in one dimension (see e.g. [10]). In these models, dispersion is an
inherent feature of the discrete system, and solitary waves have been identified as
the normal modes of the nonlinear lattice. It has been demonstrated that the one-
dimensional integrable lattice with exponential interactions, known as the Toda
chain [10], reduces to the KdV equation in the long-wavelength limit.

Potapovet al. [11] showed that a microscopic lattice model can be used to
derive the nonlinear dispersive wave equation for the atomic displacements. They
started from a two-dimensional construction of point masses and considered only
nearest-neighbor interactions in the first two configurational shells. Meijer [12]
extended this approach to a cubic lattice in three dimensions. In these calculations,
the local deformations are again defined by the square of the interatomic distances,
similar to Eq. (2.1), but now on a discrete lattice. Subsequently, the transition from
a discrete to a continuous description is made by maintaining an additional term
in the expansion for the local displacementsui, j,k

ui±1, j±1,k = u(x ± a, y ± a, z)

≈ u(x, y, z) ± a
(
ux + uy

)
+ 1

2a2
(
uxx + 2uxy + uyy

)
+ · · · , (2.18)

wherea denotes the interatomic distance of the cubic lattice. Note that we would
have obtained similar results in the previous section if in the derivation of Eq. (2.1)
the expansion would have been�u(�r2, t)−�u(�r1, t) = ∇�u(�r, t)+ 1

2∇ · (∇�u(�r, t)). How-
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ever, a redefinition of the concept of strain would have been necessary in this case,
which is a complication we do not wish to stir up at this point. Meijer avoids this
complication by maintaining the displacement coordinates as the working vari-
ables and expanding the lattice free energy in these coordinates rather than in the
strain.

After rewriting the Euler-Lagrange equations of motion analogue to Eq. (2.6),
the inclusion of the additional term in the displacement derivatives results in dis-
persive terms in the final wave equation [11, 12]. After reduction to one dimen-
sion, the Boussinesq equation [c.f. Eq. (2.16)] is once more obtained, only this
time with constants depending on the microscopic interaction potentials. Not
surprisingly, the dispersive factor is found to be equal to the expansion term in
Eq. (2.15), justifying the artificial approach of Sec. 2.2.2.

2.4 The KdV initial-value problem

We now continue with the main topic of this chapter, namely the solution of the
nonlinear dispersive wave equation. We are interested in the development of an
arbitrary initial waveforms(z, t) = s0φ(z/l0), wheres0 < 0 andl0 are the typical
amplitude and width of the compressional part of the initial strain packet. After
transformation to the coordinatesη = s/s0, ξ = z/l0, andτ = tαs0/2ρ c0l0, the
initial value problem of Eq. (2.17) takes on the form [13]

ητ + ηηξ +
1
σ2
ηξξξ = 0

η(ξ,0) = φ(ξ) ,
(2.19)

whereσ is a dimensionless parameter defined by

σ = l0

(
αs0

2ρc0β

)1/2
. (2.20)

Equation (2.19) yields identical solutions for initial wavepackets with the same
value ofσ andφ(ξ), and thereforeσ is called the similarity parameter. The mag-
nitude ofσ determines the relation between nonlinearity and dispersion in the
wavepacket development. Note that according to Eq. (2.20),σ is proportional to
the area under the square root of the compressional strain waveform. In order to
compare the similarity parameters for different initial value conditions, it is thus
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important to choosel0 and s0 so that the residual area of [φ(ξ)]1/2 is normalized
to some predefined value, which in Ref. [13] equalsπ, the area under the square
root of the sech2-waveform.

2.4.1 Single-soliton solution

One can show that there exists a class of exact soliton solutions of the KdV equa-
tion [4, 14, 15], for whichσs =

√
12 [13]. For this purpose we consider solutions

to the KdV-equation of the formη(ξ, τ) = f (ξ − Wτ) = f (ζ), whereW denotes
the velocity in the moving frame system. For these modes, the KdV-equation
Eq. (2.19) reduces to a single parameter equation, that after one integration over
ζ reads

−W f +
1
2

f 2 + σ−2 fζζ = c1 , (2.21)

Multiplication of all terms with∂ f /∂ζ yields a variational equation forf , that can
be integrated to

−
1
2

W f 2 +
1
6

f 3 +
1
2
σ−2( fζ)

2 = c1 f + c2 . (2.22)

From the requirement that in casex → ±∞, f , fζ , fζζ → 0 it follows thatc1 =

c2 = 0. Equation (2.22) can now be put in the simple formfζ = σ f
√

W − f /3,
that may be integrated by separation of variables, giving

∫ f

0

d f ′

σ f ′
√

W − f ′/3
=

∫ ζ
0

dζ′ . (2.23)

The left-hand side can be solved by the substitutionf ′ = 3Wsech2q, which results
in
√

W − f ′/3 =
√

W tanhq and∂ f ′/∂q = −6Wsech2q tanhq. Further, the upper
integration limit changes toq0 = sech−1( f /3W)1/2. In this manner, Eq. (2.23) is
rewritten as

−
2

σ
√

W

∫ q0

0
dq = −

2

σ
√

W
q0 = ζ . (2.24)

Transforming back fromq0 to f now yields the single-soliton solution of the KdV
equation
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f (ζ) = f (z −Wt) = 3W sech2
σ
√

W
2

(z −Wt)

 . (2.25)

This expression contains several characteristic properties of the KdV solitons.
First, for givenσ, there is only one free parameter,W, that determines the ve-
locity, width and amplitude of the soliton. Secondly, it is observed that for given
W, σ only modifies the width of the soliton, and not its velocity or amplitude.

In the initial-value problem of Eq. (2.19), the value ofσ follows from the
normalization used for the function [φ(ξ)]1/2. The soliton solution, Eq. (2.25),
was derived without taking into account the initial-value condition. To turn it into
a self-consistent solution of Eq. (2.19), we should normalize its amplitudes0 =

−3W and widthl0 = 2/σ
√

W, resulting in a universal value ofσs =
√

12 for any
soliton scaled to normalized units. The capacity of an arbitrary initial wavepacket
to develop one or more solitons now depends on the magnitude of its parameterσ

with respect toσs. Any perturbation withσ < σs may be called weakly nonlinear
and withσ � σs strongly nonlinear. Note that this does not say anything about
the energy required for multi-soliton solutions. A short, intense waveform may
produce less solitons than a longer, low-amplitude one that contains the same
amount of energy. However, the solitons generated by the intense pulse have
higher amplitudes (c.f. Sec 2.4.2), and consequently are shorter and move with
higher velocity. As a rule of thumb, Eq. (2.20) predicts that the number of solitons
increases linearly with the initial pulse widthl0, but only proportional to the square
root of the maximum pulse amplitude|s0|.

2.4.2 Multi-soliton solutions

For the KdV-initial value problem Eq. (2.19) there exists an associated eigenvalue
problem for the Schr̈odinger equation [14]

Ψξξ +

(
λ +
σ2

6
η(ξ, τ)

)
Ψ = 0 . (2.26)

In a normal scattering problem, one is interested in the eigenvalues and reflection
and transmission functions for a given potentialη(ξ, τ). The inverse scattering
problem amounts to the reconstruction of the potentialat each time for a set of
known scattering quantities, consisting of the energy levelsλn, and the reflection
and transmission functions (ΨR/Ψin), (ΨT/Ψin) [see Fig. 2.2]. The solutions of
this eigenvalue equation can consist of free or bound states, depending on the
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F 2.2 Visualization of inverse scattering method, where the time development
of the wavepacket is mapped onto an eigenvalue problem for a time varying potential
−η(ξ, τ). The evolution at large times can be recovered from the reflected and transmitted
wavefunctionsΨR, ΨT . Horizontal lines (dash) denote eigenvaluesλn.

sign of the initial potentialφ(ξ). The reflection and transmission coefficients can
be derived using the time dependence of the eigenfunctionsΨ, as dictated by
the KdV equation for the potentialη(ξ, τ). This evolution can be determined by
writing η(ξ, τ) in terms ofΨ using Eq. (2.26) and filling it into the KdV equation,
Eq. (2.19). A concise overview of the inverse scattering method for the KdV-initial
value problem can be found in Refs. [13, 16].

We limit our discussion here to the most relevant result for this thesis, namely
the stationary states aftert → ∞ for the potentialη(ξ, τ), for a discrete spectrum
of eigenmodesλn < 0. It turns out that all bound states of the initial potentialφ(ξ)
correspond to soliton-pulses of the form [13, 16]

η(ξ, τ) =
12k2

n

σ2
sech2

(
kn[(ξ − ξ0) − 4k2

nτ]
)
, (2.27)

wherekn =
√
−λn > 0. Thus all the stationary states developing from an initial

compressional wavepacket are solitons, completely defined by a single parameter,
the eigenvalueλn. It can be observed from Eq. (2.27) that the amplitude of the
n-th soliton isηn = 12λn/σ

2, or an = 2λns0 in normal strain units. The velocity
of these solitons isηn/3 in normalized coordinates [as in Eq. (2.25)], orcn =

αan/6ρc0 in real coordinates [c.f. Eq. (2.19)]. Finally, the width is given by
[12/ηnσ

2]1/2, or ln = l0[12s0/anσ
2]1/2 in real coordinates.

The exact number of solitons developing from an initial perturbation may be
found from the depth of the potential wellφ(ξ) and the spacing of the eigenvalues
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of the energy. For largeσ, it is possible to estimate the number of solitons using
a quasi-classical approximation for the distribution of energy levels [13]. For
large quantum numbersn, one may consider the distribution of energy levels to
be continuous, and the wavefunctions to correspond to the classical paths in the
potential. In this situation, one can apply the Bohr-Sommerfeld quantization rule
[17], that connects the classical momentum to the number of energy levels of the
potential

1
2π

∮
pdx = N +

1
2
, (2.28)

where
∮

pdx is taken around a closed orbit of the particle, which in the one-

dimensional case amounts to 2
∫ b

a
pdx, with a, b the classical turning points. This

rule can be appreciated by considering the phase space to be subdivided in modes
with a volume∆k∆x/2π. Equation (2.28) then divides the classical path in phase
space intoN of these unit cells. By considering the momentum to be given by
k(E) = (σ

2

6 [φ(ξ) − E])1/2 [c.f. Eq. (2.26)], one may obtain an expression for the
number density by differentiating Eq. (2.28) toE, resulting in

∂N
∂E
= (2π)−1

(
σ
√

6

) ∫
φ>E

dξ√
φ(ξ) − E

, (2.29)

which leads to the asymptotic expression for the total number of solitons

N =

(
σ

π
√

6

) ∫
φ>0

√
|φ(ξ)| dξ . (2.30)

Note that in this limiting case, the number of solitons only depends on the positive
part of the initial perturbationφ(ξ).

An analytical solution of the eigenvalue equation, Eq. (2.26) may be obtained
in several special cases of the initial waveformφ(ξ). In particular, the spectrum
of eigenvalues for a potential of the formφ(ξ) = sech2ξ has been obtained in
Ref. [17]. By rewriting the Schr̈odinger equation in the variablesε = −σ

√
E/6,

σ2/6 = s(s + 1), ζ = tanhξ and u = 1
2(1 − ζ), one obtains an equation for

w(ξ) = (1− ξ)−ε/2Ψ

u(1− u)w′′ + (ε + 1)(1− 2u)w′ − (ε − s)(ε + s + 1)w = 0 , (2.31)
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F 2.3 Development of initial wavepacket for different combinations of nonlinear-
ity α and dispersionβ, for zero damping, showing typical shock formation (α < 0, β = 0)
and soliton development (α < 0, β > 0,σ ≈

√
12).

that has a solutionw(ζ) = F[ε − s, ε + s + 1, ε + 1, 1
2(1− ζ)], with F[a, b, c, d] the

hypergeometric function. For this solution to remain finite atξ → ±∞ (ζ=-1), we
must haveε − s = − j, with j = 0,1,2, · · ·. The energy levels are thus defined by
E = 6

σ2 ( j − s)2 or usingE = 2s0a,

a j

s0
=

3
σ2

(
1− 2 j +

√
1+ 2σ2/3

)2
. (2.32)

However, in our experiments we will be dealing with strain pulses that have a
profile given to good approximation by the derivative of a Gaussian. Thus we
want to relate the estimate of Eq. (2.32) to the initial condition

s(y,0) =

√
2e

lg
s0y exp(−y2/l2g) , (2.33)

that is normalized tos0 at its maximum aty = lg/
√

2. In the spirit of Eq. (2.20),
we should normalize the area under the square root of the waveform Eq. (2.33) to
that of the sech2-potential to obtain the dimensionless formφ(ξ). This amounts to
the redefinition of the pulse width asl0 = e1/4Γ(3/4)lg/π (≈ 0.50lg), with l0 the
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width of the pulse in the sech2-waveform (Γ denotes the Euler gamma-function).
By replacing this length scale in Eq. (2.33), normalizing tos0, and transforming
to ξ = y/l0 we obtain the correct form ofφ(ξ), and the associatedσ for calculation
of the number of solitons in Eq. (2.32).

Note that, for comparison with experiments, we use in the rest of this thesis a
boundary value problem instead of an initial value problem, that is equivalent to
Eq. (2.17) after a transformationt → z/c0, z→ c0t. The description in this chapter
was however presented in the form of an initial value problem for the purpose of
compatibility with the existing literature [13, 14, 16, 18].

Figure 2.3 shows the development of a typical initial waveform given by
Eq. (2.33), in the situations of nonlinear propagation in absence and presence
of the third-order dispersion. The dispersionless case results in the formation of
shock fronts, the compressional phase of the bipolar wavepacket travelling slightly
faster and the rarefaction phase slightly slower than the linear velocity of sound.
This situation will be discussed in Sec. 2.5. The trace including the dispersion
shows the development of a soliton pulse in the leading part and a oscillating tail
in the trailing part of the bipolar initial wavepacket. The parametersα, βwere cho-
sen so that the similarity parameter for the compressional part equalsσ ≈

√
12,

leading to only one negative eigenvalueλ. The radiative tail is associated with
the continuum of positive energy states of the scattering problem, Eq. (2.26). Al-
though analytical expressions for this tail exist in the case of linear dispersive
waves [13, 16], no simple form is known for the combination of nonlinearity and
dispersion in the wavepacket propagation.

2.5 Shock-wave development

In practice, except at the lowest temperatures, acoustic waves are attenuated by
scattering at thermal phonons during propagation through a crystal. Classically,
scattering can be accounted for by including a viscosity term in the wave equation
[6]

st +
α

2ρc0
ssy − εsyy + βsyyy = 0

s(y, t′ = 0) = s0 φ(y) .
(2.34)

The combination of nonlinearity, dispersion, and viscosity terms in the wave equa-
tion is called the Korteweg-de Vries-Burgers (KdV-Burgers) equation. Unlike the
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KdV-initial value problem, this is not an integrable equation and a solution can
only be obtained numerically. For special situations, however, we may neglect
either one of the three constituent terms and recover either the KdV-, Burgers-
or a linear wave equation. At this point we will consider the problem of a small
dispersion relative to the viscosity. Neglecting the dispersive term, one recovers
the Burgers equation that can be solved in an analytical way [16]. Starting from
the Burgers equation in the formst +

1
2(s2)y = νsyy one can apply the Cole-Hopf

transformations = −2νuy/u to arrive at

uτ = νuξξ . (2.35)

This is the well-known heat equation, that has solutions that spread out diffusively
with time [16]. The development of the initial wavepacket depends on the relative
magnitude of the nonlinearity and dispersion, as contained in the parameterν =

c0ε/α. The most relevant case for this thesis is the condition that nonlinearity
dominates the wavepacket development. In the extreme case, when viscosity is
neglected, the initial shape develops until an infinitely sharp wavefront is formed.
For an initially symmetric bipolar waveform it can be shown that, in the limit
y→ ∞, it develops into a shape of the form [16]

s(t, y) =


y/t −

√
2A0t < y <

√
2A0t

0 |y | >
√

2A0t
, (2.36)

whereA0 denotes the area under the positive phase of the initial waveform. The
solution for a bipolar wavepacket after a long time in the case of nonzero viscosity
can be found using the solution of Eq. (2.35)

s(y, t) =
y
t

√
a/t exp(−y2/4νt)

1+
√

a/t exp(−y2/4νt)
. (2.37)

The typical form of a so-called N-wave is shown in Fig. 2.3. This expression
can be scaled to the initial waveform of Eq. (2.33) via the area under one of its
phases,A0 = 2νR0, where we have introduced an initial Reynolds numberR0 =

log(1+
√

a/t0 ). The characteristic property of Eq. (2.37) is the scaling of the main
profile (i.e. the N-structure) overy = (2A0t )−1/2, combined with a smearing out
of the shock front over a distance∆y = R−1

0 log t/t0. Further, the integral under
each phase of the bipolar wavepacket decays by dissipation through the viscous
term asA(t)/A0 = log(1+

√
a/t − expR0).
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D     
B 

Abstract

We employ Brillouin spectroscopy to study the propagation in lead molybdate of ultra-
short acoustic wavepackets created by absorption of subpicosecond optical pulses in a
thin-film metallic transducer. The development of the acoustic power spectrum during
traversal of the wavepacket is studied at frequencies up to 8 GHz. Diffraction of the
Fourier components of the acoustic wavepacket in the crystal can be monitored in the
spectral domain via the spectral width, or in real-space using scans transverse to the beam.
Results at helium temperatures show pump intensity dependent propagation effects, which
are precursors for soliton development.

3.1 Introduction

In the last decade, many studies have been conducted on the propagation of strain
pulses in thin-film structures covered with a metallic transducer, where the optical
skin depth limits the time resolution of the experiment [1–3]. Only very recently,
explorative work has appeared to examine the propagation of picosecond acous-
tic pulses in bulk crystalline materials [4], although a metallic transducer fixed at
the surface of the crystal remains necessary for probing the development of the
wavepacket. Frequency domain techniques in the bulk have been used recently to
study low amplitude, monochromatic coherent phonons [5–7]. We demonstrate
that ultrashort, broadband acoustic pulses can be studied as well in the bulk of a
transparent crystal by means of frequency domain techniques. We use Brillouin
scattering to monitor the selected frequency components as they develop during
the propagation of the acoustic wavepacket. For an introduction to the principles

37
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F 3.1 Scattering configuration in the crystal, showing the diverging strain pencil,
argon-ion laser beams, and wavevector selection rule�k ′ = �k + �q. Also shown are the
definitions of scattering angle 2θ and angular width profiles∆θi, ∆θs (see Sec. 3.3.3).

of Brillouin scattering we refer to the existing literature [8]. The typical scatter-
ing process is depicted in Fig. 3.1. A plane acoustic wavepacket reflects a minute
fraction of an incoming laser beam, which for anti-Stokes Brillouin scattering is
Doppler shifted upward, and for Stokes shifted downward, by the phonon fre-
quency corresponding to the scattering wavevector. Conservation of wavevector
and energy in the inelastic scattering process results in the following selection
rules: �k ′ = �k + �qω′ = ω + Ω

⇒ Ω = 2c0k sinθi , (3.1)

where�q,Ω denote the wavevector and energy of the phonon involved in the scat-
tering process,�k, ω and�k ′, ω′ denote the wavevector and energy of the incident
and reflected optical radiation, respectively. Equation (3.1) implies that, for each
scattering angle, we are sensitive to asingle Fourier component of the acoustic
wavepacket. The condition for wavevector conservation is, of course, relaxed by
some amount due to the limited size of the interaction volume, formed by the spa-
tial overlap volume of the focused Brillouin laser beam and the acoustic pencil.
As a consequence, the observed spectral width of the Brillouin signal contains
direct information on the transverse width of the acoustic beam for the selected
frequency component, provided that the opening angle of the detection setup is
sufficiently large.
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F 3.2 Experimental setup for Brillouin scattering, showing lasers, optical cryostat,
Fabry-Ṕerot interferometer and electronic equipment.

3.2 Experimental details

The sample is a 10× 4× 5-mm3 single crystal of lead molybdate (PbMoO4), with
the crystallographic c-axis aligned perpendicular to the 10x4 mm2 surface. A 600-
nm thin gold transducer is deposited onto this surface, with a 5-nm buffer layer
of Cr for better adhesion. Lead molybdate is a widely used medium for acousto-
optic modulators and has been chosen by us mainly for its very high acousto-
optic coupling parameter [9]. Given the sound velocity in the [001] direction of
3.64 km/s and the index of refraction of 2.26, the maximum frequency that can
be detected by Brillouin scattering is limited to 32 GHz at a laser wavelength of
514.5 nm.

The experimental setup is shown in Fig. 3.2. Longitudinal acoustic wave-
packets are created by absorption of light in the gold film from a mode-locked
Ti-sapphire femtosecond laser beam, focused to a Gaussian spot with a waist of
∼15 µm. The thickness of the acoustic pulse created in a metallic film is de-
termined by the nonequilibrium electron transport distance, reached within the
relaxation time of a few picoseconds, and amounts in gold to, say, 150 nm [3, 10].
The local acoustic strain for the selected Fourier components is detected by Bril-
louin scattering, employing a single-mode argon-ion laser at 514.5 nm and with
60 mW optical output power. We focus the probe laser beam in the crystal tightly
to a waist of a few micrometers [see Fig. 3.1]. The frequency-shifted, scattered
radiation is analyzed by a quintuple-pass Fabry-Pérot interferometer (Burleigh
RC110) and detected using standard photon counting techniques. The spectro-
meter is equivalent to the one used earlier to study the propagation of coherent,
monochromatic phonon beams in lead molybdate and paratellurite [5–7].
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Damping of monochromatic, low-amplitude gigahertz phonon beams has been
studied previously in lead molybdate by Damenet al. [6] and was found to cor-
respond at liquid-helium temperatures to mean free paths much larger than the
crystal dimensions.

3.3 Experiments in lead molybdate

3.3.1 Acoustic power spectrum

First, the input Fourier spectrum of the wavepacket was determined at room tem-
perature, by measuring the diffracted intensity 100µm behind the transducer at
various scattering angles. In the experiments of this chapter, the metal film was ex-
cited from the crystal-side, which resulted in a significantly higher intensity than
from the helium-side. We attribute this to the significantly larger absorption coef-
ficient of the thin chromium buffer layer at the optical wavelength. The observed
power spectrum is shown in Fig. 3.3(b). The resolution is limited to∼0.3 GHz,
by the width of the cone of diffracted radiation emitted by the small interaction
volume (see Sec. 3.3.2). We observe 3 broad bands, that can be fit reasonably
well to the power spectrum of the typical strain wavepacket shown in Fig. 3.3(a),
assuming a sound velocity in the gold film of∼2.6 km/s. This value lies between
the bulk velocity for polycrystalline gold, of 1.7 km/s, and the maximum value
of 3.24 km/s, in the crystalline [001] direction. Disagreement between simulated
and experimental spectra exists mainly in the exact position of the 3 bands in the
spectrum. For the simulated waveform, these frequencies are determined by the
resonances of the gold film to values ofνn = nc0/2d, with n the number of the
harmonic,c0 the sound velocity andd the film thickness. The deviations of the
experimentally obtained peak positions may be due to a thermal lensing effect in
the crystal, resulting from the heat radiated by the metal film. This causes a slight
angle-dependent distortion of the path of the incident argon-ion laser beam close
to the transducer. In the experiments performed at low temperatures, described
later in this thesis, this deflection was strongly reduced by the efficient cooling of
the crystal.

3.3.2 Spectral mode-structure

A typical Brillouin spectrum of the acoustic wavepacket, at a scattering angle of
2θ ≈ 40◦, is presented in Fig. 3.4(a). The spectrum consists of a Gaussian enve-
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F 3.3 (a) Strain wavepacket calculated for the crystal-side excitation geometry.
(b) Frequency spectrum of the acoustic wavepacket (◦) Experimental data, (line) power
spectrum of the wavepacket of (a).

lope containing a number of narrow peaks at multiples of the 75.4 MHz repetition
frequency of the Ti-sapphire laser, centered around a Doppler shifted frequency
of ∼3.3 GHz. The spectral resolution is limited by the finesse of the interferom-
eter to a value of 20 MHz, at the free spectral range of 1.06 GHz. As the mutual
distance between the acoustic wavepackets, as they travel through the sample, is
larger than the size of the detection volume, the mode structure in the measured
spectrum must be caused by optical interferenceinside the interferometer of light
scattered by subsequent acoustic pulses traversing the interaction volume. In this
way the Fabry-Ṕerot interferometer acts as a periodic cross-correlator of the opti-
cal signal over the round-trip time of 2L/c ≈ 1 ns, and with a ’memory’ limited
by the finesse to about 50 ns. The measured phase relationship of the scattered
radiation over this time implies that we are dealing with amode-locked acoustic
pulse train.
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Figure 3.4(b) shows the sum of the peak intensities in the mode spectrum as
a function of intensity of the pump laser. Clearly, the dependence of the Brillouin
intensity on excitation power shows a quadratic behavior over the whole dynamic
range. This demonstrates that the generated strain in the gold film in the measured
frequency window depends linearly on pump power. The Brillouin intensity of a
single spectral mode can be compared quantitatively with the thermal background
of LA phonons in the detection bandwidth of 20 MHz. In the absence of coherent
wavepackets, we find a thermal phonon signal of∼500 cts/s. In Fig. 3.4(a), the
scattered yield from the component at 3.3 GHz is 103 times larger than this value,
which can be directly translated to an occupation numbernω ≈ 1×103(kBT/�ω) =
3× 106, or a mode temperature exceeding 105 K.

From the estimate of the occupation number it is a small step to the ap-
proximation of the average displacement and the acoustic strain contained in
the individual spectral modes. It is well known that for a harmonic oscillator,
the average energy is equally distributed over the potential and kinetic parts,
U = T = 1

2�ω(nω + 1
2). Combined with the expression for the potential en-

ergyU = 1
2 Mω2

〈
u 2
ω

〉
, and the number of oscillators given by the Debye density

of statesD(ω)∆ω, we obtain the expression for the average wave amplitudeuω,
given by

uω =

D(ω)∆ω
(n + 1

2)�

Mω


1/2

. (3.2)

As we are dealing with a very directional beam of phonons, the complete, 3-
dimensional density of states will hugely overestimate the number of participating
oscillators. We therefore take into account only a cone of wavevectors, with a
top angle defined by the acceptation angle of the detector,θ0 = 50 mrad (see
Sec. 3.3.3). Integration over only this part of phase space yields a more realistic
density of statesD(ω)∆ω ≈ Vω2θ20∆ω/4πc

3
0.

From Eq. (3.2) we can obtain the associated strainsω = ∂uω/∂x by multi-
plication withω/c0. For our example at 3.3 GHz, this results in a displacement
of uω = 5 × 10−15 m, or an acoustic strainsω = 3 × 10−8, over a bandwidth of
75.4 MHz. We can even go further and gauge the overall spectrum of Fig. 3.3(b)
to this value. The calibrated scale for the power density|sω|2 is shown on the
right side of this graph. The inverse Fourier transform of this calibrated spectrum,
finally, results in an estimate of the coherent strain amplitude of 5× 10−5 for an
excitation power of∼2 mJ/cm2, as shown on the right-hand scale of Fig. 3.3(a).
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F 3.4 (a) Brillouin spectrum observed at a scattering angle 2θ = 20◦, at a pump
fluence of 0.5 mJ/cm2. The width of the peaks is limited by the resolution of the spectrom-
eter. (b) dependence of the integrated Brillouin intensity at 3.2 GHz, measured at 100µm
distance from the transducer, on excitation power, showing a quadratic dependence over
2 orders of magnitude.

3.3.3 Relation between spatial and spectral width

To determine the relation between the Gaussian spectral envelope, as shown in
Fig. 3.4(a), and the spatial strain profile, we set up an experiment to independently
measure these quantities. Information on the transverse strain profile was obtained
by transverse scans of the acoustic pencil through the detection volume, while the
spectral width was obtained directly from the interferometer scans. The diameter
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of the excitation spot on the metal film was varied by translation of the focusing
lens of the pump laser. The resulting values for spatial and spectral widths of
the Brillouin intensity are shown in Fig. 3.5(a) and (b), respectively. Clearly,
an increase in size of the phonon beam is accompanied by a reduction of the
bandwidth of the Brillouin spectrum.

The spatial width of the strain profilewph(z) can be explained by the di-
vergence of the Gaussian pump laser [line in Fig. 3.5(a)], for a minimal waist
wph(0) = 17.1 ± 0.2 µm. The spectral distribution of Brillouin-scattered in-
tensity has been derived by Damen [11] as|Es/E0|2 ∝ exp(−1

2q2∆θ2w2
ph), with

q = 2k sinθs/2 the scattering vector,∆θs the deviation in angle from the specular
condition [see Fig. 3.1], andwph the 1/e half-width of the acoustic strain profile.
Together with the frequency-angle relation for small angles,∆ν = c0k∆θs/π, this
yields for the spectral halfwidth∆ν the expression

∆ν ≈
√

2c0

πwph(z)
. (3.3)

We used this approximation to calculate the spectral width associated with the
experimentally obtained values ofwph of Fig. 3.5(a) [marked× in Fig. 3.5(b)].
We find only qualitative agreement with the experimental behavior: the spectral
bandwidth decreases for increasing spatial width. The quantitative disagreement
is believed to be a direct consequence of a compromise made in the imaging of
the detection volume onto the interferometer. The limited aperture of the Fabry-
Pérot allows for only specific combinations of opening angle and beam diameter,
conserving the productd∆θ, with d the diameter of the detection volume. Our
choice of imaging results in a combination ofd ≈ 50µm and horizontal opening
angle∆θ ≈ 0.05 rad, corresponding to a bandwidth of 800 MHz. Further, the
tight focusing of the argon-ion laser beam introduces an additional distribution of
angles in the scattering process, that acts as an offset in Fig. 3.5(b). We try to
correct for the clipping of the high frequencies and angular spread of the argon
laser by using the simple model equation

∆νc =

(
1

∆ν + A
+

1
B

)−1

, (3.4)

with A the offset andB the high-frequency cutoff. Application of this correction
scheme to the values derived from the spatial profiles gives agreement with the
directly measured bandwidth for values ofA = 90± 10 MHz andB = 800±
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F 3.5 (a) Spatial 1/e halfwidth of the phonon beam at 3.3 GHz against translation
of the focusing lens of the pump laser. (◦) experimental data, (line) fit to data assuming
Gaussian beam divergence. (b) Spectral 1/e halfwidth of the Brillouin scattered intensity
for same settings as in (a). (◦) experimental data, (×) derived from (a) using Eq. (3.3),
and (line) after correction by Eq. (3.4).

50 MHz [line in Fig. 3.5(b)].
From the data of Fig. 3.5(a,b) we have observed a clear correlation between

spectral width and the spatial strain profile. However, next to the phonon beam
profile, the spectral width turns out to be determined also by the size of the probe
beam and the opening angle of the detector. Further, the fourier spectrum of the
wavepacket [see Fig. 3.3(b)] shows strong variations over gigahertz frequencies,
which will distort the connection between spatial and spectral properties as well.
In conclusion, the spectral width is unreliable for a quantitative analysis of the
beam profile.
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3.3.4 Propagation of a single strain component

Once an acoustic mode is selected by means of its associated scattering angle,
it can be easily followed over long distances in the crystal by translation of the
cryostat. For our example at 3.3 GHz, we measured the transverse profile at sev-
eral travelled distancesz at room temperature. The obtained 1/e halfwidth of the
Gaussian profiles is shown in Fig. 3.6(a) and shows broadening due to Fraunhofer
diffraction. After accounting for phonon focusing, the expression for the diver-
gence of a gaussian strain profile reads [7]

wph(z) = w0

1+
(

z
z0

)2
1/2

, (3.5)

z0 =
πw2

0

λ0
(1− 2p), (3.6)

whereλ0 = 2π/q0 denotes the selected phonon wavelength andz0 the Rayleigh
distance, over which the acoustic pencil increases by a factor of

√
2. The pho-

non focusing parameter equalsp = +0.174 for lead molybdate around the [001]-
direction. Excellent agreement is obtained with the experimentally observed di-
vergence and Eq. (3.5) [line in Fig. 3.6(a)] forw0 = 20.2 ± 0.2 µm andλ0 =

1.09µm, which indeed corresponds to a 3.34-GHz phonon frequency. The diver-
gence angle of the phonon beam follows from Eqs. (3.5) and (3.5) asθ0 = w0/z0

and amounts to 25 mrad for the frequency component of Fig. 3.6(a).
Integration of the Brillouin signal over the transverse coordinate gives the to-

tal acoustic power, which is shown versus propagation distancez in Fig.3.6(b).
The decay can be fit by a single exponential function with a relaxation length of
225µm, in agreement with the theory and previous experiments for phonon atten-
uation at room temperature [11]. Note that this method of integration is valid only
for phonon beams less than∼40 µm, the typical width of the detection volume.
For broader beams, the energy that falls outside this region will not be detected
and therefore a reduced total power will be observed.

Experiments at liquid helium temperatures are necessary to eliminate ther-
mal damping effects, thus enabling the study of propagation over much longer
distances and at lower pump intensities. Preliminary results for the 3.3-GHz
frequency component indicate a strong dependence of both the divergence (not
shown) and the acoustic power (inset of Fig. 3.6(b) on the pump intensity. The
rapid decay of the total intensity at the highest pump powers may be explained
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F 3.6 (a) Acoustic beam width at 3.3 GHz (◦) as a function of propagation dis-
tance in the crystal at room temperature. (Line) fit to data using Eq. (3.5). (b) Integrated
Brillouin intensity at 3.3 GHz (◦) as a function of propagation distance at room temper-
ature, (line) theoretical fit to data using exponential decay. (c) Brillouin intensity as a
function of propagation distancez at 15 K for three different pump intensities.

by an increase in coupling between acoustic modes, due to the high local strain
around the wavepacket maximum. We observed this population decay to be even
more pronounced at lower acoustic frequencies, around 1 GHz (not shown), sug-
gesting the presence of an upconversion effect, which may be interpreted as the
self steepening of the acoustic wavepacket and a precursor of soliton formation.
Further investigation into the power dependence of these effects and of diffraction
will be presented later on in this thesis.
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3.4 Conclusions

In summary, we have presented the first experiments on picosecond strain wave-
packets using Brillouin scattering as a local probe of acoustic frequency compo-
nents. We obtain integrated intensities of up to 107 photons per second, which
is sufficient to do sophisticated experiments. The wavepacket spectrum could be
measured up to 8 GHz in lead molybdate, and was gauged against the scattered
intensity of the thermal phonon background. Furthermore, a fine-structure in the
acoustic spectrum on the scale of the 75.4 MHz repetition frequency was revealed,
demonstrating the phase relation between subsequent strain pulses. Propagation
over millimeter distance at room temperature is consistent with the linear theory
of Fraunhofer diffraction and thermal damping for the acoustic wavevector se-
lected by the scattering geometry. At low temperatures, the propagation could be
monitored over much longer distances in the crystal. The anomalies in the propa-
gation at this regime may serve as a starting point for the investigations presented
in the following chapters.
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Abstract

We demonstrate the development of high-amplitude picosecond strain pulses in a sap-
phire single crystal into an ultrafast compressional soliton train. For this purpose, large-
intensity light pulses were used to excite a metal film, yielding a two-orders of magnitude
higher strain than that achieved in earlier studies. Propagation of the packets is monitored
over a distance of several millimeters by means of Brillouin light-scattering. This yields
a complicated oscillation pattern of the scattered intensity, that is interpreted in terms of
optical interference and Bragg-resonances of light reflected from the solitons moving at
different velocities. A one-parameter model, based on the Korteweg-de Vries-Burgers
equation, simultaneously explains the observed behavior at all strains and temperatures
under study. We predict up to 11 solitons in the train, reaching pressures as high as 20 kbar
and 0.5 ps temporal widths.

4.1 Introduction

After the successful application of the Brillouin-scattering method in the detection
of ‘modelocked’ strain wavepackets, as described in Chapter 3, we extend this de-
tection method to the regime of acoustic wavepackets of very high amplitude in
sapphire. Picosecond, planar strain pulses are generated thermoelastically in a
metal film using excitation by an amplified femtosecond laser. From the experi-
ments by Haoet al. [1] it is known that, at moderate strains, high-frequency wave-
packets will experience sufficient nonlinearity to compensate for phonon disper-
sion, resulting in strain solitons of compression. In this chapter we present results
demonstrating the development of a train of ultrashort strain solitons, reaching
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F 4.1 Top view of the Brillouin scattering configuration in the crystal, showing
the optical cryostat that contains a single crystal sapphire. Arrows indicate the directions
of the femtosecond pump laser beam and incident and reflected probe light.

amplitudes up to 0.4% and 0.5 ps temporal widths [2].

4.2 Experimental setup

We increase the strain amplitude of the wave packets injected from the metal
transducer, relative to those in conventional picosecond ultrasonics, by two orders
of magnitude using excitation by an amplified ultrafast Ti:sapphire laser system
(Spectra Physics ‘Hurricane’). The output beam of the laser carries 0.75 mJ per
pulse at a repetition rate of 1.0 kHz and is loosely focused to a spot of several
millimeters in diameter onto the sample. For the propagation experiments we use
a piece of high-quality (< 1 at. ppm. impurity ions) single-crystal sapphire of
5×11×10-mm3 dimensions, with thec-axis aligned perpendicular to the 5×11-
mm2 surface. A 1000-Å chromium film is deposited onto this surface. The crystal
is mounted into an optical cryostat to perform experiments down to liquid helium
temperatures. The optical pump fluence is varied by changing the position of the
focusing lens, the upper limit being the damage threshold of our transducer at
∼15 mJ/cm2.

Transient changes of the refractive index due to the presence of the acoustic
wave packets are detected by means of Brillouin scattering, as explained in Chap-
ter 3. Momentum conservation in the scattering process selects a narrow band of
Fourier components of the acoustic wave packet. The frequency-shifted optical
beam is analyzed with a quintuple-pass Fabry-Pérot interferometer and detected
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by a photon-counting system. This setup has been used in Chapter 3 to observe
modelocked acoustic wave packets [3] and was used earlier to study coherent,
monochromatic phonon beams [4, 5]. One of the obvious technical difficulties
with respect to the configuration of Chapter 3 is the dramatic decrease in duty-
cycle by a factor of 7.54× 104 by the replacement of the modelocked laser by the
regenerative amplifier. Indeed a significantly lower scattering yield, of the order
of 10− 100 cts/s, was obtained, which fortunately turned out to be sufficient to
perform the detailed experiments described in the following sections. Spurious
background intensity due to elastic scattering and detector noise could be effi-
ciently suppressed using electronic time gating of the arriving counts.

Brillouin scattering is the ideal technique to study the development of the
wavepacket into soliton trains in transparent crystals because the propagation
distance can be continuously varied and the expected spatial walk-off between
the solitons corresponds to wavevectors around the typical scattering wavevector,
yielding excellent sensitivity. We have chosen to focus the Brillouin laser beam
tightly to a waist of∼4 µm, to achieve an optimal spatial resolution for detection
along the propagation direction. Acoustic frequency components up to∼30 GHz
in sapphire can be studied with 514-nm light using the scattering configuration
through the side-windows of the cryostat [see Fig. 4.1]. Our choice of the metal
transducer guarantees an initial wave packet with gigahertz components [6]. The
excellent attachment of chromium to sapphire and the small acoustic mismatch
results in an acoustic reflection coefficient at the interface of only 10%. A typical
power spectrum, obtained by measuring the Brillouin intensity at a distance of
50µm behind the transducer, for several scattering angles, is shown in Fig. 4.2(a).
For comparison, the vertical scale is normalized to the spectrum of the initial
wavepacket used in the simulations of the following sections [c.f. Fig. 4.2(b)].

4.3 Numerical simulations

Numerical simulations of the Korteweg-de Vries-Burgers (KdV-Burgers) equation
were performed using a discrete, implicit scheme of second order accuracy and
three-level quadratic approximation in time [7] (see Appendix A). In those cases
where solitons were formed, part of the simulation was further evolved using the
analytical methods for soliton trains described in Sec. 2.4 of this thesis. In all
calculations, we use the known parameters for the elastic constants of second-
and third order and the phonon dispersion around thec-axis of sapphire [8].
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F 4.2 (a) Power spectrum of the initial wave packet used in simulations, with Bril-
louin intensity (points) obtained at different scattering angles. (b) Initial waveform used
in simulations.

4.4 Experiments at a single strain component

4.4.1 Propagation at room temperature

Figure 4.3 shows typical traces of the acoustic power vs propagation distance at
22 GHz, at room temperature and for six values of the pump fluence. Note the
vertical rescaling and horizontal expansion in the figure for the first 0.5-mm prop-
agation distance. At all fluences the Brillouin intensity initially sharply decreases
with distance, followed by a weak and gentle oscillation. Simulations have been
included in the figure using the KdV-Burgers equation. For the viscosity of sap-
phire at room temperature we took 4.54× 10−4 Ns/m2 [9]. Fitted values for the
initial acoustic strains0, the single adjustable parameter of the model (except for
the overall amplitude), are presented as numbers in Fig. 4.3(a). Good agreement
between theoretical and experimental traces is obtained for values ofs0 around
10−3, which corresponds to a transient pressure of 10 kbar. These values coincide
with the absolute Brillouin intensity, gauged against the measured thermal phonon
background in absence of strain pulses. Further, temporal traces obtained from the
simulation after a 5-mm propagation distance are included in Fig. 4.3(a), which
exhibit the typical shape of the damped N-wave solution of the Burgers equation
[10]. From these simulations we conclude that, at room temperature, the degree of
self-steepening does not reach the critical value in order to bring dispersion into
play.
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F 4.3 Acoustic power at 22 GHz as a function of propagation distance in the sap-
phire crystal, at room temperature. Points: experimental data. Lines: simulations. Arrows
indicate vertical offsets. Up to 0.5 mm, traces have been vertically divided by 4. Inset:
(a) Time-domain waveforms after 5 mm of propagation, in the moving-frame coordinate
t − z/c0, obtained from simulations with corresponding values of acoustic strains0.

4.4.2 Temperature dependence

The propagation at intermediate temperatures is shown in Fig. 4.4 and shows the
typical crossover from overdamped to virtually undamped propagation. Again,
simulations have been performed successfully, by taking a linear temperature de-
pendence of the viscosity above 100 K [5]. This makes our simulation free of
adjustable parameters. The onset of fast oscillations in the propagation, between
50 K and 100 K, signifies the formation of solitons, as we will show in the fol-
lowing section. Simulations in the crossover regime have not been performed,
because the specific anharmonic process involved in the damping is not known.
At a temperature of 5 K, however, it appears that we may neglect damping com-
pletely.
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F 4.4 Traces of the 22-GHz frequency component for different temperatures, at a
pump fluence of 4.9 mJ/cm2. Points: experimental data. Lines: simulations based on the
KdV-Burgers equation. (a) Values for the viscosityη used in the simulations.

4.4.3 Propagation at low temperature

In Fig. 4.5 we present traces taken at a temperature of 5 K, again at 22 GHz and for
a range of pump fluences. We observe for all curves an initial decay reminiscent
of the behavior at higher temperatures, but slightly faster. Beyond a propagation
distance of a few hundred micrometers, we can distinguish fast oscillations in the
acoustic power, with a period decreasing with increasing pump fluence. After a
propagation length of several millimeters, the characteristic oscillations become
less pronounced.

At this point we show that this behavior can be accounted for by simula-
tions using the KdV equation. In the present simulations, proper corrections were
made for the input strain values to correct for the temperature-dependent absorp-
tion changes in the transducer [see Fig. 4.5(a)], leaving us again without any ad-
justable parameters. The calculated Brillouin intensities at 22 GHz are shown as
lines in Fig. 4.5 and show a remarkable agreement up to several millimeters prop-
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F 4.5 Scans of the 22-GHz Fourier component of the acoustic wave packet, for
different pump fluences, at a temperature of 5 K. Points: experimental data. Lines: sim-
ulations based on the KdV equation. (a) Values for the acoustic strain obtained for the
simulations at temperatures of 293 K and 5 K.

agation length. General features, like the initial decay, fast oscillations, and the
transition from an oscillatory to a more complex behavior after several millimeters
are correctly reproduced by the calculations.

4.5 Interpretation

Figure 4.6 shows the simulated successive stages of the development of the wave
packet into a soliton train. Inspection of the experimental data and the simula-
tions reveals that the initial decay of the Brillouin intensity is produced by self-
steepening of the wave packet and concomitant upconversion of the acoustic en-
ergy to frequencies as high as 1 THz, i.e., far beyond the experimental window.
Only at these high frequencies, phonon dispersion provides enough phase accu-
mulation to balance self-steepening and initiates soliton formation in the leading
part and the so-called radiative tail in the trailing part. The variations of the Bril-
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F 4.6 Time domain traces, for several propagation distancesz, obtained from sim-
ulations based on the KdV equation, for an initial strain of 1.75 × 10−3. (a) Fourier
transform of experimental scan of Fig. 4.5 at 6.5 mJ/cm2.

louin intensity vs propagation distance can then indeed be traced back to Bragg-
scattering off the soliton train, with resonance lengthτres = 1/νB as indicated
in the figure (νB denotes the Brillouin frequency). Two solitons of different am-
plitude and consequently different velocitiesv1, v2 would already result in one
oscillation, with a period of

λ = c2
0/(v1 − v2)νB , (4.1)

c0 being the sound velocity. For a velocity difference of 10−3c0, this will give an
oscillation with a period ofλ = 0.51 mm. Likewise,N solitons produce no more
than (N − 1)! spatial resonances. This leads to the complicated beating pattern
as a function of propagation distance, as we observe experimentally. We examine
in Fig. 4.6(a) the spatial Fourier-transform of one of the experimentally obtained
diagrams of Fig. 4.5 and resolve at least 9 distinct contributing frequencies. This
directly poses a lower limit on the number of solitons (and tail) ofN = 5. From
the simulation it can further be observed that the mutual distances between the
solitons are almost equal, implying degeneracy of many spatial resonances and a
reduction of the number of experimentally observable beating frequencies. The
limited propagation length in our experiments unfortunately prevents an exact de-
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termination of the number of solitons in the train directly from the spatial-Fourier
spectrum of Fig. 4.6(a). However, accurate knowledge of all material parame-
ters and experimental conditions allows us to define a prototype wave packet, the
soliton train of Fig. 4.6, that is consistent with all our experimental data.

The bold extrapolation in the above discussion from the gigahertz Brillouin-
scattering data to the terahertz characteristics of the wave packet is in our opinion
justified by the excellent agreement between the experimental and computed be-
havior. In the problem of nonlinear wave propagation, one cannot simply separate
the behavior of the high- and low-frequency components of the wave packet: they
are inherently coupled and interlaced. This fact allows one to draw detailed con-
clusions on the evolution of high-frequency components, once the low-frequency
behavior is assessed to sufficient precision as we did using Brillouin spectroscopy.
A viscously damped N-wave must evolve according to a typical diffusive scal-
ing law [10], which explains the slowing down of the oscillations in the high-
temperature Brillouin data. KdV-solitons propagate with constant velocity, and
therefore will exhibit a constant oscillation period in the Brillouin signal. As
the KdV-soliton is a one-parameter entity, its amplitude and width follow di-
rectly from this velocity. Inelastic light scattering thus forms a unique monitor
of soliton-train evolution inside a crystal, despite the fact that the solitons con-
sist of very high frequency components, far beyond the bandwidth of a Brillouin
spectrometer.

4.6 Conclusions

In conclusion, we have efficiently generated planar, high-intensity acoustic wave
packets of picosecond duration, and monitored their propagation using Brillouin
scattering. High-intensity optical excitation yields a two orders of magnitude
higher strain and correspondingly higher conversion of absorbed energy to co-
herent phonons than conventional picosecond ultrasonics. Experiments at low
temperature have been described successfully by the KdV equation. From these
calculations, we predict the development of an acoustic soliton train of up to 11
individual solitons, reaching a strain as high as 4×10−3, a subpicosecond time du-
ration, and a 5-nm spatial width. Further measurements show that solitons can be
formed at temperatures as high as 50 K. Above 100 K, damping of high acoustic
frequencies completely eliminates the role of dispersion, resulting in weak shock
wave formation.
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Potential applications of intense subpicosecond acoustic pulses are in strain-
induced chemistry and surface science, and possibly switching of synchrotron
beams [11, 12]. Further, the small acoustic wavelength and highly localized en-
ergy content make ultrashort acoustic solitons a potentially suitable vehicle for
patterning or imaging of nanometer-scaled objects. The feasibility to generate
these pulses up to liquid nitrogen temperatures may therefore be of technological
relevance. Research at even higher nondestructive excitation intensities will be
possible, but require a stronger or embedded transducer. Intense subpicosecond
acoustic wave packets will certainly open up new areas of fundamental research
on vibrational dynamics [13] and phonon localization in glasses [14, 15]. Fi-
nally, the single-cycle pulse shape and quadratic nonlinearity provide a new and
fascinating playground for fundamental studies on one- and higher-dimensional
solitons, in analogy with their optical counterparts [16, 17].
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Abstract

In this chapter we explore the development in sapphire of trains of acoustic solitons by
measuring the Brillouin signal over a range of scattering angles. We obtain detailed new
information on the relation between the acoustic frequency and the observed oscillation
patterns. The interpretation in terms of spatial resonances of the moving train, developed
in Chapter 4, is applied in a quantitative way to determine a soliton velocity from the
spatial frequency spectrum. Estimates for the highest soliton amplitudes have been ob-
tained that are in good agreement with the numerical simulations of the KdV equation
from Chapter 4.

5.1 Introduction

In Chapter 4 we have demonstrated the formation of ultrashort strain solitons in
sapphire using a direct comparison of Brillouin scattering data and numerical sim-
ulations. An attempt was made to analyze the intricate oscillation pattern in terms
of spatial resonances of the solitons, but no quantitative results were obtained us-
ing this method. At this point, we will try to get information on the soliton train
using only the analytical framework, i.e. without the numerical simulations. For
this purpose, we have analyzed the propagation in sapphire of several frequency
components of the wavepacket, in the range 10− 26 GHz.

Next to this, we discuss in Sec. 5.2 some general properties of the Brillouin
scattering method, namely the dependence of the Brillouin intensity on polariza-
tion of the probe laser beam, and the calibration against the thermal phonon sig-
nal. Finally, in Sec. 5.5, the spectral evolution of the numerical soliton packets of
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F 5.1 Dependence of Brillouin scattering signal at a frequency of 22 GHz on
argon-ion laser polarization, (a) Logarithmic, normalized to maximum and (b) linear
scale. (‖,⊥) indicate orientation of electric-field vector�E to the crystallographicc-axis

Chapter 4 is revisited, and connected with the analytical estimates of Sec. 5.4. In
Sec. C.2 the role of the dispersive tail and solitons in the low-frequency Brillouin
scattering experiment is studied.

5.2 General observations

5.2.1 Polarization dependence

It is well-known that the elasto-optic coupling efficiency in sapphire shows a
strong anisotropy for electromagnetic waves propagating perpendicular to thec-
axis [1, 2]. Therefore we have determined the dependence of the Brillouin scatter-
ing efficiency on the polarization angle of the probe-laser beam [see Fig. 5.1]. We
use excitation by a 80-MHz, modelocked Ti:sapphire laser that allows for a dy-
namic range of 104 in intensity. Indeed, a very strong variation over three orders
of magnitude of the scattered intensity as a function of probe-beam polarization
angleφ is observed, that can be explained by the sum of the electric-field compo-
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nents parallel and perpendicular to thec-axis:

I(φ) = a
(
p2

33 sin2 φ + p2
13 cos2 φ

)
, (5.1)

wherep33, p13 denote the elasto-optic coupling parameters for�E ‖ c and �E ⊥ c,
respectively, anda is an arbitrary scaling factor. The ratio is found to bep33/p13 ≈
22, which is somewhat larger than expected from the literature values ofp33 =

0.23 andp13 ≤ 0.005 [1]. This difference will be most likely due to the angle of
incidence of the probe beam of about 20◦, which results in some mixing with the
elasto-optic componentp31 ≈ 0.03. Without going into further detail on this, we
have chosen to maximize the Brillouin scattering intensity throughout Chapters 4
and 5, using the�E ‖ c polarization.

5.2.2 Strain calibration

Analoguous to the method used in Sec. 3.3.2, we can gauge the Brillouin spectrum
induced by the coherent strain packet against the thermal phonon background of
∼40 cts/s, measured in sapphire at 22 GHz and at room temperature. Comparison
with the typical intensity induced by the wavepackets, as shown in Fig. 5.1, yields
an occupation numbernω ≈ 103nth for excitation using a modelocked laser at a
fluence of∼0.5 mJ/cm2 per pulse. Application of Eq. (3.2) results in a component
of displacementuω = 3 × 10−14 m, or a strain componentsω = 3.5 × 10−7,
over a finesse-limited bandwidth of 0.8 GHz (at a free spectral range of 42 GHz).
Calibration of the typical wavepacket spectrum, as shown in Fig. 4.2, to this value
yields a coherent strain amplitude of∼1×10−4 for the ‘modelocked’ wavepackets.

In the case of excitation by amplified laser pulses, we measured a maximum
intensity of∼1 kcts/s at E = 8 mJ/cm2 pump fluence. Accounting for the re-
duction in repetition rate, this yields auω = 2.1 × 1012 m, corresponding to a
coherent strain amplitude of 4× 10−3. Comparison with Fig. 4.5(a) shows that
this is a slight overestimation by a factor of 2. Most likely, this deviation is caused
by the estimate of the duty cycle difference, which depends strongly on the exact
dimensions of the detection volume.

5.3 Experiments at different frequency components

In section 4.5 we have introduced a method of describing the patterns in the Bril-
louin scattering intensity as a function of propagation distance, in terms of spatial
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resonances and Bragg-scattering from the moving soliton train [c.f. Eq. (4.1)].
This model assumes a direct relation between the Brillouin frequencyνB and the
observed spatial beating periodλ. To check the validity of this approach, we mea-
sured the Brillouin intensity at five different frequency components, with mutual
distances of 4 GHz.

As usual, individual frequency components of the wavepacket were selected
by adjusting the scattering angle within the aperture limited by the windows in
the cryostat. Similar to the experiments of Chapter 4, the inelastically scattered
beam is frequency filtered by a quintuple-pass Fabry-Pérot interferometer and de-
tected using a gated photon counting setup. The development of the acoustic
wavepacket spectrum is monitored by moving the detection volume to difference
positionsz in the crystal. Figure 5.2(a) shows the dependence of the Brillouin
intensity on propagation distance at the selected frequencies, for a pump fluence
of 6.5 mJ/cm−1. At all frequencies, the intensity shows a strong decrease in the
first hundred micrometers of propagation, followed by an oscillatory behavior.
The initial decrease has been attributed earlier to the spectral redistribution of
energy, up to terahertz acoustic frequencies, by the nonlinear steepening of the
wavepacket (Sec. 4.5) and will not be further discussed at this point. The intricate
beating pattern at distances beyond the self-steepening regime can be unravelled
by performing a spatial Fourier transform of the experimental traces after the ini-
tial decay, where the solitons are supposed to be well-developed. The results of
this procedure on the experimental traces are shown in Fig. 5.2(b). In all spec-
tra we observe a distinct amount of spatial frequencies that produce the beating
pattern. Unfortunately, the finite propagation distance limits the spectral resolu-
tion to νx ≈ 0.17 mm−1, causing the resonances to overlap into broad bands. The
scanning length at 26 GHz is further limited to 1 mm by the size of the cryostat
windows. Still, several oscillations ofνx ≈ 4 mm−1 can be observed.

5.4 Discussion

The degeneracy of many of the resonances makes it an impossible task to assign
them individually to beating modes of the soliton train. It is however possible to
determine from the spectra a high-wavevector cutoff, corresponding to the inter-
ference of light scattered by the fastest soliton with that of the slowest solitons and
of the linearly propagating tail. The estimated highest spatial frequenciesνx for
all scattering angles and at several pump intensities are shown in Fig. 5.3. We ob-
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F 5.2 (a) Brillouin scattering intensity as a function of propagation distance at 5
different scattering angles, at a pump fluence of 6.5 mJ/cm2. (b) spatial Fourier transforms
of data (νx = 1/λ), arrows indicate highest spatial frequency in the scans.

serve a linear dependence of the maximumνx on the Brillouin frequency, its slope
increasing with pump fluence. This is consistent with our earlier interpretation in
terms of Bragg-resonances (c.f. Sec. 4.5), which relates the resonance condition
τres= 1/νB to the spatial beating frequencyνx:

νx =
(v1 − v2)νB

c2
0

, (5.2)

wherev1 − v2 are the velocities of the two scattering objects involved in the reso-
nance,c0 = 11.23 km/s denotes the longitudinal sound velocity in sapphire. We
use this relation to obtain accurate values of the velocity difference from the linear
fits to the data of Fig. 5.3(b). From analytical solutions to the KdV initial value
problem (see Sec. 2.4.2) it is known that the soliton amplitudes in the train are
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F 5.3 Highest spatial frequencyνx as a function of Brillouin frequencyνB for 4
typical pump fluencesE = 2.6 (�), 3.2 (�), 4.9 (�) and 6.5 (◦) mJ/cm2. Lines are fits to
data, following Eq. (5.2). Inset: initial strain amplitude|s0| obtained from the slope of
fitted data at different pump fluencesE. Line denotes linear dependence.

given by

a j =
3s0

σ2

(
1+
√

1+ 2σ2/3− 2 j
)2
, (5.3)

where j is the index of the soliton in the train,j = 1 denotes the leading soliton.
The parameterσ involves the scaling of the physical problem to the dimension-
less class of KdV solutions, and depends on material parameters and initial strain
waveform through the expression [c.f. Eq. (2.20)]

σ = l0

(
αs0

2ρc0β

)1/2
, (5.4)

with l0 and s0 the spatial width and strain amplitude of the initial wavepacket,
respectively,α the nonlinear constant defined by the lattice anharmonicity,β the
third order correction to the phonon dispersion, and finallyρ the crystal density.

Note that the number of solitons evolving from an initial wavepacket is given
by N = σ/π

√
6, which identifiesσ as the generalized pulse ’area’ [3]. Under our

experimental conditions,σ takes on values in the range 10-50, leading to soliton
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trains of up toN = 11, and we may approximate Eq. (5.3) for the leading solitons
in the train to first order by

a j ≈ 2s0

(
1− 4

√
6 j/σ

)
. (5.5)

This shows that for largeσ the first soliton in the train has an amplitudea1 ≈ 2s0,
independent of the length of the initial disturbancel0 or material parametersα and
β. The velocity change of a soliton, with respect to the sound velocity, is directly
related to its amplitude by the relation

∆v j

c0
=
αa j

6ρc2
0

. (5.6)

Given the literature value [4] ofα = −1.83 TPa, we find a relative velocity of
∆v j/c0 = 0.61|a j| along thec axis of sapphire. Using this relation and Eq. (5.2),
we can fit the experimental dependence of the highest wavevector on Brillouin
frequency (lines in Fig. 5.3). The values fors0 obtained from these fits are shown
against pump fluence in the inset of Fig. 5.3. Good agreement is found between
these values and those obtained from detailed numerical reproduction of the scat-
tered intensity at a single Brillouin frequency in Fig. 4.5.

In the framework of the KdV-model, velocity, amplitude and width of a soliton
are connected, resulting in a halfwidth of the strain waveforms(t) = s0 sech2(t/τ j)
given by:

τ j =

√
24ρβ
c0αa j

. (5.7)

For the highest strain amplitude in our experiment,|a1| = 4× 10−3, this provides
a soliton width ofτ1 = 0.21 ps.

5.5 Development of the soliton spectrum

At this point, we will investigate the spectral properties of the soliton trains under
study, and in particular the redistribution of energy in the low-frequency part of
the spectrum. Further, a connection between the analytical framework and the
numerical simulations will be made, in order to find a general behavior in the
complicated spectral development of the wavepacket.
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F 5.4 (a) Simulated soliton train developed after 0.5 mm propagation in sapphire.
(b) Acoustic strain spectrum of the simulated soliton packet, with frequency components
up to the terahertz range.νB = 1/τs denotes Brillouin frequency of 22 GHz.

Figure 5.4(a) shows again the simulated soliton train of Fig. 4.6, developed
from the initial picosecond strain pulse, using the numerical KdV model formu-
lated in the material parameters of sapphire. Clearly, the wavepacket exhibits the
typical features predicted by the analytical expressions for largeσ, which has a
value of approximately 80 in our simulated wavepacket. We observe an equidis-
tant soliton train ofN = 11, with strain amplitudes decreasing linearly in the train
starting from an amplitude of the leading soliton ofa1 ≈ 2s0. The trailing radi-
ation in the packet emerges from the dispersive development of the rear edge of
the initial bipolar pulse, and is not described in our analytical framework. Fig-
ure 5.4(b) shows the acoustic power spectrum of this typical strain waveform, for
the complete wavepacket, as well as separated into the individual contributions of
soliton train and radiative tail. Spectral components up to terahertz frequencies
can be observed, corresponding to the sharpest features of the wavepacket of less
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F 5.5 (a) Analytical soliton trains after 0.5 mm, using1. real form, Eq. (5.3)
(solid) and2. equidistant approximation, Eq. (5.5) (dash). (b) Power spectrum of the
train 1. of (a) (solid) , and (dash) using Dirac-δ functions instead of soliton shapes. (c)
Similar as (b), for equidistant train2. of (a).

than∼0.5 ps in width. The contributions of the radiative tail are localized primar-
ily in the higher part of this spectrum. The soliton train, however, contains a more
homogeneous, but strongly oscillating, distribution of frequency components over
the spectral range, which correspond to the spatial resonances of the train.

In the following we will zoom in on the lower-frequency part of the spectrum,
and consider only the contribution of the solitons in the packet. Figure 5.5(a)
shows two soliton trains as obtained from the expressions Eq. (5.3) (solid) and
Eq. (5.5) (dash). Note that the former of the two is exact, while the latter is an
approximation for very largeσ, that results in an equidistant spacing between
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the subsequent solitons. The consequence of this difference in spacing for the
lower part of the spectrum can be observed in Fig. 5.5(b,c). For the equidistant
soliton train, the spectrum is periodical over a range∼100 GHz, while for the exact
form no periodicity can be observed. The dashed lines represent the same trains,
but with the soliton waveforms replaced by Dirac-δ functions with appropriately
scaled amplitudes. Qualitatively, the low-frequency spectrum is not significantly
altered by this approximation.

Pursuing the line of thought of our interpretation in terms of Bragg scattering,
we can analyze the spectra of Fig. 5.5(b,c) in terms of resonances between the
solitons in the train. We consider a train given by

f (z, t) =
N∑

j=1

a jδ(t + γ jz) , (5.8)

with N the number of solitons,a j the soliton amplitudes, andγ j = v j/c2
0 the

soliton walkoff in the moving frame system. For the equidistant train of Eq. (5.5),
γ j = j∆γ and a j = j∆a, with ∆a = 8

√
6s0/σ the amplitude difference and

∆γ = 4
√

6αs0/3σρc3
0 the walkoff between subsequent solitons [c.f. Eq. (5.6)]. In

this case, it is useful to consider the trainf of Eq. (5.8) as a product of a comb-
functiong with a triangular shapeh:

f (z, t) = g(z, t) · h(z, t)

g(z, t) =
N∑

j=1

δ(t + j∆γz) , h(z, t) =
∆a
∆γz

t .
(5.9)

After Fourier transformation, this product will be transformed into the convolution
f̃ = g̃ ⊗ h̃, with g̃ and h̃ the transforms of the comb and triangular functions,
respectively given by

g̃(z, ω) = (2π)−1/2sinNβω
sinβω

e−iβω(N+1)

h̃(z, ω) = −iζ
∂

∂ω
δ(ω) ,

(5.10)

with the abbreviationsβ = ∆γz/2 andζ = (2π)1/2∆a/∆γz. The above expression
for g̃ is the well-known transform function for a grating withN slits, indicating
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that the frequency spectrum of the equidistant soliton train can be interpreted in
terms of the diffraction orders of a grating. For completeness, we give the exact
solution of the above convolution equation. Partial integration yields

f̃ (z, ω) = −iζ
∂

∂ω′
g̃(ω − ω′)

∣∣∣∣∣
ω′=0

= ζβg̃(ω)

(
N + 1+ iN

cos(Nβω)
sin(Nβω)

− i
cos(βω)
sin(βω)

)
.

(5.11)

The power spectrum corresponding to this expression can be observed as the dot-
ted line in Fig. 5.5(c). The overall periodicity in this equation is determined by
the zeros of the denominator of ˜g, with spacing∆ω0/2π = 1/2β ≈ 102.5 GHz.
Further it turns out that there are exactly (N − 1) subminima between the main
orders, with a period∆ω1 = ∆ω0/N, although their visibility is reduced by the
additional terms in Eq. (5.11).

We are now able to understand the shape and periodicity of the spectrum in
Fig. 5.5(c) by treating the equidistant soliton train as a diffraction grating. It is
even possible to determine the number of solitons from the fine structure in the
spectrum, by counting the oscillations between the main grating orders. If we now
compare the simple form of Fig. 5.5(c) with the spectrum of Fig. 5.5(b), it is clear
that the variations in spacing in the real soliton train are sufficient to destroy the
periodicity of the grating function. Still, however, the part of the spectrum below,
say 100 GHz, seems to correspond reasonably well to the pattern observed in the
equidistant soliton train below the first grating order. The bump around 135 GHz
may even be attributed to constructive interference of the slightly smaller spacings
in the realistic train of Fig. 5.5(a). Thus, by counting the number of oscillations
before this maximum, we may get an impression, or lower limit, of the number
of solitons in the train. For example, in Fig. 5.5(b) we can count up to 7 minima
before the first order maximum at 135 GHz, yielding an estimate ofN = 8. This
means that we underestimate the number of solitons by only two or three.

At a first glance, the spectrum of Fig. 5.5(b) looks very similar to the typical
experimental traces for a single Fourier component, as shown in Fig. 5.2(a). This
is of course the consequence of the scaling behavior of the spectrum, as the train
propagates over distancesz [c.f. Eq. (5.10)]. Consequently, when monitoring a
fixed frequency component, the initial high-frequency content will meet this probe
frequency, as the spectrum scales to lower acoustic frequencies.
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5.6 Conclusions

We have determined the evolution of the acoustic spectrum of a picosecond strain
wavepacket over millimeters of propagation at five different Brillouin frequencies,
and have found the intricate beating patterns typical for soliton train formation.
Dependence of the maximum wavevector on Brillouin frequency agrees well with
our interpretation in terms of Bragg resonances of the light scattered from parts of
the wavepacket propagating with slightly different velocities. Quantitative analy-
sis of this dependence on Brillouin frequency, at several pump fluences, provides
us with estimates of the strain amplitude of the first soliton in the train. The value
obtained agrees well with our earlier estimates based on numerical simulations.
We believe that this interpretation of Brillouin scattering traces in terms of spatial
resonances can be used as a reliable method for the determination of the strain
amplitudes in an ultrashort soliton train.

Further, via the analysis of a train of equidistant solitons we have described
the soliton train spectrum in terms of diffraction orders of a grating. The fine
structure between the main grating orders in the spectrum consists of a number
of oscillations that is proportional to the number of solitons in the train. This
method of analysis of the low-frequency part of the Brillouin traces can be applied
reasonably well to the realistic soliton trains in our study, despite the fact that the
periodicity is disturbed by the intrinsic deviation in distance between the solitons.
Further, the linear stretching of the soliton train with propagated distance ensures
that the orders will shift towards lower frequencies, where they can be detected
using Brillouin scattering. Thus, examination of the Brillouin traces yields the
spectral distribution of the initial soliton train, and its fine structure allows us to
determine the number of solitons in the packet.
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 

Abstract

We examine coherent interactions between an ultrashort, longitudinal acoustic soliton
train and the 29-cm−1 electronic transition in photoexcited ruby. Propagation of the strain
pulses over millimeter distance through an excited zone reveals striking behavior of the
induced electronic population, that has been explained by impulsive excitation of the
two-level systems, combined with the nonlinear properties of the solitons in the reso-
nant medium. This opens up new possibilities for coherent manipulation of ultrashort
acoustic pulses by local electronic centers.

6.1 Introduction

Recent efforts to generate coherent, longitudinal strain wavepackets at terahertz
frequencies have focused on ultrafast excitation of quantum wells and multilayer
structures [1–3]. Thermoelastic generation methods employing a metallic film
have been well developed, but remain limited to several hundreds of gigahertz by
the optical skin depth and nonequilibrium electron transport [4, 5]. For a long
time, investigations of these transducer-generated picosecond strain pulses have
been conducted only in the low-amplitude regime and over micrometer propaga-
tion distances. However, extension to higher strain amplitudes and larger crystals
has opened up an entirely new range of nonlinear phenomena in picosecond ul-
trasonics. The first observations of strain solitons were made by Haoet al. [6]
and showed consistency with the Korteweg-de Vries (KdV) equation. Experi-

71



72 Chapter 6 Coherent interactions of THz strain solitons and electronic TLS in ruby

ments at even larger strain amplitudes, attainable using high-power laser excita-
tion, demonstrated breakup of the initial strain wavepacket into a train of ultra-
short solitons in sapphire [see Chapter 4] [7], predicting strain amplitudes up to
0.4% and soliton widths less than 0.5 ps.

In this chapter, we prove directly the presence of 0.87-THz frequency compo-
nents in these soliton trains by coupling them to the well-knownE(2E) − 2A(2E)
electronic transition in optically excited ruby. This system, known as the ruby
phonon spectrometer, has been used for many years to study nonequilibrium pho-
nons and related transport phenomena [8–11]. The experiments presented in this
chapter, however, are of a fundamentally different nature, as the incident strain
field excites a macroscopic acoustic polarization in the electronic system, like in
gigahertz acoustic paramagnetic resonance [12]. Thehalf -cycle nature and very
high amplitude of the acoustic field allow for the experimental study of an entirely
new regime of coherent electron-phonon interactions.

6.2 Experiments along the a axis

The studied sample is a 10× 10× 15-mm3 ruby crystal with one of thea axes
perpendicular to a 10× 15-mm2 surface, that is covered by a 1000-Å chromium
transducer. High-amplitude, picosecond strain wavepackets are generated ther-
moelastically by absorption in the transducer of mJ optical pulses from an ampli-
fied Ti:sapphire laser, operating at 800 nm. The sample is mounted in an optical
cryostat with superconducting magnet, and immersed in superfluid helium held
at a temperature of 1.5 K. At similar experimental conditions, we have observed,
independently, the development of strain solitons in the ruby crystal, using the
Brillouin scattering method of Chapter 4 [7].

The excited-stateE(2E)−2A(2E) doublets in a Cr3+-ion form a two-level sys-
tem (TLS) with an energy splitting equal to 29 cm−1, or 0.87 THz. The metastable
density of TLSN∗ can be simply controlled by the optical pumping cycle. We use
a focused 2-W argon-ion laser to excite a pencilA [c.f. Fig. 6.1(a)] of about
200 µm in diameter up to densities ofN∗ ≈ 3 × 1018 cm−3. The R2- and R1-
luminescence intensities, emanating from the 2A andE levels, respectively, allow
for a direct monitoring of the ratio of electronic level populations of the TLS.
We collect the luminescence perpendicular to the argon-ion laser beam path. The
time evolution of theR2- andR1-emission lines, at 692.8 and 694.2 nm optical
wavelengths, is monitored using a double monochromator equipped with a stan-
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F 6.1 Time-resolvedR2 luminescence normalized toR1 at 5-mm propagation dis-
tance, for on-axis (◦) and off-axis (line) configurations, and in the presence of a secondary
excited zoneB (�), at a pump fluenceE = 8.5 mJ/cm2. (a) Experimental configuration,
with A andB excited volumes,s soliton pulse, andh heat pulse. (b) Soliton-induced LA
intensity against pump fluenceE at z = 8 mm andN∗ ≈ 6× 1017 cm−3, (◦) Experimental
data, (×) simulation results. (c) Transverse profiles of the soliton-induced LA intensity, at
z = 2 mm and 9 mm, atE = 8.5 mJ/cm2 pump fluence andN∗ ≈ 6× 1017 cm−3.

dard time-resolved photon counting setup with a time resolution of 3 ns. Further,
a small magnetic field of∼0.2 T is applied to lift the degeneracy of the Kramers
doublets, enhancing the speed of the ruby detector by a factor of four [11].

6.2.1 Detection in crystal

Figure 6.1 shows a typicalR2 luminescence signal normalized to theR1 intensity
at 5 mm from the transducer, for two configurations: one in which the path of the
strain pulses is placed exactly in line with the excited zone (◦, on-axis), and one
at a transverse displacement of 1.5 mm (line/red, off-axis). The off-axis traces are
ordinary heat pulse signals [10], with the 1:3-ratio for the longitudinal (LA) and
transverse (TA) acoustic phonon contributions and arrival times that are in good
agreement with the values calculated for corresponding phonon polarizations (ver-
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F 6.2 (a) Soliton-induced LA (�) and heat pulse TA (◦) relative peak heights
against distanced between zones, forN∗ ≈ 2× 1018 cm−3 . (b) Similar, but as a function
of N∗ of zoneB, atd = 2.4 mm.

tical arrows in Fig. 6.1) for propagation along the rubya axis. The on-axis signal
exhibits a sharp spike at a time precisely corresponding to the travel time of the
LA phonons from the transducer to the detection volume.

In order to clarify the nature of the on-axis LA peak, we point out three exper-
imental observations. (i) The peak height shows a highly nonlinear dependence
on the intensity of the ultrafast pump laser [see Fig. 6.1(b)]: the signal is absent
at pump fluences below 4 mJ/cm2, but rises quickly above 5 mJ/cm2. (ii) The
observed width of the transverse profile at 2-mm distance [see Fig. 6.1(c)] co-
incides with that of the pump laser at the position of the transducer, and only a
slight broadening is observed after traversal over 9 mm, corresponding to a diver-
gence angle of less than 0.5◦. (iii) The directional component maintains its ampli-
tude throughout the crystal, whereas the heat pulse decays strongly with distance,
consistent with a hemispherical radiation source. Together with the independent
Brillouin-scattering data, the points (ii) and (iii) confirm that we are dealing with
soliton pulses which have frequency components at 0.87 THz. We show later that
point (i) is also consistent with the soliton behavior.

6.2.2 Propagation through an additional excited zone

To further explore the difference between the soliton and heat pulse signals, we
changed the experimental configuration and included an additional excited zone
B [c.f. Fig 6.1(a)], in the path leading from the transducer to the detection zone
A. For such a configuration it is well-known that both the ballistic LA and TA
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resonant phonons are strongly scattered by the excited Cr3+-ions in zoneB [10].
Indeed, we observe a reduction of the heat pulse TA contribution by about 70%
of its value without zoneB, as shown in Fig. 6.1. In contrast, the soliton-induced
LA-contribution remains unchanged, up to the highestN∗ ≈ 3 × 1018 cm−3 of
zoneB. Thus, the solitons are scattered by excited Cr3+ much less efficiently than
incoherent 29-cm−1 phonons in the heat pulse do.

Figures 6.2(a) and (b) show the relative LA- and TA-contributions from zone
A, against the distanced and the TLS-densityN∗ of zoneB, respectively. At the
highestN∗ we obtain a depletion of the thermal TA phonons over a distanced of
1.5 mm. We attribute the relatively large distance required for the depletion of
29-cm−1 phonons, by the presence of quasidiffusive phonons, bending around the
zone by a single scattering event [13]. These paths can be blocked more efficiently
by placing the secondary zone closer to the phonon source. Further the soliton-
induced intensity is seen to enhance at distances less than 0.7 mm. This effect
can be related to a local increase inN∗ due to the spatial overlap of the two zones,
leading to a stronger absorption as will be discussed later (c.f. Sec. 7.4.2). TheN∗-
dependence of the TA-depletion in Fig. 6.2(c) can be explained by the difference in
the bandwidth of trapped phonons in the two zones. For an absorption bandwidth
scaling with (N∗)1/2 (see Sec. 7.4.3 later in this thesis), the presence of excited
zoneB reduces the luminescence of zoneA by 1− (N∗B/N

∗
A)1/2 for N∗B < N∗A [line

in Fig 6.2(c)].

6.2.3 Propagation through a collinear zone

To investigate the scattering of the solitons by excited Cr3+-ions more precisely,
we modified the configuration to the one shown in Fig. 6.3(a). The excited zone
now consists of a∼0.6-mm wide cylinderalong the path of propagation of the
coherent acoustic beam. Luminescence is again detected at propagation distances
z, imaging only a 0.2× 0.5-mm2 section of the center of the excited volume [zone
A in Fig. 6.3(a)]. We again take the on- and off-axis difference of the luminescence
signals to extract the soliton-induced signal. Figure 6.3 shows the amplitude of the
soliton-induced signal as the obtainedR2/R1-ratios against propagation distancez
at three values ofN∗. A gradual decrease as a function of propagation distance is
observed, that resembles exponential decay (lines). We determine the mean free
path for solitonsl = 7.0± 1.0 mm at the highestN∗ = 3× 1018 cm−3. It is well-
known that the mean free pathlr ∼ 0.1 µm for the resonant 29-cm−1 phonons
at the sameN∗ [see Appendix B] [9–11, 14]. This is five orders of magnitude
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F 6.3 Soliton-induced LA intensity as a function of propagation distancez for
values ofN∗ = 0.25 (�), 0.8 (•) and 2.5 (�)·1018 cm−3. (a) Experimental configuration,
including detection volumeA.

less than the experimentally observed value for the soliton. Further, from the
integral of the population ratios in Fig. 6.3 over the 1-cm long excited pencil, we
calculate the energy converted from the wavepacket to the electronic state to be
∼1 µJ/cm2. This is of the order of magnitude of thetotal energy of the strain
wavepacket, implying that significantly more energy is scattered from the solitons
into the electronic system than just a near-resonant fraction.

6.3 Coherent, impulsive interaction model

In the following part we will interpret the key experimental features of the soliton-
induced luminescence, namely the insensitivity to an additional excited volume,
its long mean free path of several millimeters, and the threshold in the pump
dependence. Linear response theory predicts the formation of a spectral hole in
the propagating wavepacket spectrum at the resonance frequency of the TLS, and
would yield the same absorption behavior for the soliton as for the heat pulse,
i.e. the formation of a spectral hole at resonance. We will demonstrate below
that the intrinsic nonlinearity of the strain solitons can fill in this spectral hole and
efficiently funnel energy to the 29-cm−1 phonons via spontaneous emission.
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The main property, responsible for the experimental observations, turns out to
be the slightly higher velocity of the solitons than the velocity of sound, which
constitutes the nonlinearity in our problem [6, 7]. We may illustrate this statement
using the simulations presented in Fig. 6.4(a,b). The interaction of a short pulse
with the TLS results in the formation of trailing resonant strain radiation upon
propagation [curve 1 in Fig. 6.4(a)] [15]. The presence of this radiation corre-
sponds to the spectral hole for resonant modes in the combined spectrum of the
strain wave after the interaction with TLS. The difference in velocities for soliton
and conventional sound leads to a delay of the linear trailing radiation respective to
the faster soliton, that is proportional to the propagation distancez. A walk-off by
1/4th of a resonant phonon wavelength will occur within a distance ofls ≈1.3µm
for a typical 0.4% strain soliton [7]. This has far-reaching consequences for the
development of the trailing radiation as can be seen in Fig. 6.4(a). In a disper-
sive medium with the resonant Beer’s lengthlr, the trailing radiation virtually
disappears [curve 2 in Fig. 6.4(a)], which corresponds to a refilling of the spec-
tral hole at the resonant modes in the frequency domain. Figure 6.4(b) shows the
calculated dependence of the population of the resonant 0.87-THz modes in the
strain packet which has traversed the resonant medium over a distancez. Curves
1 and 2 [Fig. 6.4(b)] correspond to the linear and nonlinear propagation regimes,
respectively. The linear regime is accompanied with a strong attenuation of the
resonant modes overz ∼ lr , while in the nonlinear case the number of resonant
modes is almost independent onz. As a result, the nonlinear regime allows to
convert almost all energy in the soliton to the resonant electronic two-level sys-
tem, which emits resonant phonons via spontaneous decay. Obviously, the linear
regime cannot produce such a spectral redistribution.

Thus, the temporal and the spectral shape of the soliton wavepacket do not
change significantly with propagation distance in the resonant medium. This al-
lows us to simplify the analysis and assume that each atom in the excited volume
experiences exclusively impulsive excitation by the solitons. Analoguous to treat-
ing electronic TLS-excitation in the optical domain, we consider the electronic
system as a pendulum, that may be excited either through a resonant driving field
or by impulsive action. The latter regime is commonly ignored in optics as it re-
quires pulses shorter than the resonant period of the electronic state. For a quanti-
tative description we make use of the original set of Bloch equations [16], that has
been used earlier in the studies of few-cycle optical pulses [17]. In this model, no
approximations are made that assume a slowly varying envelope on a fast carrier
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F 6.4 (a) Time-domain profile of a 0.4% strain pulse after propagation over 150lr
in a resonant medium, for(1) linear propagation and no walk-off, and(2) with soliton
walk-off, ls = 13lr. (b) Resonant Fourier componentφ at 0.87 THz against traversed
distancez/lr for situations(1) (line) and(2) (dash). (c) Simulated population ratio∆w/2
(line/red) for a typical KdV soliton train [7] (line/black).

wave [12, 16]. Rather, the strain waveforms(t) acts directly on the ’carrier’ Rabi
frequencyχ(t) proportional to the matrix elementχ0 of theE(2E)−2A(2E) transi-
tion, estimated to a value of�χ0 ≈ 200 cm−1 per unit of uniaxial strain along the
ruby a axis [18, 19]. Subsequently the phase of the electronic state vector rotates
with resonance frequencyω0 and decays by spontaneous emission,T1 ≈ 0.7 ns
[14], andT2 = 2T1. For completeness, we give the full evolution equation for the
electronic state vector�S :

∂

∂t
�S = �β × �S − Γ · (�S − �S 0) , (6.1)

with the usual conventions for relaxationΓ, initial state �S 0 = (0,0,−1), and
pseudofield-vector�β = (2χ(t),0, ω0).

Knowing the state vector�S , we can calculate the population ratio∆w/2 of the
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electronic levels by projection of�S onto the vertical axis. Numerical simulations
of ∆w/2, during the passage of a realistic soliton train (see Ref. [7]), are shown
in Fig 6.4(c). It is observed that excitation of the two-level system is induced
primarily by the first 5 pulses in the train consisting of 11 solitons. In contrast to
the sharp steps produced by these first solitons, that are the shortest and have the
highest amplitude, excitation by the longer pulses at the end is suppressed by the
precession of the state vector at its natural frequencyω0. We also observe that in
our example, for the 4th and 6th solitons, we have adecrease in the population.
This is similar to coherent control experiments, where the result of the short pulse
excitation depends critically on the phase of the electronic state [20]. The obtained
excitation∆w/2 ≈ 2×10−3 corresponds to a Bloch angle of about 4◦, which means
that the electronic excitation remains well within the linear regime of the harmonic
oscillator.

The measured ratio ofR2- andR1-luminescence intensities is of the order of
magnitude of the calculated∆w/2 for the typical soliton train in Fig. 6.4(c). For
more precise quantitative agreement between simulated and experimentalR2/R1-
ratios in Fig. 6.1(b), we correct for the bottleneck efficiency [9–11] and radiative
probabilities of theR-lines [21]. We have simulated the excited-state population
for impulsive excitation by soliton trains at various initial strain amplitudes and
plotted the results asR2/R1 in Fig. 6.1(b) (×). Here the horizontal scale was
calibrated using the Brillouin scattering data mentioned in Sec. 6.1. We obtain
good agreement in both the offset at∼4 mJ/cm2 and the steep increase of the
signal for increasing pump fluences, above the threshold of Fig. 6.1(b).

Our estimate of∆w/2 of 2×10−3 adds up to an accumulated electronic energy
of ∼1 µJ/cm3 at N∗ = 1018 cm−3, and thus to a soliton mean free path of∼1 cm,
in close agreement with the experiments of Fig. 6.3.

Experimental results are consistent with the presented model where the slight
difference in velocities for soliton and the linear sound takes place, enough to
fill in the spectral hole around the resonance. The mean free path for the soliton
pulses is in this model much larger than that for resonant phonons from the heat
pulse. Further, the accumulated energy transferred from the soliton to the TLS-
medium at the mean-free path is of the order of the total energy in the initial strain
packet.
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6.4 Conclusions

In conclusion, we have observed coherent interaction between an acoustic soliton
train and theE(2E) − 2A(2E) electronic transition in photoexcited ruby, explicitly
demonstrating the development of strain components in the solitons of frequen-
cies as high as 0.87 THz. The soliton-induced signal was found to be highly
directional, strongly dependent on pump fluence, and only weakly influenced by
dissipation through the interaction with the electronic system. We have explained
the key experimental observations using only simple arguments based on nonlin-
ear refilling of the spectral hole and impulsive excitation of the two-level systems
by the soliton train.

The presented work opens up new avenues for the manipulation of ultrashort
acoustic pulses using local electronic centers. A challenging possibility is the am-
plification of coherent terahertz-strain wavepackets using inverted two-level sys-
tems, attainable by direct optical excitation of the 2A(2E) states. The transducer-
generated ultrashort strain solitons may then serve as a trigger for starting up the
coherent release of the acoustic polarization in the form of a resonant tail. In this
situation, the area theorem [15, 16] predicts exponential growth of the Bloch an-
gle of this tail over the submicrometer,resonant absorption lengthlr, anticipating
an exponential factorLc/lr ≈ 200, withLc = c0T1 the length over which the in-
version can be maintained using pulsed optical excitation of the Cr3+-ions [22].
Amplification over several orders of magnitude and concomitant breakup of the
wavepacket into a new kind of terahertz strain solitons, the resonant 2π-pulses of
self-induced transparency, appears well within the range of experimental possibil-
ities.
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S    29-−1  



Abstract

The interaction between strain solitons and the 29-cm−1 phonon spectrometer is exam-
ined for propagation of the acoustic wavepackets along both the rubya- andc-axes. We
observe a large difference in soliton-inducedR2 luminescence between the two config-
urations, that can be explained by the anisotropy of the crystal-field coupling strength
between the longitudinal acoustic phonons and the electronic two-level systems. The de-
tector response as a function of a variety of external parameters is studied and explained
in the context of the impulsive excitation model of Chapter 6.

7.1 Introduction

Recent experiments have demonstrated the development of ultrashort strain soli-
tons from a picosecond acoustic wavepacket during ballistic propagation in large
crystals at low temperatures [1, 2]. It was found that thesehalf -cycle pulses
can reach strain amplitudes as high as 0.4% and frequency components into the
terahertz-range. This combination of high strains on ultrashort time scales holds
promise for exploring terahertz-coherent electron-phonon interactions in a me-
dium containing two-level centers [3]. Early experiments have explored the phe-
nomenon of acoustic self-induced transparency of gigahertz ultrasonic pulses [4],
demonstrating the direct analogy between acoustic paramagnetic resonance ex-
periments and coherent optics in two-level media [5]. For terahertz electron-
phonon interactions, however, coherence has up to now not played a significant
role, mainly due to the lack of suitable excitation mechanisms for the strain field.
Stimulated emission [6] has been well described by incoherent rate equations, and

83
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it was only in phonon-induced optical dephasing experiments [7] that the question
of phonon coherence was addressed.

In this chapter we again employ the ruby phonon spectrometer, based on the
E(2E) − 2A(2E) crystal field transition of the Cr3+ embedded in the Al2O3 host
lattice. By exposing this system to trains of ultrashort acoustic solitons, we have
demonstrated in Chapter 6 coherent, impulsive interactions along the crystallo-
graphica axis. Here, we extend the studies to propagation in the other high-
symmetry direction, thec axis. The behavior of the soliton-inducedR2 lumines-
cence for strain propagation along the two principle axes is compared as a function
of the applied magnetic field, the concentration of excited ions, and the power of
the femtosecond pump laser. The additional experimental data is used to test the
interpretation of Chapter 6, in terms of nonlinear refilling of the spectral hole in
the E(2E) − 2A(2E) absorption band. As an introduction to the experiments, the
theory of linear and nonlinear propagation in a resonant medium is reconsidered
in the next section.

7.2 Theory of spectral-hole refilling

For the explanation of the soliton-inducedR2 luminescence in Chapter 6, we
proposed a model based on nonlinear reshaping of the solitons in the resonant
medium and concomitant refilling of the spectral hole at 0.87-THz. In this section
we will go into more detail on this model and demonstrate that the energy removed
from the soliton wavepacket by spontaneous emission islinearly proportional to
the propagated distancez and thus to the amount of centersN∗, while the energy
taken from a linear wavepacket by the electronic system is only proportional to
z1/2 and (N∗)1/2. In simple words, this amounts to the fact that after propagation
over a few Beer’s lengths, for a nonlinear soliton, absorption continuously takes
place in thecenter of the resonance due to the refilling of the spectral hole, while
for linear pulses only the wings of the resonance contribute to the absorption.

For the explanation of resonant absorption of phonons in an opaque medium
we resort to the most simple picture, namely that of Beer’s law for a homogeneous
resonance. After travelling over several resonant absorption lengthslr, the phonon
spectrum at the center of the resonance is completely absorbed. We can estimate
the spectral absorption bandwidth∆ from solving Beer’s law for a homogeneous,
Lorentzian line shape
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I∆(z)
I∆(0)

= e−z/l(∆) =
1
2
, l(∆) = lr

∆2 + T−2
2

T−2
2

. (7.1)

For large propagation distances, i.e.z � lr, we can expand the exponential to first
order, resulting in a bandwidth∆ of the spectral hole

∆ ≈
(
2T−2

2 z/lr
)1/2
, (7.2)

which for lr ∝ 1/N∗ increases with (N∗)1/2. The amount of energy that is absorbed
out of the phonon spectrum after several resonant mean free paths is given by the
phonon density of statesρ(E), integrated over the absorption bandwidth∆, times
the resonant phonon energy�ω.

We now consider the evolution of a very short,linear strain pulse travelling
through a two-level medium. As calculated in Chapter 6, the impact of ahalf -
cycle pulse, short compared to the angular frequency of the electronic two-level
systems, impulsively tilts the electronic state vector to a Bloch angleθ. The en-
semble of excited atoms in the medium subsequently radiates back to the strain
field, partly coherent, via superradiance, and partly incoherent, via spontaneous
emission. The evolution of short pulses propagating in a two-level medium has
been thoroughly analyzed in terms of these two processes for optical radiation
[8–10]. The direct analogy between the optical- and acoustic-field equations (see
Appendix B) allows us to apply these concepts to the electron-phonon system
under study. In fact, the results of Refs. [8–10] reduce again to the linear (dielec-
tric) response theory in the limit of low excitation [5]. Therefore, the wavepacket
evolution may be completely described in the spectral domain using the spectral
response functions of the medium. For a Lorentzian resonance lineshape, the evo-
lution operatorF̃(ω, z) has the simple spectral form [5, 11]

F̃(ω, z j) = exp(iφ̃(ω)z j)

φ̃(ω) ≈
T−1

2

2

 1

(ω − ω0) − iT−1
2

+
1

(ω + ω0) − iT−1
2

 , (7.3)

where φ̃(ω) is defined so that its imaginary part equals unity at resonance and
Eq. (7.3) reduces to Eq. (7.1) for the intensity (Beer’s law), with the propagated
distance expressed in units of resonant absorption lengths,z j = z/lr. In the deriva-
tion of φ̃(ω) we have used the approximation (1+ ε)1/2 ≈ 1 + 1

2ε, whereε � 1
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F 7.1 Dependence on propagated distancez in units of lr of (a) energy removed
from soliton−∆Esol, (b) energy contained in trailing radiationEtail, and (c) energy re-
moved from total wavepacket by spontaneous emission,−∆Etot, normalized to initial en-
ergy E0, for nonlinear soliton pulse with walk-off lengthls = 6lr (line), ls = 13lr (short
dash), and linear strain pulse (dash).

denotes the (dielectric) susceptibility function.
In an acoustically thin medium, i.e.z � lr, the net absorption is not limited

by the available 29-cm−1 phonons, and one can approximate the exponential de-
cay function in Eq. (7.1) by a linear term [1− z/l(∆)]. Under these conditions,
the energy removed from the total phonon wavepacket by the two-level medium
via spontaneous emission is proportional to the number of scatterersN∗. In con-
trast, for an opaque medium, i.e.z � lr, the absorption at resonance strongly
saturates by the depletion of the 29-cm−1-phonons in the packet. Spontaneous
emission then only takes place in the wings of the resonance, over a bandwidth
given by Eq. (7.2). Thus, in this situation, the energy taken from the wavepacket
by spontaneous emission is proportional to the square root of the number of TLS,
i.e. ∝ (N∗)1/2.
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The above argument shows that the energy drained from the linear strain pulse
is proportional toN∗ while the fraction that is eventually removed by spontaneous
emission is only proportional to (N∗)1/2. The difference between the two must
therefore be the energy remaining in the electronic polarization and carried by the
coherently emitted radiative tail.

This redistribution of energy within the wavepacket is illustrated by the cal-
culations presented in Fig. 7.1(a-c). Using the response function of Eq. (7.3), we
have simulated the propagation of a short pulse through the TLS-medium over a
distance ofz j = 500, corresponding to the typical length scale of our experiments.
In our calculations we consider both thelinear (dashed line) and thenonlinear
(solid line and dotted line) propagation regimes by adjusting the soliton velocity
in the moving frame system. Subsequently, energy densities are defined locally
within the total strain wavepacket by integration of the square of the strain field
over the part of the wavepacket that can be assigned to the soliton pulse and the
part corresponding to the trailing radiation packet [see inset Fig. 7.1(a)]. In this
way the energy flow from the soliton,−∆Esol, and to the tail,∆Etail, may be com-
puted and compared with the energy contained in the strain field before entering
the TLS medium.

In Fig. 7.1(a) we plot−∆Esol/E0, the energy that is removed from the soliton
pulse normalized to the initial pulse energyE0, against propagated distance in the
resonant medium. We observe for both the linear pulse and nonlinear solitons a
continuous drain of energy from the soliton proportional to the travelled distance
z, due to impulsive excitation of the electronic system. Up to 12% of the initial en-
ergy is removed from the pulse over a distance of 500 resonant absorption lengths
lr, which corresponds to about one millimeter of excited ruby atN∗ = 1018 cm−3.
The very small difference between the full and the dashed lines at largez j is due
to grid-size limitations of our calculation and has no physical significance.

The fundamental difference between linear and nonlinear propagation in the
two-level medium is illustrated in Fig. 7.1(b,c). In Fig. 7.1(b) we plot the energy
accumulating in the form of coherent trailing radiation,∆Etail/E0. Clearly, in the
linear case (dashed line), the energy taken from the soliton pulse is almost com-
pletely given back to the coherent strain field in the form of trailing radiation. In
the time domain [c.f. Fig. 6.4(a)] this corresponds to the development of a tail on a
length scale corresponding to the superradiant decay lengthTR � T2 [10]. In the
spectral domain, this corresponds to the formation of a spectral hole. In contrast,
for thenonlinear soliton pulse (solid line and dotted line), the amount of energy
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carried by the trailing radiation tail remains on a very low, stationary level, that is
already established within a distancels. Comparison with the trace of Fig. 6.4(a)
tells us that this suppression of the radiative tail for nonlinear pulses corresponds
to thedestructive interference of the superradiant emission, as the soliton pulse
moves away from the linear radiative tail over a distance larger than one period
of the resonant 0.87-THz phonons. The stationary state of energy exchange for
the nonlinear propagation regime depends on the magnitude ofls with respect to
lr, but this has no influence on the measured luminescence intensity, as we will
demonstrate below.

The fraction of the total energy,∆Etot/E0, that is lost from the wavepacket
by spontaneous emission of the TLS, is shown in Fig. 7.1(c). Here we find the
reverse behavior of that in Fig. 7.1(b), namely that the energy taken from thenon-
linear soliton pulse is completely removed from the coherent packet via sponta-
neous emission, while only a minor part of the energy of thelinear pulse has been
transferred to spontaneously emitted phonons. This part is proportional to (N∗)1/2

as expected from Beer’s law, Eq. (7.2). In the spectral domain this difference
amounts to the refilling of the resonant spectral hole in the nonlinear situation, as
was shown in Fig. 6.4(b).

Furthermore, the calculated amount of energy brought to the bottleneck by
spontaneous emission is in the nonlinear case virtually the same for the two spec-
ified values of the walk-off distancels. Of course this is closely related to the
formation of a stationary state of the tail, that is established after one walk-off dis-
tance. Energy balance then simplyrequires that the constant drain of energy from
the soliton is transferred to spontaneous emission, irrespective of the magnitude of
ls. However, when the refill-rate becomes smaller with increasingls, the steady-
state population of resonant phonons drops to a very low level and the situation of
the linear pulse is gradually approached. This transition regime, however, lies far
beyond the window of feasible experimental values forls.

Hence, from the simulation results of Fig. 7.1(a-c) a comprehensive picture
emerges of the interaction between strain packets and electronic centers for both
the linear pulses and the nonlinear solitons. The key observation is that the amount
of energy converted to 29-cm−1 phonons via spontaneous emission islinearly
proportional to the number of centersN∗. The fact that the superradiant radiation
tail is suppressed by the difference in velocity of the solitons and linear sound is
consistent with the picture presented in Chapter 6, in which a refilling of the hole
takes place by the nonlinear reshaping of the soliton.
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7.3 Experiments along the c axis

7.3.1 Method

In this section we present experiments conducted in the configuration in which
the strain packets propagate along thec axis of a ruby crystal containing 500
ppm. Cr3+-ions. For this purpose, the 10× 10× 15-mm3 specimen of Chapter 6
was covered with a 100-nm chromium transducer on one of the other 10× 15-
mm2 surfaces, oriented perpendicular to the crystallographicc axis. Again, as in
Chapter 6, the metastableE(2E)-level is populated by indirect excitation via the
broad4T2 and4T1 absorption bands, using a multimode 2-W argon-ion laser beam
focused to a pencil of about 200µm in diameter. Following excitation of high-
amplitude strain pulses via absorption in the metal film of optical femtosecond
pulses from an amplified Ti:sapphire laser, the time evolution of theR1- andR2-
emission lines in the crystal is monitored using a double monochromator equipped
with a time-resolved photon counting setup. Direct feeding of the 2A(2E)-level
via the optical pumping cycle is switched off during the acquisition of the soliton
signal by means of an acousto-optic modulator. An external magnetic field is
applied parallel to thec axis to lift the degeneracy of the electronic doublets,
E(2E) and 2A(2E), and decrease the bottleneck decay time (see Sec. 7.4.1 for
details). The experiments on the propagation of strain packets along the ruby
a axis in Chapter 6 demonstrated strong interaction between strain solitons and
the electronic system throughout the entire crystal. However, for propagation
along thec axis, no soliton-inducedR2 luminescence could be detected inside the
crystal.

In heat-pulse experiments, suppression of the LA phonon-inducedR2 lumines-
cence along the crystallographicc axis has been observed and explained earlier
in a set of sophisticated experiments by Kaplyanskiiet al. [12]. By applying the
selection rules for theE(2E) − 2A(2E) transition in the trigonal point group, they
demonstrated complete disappearance of the electron-phonon coupling parameter
for propagation along thec axis of a collimated heat-pulse beam. This issue is
addressed in Appendix B.

7.3.2 Detection at endface

Strikingly, a soliton-induced contribution could be detected at the far end of the
crystal. Figure 7.2 shows two typical time-resolved luminescence traces, at a
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F 7.2 Time-resolvedR2 luminescence normalized toR1 at 9.6-mm propagation
distance along thec axis, for on-axis (◦) and off-axis (line) configurations. (a) Experimen-
tal configuration, withA detection region,s soliton pulse andh heat pulse. (b) Difference
signal between on- and off-axis. (c) Transverse profile of the soliton-induced LA intensity
at z = 9.6 mm.

magnetic field of∼0.1 T, for the configurations in which the excited zoneA [c.f.
Fig. 7.2(a)] is positioned in the path of the acoustic wavepacket (on-axis) or at
a transverse displacement of 1 mm (off-axis). The peak at zero time and the lu-
minescence background during the first microsecond are due to spurious effects
induced by pump light leaking through the metal film. A clear difference between
on- and off-axis signals is observed at a time corresponding to the arrival of LA-
phonons from the transducer. Fig 7.2(b) shows the difference of the two traces
around the LA arrival time. After a rapid rise of the population within 10 ns,
∆R2/R1 decays exponentially over 0.25µs, governed by the so-called bottleneck
of 29-cm−1 phonons [12, 13]. The amplitude of theR2 luminescence normalized
to theR1 intensity is 0.7×10−4, an order of magnitude smaller than the ratio mea-
sured along thea axis under the same pumping conditions. The transverse profile
of the additional contribution in the LA-luminescence, shown in Fig. 7.2(c), has
a Gaussian profile with a 1/e-halfwidth of 0.4 mm. This corresponds favorably
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to the width of the pump laser beam at the position of the transducer, indicating a
divergence angle of less than one degree. The highly nonlinear dependence of this
signal on pump fluence (see Sec. 7.4.2) and the directionality of the beam signifies
that the additional luminescence is induced by the strain solitons.

The soliton-inducedR2 luminescence is the strongest when the excited zone
is positioned just inside the crystal, but close to and partially overlapping with
the edge of the crystal [c.f. Fig 7.2(a)]. We measured the decay of this signal
by scanning the beam into the bulk of the crystal as well as beyond the crystal.
The results, presented in Fig. 7.3(a), show a strong decay of the luminescence into
the crystal within 0.2 mm, followed by a slow attenuation persisting to distances
up to ∼1 mm from the surface. In the other direction, the intensity decreases
much more rapidly due to the reduced overlap between the probe laser beam and
the crystal. Three typical time-resolved traces at increasing distance from the
crystal surface [denoted by points1, 2, and3 in Fig. 7.3(a)] are shown in the
central part of Fig. 7.3. Although the quality of this data is not very good, we can
still observe some features related to the longitudinal phonons. The onset of the
LA-phonon induced luminescence is very sharp for the trace taken at the surface
(curve1). Compared to this slope, the onset of the LA peak in curves2 and3 is
much less pronounced. At a distance of 1 mm from the surface (curve3), we can
even distinguish two separate steps in the increase of the LA signal, both at 0.9
and 1.1µs, that correspond well to the arrival time of phonons directly from the
transducer and after reflection at the crystal surface, respectively.

7.3.3 Discussion

In order to explain the appearance of soliton-induced luminescence exclusively
near the surface we consider the well-known theories of mode-conversion of pho-
nons reflecting at a rough interface. A considerable amount of research has been
done on the related problem of enhanced transmission of high-frequency phonons
through an interface, known as Kapitza resistance (see e.g. Ref. [14]). Following
the work of Nakayama [15], we consider the processes of mode conversion and
diffusive scattering of acoustic phonons at the ruby surface. Apart from direct
surface scattering of the LA phonons into bulk modes (LA and TA), there are sev-
eral channels of indirect scattering involving surface modes (R). The lifetimes of
these R-modes for the reverse scattering processes into bulk waves was estimated
to be of orderτR = 100ν−5, with ν the phonon frequency in gigahertz [15]. For
the 0.87-THz phonons in our experiment, this corresponds to a lifetime of 0.2 ps,
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F 7.3 Time-dependent traces of theR2 luminescence normalized toR1 at indicated
positions in the crystal, (◦),(�), and (�) experimental points, (line) 5-point signal average.
(a) Soliton-inducedR2/R1-ratio as a function of positionz in the crystal, (◦) experimental
data, vertical dashed line atz = 9.7 mm denotes exact surface position; model calcu-
lations for localized surface excitation (short dash) and diffusive scattering (line). (b)
Dependence of the normalized electron-phonon coupling parameterf (θ) on angleθ of the
reflected phonons.

which is less than one oscillation period. Clearly the presence of these indirect
channels will not be observable via surface modes. However, they will serve to
enhance the diffusive nature of the scattered high-frequency phonons.

For our further analysis, we just consider the endface, apart from the specular
reflection, as a Lambertian surface, diffusively reflecting the phonons back into
the crystal. This yields a hemispherical distribution function of phonons scattered
from a single point at the surface ofnω(r, θ) ∝ 1/r2. In the most simple approxi-
mation, the highly anisotropic coupling strength between strain and the electronic
transitions can be approximated by the projection of the phonon wavevector onto
thea axis normalized to its absolute value,η(θ) = | sinθ|, with θ the angle between
wavevector and thec axis. The luminescence per volume elementd3r can now be
written as
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R2

R1
d3r = Γn(r, θ)η(θ)r2 sinθ drdθdφ , (7.4)

whereΓ denotes an overall bottlenecking efficiency factor. For a cylindrical de-
tection volume parallel to the surface, we may integrate this response function
over the cartesian dimensionx. After convolution with the 200-µm wide Gaus-
sian (y, z) profile of the probe volume, we arrive at the luminescence intensity.
Excellent agreement is obtained with our experimental data using this model [line
in Fig. 7.3(a)]. In contrast, we also show in Fig. 7.3(a) (dashed line) the behavior
as expected from an excitation mechanism that is localized at the surface. As ex-
pected, the resulting trace is just equal to the profile of the probe volume centered
at the surface, which is much too narrow to explain the experimentally observed
decay into the crystal.

If we wish to account for the observed luminescence intensity we must real-
ize that the mechanism responsible for the luminescence after diffuse scattering
at the crystal surface cannot be the same as the nonlinear refilling of the spectral
hole introduced in Chapter 6. The diffusive surface-scattering efficiently distorts
the wavepacket coherence on the nanometer scale and the remaining specularly
reflected part will be inverted at the free surface and therefore be pulled apart by
dispersion. These disturbances result in a severe suppression of the nonlinearity
in the wavepacket propagation directly after reflection, ‘freezing in’ the acoustic
spectrum as it was present prior to the scattering at the surface. Thus the inter-
action with the electronic states after diffuse scattering of the wavepacket should
be considered like that of an incoherent phonon spectrum and should behave ac-
cordingly, i.e. like a heat pulse. A more detailed analysis of these notions and the
resulting dependencies will be presented in the next section.

7.4 Properties of the soliton-TLS interaction

Up to this point, we have discussed two experiments in which the strain pack-
ets were travelling along either one of the crystallographica (c.f. Chapter 6) or
c (c.f. Sec. 7.3.2) axes. We identified soliton-induced interactions and demon-
strated effects of mode conversion at the crystal surface. In Sec. 7.3.2, it was
already mentioned that there should be a marked difference of the soliton-induced
luminescence between the two configurations, as for for direct detection the soli-
tons behave essentially nonlinear, while after reflection and mode-conversion the
wavepacket spectrum and propagation may become completely linearized. In or-
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der to make the case more strongly and draw definitive conclusions, it is very
important to examine in more detail the two experiments and form a comprehen-
sive picture of the electron-phonon interaction mechanism for the soliton trains.
First, we will present the behavior of the soliton-induced luminescence as a func-
tion of the applied magnetic field, the two-level densityN∗, and the intensity of the
ultrafast pump-laser. The differences between the soliton-induced luminescence
and their induced luminescenceafter mode-conversion will subsequently be dis-
cussed in Sec. 7.4.3, relying on the coherent interaction model that was introduced
in Chapter 6 and extended in Sec. 7.2.

7.4.1 Magnetic field dependence

The dependence of the decay of bottlenecked 29-cm−1 phonons on an applied ex-
ternal magnetic field has been extensively studied many years ago [12, 13, 16, 17].
The magnetic field induces a Zeeman splitting of both theE(2E) levels and the
2A(2E) levels, introducing a symmetric quartet in the crystal-field resonance with
transition energies�ω = ∆0 ± 1

2(gE ± g2A)µBH, with the gyromagnetic constants
gE = 2.445 andg2A = 1.6 for �H ‖ c andgE,2A ≈ 0.06 for �H ⊥ c [18]. It was
shown, both in heat pulse and in steady state experiments, that a small field of
∼0.05 T results for the resonant phonons in a nearly fourfold decrease of the bot-
tleneck efficiency and decay time [12, 16, 17]. This strong effect was attributed
to the spectral splitting of the homogeneously broadened resonances into four in-
dependent spectral regions of the phonon bottleneck, each communicating with
a reduced number of level systemsN∗ and thus experiencing a longer absorption
mean-free path. In the stationary experiments, this effect appeared as a reduc-
tion in the bottleneckedR2-luminescence intensity, while in time-resolved heat-
pulse experiments the field turned out to reduce the bottleneck decay timeτ. At
higher magnetic fields (0.2 - 5 T), several other physical mechanisms have been
identified, including spectral diffusion, Raman processes, and coupled Cr3+-pairs
[12, 13, 19], that makes the bottleneck factor to recover virtually to itsH = 0-
value.

This brief historical sketch shows that the phonon bottleneck itself is already
a quite complex phenomenon and may easily obscure a straightforward interpre-
tation of soliton-TLS interaction that is relevant in the present work. Therefore,
we confine ourselves to study only the magnetic field dependence at low fields,
i.e. in the range 0 - 0.5 T over which the degeneracy of the quartet is lifted, but
high-field effects are not yet prominent. Unfortunately, this does not eliminate yet
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F 7.4 (a) Bottleneck decay timeτ normalized toH = 0 value and (b) soliton-
inducedR2 intensity normalized toR1 as a function of applied magnetic fieldB, for prop-
agation alongc axis (�) anda axis (◦). Connected symbols denote TA peak amplitude.

another complication, namely the fact that in the experiment in thea-axis con-
figuration, the magnetic field is oriented nearly perpendicular to thec axis by the
construction of our superconducting, split-coil magnet in the cryostat. Due to the
low gyromagnetic constants in thea-direction, the level splitting only weakly de-
pends on the applied field. To overcome this problem, we deviated the angle and
made it several degrees between�H and thea axis. The results for both orien-
tations are shown in Fig. 7.4(a,b), measured at the far end of the crystal and on
the edge of the sample for thec axis configuration. Indeed, a significantly higher
field is required to reduce the bottleneck decay time in thea- axis compared to
thec-axis configuration, but comparable reductions of the bottleneck decay time
are obtained within the range of moderate fields under study. In absence of the
magnetic field, we measureτ(H = 0) ≈ 0.25 µs along thec axis and an almost
two-times-as-large value along thea axis. This can be accounted for by the reduc-
tion in volume size in the on-edgec-axis configuration, reducing the escape time
of resonant phonons to the bath.

Consistent with our earlier findings, the absoluteR2 intensity in the two con-
figurations differs by almost an order of magnitude [see Fig. 7.4(b)]. This we
will denote as main observation (i). However, a new effect appears when the ap-
plied field is varied. For the case of propagation along thec axis, theR2/R1-ratio
increases by a factor of∼2.5 when applying of a field of 0.15 T. In thea-axis
configuration, only a small variation is observed around a mean value of 4×10−4.
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F 7.5 (a) Bottleneck decay timeτ and (b) soliton-inducedR2 intensity normalized
to R1 as a function of Cr3+ concentrationN∗, for propagation alongc axis (�) anda axis
(◦). (c) Same as (b), but for larger range ofN∗, for propagation alonga axis (�), combined
with experimentala axis-data (×) of (b). (Line) denotes fit using the phonon bottleneck
equation, Eq. (7.5).

The origin of this qualitative difference in the field-dependence of the signal inten-
sity will be discussed below (c.f. Sec. 7.4.3) in terms of the intrinsic nonlinearity
of the soliton propagation. For further discussion, we denote this magnetic-field
dependence as observation (ii).

7.4.2 N∗ and pump-power dependence

At this point, we explore the dependence of the signals on the concentration of
excited Cr3+-ions N∗. For both configurations, we varied the excited-state popu-
lation N∗ between 0.2 and 0.7×1018 cm−3. The results of the measurements, each
taken at the same spots in the crystal as in Sec. 7.4.1, are shown in Fig. 7.5(a,b). As
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F 7.6 Dependence of soliton-inducedR2/R1-ratio on pump fluenceE, for propa-
gation alongc axis (�) anda axis (◦).

in Fig. 7.4, there is a factor of 2 difference in bottleneck decay time caused by the
reduced zone diameter in thec axis configuration. Therelative increase in decay
time with increasingN∗, however, appears to be the same for both configurations
and is indicative of a decrease in mean free path for the resonant phonons and a
stronger imprisonment. Similar to observation (ii) in Sec. 7.4.1, the main differ-
ence between the two configurations takes place in theamplitude-behavior of the
soliton-induced signal. In thec-axis experiment, the soliton-induced LA peak is
seen todecrease slightly. In thea-axis configuration, however, the luminescence
ratio increases by more than a factor of 2. This difference in theN∗-dependence
of the soliton-induced luminescence ratios will be referred to as observation (iii).

In thea-axis configuration we also measured the soliton-induced signal up to
much higher values ofN∗ [see Fig. 7.5(c)]. Combined with the data of Fig. 7.5(b),
Fig. 7.5(c) displays the dependence of∆R2/R1 for N∗ varying from 0.2 to 2×
1018 cm−3. Clearly, the signal saturates at excited-state concentrations higher
than 0.6 × 1018 cm−3. At this point we also note the strong resemblance of the
increase of the intensity in Figs. 7.5(b) with that of the bottleneck decay time
in Figs. 7.5(a), again for thea axis configuration. As we will demonstrate at
the end of Sec. 7.4.3, this resemblance can be traced back to the concentration-
dependence of the phonon bottleneck [line in Fig. 7.5(c)].

Finally, we present in Fig. 7.6 the soliton-induced luminescence as a function
of intensity of the femtosecond pump-laser, in botha- andc-axis configurations.
The results along thea axis were presented earlier in Fig. 6.1(b) of Chapter 6. In
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both data series, there is a clear threshold below which soliton-induced lumines-
cence is absent. The threshold is located at a slightly higher pump fluence in the
case of pulses travelling along thec axis. This may be explained by the slightly
lower nonlinear constantα in this direction in the crystal (α = −2.37 TPa along the
a axis and -1.84 TPa along thec axis [20]), thus requiring a larger strain to reach
the 0.87 THz frequency components in the solitons. As discussed in Sec. 6.3, the
threshold in the pump-dependence of the signal demonstrates that the excitation
is critically dependent on the availability of 0.87-THz frequency components in
the soliton spectrum and thus on the ultrashort time duration of the incident strain
pulses.

7.4.3 Discussion

The above experiments lead to the following three observations in connection to
the interaction between the electronic system and the solitons: (i) the absolute
signal along thec axis is typically one order of magnitude lower than along thea
axis; (ii) the Zeeman-splitting of the electronic levels by a magnetic field results
in an increase in soliton-induced luminescence signal only in thec axis config-
uration; (iii) a higher concentrationN∗ results in anincrease of the signal only
in the a axis configuration. In the discussion, we will assume that in thea-axis
configuration the 2A-population isimpulsively excited by the solitons, while in
thec-axis configuration it is caused by an incoherent,fixed phonon spectrum. In
the experiments of Chapter 6, the soliton signal was found to survive the traversal
through an additional excited volume and even long-distance propagation through
a collinear pencil. As an explanation, it was proposed that the intrinsic nonlin-
earity of the soliton pulses is responsible for refilling the spectral hole caused
by resonant absorption followed by spontaneous emission, that efficiently funnels
energy from the soliton-pulse spectrum to the resonant 29-cm−1 phonons in the
bottleneck.

At this point we will demonstrate that the observations (i)-(iii) for the two con-
figurations can be brought in good agreement with the model proposed in Sec. 7.2.
First of all, the difference in absolute luminescence intensity (i) can be explained
from the calculations of the total removed energy as shown in Fig. 7.1(c). Given
the resonant mean free path oflr ≈ 2 µm for longitudinal acoustic phonons (see
Appendix B) and a zone diameter of 200µm, the travelled distance is of the order
of one hundred Beer’s lengths. The energy deposited into the phonon bottleneck
after z ≈ 100lr is one order of magnitude less for the linear pulse than for the
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soliton, which agrees well with the observed difference inR2 luminescence in the
c- anda-axis configurations.

The magnetic-field dependence of point (ii) reveals yet another aspect of the
soliton-TLS interaction. The increase of the luminescence intensity by a factor
of 2.5 in thec-axis configuration can be well understood from the point of view
of available phonon modes. In the absence of refilling, a bandwidth around the
absorption line will be completely depleted of phonons. The excited-state popula-
tion of the electronic system is therefore limited by the available resonant phonons
within the absorption bandwidth. The splitting of the electronic levels by an ex-
ternal magnetic field will lead to an increase of the amount of available phonons
once this splitting exceeds the absorption bandwidth. In contrast, for the nonlinear
solitons, the spectral absorption bandwidth is continuously replenished from other
parts of the spectrum. Therefore the excited-state population is not limited by the
amount of phonon modes that are available, and no dependence on magnetic field
is observed.

Finally, the dependence of the luminescence ratio on the excited-state concen-
trationN∗ [observation (iii)] can be explained by the most fundamental difference
found in Sec. 7.2, namely that, due to the nonlinear refilling, the energy is removed
much faster from the soliton wavepacket through spontaneous emission than from
a linear strain pulse. For the linear pulse, after the first few micrometers, sponta-
neous emission only takes place in the wings of the resonance lineshape, resulting
in an electronic excitation proportional to (N∗)1/2 [c.f. Eq. (7.2)]. As theR1

intensity is proportional to the excited-state populationN∗, the normalized ratio
should go as (N∗)−1/2. Indeed a decrease is observed in Fig. 7.5(b) for thec-axis
configuration.

For the soliton pulses, the energy funnelled to the phonon bottleneck islin-
early proportional to the number of centersN∗ [c.f. Fig. 7.1(c)], and thus the
R2-luminescence intensity normalized toR1 should be independent ofN∗. How-
ever, Fig. 7.5(c) shows anincreasing ratio that is not predicted by the refill model.
We believe that the increase of the signal withN∗ along thea axis reflects a fun-
damental property of the phonon bottleneck, which we will explain below.

A simple rate-equation analysis shows that the incoherent 29-cm−1 phonon
energy extracted from the solitons is redistributed equally over the phonon bath
and the electronic centers, yielding a ratio of the electronic populations according
to
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N2A

NE

=
∆w
2

N∗

N∗ + ρ∆ν
, (7.5)

with ρ∆ν the Debye density of states around the 0.87 THz phonon frequency. In
this balance, the critical parameter is the bandwidth∆ν over which the coherent
electronic polarization tail is converted to phonons. We find good agreement with
the experimentally observed behavior for∆ν ≈ 10 GHz (line in Fig. 7.5(c)) and
a∆w/2 of 7× 10−3. This bandwidth is higher than the inhomogeneous linewidth
of the transition of 0.3 GHz [21], but is in the ball park of the Kramers-doublet
splitting in the applied magnetic field.

The resemblance of the behavior of the bottleneck decay time with theN∗-
dependence of theR2/R1-ratio in Fig. 7.5(a,b) is no coincidence in this frame-
work. The bottleneck decay time is strongly connected to the detailed balance
between spin- and phonon-baths, which can be appreciated from the fact that the
ratio ρ∆ν/N∗, appearing on the right side of Eq. (7.5) reflects the relative ‘trap-
ping’ ratio τr/T1 [12], with τr = lr/c0 the resonant absorption time andT1 the
spontaneous-emission lifetime. This ratio describes the fraction of time that a res-
onant energy-quantum resides in the phonon state. The phonon ‘escape’ timeτ,
constituted of spatial diffusion and anharmonic decay, is slowed down with in-
creasingN∗ by exactly the same ratio as the luminescence intensity in Eq. (7.5),
due to the increasing amount of time the energy quantum spends in the electronic
state, where it is immune to phonon-escape processes.

Apparently, the enhancement of the trapping efficiency of Eq. (7.5) will apply
to all the above experimental configurations, irrespective of the origin of the 29-
cm−1 phonons. This includes theN∗-dependence of the luminescence ratio in the
c-axis configuration, shown in Fig. 7.5(b). Indeed, the decrease of theR2/R1-
ratio is not as strong as predicted by the energy considerations of Sec. 7.2. The
bottleneck factor of Eq. (7.5) may account for this deviation and is therefore not
in disagreement with the above interpretations.

As a final remark we wish to point out that the luminescence induced by the
heat pulse (not shown) does not always show the same behavior as the soliton
signal in thec-axis configuration. However, the observed behavior turns out to be
consistent when we take into account the fact that the heat pulse is much longer
than the bottleneck decay time. As a result, the heat pulse signal consists of a con-
volution of the dynamics of the phonon bottleneck with the slowly varying pulse
shape, in contrast to the soliton-induced signal, that is extremely well defined by
its ultrashort strain profile.
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7.5 Conclusions and prospects

In conclusion, we have studied the interaction of ultrashort strain solitons and the
electronicE(2E)−2A(2E)-transition along the rubyc axis and compared it with the
case of propagation along thea axis of Chapter 6. The absence of soliton-induced
luminescence in the bulk of the crystal is consistent with the suppression of the
interaction due to the selection rules of the trigonal point group. The observation
of a signal near the far end of the crystal has been explained by the increased
coupling of the reflected wave due to diffusive scattering and mode-conversion
at the surface roughness. Further, the observed signals in both thec- anda-axis
configurations have been compared as a function of magnetic field and excited-
state concentration, and the observed differences were found to be consistent with
the presented model based on the nonlinear properties of the solitons.
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U -   


Abstract

We describe an experimental setup for the detection of ultrashort strain pulses by means of
femtosecond pump-probe reflectometry. The principle of operation and noise-reduction
methods are explained. Preliminary experimental results on strain pulses generated by
high-power femtosecond laser pulses in a chromium film are presented and compared
with theory and with previous experiments at low pump intensities.

8.1 Introduction

After the demonstration of picosecond acoustic wavepacket development into
soliton trains using Brillouin light-scattering in Chapters 4 and 5, and the direct
observation of terahertz frequency components by means of the ruby phonon spec-
trometer in Chapters 6 and 7, the next step would be to detect the solitonsin the
time-domain as they arrive at the far-end of the crystal. The detection of very short
acoustic pulses using time-resolved pump-probe reflectometry is common prac-
tice and has already been used to demonstrate soliton development at relatively
low strain amplitudes in Ref. [1]. In this chapter we present a new and improved
setup for the detection of small ultrafast transients using a low repetition-rate, am-
plified laser system, and demonstrate its successful operation by means of some
explorative studies on strain-pulse generation in a thin chromium transducer.

103
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8.2 Theory of ultrafast elasto-optic strain detection

The detection of short strain pulses using the elasto-optic effect in a metal film
has long been considered impossible as the strain at a free surface is always equal
to zero. However, the finite optical penetration depth turned out to be sufficient
to generate a seizable strain-induced modulation in the reflected intensity. The
theory of ultrafast strain detection using this transient reflectometry method was
developed by Thomsenet al. [2]. Here, the change in reflectivity is considered as
a spatial convolution of the strain packets(z, t) with the response functionf (z) of
the metal at each timet, given by

∆R(t)/R =
∫ ∞

0
f (z)s(z, t)dz . (8.1)

The sensitivity functionf (z) depends on the complex dielectric and elasto-optic
material parameters at the selected optical wavelength and is given by

f (z) = f0 Re

(
∂n
∂s

sin(2knz − φ) +
∂κ

∂s
cos(2knz − φ)

)
e−z/ζ

f0 = 8k
[n2(n2 + κ2 − 1)2 + κ2(n2 + κ2 + 1)2]1/2

[(n + 1)2 + κ2]2

tanφ =
κ(n2 + κ2 + 1)
n(n2 + κ2 − 1)

,

(8.2)

with k the optical wavevector,n + iκ the complex index of refraction of the metal,
ζ = (2kκ)−1 the optical skin depth, and∂n/∂s, ∂κ/∂s the elasto-optic coefficients.

Let us consider what kind of reflectivity signals can be expected for the typical
strain waveforms as presented in this thesis. In view of the experiments later on
in this chapter, we calculated the transient reflectivity in two cases: for a thick
chromium film and for a 5-nm thin aluminium film. The material parameters
relevant for these and other calculations in this chapter are given in Table 8.1.
Figure 8.1 shows the calculated reflectivity traces for the normal, bipolar strain
pulse, the Burgers N-wave, and finally the ultrashort soliton. It can be seen that the
reflectivity signals strongly depend on the precise pulse shape, and behave like the
derivative of the strain waveform. The highest peak amplitudes are found for the
bipolar, Gaussian-derivative waveform, where the effect of the two phases adds up
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Cr Al Al2O3 PbMoO4

ρ (×103 kg/m3) 7.2 2.7 3.97 6.95

c0 (×103 m/s) 5.9 6.42 11.23 3.64

Z (×107 kg/m2s) 4.25 1.76 4.46 2.52

n + iκ 3.2+ 3.3i 2.7+ 8.4i

∂n
∂s
+ i
∂κ

∂s
6.5 - 4.2i [3] -20.9+ 11.2i [4]

T 8.1 Material parametersρ, c0, and resulting impedanceZ for the metals and sub-
strates under study, as well as complex index of refractionn+ iκ and strain derivatives for
the metal films.

at zero time. For the other, evolved waveforms this constructive interference does
not take place and concomitantly the expected signals are significantly smaller.
Furthermore, the simulated reflectometry signals originating from the chromium
and aluminium films have an opposite sign, which is a consequence of the different
signs of the elasto-optic coefficients, as shown in Table 8.1.

8.3 Experimental setup

8.3.1 Introduction

Most picosecond ultrasonics setups are built around a commercial modelocked
Ti:sapphire oscillator, and take avantage of high-frequency modulation techniques
and lock-in signal recovery. Sophisticated signal recovery methods are indis-
pensable for picosecond ultrasonics, as acoustic vibrations produce only minute
changes in the optical reflectivity, typically of the order of the strain amplitude
reached (10−5 − 10−6 in conventional picosecond ultrasonics). The sensitivity of
the setup further depends on the elasto-optic coupling strength of the reflecting
film at the selected probe wavelength. In some metals, for example in copper, this
coefficient is nearly zero at the wavelength of a Ti:sapphire oscillator (∼800 nm).
In these situations, however, acoustic pulses may be detected through the surface
displacement, using interferometric techniques. Mach-Zehnder[5–7], Michelson
[8, 9] and Sagnac [10–14] interferometers have been successfully applied in ultra-
fast pump-probe setups. However, in many cases, interferometry may be avoided
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F 8.1 Calculated transient reflectivity signals for typical strain waveforms: (a)
normal bipolar pulse, (b) N-shaped pulse (shockwave), and (c) Single ultrafast strain soli-
ton. Vertical scale (a-c) is normalized to the maximum strain amplitude, with convenient
multiplication constants for Cr- and Al-reflectivity traces.

and reflectometry provides with sufficiently large signals.
Low-repetition rate, amplified Ti:sapphire lasers have up to this point not

been applied in picosecond ultrasonics experiments. Our aim is to detect high-
amplitude, ultrashort strain pulses generated using high-power laser pulses in a
low-repetition rate pump-probe reflectivity experiment. To construct such a setup
with sufficient sensitivity to detect the inherently small, strain-induced modula-
tions is quite a challenge for a 1-kHz regenerative amplifier. Several fundamental
principles play a decisive role here:

1. Low-frequency noise: It is well-known that the intensity noise of the pump
laser and the inevitable mechanical vibrations of the setup reduce signifi-
cantly at high frequencies. A low-frequency modulation experiment there-
fore inherently suffers from a larger noise than a high-frequency experi-
ment.

2. Poisson noise: When each individual event produces a statistical fluctua-
tion S of a signalI, it is useful to average over a large numberN of such



8.3 Experimental setup 107

independent events, as the fluctuationS grows with N1/2, while the sig-
nal I is proportional toN. Assuming an identical fluctuation per event,
the 80-MHz system has 8× 104 more events per second, signal averaging
thus gives a 3×102 better improvement of the signal-to-noise ratio than the
1-kHz system.

However, there are some advantages of a low-repetition setup that may be
used to compensate for some of the above limitations:

1. Pulse-based corrections: The repetition rate is low enough to allow fast
electronics to keep track of the individual events and to correct for pulse-
to-pulse fluctuations. A reference detector can be used to correct for the
statistical fluctuations of the setup, partly eliminating the intensity fluctua-
tions of the laser.

2. High-sensitivity analysis: The long time between subsequent events al-
lows for high-sensitivity sampling of the obtained signals. The digital volt-
meters that we will use can read out voltages over a short (µs) gate period
with an accuracy of up to 5 digits per shot, allowing for an excellent sensi-
tivity in the data acquisition process.

8.3.2 Principle of operation

In this section we describe the principle of operation of the pump-probe setup de-
veloped for our 1-kHz Ti:sapphire regenerative amplifier system. The approach to
the data-acquisition using our discrete sampling method is compared to the usual
lock-in signal-recovery techniques. We present both time- and frequency-domain
arguments to show that the described method is preferable in a low-repetition rate,
ultrafast experiment.

First, let us consider the idea behind lock-in detection. When an 80-MHz
optical pulse train is detected by a photodiode with a response time slower than
the fundamental period, it will generate a dc voltage proportional to the average
illumination intensity. If a small, pump-induced change is to be detected in this
pulse train, one usually modulates the pump at a frequencyf , well within the re-
sponse bandwidth of the detector. A square modulation function [see Fig. 8.2(a)]
will produce sidebands around the dc-component in the form of a harmonic 1/n-
sequence of the modulation frequencyf . For the extraction of these sidebands,
one uses a lock-in amplifier, that can determine the electric powerP in a selected
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F 8.2 Principle difference between lock-in signal extraction (a) and discrete sam-
pling method (b,c). (a) High repetition-rate pulses with low-frequency modulation and
detection (left) gives spectrum with single modulation frequency, suitable for lock-in de-
tection (right). (b) Low repetition-rate, short pulses (left) give frequency comb with many
modulation sidebands. Gated detection with sampling rate 2f results in folding of spec-
trum into a ‘zone’ [0,2f] [see (c)], and reduction of noise by factor (2f tGate)−1/2 relative to
lock-in detection (see text).

frequency bandwidth proportional toT−1, whereT denotes the integration time.
As the signal itself is a sharp peaked function while the noise is a constant back-
ground level, the r.m.s. signal-to-noise ratio of the voltage modulation, i.e. of
∆R/R, is proportional toT−1/2. For a flat spectrum of background noise, the total
noise rejection is given by to the square root of the ratio of the lock-in bandwidth
T−1 to the total photodetector bandwidth.

In case the repetition period of the pulses is larger than the detector response
time, as for a train of ultrashort pulses with a low repetition frequency, we find
a completely different picture. We then observe a frequency comb consisting of
many harmonics of the fundamental repetition frequency, defined here as 2f [see
Fig. 8.2(b)]. The exact number of these harmonics, sayQ, is given by the ratio
of the repetition period and the response time of the detector. If we apply now a
modulation of the intensity at a frequencyf , each harmonic in the comb will pro-
duce sidebands. Now to extract the signal atf using a lock-in detector would be a
waste of potential, as it will only recover the amplitude of the first harmonic in the
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spectrum, that isQ times lower, while the background noise remains the same. A
much better approach is to recover the amplitude ofall modulation peaks in the
spectrum but with a very narrow bandwidth. This can be accomplished by the
following procedure. First, one measures the intensities of the individual pulses
using a triggered voltmeter with a gate widthtGate [see Fig. 8.2(b)]. In fact, by
sampling at a fixed frequency 2f we fold back the entire frequency spectrum onto
the interval [ 0,2 f ] [as shown in Fig. 8.2(c)]. As in this process the phase is
maintained, random fluctuations average out to a background growing only pro-
portional toQ1/2, the number of periods that are folded back. The peak intensity at
f , however, will growlinearly proportional to the number of peaksQ. If we now
substract pairs of subsequent pulses with and without pump-induced effect, we
recover the frequency component atf in the folded zone, with a signal-noise-ratio
of ∆R/R again determined by the integration time∝ T−1/2.

8.3.3 Setup

Figure 8.3 shows the experimental configuration for the pump-probe reflectome-
try experiments. We use the amplified Ti:sapphire system operating at 1 kHz as
an energy source (pump) for ultrafast excitation of the sample. The pump beam
is chopped at 1/4th of the repetition frequency, prescribed by the limited response
time of the digitizing electronics in the detection stage. Therefore, subsequent
pairs of two pulses are intermittedly transmitted or reflected by the mechanical
chopper blades, that are in turn synchronized to the amplifier electronics. Directly
after the chopper, part of the pump light is reflected to a fast (nanosecond) pho-
todetector, that is used to trigger the data acquisition system. The rest of the pump
radiation is weakly focused onto the sample, i.e. to create strain pulses, where the
intensity can be tuned by translation of the 1.6-m focusing lens.

As a probe we can choose to employ either a small fraction of the 1-kHz pulse
train of the amplified laser, or, alternatively, pick the synchronized output of the
80-MHz seed oscillator of the regenerative amplifier. The repetition rate of this
optical output is reduced and synchronized with the 1-kHz of the pump laser by
means of a commercial pulse picker. By adjusting the timing of the acousto-optic
output coupler inside the pulse picker, large delays between pump and probe can
be set with discrete steps of 12.5 ns, the period in the modelocked pulse train. To
cover the intermediate time delays between these 12.5-ns steps, we constructed
an octuple-pass, 0.5-m long delay line, that can be controlled mechanically. Af-
ter adjusting and fixing this delay line to the desired value, accurate scans can
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F 8.3 Experimental setup for pump-probe reflectometry experiments with long
time delays, in the configuration where the probe is incident onto the sample at the op-
posite crystal surface as the pump. A pulse picker is used to select a single pulse of the
80-MHz train, synchronized to the 1-kHz pump, and at a well-defined time delay. The
4-m long, octuple-pass delay line is adjusted to cover the 12.5-ns time delay between the
modelocked laser pulses. The short delay line is used to make computer-controlled scans.

be made over a∼1-ns window by means of a 20-cm long, computer-controlled
optical translation stage.

Prior to focusing onto the sample, a small part of the probe beam is split
off and directed to a photodetector and used as a reference for pulse-based noise
reduction. The rest of the probe beam is focused to a small spot (∼0.1 mm in
diameter) onto the sample. The sample may either be a transparent crystal covered
on one side by a metallic film, or a crystal with metallic films deposited on the
two opposite faces (the latter configuration is not used in this thesis). The probe
beam can be directed onto the sample either at the same side or the opposite side
as the pump beam, but is always kept under a small angle to prevent spurious
pump light from entering into the detection system. The reflected probe light is
collected using a lens and imaged onto a photodetector, of which the output is
used to recover the pump-induced reflectivity changes of the sample.

The electronic signals from both the probe- and reference-detectors are sent to
two independent digital multimeters. The detectors are used in photovoltaic mode
to reduce shot noise and dark current contributions. Further, the decay time of the
photoinduced voltage is adjusted to 20µs, the optimum length of the multimeters,
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by means of a 100-kΩ load resistance at the multimeter input. The digital multi-
meters are controlled by a computer using IEEE (GPIB) communication ports and
are set to measure and digitize DC voltage over a fixed time interval (gate), that
can be tuned continuously down to 0.5µs. However, the accuracy of the ADC-
conversion gradually decreases from 7 to 4.5 digits when reducing the gate win-
dow below 10µs. The multimeters were found to be limited in their measurement
cycle for gated DC voltage measurements to a maximum repetition rate of about
0.7-kHz. Therefore it was decided to operate the whole setup at 0.5 kHz, and thus
to modulate the pump beam at 0.25 kHz. Each multimeter can be set to work
independently for a complete acquisition period of several seconds, and produces
an array of measurement data that is subsequently transferred to the computer.
However, for the pulse-based correction scheme to work, the multimeters have to
be synchronized by an external trigger. This is provided by a 4-channel digital
delay generator, that also is controlled by the computer using a GPIB connection.
By appropriately setting the trigger moment of this unit, the two multimeters can
be made to start measuring at the same time and produce synchronized arrays of
probe- and reference-data. After being read out by the computer, the following
computations are carried out to obtain the corrected probe signal: for each probe
and reference pulse pairpi, ri the ratioηi = pi/ri is calculated, then the difference
ηi+1 − ηi between a pulse with and without pump-effect is calculated to obtain
the pump-induced signal. This difference is averaged over all events and finally
multiplied by a factor correcting for the difference in illumination of probe and
reference diodes, extracted from the ratio of the averages of probe- and reference-
pairs for oddi, i.e. in absence of the pump pulse.

8.3.4 System performance

In order to demonstrate the operation of the pump-probe setup we performed sev-
eral experiments on metallic layers of chromium and aluminium at room temper-
ature. Figure 8.4 shows the effect of the pulse-based correction scheme for an
extremely noisy data set, taken using the 1-kHz output of the amplified laser as a
probe. We obtain a reduction of the background noise of a factor 50 and achieve
an ultimate sensitivity of 2× 10−5 in the reflectivity change∆R/R. The noise of
the uncorrected probe and reference data originates from a combination of laser
fluctuations and acoustical vibrations. The former strongly depends on the opti-
mization of the amplified system and is largely beyond our control. The laser is
specified to an accuracy of 1% in the energy fluctuation per shot, which results
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F 8.4 Typical probe (dash), reference (dots), and corrected signal (solid) trace for
an acoustic pulse in a 100-nm Cr/ 5-nm Al-film for sapphire-side pump,metal-side probe
configuration. A 50-fold reduction of the noise, from∼10−3 to 2× 10−5 in the signal, is
achieved using an acquisition time of 0.8-s per data point.

in a relative noise background of 5× 10−4 over 500 shots. Spurious contribu-
tions may also originate from the long optical delay lines, in combination with the
angular fluctuation (‘pointing jitter’) inherent to the amplified laser system. The
above fluctuations can be lower by a factor of∼5 when all components are well
optimized, but has never reached below a minimum of 6× 10−3 per pulse. Thus,
in all practical situations, the pulse-based correction scheme turns out an abso-
lute prerequisite to obtain the low background noise necessary for strain pulse
detection.

8.4 Experiments

8.4.1 Characterization of strain pulses

In the analysis of our Brillouin scattering data of Chapter 4, we have relied on
numerical simulations of the development of an initial wavepacket into a train of
solitons. The exact shape and width of this input pulse was at that point not yet ex-
perimentally checked in the time domain, although there existed some literature
on the ultrafast excitation of chromium films [3, 15, 16]. To verify the behav-
ior at high-intensity excitation and for our films, we first used our pump-probe
setup to determine the pulse echoes from the sample used in our Brillouin exper-
iments. This was done in the configuration where both pump- and probe-pulses
were incident on the metal film from the air. However, the acoustic reflection
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F 8.5 Pump-probe reflectivity data for front-side excitation and detection of a 100-
nm chromium film on lead molybdate (line) and sapphire (dash) single crystals. (a) Sig-
nals after subtraction of slow background. Lines denote fits to data according to Eq. (8.1).
(b) Original data, including electronic background. (c) Amplitude-spectrum of the strain
wavepackets obtained from fitting the data of (a).

at the chromium-sapphire interface turned out to be very small, and the acoustic
echoes could barely be detected. Therefore, we also performed an experiment on
a chromium film evaporated onto a piece of lead molybdate, that is expected to
give stronger acoustic echoes from the crystal-chromium interface. For an inter-
face that is flat on the scale of the typical strain wavelength, we may estimate the
acoustic reflection coefficient from the impedance law [17]:

Ri j =
Z j − Zi

Z j + Zi
, (8.3)

whereZi = ρc0 is the acoustic impedance of the materiali. The typical values for
the metals and substrates in this experiment are shown in Table 8.1, and predict
a reflection coefficient of 0.11 for the Cr-Al2O3 interface and -0.26 for the Cr-
PbMoO4 interface. The experimentally obtained traces, shown in Fig. 8.5, give
the expected result. Indeed, there is a 180◦ phase difference between the echoes
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observed from two samples, but the absolute reflection coefficients are higher in
the experiment than expected from the theoretical considerations. This may be
due to a reduced mechanical attachment of the metal films onto the substrate.
Nevertheless, for the sapphire sample the reflections are small enough to justify
our simple interpretation of the Brillouin experiment, disregarding the presence
of acoustic echoes in the input strain pulse.

The trains of reflected pulses can be simulated using the formulas for transient
reflectometry of Sec. 8.2. Here, the exact magnitude of the optical and opto-elastic
material constants may depend on the deposition parameters and on the quality
of individual films and have been adjusted within 10% of their literature values
to fit the experiment (see Table 8.1). Good agreement has been obtained with
the experimental traces of Fig. 8.5(a), where the electronic background has been
subtracted, for a Gaussian derivative strain waveform with time constantτg =

7 ps. This is in agreement with the initial strain waveform used in our simulations
for the Brillouin experiment [c.f. 4.2]. The frequency spectrum of this resulting
waveform is shown in the inset of Fig. 8.5(c) and compares well with that obtained
in the low-intensity experiments [3], be it that our spectrum seems to peak at
a slightly lower frequency (30 GHz instead of∼40 GHz). This may indicate a
slightly larger diffusion of energy within the electron-phonon interaction time,
due to the exceptionally strong nonequilibrium excitation of the electron gas by
the high-power laser pulses. However, a detailed analysis of these effects lies
beyond the scope of this thesis.

As a second issue, we wish to investigate if there could be a better material
than chromium to detect the ultrashort strain pulses after they have developed in
the bulk of a crystal. The skin depth of chromium is twice longer than that of
aluminium, which has the highestκ of all metals [c.f. Fig. 8.6(c)]. Therefore, an
aluminium thin-film may be more sensitive to higher acoustic frequency compo-
nents, and thus more suitable to detect ultrashort strain solitons. As a try-out, we
compared the response of a 100-nm chromium film with a similar film, but coated
by a 5± 2-nm thin layer of aluminium. In both cases, the substrate is a 100-µm
sapphire crystal, with thec axis aligned perpendicular to the surface. We excite
the films from the sapphire-chromium side, therefore the generated strain pulses
should be the same in both configurations. The reflectivity is probed at the out-
side, and thus is sensitive to the elasto-optic response of the outer metals, i.e. Cr or
Al. This configuration has the additional advantage that theoriginal strain pulses
can be detected, rather than the echoes. Another feature is the virtual absence of
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F 8.6 (a) Pump-probe reflectivity data for crystal-side pump and surface probe, in
case of a normal 100-nm chromium film (Cr) and one that is covered with a 5-nm top layer
of aluminium (Cr/Al). Lines are fits to Eq. (8.1), for symmetric (thin line) and asymmetric
(thick line) waveforms, the latter shown in (b). (c) Response functionsf (z) for chromium
and aluminium.

an electronic or thermal background, as the Cr-film is much thicker than the elec-
tronic diffusion length. The deposited heat diffuses through the film in the form of
high-frequency phonons and arrives much later than the ballistic strain packets [as
will be shown in Fig. 8.7]. Figure 8.6(a) shows the reflectivity traces for the two
samples, denoted by Cr and Cr/Al. Strikingly, the polarity of the two signals is
inverted with respect to each other, which is a result of the sign of the elasto-optic
coefficients (c.f. Table 8.1). Further, it is observed that the detected waveforms
are not symmetric. For a normal, bipolar pulse (thin line), the reflectivity signal
would consist of two equal lobes on both sides of the maximum, and clearly is
inconsistent with the experimentally observed behavior, both for the Cr and Cr/Al
case. However, the chromium-sapphire interface is not a free surface, therefore
the initial compression pulse will not be reflected as it would at the outside of the
sample.

Indeed, the experimental traces can be explained well by the strain waveforms
shown in Fig. 8.6(b). Strikingly, the obtained wavepacket still is bipolar, which
is in contradiction to the impedances of Table 8.1 and the echoes of Fig. 8.5.
We expect that, during the ultrafast excitation process at the sapphire-chromium
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F 8.7 Long-time pump-probe reflectivity data for crystal-side pump and surface
probe of a 100-nm Cr/5-nm Al film on sapphire. Wiggle at 20 ps is the coherent strain
waveform, slow increase is due to heat transport through the film.

interface, the loss of volume due to the compression of the chromium lattice is
compensated by an expansion of the sapphire substrate. We also observe that the
width of the strain pulse in Fig. 8.6(b) for the chromium film isτg = 4.5 ps. This
value is significantly smaller than that obtained in Fig. 8.5, and may be explained
by the reduction of the optical skin depth by a factor of∼1.6, due to the refractive
index of the neighboring sapphire. Strikingly, the width obtained from the data of
the Cr/Al film is only 3.5 ps. This difference can impossibly be due to the gen-
eration mechanism as the films are identical at the chromium-sapphire interface.
We conclude that this is an artefact from the very small thickness of the Al-layer.
Therefore part of the reflectivity signal is caused by the underlying chromium,
that has an opposite sign of the elasto-optic coupling parameter. Unfortunately,
we must conclude that the combination of two metal films with opposite sign of
the elasto-optic effect does not make a good detector for strain pulses.

Finally, Fig. 8.7 shows the effect of diffusive transport of heat through the
metal film, again in the configuration where the excitation takes place at the
sapphire-chromium interface, and the detection is done at the thin aluminium-
overlayer on top of the 100-nm chromium-film. We observe the ballistic strain
wavepacket arriving at 20 ps from the initial excitation (that can be observed as a
small step in the reflectivity), followed by a gradually increase due to the arrival of
a high-frequency heat pulse from the excitation spot. This effect persists over the
entire length of the 4-m delay line, and eventually reduces by the cooling of the
metal film to its surroundings, on a time scale of microseconds (c.f. Chapters 6
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and 7). The observed behavior is comparable to the behavior observed earlier after
the excitation of an embedded quantum well by Baumberget al. [18].

8.5 Conclusions and Prospects

Extensive attempts to observe the strain pulses after propagation over long dis-
tances in sapphire did not yield any positive results up to now. One may wonder
why nothing could been observed and ask whether there is any technical or funda-
mental reason for the signal to remain hidden. To find a small, strain-induced sig-
nal of picosecond duration after tens of nanoseconds delay requires both a good
spatial and temporal overlap between the optical probe pulses and the acoustic
wavepackets. The spatial overlap seems not the problem, as the acoustic beam
is of the order of millimeters in diameter. The time delay for synchronization of
the arrival of the soliton and the probe pulses is more difficult to find, but can
generally be estimated within 1 ns using a fast photodetector and an oscilloscope.

There are some additional effects that will affect the visibility of the wave-
packets after long-distance propagation. For the N-wave, it is seen that the reflec-
tivity peaks at the steep fronts and remains low in between. At elevated tempera-
tures, the fronts smear out and thus the reflectivity signal will also become flatter.
Considering the strain soliton, it is narrow with respect to the optical skin depth,
and therefore its induced signal will be lower than that of a broader pulse by the
ratio of its width to the width of the response function. A 0.2-ps strain soliton will
in the chromium be only 1.2 nm wide, which is on the scale of the interatomic
distance and particularly of surface corrugations. Inevitably this will cause small
fluctuations in the arrival time due to the surface roughness. Further, the material
nanostructure may have a large effect on the observed signal. The reflectivity sig-
nal is bipolar and mirror-symmetric and will therefore tend to average out under
the effect of time fluctuations. That is, if the solitons manage to enter the metal
film anyway. Even for a very well polished sapphire plate, the simple impedance
law will not apply to THz phonons, that will scatter diffusively from this interface
(see Chapter 7) rather than transmit into the metal film. It may therefore well
be that below a certain limit, ultrashort strain solitons cannot be detected using
pump-probe reflectometry on a metallic transducer.

If the above argument is true, we may have to consider alternative methods
of detecting ultrashort strain pulses in the time-domain. One avenue that will
suffer less from the limitations of material roughness is the use of epitaxially
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grown structures. Although some things can be done using grown structures on
top of very-well polished sapphire plates (‘epi-grade’), the materials of choice
may be silicon or gallium arsenide. One particularly promising idea is to use a
two-dimensional quantum well on top of such a material as a probe for acoustic
strain. It is well-known that the exciton absorption- and emission lines undergo
very large frequency-shifts that are proportional to the applied strain. This would
circumvent the problem of the derivative signal in the conventional reflectometry
experiment, which would be extremely useful in the case of ultrashort solitons.
Another method that does not suffer from this sign problem is interferometric de-
tection of surface displacement. As this method has some contributions that are
sensitive to the surface only [10], one may even try to detect the displacement of
the substrate itself, without having to deposit additional layers.
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A A

N    KV-B


A.1 Introduction

The Korteweg-de Vries equation is a nonlinear partial differential equation (PDE)
that is integrable, meaning that analytical solutions can be obtained for any ini-
tial value or boundary condition imposed on the system. In practice, however,
solutions can be written down in concise form only for the initial stage of devel-
opment of the dispersive shock front [1–5], and in the limitt → ∞ [6–8] for the
soliton part of the wavepacket. Closed analytical forms have not been obtained
for the radiative tail, emerging from the part of the bipolar initial waveform where
dispersion pulls apart the nonlinear structures. Further, at higher temperatures
the role of thermal damping becomes important, leading to the combined KdV-
Burgers equation, that is nonintegrable. Therefore, in this thesis it is chosen to
compute the development of the initial pulse using numerical simulations of the
KdV-Burgers equation.

Constructing a numerical solution for a nonlinear, dispersive wave equation
with initial conditions is a specialized topic in itself. Especially the combination
of a large nonlinear and small dispersive term requires a high level of stability and
efficiency of the algorithm. As an example, the simulation of soliton train devel-
opment over∼1 cm propagation distance in sapphire requires a co-moving time
array of around 106 points, and over 105 iteration steps to obtain stable solutions,
using the three-level time scheme of Sec. (A.2). In these extreme conditions, it is
important that the scheme is fast, for example, the amount of computational effort
betweenN2 andN3 operations is of orderN ≈ 106 for the above example. This
already eliminates the most simple of PDE solving methods, namely that of brute-
force inversion of the finite difference matrix (which is anN3-process). In the
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120 Appendix A Numerical modelling of the KdV-Burgers equation

course of this project we have tried three different implementations of nonlinear
PDE-solving routines, two of them based on fast Fourier transforms (FFT) [9, 10]
and one using finite difference techniques [11]. Of these, only two turned out to
be stable enough at the high mesh sizes and nonlinearity under study to perform
simulations. The leapfrog method of Ref. [9], due to its intrinsic unstableness
as mentioned in [12, 13], turned out inappropriate for our current problem. The
results of Chapter 4 were obtained using the three-level time scheme suggested
by Baloghet al. [11]. However, the implementation by Driscoll [10], which was
attempted at a later stage, turned out to be stable for courser grids (N ≈ 105). In
practice, this resulted in a reduction of computational effort of about a factor of
5, roughly from 96 to a more convenient 24 hours on the 833-MHz DEC-Alpha
server used for the simulations. Moreover, the efficiency gain and method of im-
plementation allowed for a simple extension to 2-dimensional problems, including
the effects of diffraction. In the following two sections we will describe the two
schemes into more detail.

A.2 Constant volume method, three-level time scheme

We start from the KdV-Burgers initial value problem

st − εszz + βszzz +
α

2ρc0
ssz = 0

s(z,0) = ψ(z) ,
(A.1)

with definitions of nonlinearityα < 0, dispersionβ > 0 and viscosityε > 0
according to Chapter 2. The first step is to integrate the equation symmetrically
around a grid point, resulting in

∫ e

w
stdz − εsz|ew + βszz|ew + α/2ρc0

1
2

s2|ew = 0 , (A.2)

Wherew, e denote half the distance between subsequent points on the left (’west’)
and right (’east’) side of the point of evaluation. The first term can be approxi-
mated to second order accuracy by polynomial fitting of the functions over three
time levels:
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s(+1) = a(+1)2 + b(+1)+ c

s(0) = c

s(−1) = a(−1)2 + b(−1)+ c .

(A.3)

Solving for {a, b, c} givesc = s(0), b = (s(+1) − s(−1))/2 anda = (s(+1) − 2s(0) +

s(−1))/2. The first order time derivative can now be approximated by filling in the
constants in the polynomial expansion and evaluating att = 1:

s(+1)
t = 2a + b = (3s(+1) − 4s(0) + s(−1))/2k , (A.4)

wherek denotes the increment in time. It should be noted that, for an implicit
scheme it is important to keep as much terms as possible at the highest time level.
Therefore the nonlinear part of the PDE will be approximated as

1
2

s2|ew =
1
2

un+1un|ew . (A.5)

The spatial derivatives are calculated using the common discretization at the high-
est time level. Note that the integration takes place around the grid pointsi, there-
fore the evaluation takes place at positionsw = (si + si−1)/2 ande = (si+1 − si)/2
[12], resulting in the difference equation

h
3sn+1 − 4sn + sn−1

k
− ε

sn+1
i+1 − 2sn+1

i + sn+1
i−1

h
+ β

sn+1
i+2 − 2sn+1

i+1 + 2sn+1
i−1 − sn+1

i−2

2h2

+
α

2ρc0

(
1
8

(sn+1
i+1 + sn+1

i )(sn
i+1 + sn

i ) −
1
8

(sn+1
i + sn+1

i−1 )(sn
i + sn

i−1)

)
= 0 . (A.6)

This equation can be easily rewritten in the form of a vector equationL(�S n)S n+1 =

b�S n+c�S n−1, where�S denotes the spatial grid of strain values, andL(�S n) is a band
diagonal matrix containing both the linear and nonlinear finite difference terms.
The initial conditions have to be applied via two initial state vectors,�S n=0 and
�S n=1. The latter may be estimated using a simple Euler-forward iteration, or with
small enough time steps can even be set to�S n=1 = �S n=0. The solution of the
matrix equation can be done efficiently using standard inversion algorithms for
sparse matrices [14], that use orderN2M operations, withN the number of points
in the mesh andM the width of the band in the matrix (M = 5 in our system).
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A.3 Fourth-order composite Runge-Kutta algorithm

The other approach for solving the KdV-Burgers initial value problem is consid-
erably more involved than the finite volume scheme of Sec. A.2, but is far more
stable and efficient. The method, developed by Driscoll [10, 13] is built around a
fourth-order Runge-Kutta scheme in Fourier domain, with a spectral decomposi-
tion into ’slow’ and ’stiff’ modes. The philosophy behind this approach is, that the
highest order derivatives, that require the finest grid for stability, are all contained
in the linear part of the PDE. Therefore, the equation is separated into linear and
nonlinear operators as follows

st(z, t) = N(s) + Ls(z, t) , (A.7)

with N(s) andL the nonlinear and linear operators, respectively. One can choose
to solve these terms either in real-space or Fourier domain on an individual basis.
A useful choice for our situation is the evaluation of the nonlinear term in spatial
domain and the linear term in spectral domain. This yields the following equation

s̃t(ξ, t) = iξF[(F−1s̃)2] + λ̃(k)s̃ . (A.8)

Here we have considered again the array of space-points of the strain as a vector
�s, with Fourier transform ˜s. ξ denotes the wavevector andλ̃ is a diagonal matrix
containing the (complex) eigenvalues of the linear operator. For the KdV-Burgers
equation, these are given by

λ̃ = −εξ2 − iβξ3 . (A.9)

We now proceed with the splitting of the spectrum into slow and stiff modes and
evolve them using their own particular schemes: and explicit, fourth order Runge-
Kutta scheme for the slow modes and an implicit scheme for the stiffmodes. The
former, explicit scheme is less consuming but has also limited stability, while the
implicit method has high stability but requires additional matrix multiplications.
We proceed by writing for the two different subsystems the PDE in the form

˙̃y = f̃ (ỹ, z̃) + λ̃ỹ

˙̃z = g̃(ỹ, z̃) ,
(A.10)
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Whereỹ, z̃ denote the stiff and slow parts of the spectrum, respectively. The func-
tions f̃ andg̃ indicate the operators that are evaluated using the explicit iteration
method, which for the stiff modes is the nonlinear term and for the slow modes
both the linear and nonlinear operators.

The details of the implementation of implicit and explicit Runge-Kutta algo-
rithms may be found in Driscoll [10]. We give here the resulting recipe for a single
iteration step for the functions ˜y andz̃

Y1 = ỹn

Z1 = z̃n

Y2 =
(
1− 1

3kλ
)−1 (

ỹn +
1
2k f̃ (Y1,Z1) + 1

6kλ̃Y1

)
Z2 = z̃n +

1
2kg̃(Y1,Z1)

Y3 = (1− kλ)−1
(
ỹn +

1
2k f̃ (Y2,Z2) + 1

2kλ̃Y1 − kλ̃Y2

)
Z3 = z̃n +

1
2kg̃(Y2,Z2)

Y4 =
(
1− 1

3kλ
)−1 (

ỹn + k f̃ (Y3,Z3) + 2
3kλ̃Y3

)
Z4 = z̃n +

1
2kg̃(Y3,Z3)

yn+1 = yn +
1
6k
[
f̃ (Y1,Z1) + f̃ (Y4,Z4) + λ̃(Y1 + Y4)

]
+ 1

3k
[
f̃ (Y2,Z2) + f̃ (Y3,Z3) + λ̃(Y2 + Y3)

]
zn+1 = zn +

1
6k
[
g̃(Y1,Z1) + g̃(Y4,Z4)

]
+ 1

3k
[
g̃(Y2,Z2) + g̃(Y3,Z3)

]
.

(A.11)

A criterium for the spectral separation into ˜y andz̃ may be based on the stabil-
ity range of the explicit Runge-Kutta algorithm. The definition of slow modes is
given by Driscoll as the solution of the equation|λ̃(k)| < 2.8c0h/k. In our simula-
tions it was found that this criterium resulted in divergence of the simulated traces
after∼104 time increments. The reason why this occurs, while Ref. [10] states that
the threshold should be adequate for all situations, remains unclear at this point.
It should be noted that the algorithm has not been tested before with these large
grids and long simulation times. It was however found that good convergence
could be obtained using the implicit RK4-scheme for all frequency components,
i.e. by setting the criterium to zero.
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F A.1 Time-domain traces atz = 1 mm of the simulated acoustic wavepacket for
different values of the initial strain amplitudes0. Results are obtained using the KdV-
Burgers equation at zero damping, from the finite volume method of Sec. A.2.

A.4 Simulated wavepacket propagation in sapphire

For completeness, we show in this section the entire set of simulations at inter-
mediate and low temperatures as obtained for comparison with the Brillouin scat-
tering data of Chapter 4. The typical development is represented in the form of
time-domain traces at a travelled distance in the crystal ofz = 1 mm. Figure A.1
shows the simulated waveforms at different values of the initial strain amplitude
s0, ranging between 0.6 and 2.0×10−3. Scaling of the amplitude over more than
a factor of 3 results in an increasing number of solitons, ranging from 6 up to
11, in the strain packet. In all traces, except the two at initial strains of 1.4 and
1.6×10−3, a reflection of 10% from the chromium-sapphire interface was included
in the simulation. Although one observes a difference in the leading part of the
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F A.2 Time-domain traces atz = 1 mm of the simulated acoustic wavepacket for
different values of the viscosityε. Results are obtained using the KdV-Burgers equation
at an initial strains0 = 1.4× 10−3, using the finite volume method of Sec. A.2.

trailing radiation between the situations with and without reflection, this has no
effect in the calculated low-frequency Brillouin scattering contributions.

In another set of simulations, the value of the damping parameterε is varied
between 4.54×10−4 Ns/m2, the viscosity of sapphire at room temperature, and
zero. The results of these calculation a summarized in Fig. A.2, showing again
the developed packets atz = 1 mm. One can observe clearly the transition from
the overdamped to the dispersion-dominated regime, betweenε = 0.1 and 0.2 ×
10−4 Ns/m2. This transition region is characterized by the formation of dispersive
shocks, described analytically in Refs. [1, 6]. Note that a difference exists in
between the lower two simulations in Fig. A.2, which indicates that, atε = 0.1×
10−4 Ns/m2, the solitons can initially develop, but are attenuated upon propagation
through the crystal.
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T     


B.1 Introduction

In this appendix we will derive the matrix element of theE(2E) − 2A(2E) phonon
transition used in chapters 6 and 7 for the interpretation of the phonon-induced
R2 luminescence. We will focus on the situation of uniaxial longitudinal strain
along thea axis, which is the configuration that yields the strongest interaction
between the longitudinal phonons and the two-level medium. The problem of
phonon-induced transitions in the2E state was addressed by Blumeet al. [1] and
Geschwindet al. [2] in the context of deriving a quantitative expression for the
spontaneous emission lifetimeT1 from the 2A(2E) state to the metastableE(2E)
level in case of spin-flip and nonspin-flip transitions. In this derivation, static
strain data on theR1 and R2 line positions [3] were used to estimate the off-
diagonal matrix elements involved in the phonon transition.

In the derivation of the matrix element of theE(2E) − 2A(2E) single-phonon
transition we rely on the papers by Blumeet al. [1]. However, we must con-
sider that the results are all order-of-magnitude estimates, which may vary within
a range of roughly a factor of 10. We may however use some of the experimental
knowledge obtained by measuring the spin-flip and nonspin-flip relaxation rates
which have since then become available with reasonable accuracy. This may be
used to correct the expressions for the matrix elements to some extent and ob-
tain a more reliable estimate. First, however, we will briefly review the original
derivation using ligand-field theory.

127



128 Appendix B Transition matrix element of the ruby spectrometer

F B.1 Energy-level diagram of Cr3+ in the Al2O3 host lattice, after Ref. [4].

B.2 Ligand field calculation

In the crystal field theory of Al2O3:Cr3+ one uses that the Cr3+-ion is located on
the trigonal axis, surrounded by an octahedron of nearest-neighbor O2− ions.

It has be shown that the Hamiltonian for thed-electrons of the Cr3+-ion in
Al2O3 can be written in the form [4, 5]

Htot = Hoct+ Htrig + HSO+ Hstrain . (B.1)

The first three terms correspond to the static contributions from the octahedral
field, the trigonal field, and spin-orbit interactions, respectively. The trigonal
and spin-orbit terms are significantly smaller than the octahedral term and may
be treated as perturbations. In the following we will follow the standard group-
theoretical notations for the irreducible representations of the octahedral and trig-
onal symmetry groups (see e.g. Refs. [6, 7] for an introduction). The three elec-
trons that are connected to the crystal field of the lattice construct a set of states
referred to ast32. In this collection of states, there are several multiplets, denoted
as4A2, 2E, 2T1, 4T2, 2T2, 4T1, and2A1 [c.f. Fig. B.1]. Within the2E multiplet,
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the spin-orbit interaction splits the levels into two Kramers doublets,E(2E) and
2A(2E), that are the important levels of this discussion. The degeneracy of the
Kramers levels may be lifted using a magnetic field, allowing for a separate study
of spin-flip and nonspin-flip transitions.

The dynamic orbit-lattice interaction termHstrain can be expanded into the
orbital operators of the irreducible representationsΓ of the point group at the ion
site, with the corresponding component of the dynamic strain, as [8, 9]

Hstrain=
∑
Γ,m

V(Γ,m) ε(Γ,m) , (B.2)

whereV(Γ,m) denotes the orbital operator,ε(Γ,m) the dynamic strain component,
andm the number of components in the groupΓ. The transition rate from 2A to E
with emission of a phonon may be expressed into matrix elements ofHstrain using
the Golden Rule

w2A→E = 2π/�
∑
Γ,m

∣∣∣〈E |V(Γ,m) |2A〉
∣∣∣2 × |〈n + 1 | ε(Γ,m) | n〉|2 ρE , (B.3)

whereρE denotes the density of states of the phonons at 29-cm−1 and the phonon
occupation numbern approximates zero at pumped helium temperatures. To eval-
uate all terms in this expression amounts to the calculation of all matrix elements
of orbital operators of components (Γ,m) between the initial and final states. From
the Wigner-Eckart theorem, we can factorize these matrix elements into

〈Γ′m′ |V(Γ,m) |Γ′′m′′〉 = Γ−1/2〈Γ′ |V0(Γ) |Γ′′〉 〈Γm |Γ′m′Γ′′m′′〉 , (B.4)

whereV0(Γ) denotes the reduced matrix element of the representationΓ, and the
last term on the right is a Clebsch-Gordan coefficient.

In a perfectt32 configuration (i.e. octahedral symmetry), the only types of
vibrations of the octahedron that have to be considered are those ofE and T2

symmetry [5] (i.e. corresponding to tetragonal and rhombic distortions [10]).
However, the matrix elements connecting the states in the2E manifold via (E,T2)
symmetric vibrations turn out to be zero [1]. In order to obtain nonzero transi-
tion matrix elements, it is necessary to mix the unperturbed states by a first order
contribution from spin-orbit coupling and trigonal field. More specifically, this
involves the admixture of trigonal (2T2) states into the wavefunctions, that will
couple the levels to first order throughT2 symmetric vibrational modes of the oc-
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tahedron (2T1-mixing does not provide nonzero elements up to first order [8]).
First order perturbation theory leads to the following modified wavefunctions for
the electronic2E quartet [1]

|2A
′
+〉 = |u+ + 1

2〉 + α |x+ +
1
2〉 − β |x− −

1
2〉

|2A
′
−〉 = |u− − 1

2〉 + β |x+ +
1
2〉 + α |x− −

1
2〉

|E′+〉 = |u− + 1
2〉 + β |x0 − 1

2〉 − γ |x− +
1
2〉

|E′−〉 = |u+ − 1
2〉 − γ |x+ −

1
2〉 − β |x0 +

1
2〉

(B.5)

α =

 ζ√
6∆
+

√
6K
∆

 , β =
ζ
√

3∆
, γ =

 ζ√
6∆
−
√

6K
∆

 .
Hereu+ andu− denote the octahedral basis of2E (the unperturbed wavefunctions),
x−, x+, and x0 the trigonal basis of2T2, K, ζ are the trigonal field and spin-orbit
parameters, respectively [1, 11], and∆ = 6734 cm−1 is the energy splitting be-
tween the2E andT2 states. Using these wavefunctions, the off-diagonal elements
〈2A

′|Hstrain|E
′〉 can be calculated up to first order by taking into account only

matrix elements linear in the perturbation (i.e. of type〈u j ± 1
2 |...|xi ± 1

2〉). To ac-
complish this it is useful to write the strain HamiltonianHstrain in the irreducible
representations of the octahedral system [9]:

Hstrain= HA1 + HE + HT2. (B.6)

Here HA1 denotes the uniform compression (diagonal) part of the Hamiltonian,
that preserves octahedral symmetry and thus produces no effect in the splitting
of the levels. Again, also the matrix element coupling the trigonal2T2 electronic
states to the2E-manifold via the group ofE-vibrations is zero [8], which leaves
only the termHT2 in Eq. (B.6) to be considered. By using Eq. (B.4), one can
simply evaluate the remaining matrix elements in terms of the Clebsch-Gordan
coefficients connecting theE to the2E and2T2 basis sets (that can be found in the
tables of Ref. [8]), in combination with a reduced matrix elementV(T2). Eventu-
ally this results in the expression for the nonspin-flip transitions

〈E′+− |HT2 |2A
′
+−〉 = −

2K
∆

V(T2)s+ = −Qs+ . (B.7)

with the abbreviationQ = 2K
∆

V(T2). The parameters+ denotes the component
of the applied strain in the correspondingx+-mode of theT2-basis. The reduced
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matrix elementV(T2) has been obtained from experimental data for theE − 2A-
level splitting for strain along thec axis. The strain-induced change inR2 − R1-
splitting was measured to be 0.55 cm−1/GPa in static strain experiments [3, 12],
and 0.44 cm−1/GPa in shock wave experiments [10]. Following the argumentation
by Blumeet al. [1], this yields a value forV(T2) ≈ 2.4 × 104 cm−1 per unit of
trigonal strain. The magnitude ofs+ can be derived simply from the uniaxial
strains by transforming to a trigonal basis, leading to [10]

s+(T2) =
1− i

√
3

4
s
3
, (B.8)

where the complex nature of the strain is a consequence of the mathematical con-
struction. For applied stress along thec-axis, the transformation to trigonal strain
components yieldss+ = 0 [9, 10], which explains the zero coupling of longitudi-
nal phonons in this crystallographic direction, as observed in Ref. [13] and by us
in Chapter 7. A uniaxial strains propagating along thea axis will thus contain
a trigonal component|s+| = q+s, with q+ ≈ 0.29 the reduction factor obtained
from Eq. (B.8). Given the known values for the material constantsζ ≈ 180 cm−1

and K ≈ 250 cm−1 [11, 14], we obtain an estimate for the matrix element for
nonspin-flip transitions of∣∣∣∣〈E′+− |HT2 |2A

′
+−〉
∣∣∣∣ = �χ0s ≈ 450s [cm−1/uniaxial strain]. (B.9)

We have thus obtained an estimate of the strain coefficient χ0 in the Rabi fre-
quency of�χ0 = |Qq+| ≈ 450 cm−1.

From the matrix element, one can obtain an estimate for the spontaneous emis-
sion lifetime and the resonant phonon mean free path. Following Geschwindet
al. [2], one can write the transition ratew2A→E in first order time dependent per-
turbation theory as

w2A→E =
2π
�

Q2| < n + 1 | sω | n > |2ρE . (B.10)

Using the cubic orientational average of the phonon modes introduced by Van
Vleck [5], Blumeet al. [1] arrive at an approximation for the nonspin-flip sponta-
neous emission rate of

w2A→E =
Q2ω3

30πρ�

 1

c5
l

+
3

2c5
t

 , (B.11)
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with ct, cl the velocities of the transverse and longitudinal phonons, respectively.
Filling in the value forQ ≈ 1600 cm−1 yields a decay ratew2A→E ≈ 109 s−1 or a
decay timeT1 ≈ 1 ns.

We should realize that the above method is a very rough estimate, and that
there are several assumptions made to arrive at an expression forχ0. The connec-
tion of the strain-dependent lineshift data with the nondiagonal matrix element
V(T2) assumes that the reduced matrix element in the lineshift data is the same
as that in the transition rate. Blumeet al. [1] estimate a spin-flip transition rate
which is two times smaller than the experimentally observed one. Secondly, the
ratio of spin-flip to nonspin-flip rates is calculated to be 60, while experimentally
this ratio is only about 15. This discrepancy is not surprising, as there is a large
variation in values in the literature for the constantsζ andK, that determine this
ratio [11, 14, 15]. Furthermore, Van Vleck [5] cautions that the approximation for
the matrix element of lattice coordinates〈 n + 1 | sω | n 〉 is probably the weakest
link in the expression for the relaxation rates. It falsely assumes that the ampli-
tudes of vibrations are the same for all atoms in the lattice. Therefore, we argue
that the largest error may not be in the calculation of the orbital matrix element,
but rather in the orientational average. Therefore, if we consider the error in the
spin-flip rate to be caused by the phonon statistics, we may still identify the spin-
flip matrix element with the diagonal element obtained from the lineshift data [2],
and with the factor of 15 between the experimentally obtained lifetimes, we then
arrive at an approximation of the nonspin-flip matrix element Q which is about 4
times larger than the spin-flip element of∼200 cm−1. Combined with the factor
q+ this yields a Rabi frequency of�χ0 ≈ 250 cm−1. We have chosen to use this
lower estimate in the calculations of Chapters 6 and 7.

B.3 Resonant phonon mean-free path

We now present some estimates for the absorption of resonant 29-cm−1 phonons
in the resonant medium consisting of excited Cr3+-ions. The mean free pathlr
for the resonant phonons in a two-level medium excited to a concentrationN∗ can
be derived along different paths. Our first attempt starts from the rate equations
governing the equilibrium of spin and phonon baths, that are on speaking terms
through the crystal-field interaction. From the principle of detailed balance for the
electronic and phonon subsystems, an important relation can be derived between
the spontaneous emission lifetime and the resonant absorption timeτr = lr/c0,
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given by [13]

τr/T1 = D(ω)∆ω/N∗ , (B.12)

with the Debye density of statesD(ω)∆ω = Vω2∆ω/2πc3
0 ≈ 3× 1016 cm−3. This

directly provides an estimate for the resonant mean free path oflr ≈ 0.2 µm for
TA phonons at the typicalN∗ = 1018 cm−3 for the experiments of Chapter 6.

Another approach for the determination of the absorption lengthlr involves
the solution to the coupled equations for the electronic system and the elastic
continuum. Derivations for the coupled spin-phonon system have been obtained
by Jacobsen and Stevens [16], Shiren [17], and recently by Tilstraet al. [18].
Shiren derived an explicit expression for the absorption coefficient, given by

l
−1
r =

2πN∗χ2
0ωT1

ρ�c3
0

. (B.13)

Note the analogy with the optical case [19], when replacingε0 by ρc2
0, and the

dipole momentµ by χ0. Equation (B.13) results in an estimate oflr ≈ 2.4 µm for
LA and lr ≈ 0.4 µm for TA phonons, atN∗ = 1018 cm−3. These results compare
well with those of the detailed balance equation, indicating that our estimate of
the Rabi frequency is very reasonable.
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C.1 Introduction

In the analysis of the Brillouin scattering data we have until this point assumed
that the dispersive tail in the soliton wavepacket does not play a major role in
the evolution of the low-frequency part of the spectrum. In Fig. 5.4(b) it was
observed that the tail mainly consists of frequencies above several hundreds of
gigahertz. Further, in the analysis of the strain-inducedR2 luminescence we have
also considered only the excitation of TLS by the solitons in the wavepacket.
In this appendix we have collected all our calculations on the contributions of the
radiative tail, to show that it does not significantly contribute to either the Brillouin
or the ruby experiments. The calculations support all our earlier interpretations
presented in Chapters 4 to 7 in terms of the properties of the train of ultrashort
strain solitons.

C.2 Brillouin scattering contributions

In this section we will compute the individual contributions of the soliton train
and radiative tail to the Brillouin-scattered intensity. The shape of the dispersive
tail, as shown e.g. in Fig. 5.4(a) and Fig. A.2, should not be confused with the
purely linear dispersive forms of Ref. [1], where the initial pulse itself is short
enough to induce dispersive spreading even in the low-amplitude regime. In the
current experiments, the initial frequency components of the wavepacket are be-
low 100 GHz, which is too low for dispersion to play a role in the linear regime
within the propagation length of our crystal. The strain amplitude, however, is
extremely high (up to 0.2%), ensuring a significant nonlinear steepening mecha-
nism.

The difference in development of the compression and rarefaction parts of the
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F C.1 Real and imaginary parts of Fourier component ˜cB (thick line) at the Bril-
louin frequency of 22 GHz, and separated into soliton (dash) and radiative tail (thin line)
contributions.

bipolar strain pulse is caused only by the relative signs of the nonlinear and disper-
sive parts of the propagation equation. In the compressional front of the packet,
nonlinearity counteracts the dispersion, leading to soliton formation, while at the
tensile edge they cooperate in pulling apart the wavepacket. Only after the tail has
been stretched out over an appreciable distance by dispersion, the strain amplitude
decreases, and the propagation becomes approximately linear. The point at which
the dispersive action becomes apparent in the self-steepening process coincides
for both sides of the packet [2], leading to the same high-frequency content in
the tail and in the soliton train. In contrast with the solitons, that remain nonlin-
ear over the entire travelled distance, the stretching of the radiative tail leads to
linear propagation and effectively decouples the terahertz spectrum from the low-
frequency part, ‘freezing’ in the contribution of the tail in the Brillouin-scattered
intensity.

To analyze the contributions to the Brillouin scattering signal in a more quan-
titative way, we separated a simulated wavepacket into its two basic components.
The development of the soliton train and the radiative tail were individually mon-
itored over time and their low-frequency Brillouin intensities separately com-
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puted. In this procedure we considered the complete, complex form of the relevant
Fourier components, to ensure that the coherent sum of the separate contributions
produces the total scattered intensity. A typical evolution pattern of the Fourier
coefficient of strain, ˜cB, at 22 GHz, separated into its soliton- and tail-induced
components, is shown in Fig. C.1. The small discontinuity in the traces around
0.4 mm is due to the replacement beyond that point of the soliton train in the sim-
ulation by the analytical form of Ref. [2]. This procedure reduces significantly
the required computational efforts without affecting the accuracy of our simulated
wavepacket. From the figure, we can easily distinguish the different roles played
by the soliton train and radiative tail in our Brillouin signal. The influence of the
latter is limited to the first millimeter of propagation only, where the self steepen-
ing mechanism has not yet upconverted all of the acoustic energy in the tail into
the terahertz range. It is not involved in the typical oscillation pattern in the Bril-
louin intensity, but rather yields a small additional level decreasing with distance.
The oscillations in the soliton trace of Fig. C.1 can indeed be attributed purely to
the spatial resonances in the train, moving at different velocities, as was stated in
Chapters 4 and 5 [3].

Finally, we have analyzed the separate influence of the soliton and tail con-
tributions in the simulated Brillouin scattering data. We find that the influence
of the radiative tail is appreciable only during the first hundreds of micrometers
of propagation, after which it decays rapidly to zero. This confirms the expecta-
tion, that the semi-linear trailing radiation consists mainly of components in the
high-frequency part of the phonon spectrum.

C.3 TLS-excitation by the dispersive tail

In this section we calculate the excitation of the electronic two-level systems pre-
sented in Chapter 6 by the dispersive radiation in the soliton wavepacket. We
once more consider a typical dispersive tail from the KdV equation, as shown in
Fig. C.2(a). To investigate which part of this wavepacket is resonant with the two-
level system, we calculate locally the spectrum by means of short-time Fourier
transforms over a moving window of 17 ps temporal width. This results in a time-
dependent spectrum, as shown in Fig. C.2(b). The time window for the transform
limits the spectral resolution to∼60 GHz, which is small enough to distinguish
some spectral features of the packet. Clearly, after the first 50 ps of the tail, that
consists of some debris, the spectrum consists of a narrow band of frequencies that
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F C.2 (a) Dispersive tail atz = 1.0 mm propagation distance in the crystal, for an
initial strain s0 = 1.75× 10−3. (b) Time-dependent fourier transform of waveform of (a).
Horizontal line (dash) denotes resonance frequencyν0. (c) TLS-excitation∆w/2 for the
simulated wavepacket of (a). Vertical line (dash) denotes temporal position of resonance
of the wavepacket.

shifts to higher frequencies towards the end of the wavepacket. This frequency-
distribution over the wavepacket (or ’chirp’) results from the combined action of
the nonlinearity and phonon dispersion, which causes the higher frequencies to
propagate slower. We can estimate the effect of linear dispersion from the differ-
ence in sound velocity∆c(ω) = c0−βω2/c2

0, which for 0.87-THz phonons amounts
to a relative velocity change of∆c/c0 = −8.9×10−4. In the moving frame system,
this corresponds to a walk-off of 80 ps, after propagation over 1 mm in the crystal.
In Fig. C.2(b) it is observed that the position of the 0.87-THz phonons is located
at 200 ps, much further than can be accounted for by linear dispersion alone. The
additional walk-off can be attributed to the nonlinearity in the initial wavepacket
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development, that results in quasistable nonlinear structures propagating to the
right in the moving frame system.

We will leave the details of this behavior to future studies and focus now
on the excitation of a two-level system by the dispersive tail. We applied the
Bloch model developed in Sec. 6.3 to the wavepacket of Fig. C.2(a) and obtained
the excited population∆w/2 by projection of the resulting Bloch vector on the
vertical axis. The result is shown in Fig. C.2(c) and demonstrates clearly the
resonant character of the interaction. The state vector starts to tilt exactly at the
point where the 0.87-THz component appears in the wavepacket, as expected from
the analogy with envelope waves in coherent optics [4]. Figure C.2(c) predicts
excitation of the electronic system by the radiative tail up to values of∆w/2 ≈
2 × 10−3 which is of the same order of magnitude as predicted for the soliton
trains of Sec. 6.3. However, there is an important effect that causes the soliton
contribution to dominate in the integratedR2 luminescence. As discussed in the
previous section of this appendix, the radiative part of the wavepacket is rapidly
reduced in amplitude by the spreading out of the strain over a large time window,
entering the linear propagation regime. Therefore, the nonlinear refill mechanism
does not work on the tail and a spectral hole will be formed like in the case of
a heat pulse. Thus, after the first few resonant mean free paths, the absorption
of radiation from the tail stops, while the soliton train continues to feed 29-cm−1

phonons via spontaneous emission to the bottlenecked phonon cloud. One may
even argue to which extent these resonant phonons will be able to reach the core
of the bottlenecking zone at all. It is known [5] that resonant 29-cm−1-phonons
will be diffusively reflected by the excited cloud of Cr3+ and do not contribute to
the bottleneck. We conclude that coherent excitation by the radiative tail may be
safely neglected with respect to the soliton train.

We finally consider the scenario in which the radiative tail grows to the extent
that it contains enough resonant components to excite the Bloch vector to angles
of the order ofπ. This situation is not purely academic, as the nonlinearity pro-
duces more and more high-frequency components in the tail when larger initial
strain amplitudes are used. Thus, for some strain values exceeding the current
experimental window it may well be that enough 0.87-THz components are pro-
duced to form a 2π-pulse. This pulse now would be able to propagate through the
excited zone without losing its energy, i.e. the electronic state would be excited
and de-excited by the same pulse. The topic of self-induced transparency or even
phonon amplification in these systems will be an issue of future studies.
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De experimenten in dit proefschrift houden zich bezig met geluidspulsen van ex-
treem korte tijdsduur. Sinds enige jaren worden deze drukpakketjes met succes
ingezet voor de karakterisatie van dunne lagen en nanostructuren: zij zijn in staat
om door te dringen tot dieper liggende lagen, die niet direct bestudeerd kunnen
worden met licht. Door middel van de weerkaatsingen van het geluidspakket aan
deze structuren kan een beeld worden geconstrueerd, zoals ook gebeurt in conven-
tionele akoestische echoscopie. De drukgolven worden gevormd door middel van
de absorptie van licht in het bovenste laagje van een metaalfilm. De toepassing
van extreem korte, intense laserpulsen zorgt voor een kortstondige, sterke verhit-
ting van dit laagje, wat resulteert in een lokale vervorming van het materiaal. Deze
vervorming reist vervolgens in de vorm van een drukpakket door de te bestuderen
structuren.

Geluid is een golfverschijnsel, waarbij lokale dichtheidsverstoringen in een
medium zich voortplanten met een eindige snelheid. De overdracht van impuls
vindt plaats door middel van botsingen tussen de deeltjes, en zo kan het geluid
zich voortbewegen als een rimpeling door het stilstaande medium. De frekwen-
tie, of toonhoogte, van het geluid wordt bepaald door de afstand tussen de pieken
en dalen van de geluidsgolf. Indien de verstoring slechts gedurende korte tijd
plaatsvindt, wordt het geluid ervaren als een knal, tik of puls. Dit komt omdat
we de toonhoogte van de golf niet meer goed kunnen bepalen binnen de beperkte
pulsduur. De puls bestaat dan als het ware uit een heleboel verschillende frekwen-
ties, en wordt daarom ook wel een golfpakket genoemd. Om de kortst mogelijke
puls te genereren maakt het veel uit in welk material het geluid zich voortbeweegt.
In lucht is de afstand tussen de moleculen vrij groot en zijn de onderlinge botsin-
gen niet zo sterk, wat leidt tot een geluidssnelheid van ‘slechts’ enkele honderden
meters per seconde. In een vloeistof zitten de atomen al veel dichter op elkaar:
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de geluidssnelheid is dan ook zo’n duizend meter per seconde. In een vaste stof,
tenslotte, zijn de atomen zeer sterk met elkaar verbonden: hun onderlinge afstand
is van de orde van 0,1 nanometer en de bijbehorende geluidssnelheid kan oplopen
tot tienduizend meter per seconde voor de hardste materialen, zoals saffier en dia-
mant.

De kortst mogelijke golf die mogelijkerwijs in een materiaal kan voorkomen
wordt bepaald door de afstand tussen de atomen. Dit kan gemakkelijk worden in-
gezien aangezien er nooit meer dan een halve trillingsperiode tussen twee atomen
kan zitten. Het ligt dan ook voor de hand dat de kortst mogelijke pulsen zich
alleen kunnen voortbewegen in een vaste stof. Deze hoogfrekwente vibraties in
een kristal worden ook wel fononen genoemd en vormen de basis van wat wij
ervaren als warmte. Deze warmte levert echter ook een probleem op voor de
drukpulsen in onze studie: de trillingen in het drukpakket worden gedempt door
verstrooiingen aan de achtergrondruis van thermische fononen. Allereerst moet
dus alle overtollige warmte uit het materiaal ‘gevroren’ worden. Dit gebeurt door
het materiaal onder te dompelen in vloeibaar helium met een temperatuur van
slechts enkele graden boven het absolute nulpunt. Voor de voortplanting van ex-
treem korte pulsen is echter nog een hindernis te overwinnen: ten gevolge van
interne reflecties van de golven aan het kristalrooster reizen de hoge frekwenties
in het golfpakket een klein beetje langzamer dan de lage frekwenties. Deze zo-
genaamde dispersie resulteert in het langzaam uit elkaar lopen van het golfpakket
tot een langgerekte structuur van langzame naar snelle trillingen. Het lijkt dus on-
mogelijk om zeer korte geluidspulsen stabiel te laten reizen over macroscopische
afstanden.

Echter, onder de extreme omstandigheden van het beschreven experiment ont-
wikkelt zich nog een effect, dat kan compenseren voor dispersie. Doordat in het
korte golfpakket de druk lokaal zeer hoog is, beı̈nvloedt de puls zelf de krachten
tussen de atomen. Een andere manier om dit in te zien is om het kristal te
beschouwen als een netwerk van bollen, verbonden door veertjes. Het boven-
staande argument betekent dat de stugheid van de veertjes afhangt van de mate
waarin ze samengedrukt worden. Aangezien de geluidssnelheid direct bepaald
wordt door deze veerconstante, leidt dit ertoe dat de piek van de golf harder reist
dan het golffront. Het pakket heeft dus de neiging om over zichzelf heen te vallen,
net als een golf in de branding. In een kristal breekt de golf echter niet, omdat
de atomen vast zitten op hun roosterpositie, maar er ontstaat wel een zeer steil
schokfront.
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De ontwikkeling van een beginpuls naar zo’n schokgolf gaat gepaard met de
vorming van zeer hoge frekwenties aan het schokfront. Maar deze frekwenties
reizen juist langzamer tengevolge van dispersie, waardoor het front verstoord
wordt. De gecompliceerde wisselwerking van schokvorming en dispersie kan
maar opéén manier aflopen: de vorming van solitonen. Deze exotische objecten
zijn stabiele pulsjes waarin een dynamische balans is ontstaan tussen de twee
competitieve elementen van schokvorming en dispersie. Deze balans zorgt voor
een ongekende robuustheid en zelfs een regenererend vermogen van de solitonen
onder invloed van externe verstoringen. Het kan worden aangetoond dat iedere
willekeurige (compressieve) beginpuls in het kristal uiteindelijk opbreekt in een
trein van deze solitonpakketjes, waarbij de breedte en amplitude van een soliton
in deze trein uitsluitend wordt bepaald door enkele fundamentele materiaalcon-
stanteǹen de maximale druk in de beginpuls.

In dit proefschrift hebben we de ontwikkeling bestudeerd van een picoseconde
(pico- is 10−12) drukgolf tot een trein van ultrakorte solitonen in een saffierkristal
bij enkele graden boven het absolute nulpunt (−273.15 ◦ C). Om de pulsen te de-
tecteren maken we gebruik van verschillende methoden. De hoofdstukken 3 t/m 5
behandelen een techniek die bekend staat als Brillouin lichtverstrooiing. Hier-
bij wordt licht van een welbepaalde golflengte verstrooid aan geluidsgolven in
het kristal. Het drukpakket werkt eigenlijk als een reflecterend spiegeltje dat
met de geluidssnelheid door het materiaal reist. Door deze snelheid krijgt het
gereflecteerde licht een frekwentieverschuiving mee, analoog aan het bekende
Doppler-effect. Deze verschuiving kan gebruikt worden om het licht spectraal
te scheiden van de achtergrond. De intensiteit van het Brillouin-verstrooide licht
kan vervolgens worden gebruikt om informatie te verkrijgen over de ontwikkeling
van het golfpakket tijdens zijn reis door het saffier.

De hoofdstukken 6 en 7 laten zien wat er gebeurt als we de ultrakorte solito-
nen combineren met eenresonant medium. Hiervoor maken we gebruik van een
optisch gepompt robijnkristal, dat een groot aantal Cr3+-centra bevat die kunnen
koppelen aan het drukveld. Bij deze wisselwerking wordt een energiekwantum
overgedragen van de geluidsgolf naar de elektronen in het ion. Deze koppeling is
coherent, wat betekent dat er geen fase-informatie verloren gaat in de overdracht.
Het ion gaat in feite meetrillen op de maat van de geluidsgolf en zendt vervol-
gens deze straling ook weer uit in de vorm van nieuwe drukgolven. Dit samenspel
kan gebruikt worden, enerzijds om de resonante component van de solitonen te
bestuderen, en anderzijds om geluidsgolven teversterken door middel van over-
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dracht van energie vanuit het elektronische systeem naar het drukpakket. We zijn
er in geslaagd om de interaktie tussen de elektronen-niveau’s en de solitonen in
kaart te brengen. Hierbij wordt gebruik gemaakt van het feit dat, naast fonon-
emissie, het aangeslagen chroom-ion ook een foton (lichtkwantum) kan uitzenden
na de wisselwerking met het akoestische veld. Het blijkt dat de ionen fungeren
als een absorberend medium voor een zeer smal frekwentiebandje in het spectrum
van de solitonen. Echter, doordat de solitonen voortdurend regenereren, wordt de
populatie binnen dit bandje telkens aangevuld vanuit de rest van het akoestische
spectrum. Dit resulteert in een zeer efficiente energieoverheveling vanuit de soli-
tonpulsen naar het elektronische niveau-systeem, en uiteindelijk in de demping
van de solitonen over een afstand van enkele millimeters in het gepompte robijn.

Hoofdstuk 8 tenslotte beschrijft nog een andere methode om de korte geluids-
pulsen in beeld te brengen. Hierbij wordt een metaalfilm stroboscopisch belicht
met een tweede laserpuls (probe), op een welgedefinieerd moment na het aanslaan
van de metaalfilm met de eerste puls (pomp). Met deze pomp-probe methode kun-
nen zeer kleine veranderingen van de reflectie van de film worden geregistreerd,
bijvoorbeeld tengevolge van een drukpakket. We hebben deze opstelling gebruikt
om de precieze vorm te bepalen van de initiële drukgolf, die de basis vormt voor de
experimenten in het gehele proefschrift. Als uitbreiding van de methode hebben
we geprobeerd om de probe te verplaatsen naar de overkant van het kristal, om
zo de gevormde solitonpulsen in het tijdsdomein te registreren. Dit blijkt echter
een veel moeilijker probleem, voornamelijk omdat zo’n lange reisafstand onher-
roepelijk leidt tot kleine variaties in de aankomsttijd. Bovendien moet dit exacte
moment teruggevonden worden over een lange periode, wat gelijk staat aan het
zoeken van een speld in een hooiberg. Helaas is op het moment van schrijven
deze speld nog niet gevonden.

Voor de toekomst ligt de uitdaging in het vinden van toepassingen van deze
ultrakorte solitonen in andere gebieden van de fysica. De zeer korte golflengte
van de pulsen en hun hoge intensiteit maakt het in principe mogelijk om nano-
structuren in beeld te brengen of zelfs te maken. Een andere mogelijke toepassing
is het gebruiken van de ultrakorte drukpulsen om dynamische, drukafhankelijke
processen te bestuderen. Uiteindelijk zal de versterking van drukpulsen met be-
hulp van resonante centra kunnen leiden tot de realisatie van een fononlaser, naar
analogie van de optische laser.
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Voor veel lezers vormt het onderstaande stukje het leukste deel van het proef-
schrift. Dit is dan ook de plek voor een persoonlijke noot aan diegenen die op
bijzondere wijze betrokken zijn geweest bij het onderzoek. Dit proefschrift had
nooit tot stand kunnen komen zonder het geweldige enthousiasme en de begelei-
ding van mijn promotor, Jaap Dijkhuis. De grote mate van vrijheid die hij gaf om
binnen het lab eigen paden te verkennen bood een uitdagende werksfeer en leidde
soms tot verrassende resultaten. De mogelijkheid om op ieder moment binnen
te lopen voor discussie maakte het vervolgens relatief makkelijk om deze data in
korte tijd te verwerken tot een serie leuke artikelen. Deze effiënte maar op zijn
tijd vermoeiende werkwijze had als aangename bijkomstigheid dat al vroeg in het
onderzoek de mogelijkheid bestond om in het buitenland presentaties te geven.
Ik denk dat het behaalde resultaat dan ook aan alle betrokkenen voldoening heeft
gegeven. Furthermore, I thank Andrey Akimov for the long-lasting collaboration
and his efforts, during his visits, with the experiments and the paper on ruby. Je
remercie Bernard Perrin et Fabrice Vallée pour l’invitationà visiter leurs labora-
toires.

Een experimenteel onderzoek valt of staat met een goede technische onder-
steuning. Gelukkig zorgden Cees de Kok en Paul Jurrius ervoor dat er steeds weer
nieuwe opstellingen verrezen. Hoewel de ideëen elkaar in hoog tempo opvolgden
en vaak alweer veranderden terwijl de lasers nog maar net neergezet waren, wis-
ten zij keer op keer een verzameling oude en nieuwe spullen te combineren tot een
optimaal werkend geheel. De honderden liters vloeibaar helium, in hoog tempo
opgeslurpt door de cryostaat Dikke Bertha, werden altijd op tijd afgeleverd door
Nico en Jan. Ik bedank hiervoor ook Johan Keijzer, die naast de cryogene za-
ken altijd klaar stond om verse chroomlagen op te dampen als ik ze er weer af
had geschoten. Hans Gerritsen stelde ons een pulse-picker beschikbaar voor het
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gebruik in de tijdsopgeloste pomp-probe experimenten. Clarien Derks bedank ik
voor haar secretariële ondersteuning. Frans Wollenberg tenslotte ben ik erg erken-
telijk voor zijn leerzame en gedegen aanpak, helaas moesten we zijn fenomenale
kennis al kort na aanvang van het project missen.

Voor het nodige vermaak tussen de metingen door waren er natuurlijk de
mede-promovendi en studenten. De versmelting van de twee groepen ‘Atom Op-
tics’ en ‘Ultrafast Dynamics’ bleek niet te berusten op onderlinge overeenkom-
sten, maar verrijkte het laboratorium wel met enkele markante personen. Dries,
Erik, Michiel, Carolijn, Richard en Driss zorgden gezamenlijk voor een signifi-
cante verhoging van het humoristische gehalte op de gang. Natuurlijk uit ik ook
bewondering voor Peter, Jitse en Frits, die dit clubje nog enigszins onder controle
proberen te houden. De balans werd uitstekend in evenwicht gehouden door de
mensen aan de andere kant van de gang. Jeroen, Lennart, Dima, Xinyan en Pe-
ter bedank ik dan ook voor de serieuze werkomgeving, de laatste wens ik succes
met het overnemen van het roer op het solitonen-schip. De fanatieke tafeltennis-
duels met Robert zorgden er in ieder geval voor dat dit boekje niet nòg dikker is
geworden. Dima, thanks for the many useful discussions and for being such good
company on our fast journey through New Zealand.

Het aantal studenten in de vakgroep is in een paar jaar tijd flink toegenomen
en dit heeft een verfrissende werking gehad. Ik bedank Gijs, Erik, Sivaji en Inge
voor hun bijdrage aan de experimenten en de gezelligheid in het lab. Hil bedank
ik voor het inzicht dat hij met zijn model heeft gegeven in de theorie van solitonen
in meer dimensies. Het is jammer dat niet alle mooie resultaten een plaatsje in
dit proefschrift hebben gekregen. Verder natuurlijk hulde aan alle studenten die
hebben gezorgd voor een bruisende sfeer.

Naast het geven van werkcollege bleek het Quantum-I team, bestaande naast
ondergetekende uit Sander en Duncan, een goede combinatie tijdens de A-Eskwa-
draat bowlingavond. Helaas is dit succesteam enigszins in het slop geraakt na het
laatste college. Voor de organisatie van het werkcollege, alsmede voor een van
de meest cruciale beslissingen van mijn carrière, ben ik Toine Arts erg veel dank
verschuldigd.

Hoewel het spartaanse leven van een promovendus niet veel ruimte overlaat,
mag er af en toe ook nog ontspannen worden, variërend van fitness met de Paak tot
zinloos onderuit hangen voor de buis, in de bovenste verdieping van het fraterhuis.
In huize Bob is het altijd goed toeven, en vergezeld van medebari Maarten werd er
menig Kolonistenavondje gelegd onder het genot van breezers en Rammstein. De
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aanwezigheid van Myrene, Titia, Anne-Fleur, Gert-Paul, Solomon en vele andere
oud-huisgenoten bracht de gezelligheid terug van een echt studentenhuis. Natuur-
lijk wil ik ook de Fraters hartelijk danken voor hun jarenlange gastvrijheid, en met
name Leo Brouwers voor zijn onaflatende interesse en steun.

Een andere vorm van ontspanning is het zingen in een koor. Een redelijk
constante factor waren de mensen van Capella Occento. Met name Angelique,
Bregje, Barbara, Jochem, Tijmen en Chris wil ik bedanken voor alle avonturen
van de afgelopen jaren. Tussendoor is er dan ook nog af en toe een Nederlands
Studenten Kamerkoor, met iedere keer weer nieuwe gezichten en moderne koor-
muziek onder leiding van Maria. Al deze mensen vormden op hun eigen manier
een radertje in het ontstaan van dit proefschrift.

Sinds de fononconferentie is een goede samenwerking ontstaan met Gijsbert
op het gebied van ‘losgaan’. Vergezeld van de maten, wordt hierbij tot in de kleine
uurtjes doorgefeest in de betere dansgelegenheden. Gijsbert ben ik verder erken-
telijk voor het zorgvuldig doorlezen en corrigeren van het manuscript. Gedanst
heb ik ook met veel plezier op de wekelijkse salsa-feesten, waarbij ik met name
Els, Femke en Ilse waardeer voor hun trouwe aanwezigheid en enthousiasme.

Tenslotte bedank ik natuurlijk mijn paranimfen, Margrit en Suzanne, voor hun
belangrijke bijdrage. Mijn ouders bedank ik voor hun onvoorwaardelijke steun en
betrokkenheid.
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