
II Theory

The kinematics of the electron-induced three-body breakup reaction of
3He and the relevant physics observables are discussed. Interpretation

of the measured cross sections requires comparison with predictions of

a theoretical model. In this chapter, the model developed by Golak et

al. [Gol95] is introduced and the procedure developed to compare results

of this model to data is detailed.

2.1 Kinematics of electron-induced 3He breakup

In the exclusive electron-induced two-nucleon knockout reaction, energy and
momentum are transferred to a nucleus by a virtual photon. After the reac-
tion the momenta of the scattered electron and the emitted nucleons are deter-
mined. The remainder of the nucleus is left intact and no secondary particles
are created. This reaction mechanism is schematically shown in Fig. 2.1. The
energy transfer ω and three-momentum transfer q is calculated from the mo-
mentum difference between the incoming and scattered electron. If the electron
mass is neglected, as it is much smaller than its energy E, then we can define
ω ≡ Ee − Ee′ = c(pe − pe′) and q = pe − pe′ .

In the present 3He(e, e′pp) experiment the two protons, with momenta p′1
and p′2, resulting from the full breakup of 3He are detected. As no particles
are created, the final state can be reconstructed completely and the missing
momentum pm = q − p′1 − p′2 can be identified with the momentum of the
undetected neutron p′3. Energy conservation requires the missing energy Em to
be equal to the binding energy Eb of the 3He nucleus: Em = ω − T1 − T2 −
Trec = Eb, where Trec is the kinetic energy of the recoiling neutron, which can
be calculated from pm, T1 and T2 being the kinetic energies of the two emitted
protons. The binding energy of 3He is 7.718 MeV [Til87].

As the direction of the virtual-photon momentum defines a natural direction
of preference, it is convenient to describe the scattering process in a coordinate
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Figure 2.1: Kinematic configuration of an (e, e′pp) reaction. For clarity, the
momentum vectors are shown all in one plane. The dashed lines
represent the incoming and scattered electron; the bold vectors de-
tected protons and the thin vectors derived quantities. Coupling of
the photon to proton–1 has been assumed. The right-hand figure
shows the Jacobi coordinates in the three-body system.

system in which a vector p is expressed as p = (p, γ, ζ), where γ represents the
polar angle between the momentum of the particle and the momentum transfer
q. The angle ζ is defined as the angle between the electron scattering plane
and the plane containing both p and q. For clarity the prime is dropped from
the angles γ and ζ; hence, γ1 is the angle between q and p′1. For convenience,
proton–1, of which the momentum vector has the smallest angle with respect to
q, is labelled ‘forward’, and the second proton ‘backward’.

In the description of three-body kinematics Jacobi coordinates are introduced
as rk = xi − xj and Rk = xk − 1

2 (xi + xj) as shown in Fig. 2.1 [Glö83]. The
indices ijk are cyclic permutations of the particle indices 1, 2, and 3. The
corresponding Jacobi momenta are then defined as∗:

prel,k = 1
2 (pi − pj) and pcm,k = 2

3 [pk − 1
2 (pi + pj)]. (2.1)

∗The Jacobi momenta are usually called p and q, as in Ref. [Glö83]. To avoid ambigu-

ity between the individual nucleon momenta, the three-momentum transfer and the Jacobi

momenta, they are here labelled (prel ,pcm ).
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2.2 Breakup of 3He by an electromagnetic probe

The interaction of an electron with 3He can well be described within the one-
photon exchange approximation. In this case the differential cross section for
full breakup of the tri-nucleon system, in absence of spin observables, is written
as

dσ3N clab =
1

(2π)2

E′

E
m2
e|M3N

fi |2δ(Mt +ω−E′1−E′2−E′3)δ3(q−p′1−p′2−p′3)

dE′dΩed3p′1d
3p′2d

3p′3, (2.2)

where m2
e|M3N

fi |2 is the contraction of the leptonic and hadronic tensor, the
delta-functions take energy and momentum conservation into account, E is the
total relativistic energy and me is the electron mass [Golth]. Integration over
the momentum vector p′3 of the third, unobserved, particle and the momentum
of the second particle p2 yields the eight-fold differential cross section

d8σ

dE′dΩe′dT ′1dΩ1dΩ2
=

1
(2π)2

E′

E
m2
e|M3N

fi |2 ρ3N
f (2.3)

where ρ3N
f is the phase space factor

ρ3N
f =

E1|p′1|p′2
2∣∣ |p′2|

E2
− p′2·p

′
3

|p′2|E3

∣∣ . (2.4)

The transition matrix element |M3N
fi |2 can be separated in a purely leptonic

part and a sum over the product of kinematic factors and hadronic structure
functions W . It can be shown on general grounds [Bof96] that in the case of
two-nucleon knockout only six independent structure functions contribute to the
unpolarized cross section:

m2
e|Mfi |2 = (2π)2 E

E′
σMott

∑
i

viWi, (2.5)

with (α being the finestructure constant)

σMott =
α2 cos2 θe′

2

4E2 sin4 θe′
2

. (2.6)

Four of the structure functions used in this framework are also present in single-
nucleon knockout: WC, WT, WI, and WS as defined by De Forest [For83]. The
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Figure 2.2: Schematic representation of virtual-photon absorption by the 3He
nucleus. The left-hand graph shows interaction via a one-body
hadronic current, the four graphs in the middle represent various
two-body mechanisms: coupling to mesons and intermediate ∆ ex-
citation and de-excitation. An example of a three-body mechanism
is shown on the right; the shaded oval represents anything except a
nucleon.

two additional structure functions contributing in (e, e′pp) are arbitrarily labelled
X and Y by Golak [Golth].

The structure functions W are combinations of the nuclear matrix element
Nµ [Gol95],

Nµ ≡ 〈Ψ(−)
scatt(q)|ĵµ|Ψbound(P )〉, (2.7)

where Ψ(−)
scatt and Ψbound are fully antisymmetric solutions of the 3N scattering

state and the initial 3He bound state, respectively. The nuclear current opera-
tor ĵµ describes the coupling of the virtual photon to this bound state, making
the transition to the scattering state Ψ(−)

scatt(q). In the initial state the total
momentum P is zero while the total momentum of the final state equals q.

Photoabsorption mechanisms

There are various ways the virtual photon can couple to the 3He nucleus, some
of which are depicted in Fig. 2.2.

The one-body hadronic current takes into account the absorption of a vir-
tual photon on one nucleon only, which subsequently leads to the full breakup
of the tri-nucleon system. In a non-relativistic reduction, the one-body hadronic
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current consists of three parts: a charge-density operator, a convection current
operator – which determines the orbital magnetic moment of the nucleons –
and a spin current operator, which is associated with their spin magnetic mo-
ment [Golth].

Breakup of the 3He nucleus can also occur via two-body hadronic currents,
thus sharing both the energy and the momentum between the two nucleons. In
the energy and momentum transfer domain under study, the relevant two-body
currents are coupling of the virtual photon to mesons (meson-exchange currents
or MECs) and excitation of the ∆ resonance in an intermediate state (isobar
currents or ICs). Their importance strongly depends on the isospin of the NN
pair. In the case of a pp pair the contribution of MECs to the cross section will
be strongly suppressed, as the virtual photon to first relativistic order does not
couple to such a pair [Giu91]. Also the contribution due to isobar currents is
reduced in case the two protons are in a relative 1S0 state, as the transition
via the resonant M1 multipole is forbidden by angular momentum and parity
conservation rules. Therefore ∆ excitation is only possible via the much weaker
non-resonant E1 and E2 multipoles [Wilh96]. These restrictions on MECs and
ICs are not applicable to pn pairs. It may therefore be expected that in a direct
(e, e′pp) reaction the influence of these two-body currents is reduced compared
to the (e, e′pn) case.

In addition, the photon can couple to all three particles by a three-body
mechanism, e.g., by coupling to the simultaneous exchange of two mesons. Sen-
sitivity to these processes will exist at photon energies around 500–600 MeV and
in specific regions of phase space, where the struck meson initially propagates
on-shell and is subsequently reabsorbed by the remaining nucleon pair [Bof96].

Final-state rescattering

The interaction among the three nucleons in the final state (FSI), i.e., after
the interaction of the virtual photon with the tri-nucleon system, can strongly
influence the cross section for specific kinematic configurations. It has been
convincingly shown [Meij86, Ish94] that multiple rescattering among the out-
going nucleons leads to cross sections that are significantly different compared
to those calculated in a plane-wave approach. Truncation to single-rescattering
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Figure 2.3: Schematic representation of multiple-rescattering among the nu-
cleons in the final state, following an interaction via a one-body
hadronic current. The ‘blobs’ represent the 2N scattering opera-
tor (t-matrix).

processes only is insufficient. A schematic representation of the rescattering
process is given in Fig. 2.3.

2.3 Calculation of the breakup cross section

The differential cross section of the exclusive three-body breakup of the tri-
nucleon system can be calculated by solving Faddeev-type equations for both the
bound state and the final, ‘scattering’ state [Glö96, Meij86]. Alternatively, one
can apply a diagrammatic approach, in which the presumably most important
processes are added coherently [Lag87]. Whereas the diagrammatic approach
allows inclusion of realistic two-body mechanisms, especially isobar currents, it
is not suited to account for rescattering effects up to infinite order. As it has
been shown in both theoretical [Meij86, Ish94] and experimental [Poo99] studies,
that higher-order rescattering can have a significant effect, and calculations are
available that include these processes [Gol95], the measured cross sections are
compared to the results of these ‘continuum Faddeev’ calculations only. They
are based on realistic models of the NN interaction that fit the NN scattering
data with a χ2 per datum of approximate one. In this section, the formalism
employed to calculate the 3He(e, e′pp) cross section within this framework is
reviewed.

Solving the three-body problem

The Faddeev decomposition of the Schrödinger equation provides a powerful tool
to solve the three-body problem. In the presence of two-body interactions only,
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the Schrödinger equation for the complete three-body wave function with merely
pair interactions can be written as the sum of three similar equations that each
involve only one pair interaction [Car98]. This method has been successfully
applied to the 3He bound-state for different types of NN interaction models,
but is also suited for solving the scattering state of the three nucleons.

In the procedures used by Golak et al. [Gol95], the Faddeev equations are
solved in momentum space. The initial 3He bound state is solved and projected
onto a basis |prelpcmα〉. The index α labels a partial wave or channel, i.e., a
unique combination of orbital angular momentum, spin and isospin quantum
numbers of the nucleon pair and the spectator. In the calculation of the bound-
state wave function, thirty-four channels are considered. The nuclear matrix
element from Eq. (2.7) can subsequently be formally separated in two parts:
i) Nµ

PWIAS, which is the transition matrix element between the initial bound
state, the current operator and a fully symmetrized plane wave of three nucleons
without any mutual interaction and ii) Nµ

rescatt, which includes all rescattering
processes. To retain consistency with the calculated wave functions, the current
operator ĵµ is used in a non-relativistic approximation [Ish94].

It should be noted that the final state obtained from Nµ
PWIAS consists of a

symmetrized plane wave, which is no eigenstate of the 3N Hamiltonian and is
non-orthogonal to the 3He bound state. It can therefore not be compared to
data and can only serve to illustrate the effect of ingredients in the calculation
by comparing different PWIAS results.

The equation defining the rescattering matrix element Nµ
rescatt leads to a

multiple-scattering series, involving the repeated application of the NN t-ope-
rator. It is derived from the solution of a Faddeev-like integral equation which
sums up this multiple-scattering series [Gol95]. The solution of the integral
equation depends only on the characteristics of the virtual photon involved, i.e.,
(ω, q). A projection of this solution onto the basis 〈prelpcmα| subsequently allows
straightforward calculation of Nµ

rescatt for specific final states. In this way, the
computationally most involved part – solving the integral equations – has to be
performed only once for any given (ω, q) value [Gol95].

The sum of PWIAS and the rescattering contribution yields the complete
solution of the nuclear matrix element Nµ.
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Figure 2.4: Differential plane-wave cross section for various coupling mecha-
nisms: coupling to the proton emitted in forward direction (dashed),
coupling to the backward proton (dotted) and the coherent sum of
coupling to particle 1, 2, and 3 (solid). Kinematic setting LQ,
θ1=54◦, θ2=−120◦.

One-body currents and the bound-state wave-function

Information on the initial 3He bound state can in principle be obtained from
reactions induced by a one-body hadronic current; in this case, the momentum
of the virtual photon is transferred to a single nucleon only. In absence of final-
state rescattering, this implies for the non-struck particles that the momenta
observed in the final state equal their initial-state values and that the exact
initial-state configuration can be reconstructed. However, the information on
which nucleon was hit cannot be reconstructed from the data as the measured
cross section (even in the plane-wave impulse approximation, PWIAS) is the
coherent sum of coupling to any of the three nucleons.

Insight in the coupling mechanism can been deduced from the PWIAS calcu-
lations of Golak et al.. Although their absolute magnitude cannot be compared
to the experimental data they are nevertheless valuable to determine the rela-
tive importance of the coupling to the various particles leading to the same final
state. Figure 2.4 shows the cross section for the 3He(e, e′pp) reaction for the
central kinematic configuration of LQ (see section 3.6): over the entire energy
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Figure 2.5: Probability of the 3He bound-state wave function for a two-nucleon
system in a relative 1S0 state. On the left-hand side as a function of
the centre-of-mass momentum, on the right-hand side as a function
of the relative momentum in the nucleon pair. The curves show
calculations with the Bonn-B (solid), CD-Bonn (dashed), Nijme-
gen-93 (dotted) and Argonne v18 (dot-dashed) potential models.

acceptance, the cross section is predicted to be dominated by coupling to the
forward proton.

Once the coupling mechanism is known, the relative momentum inside the pp
pair in the initial state can be determined. In absence of final state rescattering,
the (e, e′pp) reaction directly probes the initial 3He wave function as shown in
Fig. 2.5 for a nucleon pair in the 1S0 state. The bound-state wave functions
shown are based on Faddeev calculations performed with various models of the
NN interaction: Bonn-B, charge-dependent Bonn (CD-Bonn), Nijmegen-93 and
Argonne v18. The left panel shows the neutron momentum density distribution
for two values of the NN -relative momentum. In kinematic setting LQ of the
present experiment this relative momentum prel ranges from 210 to 350 MeV/c,
if coupling of the photon to the forward proton is assumed. The right-hand
panel shows a relative NN momentum density distribution for two values of the
neutron momentum. At low values of the centre-of-mass and relative momentum
the results obtained using the various potential models are similar. Only at high
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Figure 2.6: Cross sections for the 3He(e, e′pp) reaction for varying energy trans-
fer. The cross section was averaged over the acceptance of this ex-
periment and corresponds to situations where the neutron can be
considered as a spectator (pm = 30 MeV/c). The solid, dashed and
dash-dotted curves correspond to calculations with only one-body,
with MEC and with MEC+∆ currents, respectively.

centre-of-mass or relative momentum differences can be observed that are due
to the potential model used.

Two-body currents

Two-body hadronic currents involve coupling of the virtual photon to exchanged
mesons, and excitation or de-excitation of ∆ isobars. Meson-exchange currents
have been incorporated in the solution of the continuum Faddeev equations using
a formalism due to Schiavilla et al. [Sch89], which includes coupling to one-pion
and one-rho exchange. To incorporate these currents in a way compatible with
the potential model used, the exchange interactions are modified by multiplica-
tion with an additional form factor [Golpc].

A preliminary expression for the isobar currents [Sch89] was included in the
calculations in a similar way. The simplified expression for the π∆ current reads

jπ∆(k1,k2) ∝ 1
(m∆ −mN )

GVM (q) · · · , (2.8)
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where GVM (q) is the isovector magnetic form factor and m∆ the mass of the ∆33

resonance (the ρ∆ current is similar). The current includes terms for the excita-
tion of a nucleon to a ∆ isobar as well as terms that describe the de-excitation
of a ‘pre-existing’ ∆ to a nucleon by an electromagnetic interaction. The expres-
sion quoted, also known as the static ∆, does not depend on the energy transfer
to the system and thus will not produce the required resonant behaviour, as
is shown in Fig. 2.6. This formalism should therefore been seen as a first step
towards incorporation of the ∆ current. A more accurate treatment of isobar
currents in the Faddeev calculations will be necessary before firm statements
about the role of the ∆ can be made.

2.4 Choice of observables

The cross section of the 3He(e, e′pp) reaction depends on seven independent
kinematic variables. However, the statistical accuracy of the data does not
allow representation of the measured cross section for small intervals in all seven
quantities simultaneously. The properties of the current operator and of the 3He
bound-state wave function suggest that a limited set of observables carries most
of the information of the 3He(e, e′pp) process.

The electron kinematics naturally defines two relevant observables: the en-
ergy transfer ω and the momentum transfer q. Alternatively, the energy transfer
ω can be exchanged for the invariant energy WN ′N ′ of two nucleons in the final
state. The 3He momentum distributions shown in Fig. 2.5 suggest an important
role for the relative and pair momenta. Therefore, the missing momentum pm,
which in a direct (e, e′pp) reaction mechanism reflects the neutron momentum
in the initial state, is selected as an observable.

Investigation of the coupling mechanisms by one-body currents shows a dom-
inant role for coupling of the virtual photon to the forward proton. In this case,
the Jacobi momentum prel,3 in the initial state can be related to the momentum

pdiff,1 = (p′1 − q)− p′2 , p1 − p2 ≡ 2prel,3 . (2.9)

Another significant process that influences the cross section is the rescatter-
ing among the outgoing nucleons. Especially when two nucleons are emitted with
(vectorially) comparable momenta the cross section will be notably enhanced.
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Within the experimental detection volume, such ‘FSI configurations’ occur be-
tween the forward proton and the unobserved neutron. Hence, the momentum
difference of these two nucleons was selected as an observable:

pij = p′i − p′j . (2.10)

The ‘FSI configuration’ corresponds to pij → 0 MeV/c.

2.5 Numerical results

Comparison of the theoretical model by Golak et al. to the data requires cal-
culation of the cross section for specific kinematic configurations, as well as the
evaluation and averaging of the cross section over the experimental detection vol-
ume. In this section the methods employed and their associated uncertainties
are discussed.

Uncertainties within the theoretical model

For computational reasons not all components of the NN interaction are taken
into account in the calculations. The number of relevant components depends
on the kinematic conditions of the reaction. In general, a higher energy and
momentum transfer implies that more force components should be taken into
account.

In view of the uncertainties associated with the measured cross section, a
‘theoretical’ accuracy of approximately 10% should be aimed at. To determine
the uncertainty associated with the choice for j ≤ 3, calculations were also
performed for j ≤ 2. Figure 2.7 shows a comparison of both calculations for
the kinematic configuration corresponding to the central values of the LQ kine-
matic setting in this experiment. The average difference is around 6% and never
exceeds 12%. It is expected that the inclusion of higher angular momentum
components will change the cross section by less than this amount. Therefore,
in this experiment only those NN force components were used for which the
angular momentum j of the NN system was not larger than three.

Also the final state is expanded in partial waves with total three-body angular
momentum J . The calculations performed for this experiment include contribu-
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Figure 2.7: Comparison of cross sections calculated by Golak et al. taking into
account a different number of NN force components. In the left
panel, the dot-dashed and solid curves correspond to calculations
including force components with j ≤ 2 and j ≤ 3, respectively.
The kinematic conditions correspond to the central values of LQ:
(ω, q) = (220 MeV, 305 MeV/c), θ1=55◦and θ2=−105◦.

tions up to J = 19
2 , which – within the kinematic domain of this experiment –

ensures convergence to better than 2% on average .

Uniqueness of kinematic configurations

The kinematic configuration is not necessarily uniquely defined for a given elec-
tron kinematic setting (ω, q) and a set of values (θ1, φ1, θ2, φ2, T1) for the two
outgoing protons. Figure 2.8 shows the kinematically determined curve for
a selected angular combination. Here, for T2 two possible solutions exist for
T1 > 170 MeV. Not only does this lead to ambiguities in the calculated cross
section, it also introduces a mathematical singularity in the phase space factor
(defined in Eq. 2.4) at the point corresponding to the maximal T1 value. In
this experiment, this kind of ambiguities is not relevant as the lowest detectable
proton energy for the backward proton T2 is 48 MeV.
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Figure 2.8: Kinematically determined curve in the (T1, T2) plane for a fixed
electron kinematic setting and fixed angles for the two outgoing pro-
tons. The curve shown corresponds to the central configuration of
LQ, i.e., θ1=55◦, θ2=−105◦. The hatched area is not covered by
the experimental detection volume.

Averaging over the experimental detection volume

As mentioned, the theoretical cross section depends on seven kinematic variables
that uniquely define the configuration. In general, the data are presented as a
function of two or three quantities, derived from the basic kinematic variables. In
this way an implicit averaging over the other quantities within the experimental
detection volume is performed.

For a fair comparison between theory and data, the same averaging should
be applied to the calculated cross sections. This averaging cannot be performed
analytically because of the complexity of the integration limits, i.e., the shape
of the experimental detection volume. Performing the necessary integration
by a Monte-Carlo method (c.f. section 4.4) requires too many computational
resources to be performed with sufficient accuracy within a reasonable amount
of time. Therefore, the integrals were approximated by a sum over an orthogonal
grid.

The averaging of the cross section over the experimental detection volume
was performed for the central value of (ω, q) only, because of constraints on
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Figure 2.9: Theoretical cross section for the LQ kinematic setting as a function
of the neutron momentum, averaged over the experimental detec-
tion volume. The left panel shows the calculated cross section, the
middle and right-hand panels show the ratio of the cross section
calculated with the finest grid to two coarser grids. The numeric
labels in these two panels specify the grid spacing. dσijkl−m indi-
cates ∆θ1=i◦, ∆φ1=j◦, ∆θ2=k◦, ∆φ2=l◦, and ∆T1=m MeV.

the available computational resources†. The dependence of the cross section on
the electron variables was investigated by comparing the calculated results for
the various kinematic configurations measured. The dependence on ω is close
to linear, which implies that no change in cross section is induced by taking
the central value for (ω, q). The q-dependence of the cross section shows an
exponential decay (see section 5.4), which implies that the weighted average of
the data corresponds to a smaller q value than the one used to calculate the
cross section. This effect introduces a systematic underestimation of the cross
section by at most 6%, as determined from the q dependence at low pm.

For a given interval in the variables in which the cross section is presented,
e.g., an interval ∆pm, the average cross section is defined as〈

d8σ

dV

〉
(∆pm) =

∫
d8σ
dV (v)D(pm(v); ∆pm)D(v;A)dv∫
D(pm(v); ∆pm)D(v;A)dv

, (2.11)

†Calculation of the half-shell amplitudes |prelpcmα〉 with NN force components upto j = 3

and a current operator that includes MECs takes approximately 15000 CPU seconds on a Cray

C916/121024 supercomputer.
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Figure 2.10: Average cross section as a function of the missing momentum for
the LQ kinematic setting. The left-hand panel is averaged over the
entire detection volume without additional constraints, whereas in
the right-hand panel the momentum difference p13 was limited to
slices of 50 MeV/c wide, centred around 475, 375, and 275 MeV/c
(in top-to-bottom order). Error bars indicate the width of the con-
tributing cross section distribution.

where v is the vector of laboratory quantities (θ1, φ1, θ2, φ2, T1), A is the accep-
tance region of the experimental detection setup and D(x;R) is a two-valued
function that is only different from zero if x is inside the region R.

The two integrals are approximated by their sums, determined with equidis-
tant, orthogonal grids in the laboratory quantities v. The distance between the
gridpoints was chosen in such a way that the approximation errors introduced
in the final result are below 6%, i.e., comparable to the intrinsic uncertainty
of the calculations due to the partial wave truncation. To verify the accuracy
obtained, the cross section was calculated with a varying amount of grid points;
the results of these calculations are displayed in Fig. 2.9. From these and similar
tests it was concluded that a grid point density of (∆θ1,∆φ1,∆θ2,∆φ2,∆T1) =
(2◦, 5◦, 4◦, 5◦, 1 MeV) is sufficiently accurate‡.
‡This requirement on the grid density leads to about 2.5×106 points per kinematic setting.

Calculation of one grid point typically takes about 0.6 seconds on a 270 MHz UltraSPARC–

IIi processor, which implies that it takes about 17.5 CPU days to calculate the grid for one

kinematic setting and one current operator.
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The averaging of the cross section over the experimental detection volume
may obscure dependencies of the cross section on non-explicit variables. Such
dependencies lead to a large spread in the values for the individual cross sec-
tions contributing to a certain grid point. To investigate such dependencies, the
standard deviation of the cross section distribution from which the average is
derived was determined for every bin.

Figure 2.10 shows the missing-momentum distribution for the LQ kinematic
setting. In the left-hand panel, no limitations were imposed on the contributing
part of the detection volume. From the observed spread, which is as large as 60%
around 200 MeV/c, it can be concluded that the cross section depends strongly on
a non-explicit variable. In the case shown, the dependence on the momentum
difference p13 is relatively strong, as the experimental acceptance contains an
‘FSI configuration’ around pm=300 MeV/c. Moreover, the detection volume in
the (pm, p13) plane is triangular in shape in such a way that for higher pm values,
increasingly lower values of p13 are covered. A projection on pm for slices in p13

of 50 MeV/c wide shows that the spread of the theoretical distribution is reduced
to less than 10%, as shown in the right-hand panel.

Considerations regarding relativity

At present, no framework exists to solve the three-body problem in a Lorentz-
covariant manner. Although certain parts of the calculations – especially the
kinematics and the calculation of the phase-space factor – can be performed
with ‘relativistic’ kinematics, this would introduce internal inconsistencies in
the calculation, as the wavefunctions and operators are entirely non-relativistic.
By performing the theoretical calculations in a completely non-relativistic fash-
ion, these inconsistencies can be avoided, although at the cost of introducing
kinematic ambiguities.

In comparing calculations to data, the momenta that are explicitly shown
along the axes are kept identical, e.g., in presenting a missing-momentum dis-
tribution, the theoretical cross section shown for a particular value of pm corre-
sponds to the same momentum being used for p3 in the calculation. This implies
at the same time that the coverage of the non-explicit momenta (in this case p1

and p2) contributing to the average cross section is slightly different from the
one spanned in the experiment.
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Figure 2.11: Range in pdiff,1 contributing to the region pm < 100 MeV/c. The
solid (dashed) curve shows the distribution according to a non-
relativistic (relativistic) calculation of the kinematics. The ef-
fective pdiff,1 value in the non-relativistic case is approximately
20 MeV/c too low. (kinematic configuration: LQ)

The effect of this momentum mismatch was investigated for various kinematic
conditions. The largest discrepancies were observed in the low pm region, as
this domain is covered primarily by p1 values around 540 MeV/c. As the cross
section shows a sizeable dependence on pdiff,1, the mismatch introduced in pdiff,1

is expected to be the most significant factor.
For the kinematics LQ at pm < 100 MeV/c, the domain of pdiff,1 contributing

to the cross section is shown in Fig. 2.11. The momentum mismatch of pdiff,1

amounts to 20 MeV/c. From the dependence of the cross section on pdiff,1, the
expected change in the theoretical cross section due to this mismatch is estimated
to be around 8%.


