Mixed Metal Acetylides: The Pt^{II} Aryl Acetylide " $[PtC_6H_2(CH_2NMe_2)_2-2,6-(C\equiv C)-4]$ " as a Connective Fragment

Stephan Back,^[a] Robert A. Gossage,^[b] Heinrich Lang,*^[a] and Gerard van Koten*^[b]

tion.

Keywords: Alkynes / Cyclic voltammetry / Metal-metal interactions / Conjugation / Platinum

Using Me₃SiC=C{Pt}Cl (1; Me₃SiC=C{Pt} = [Pt(C₆H₂-{CH₂NMe₂}₂-2,6-{C=CSiMe₃}-4]⁺) a series of platinum monoacetylides of the type XC=C{Pt}C=CR [X = SiMe₃: 2, R = Ph; 3, R = (η^5 -C₅H₄)Fe(η^5 -C₅H₅) (abbreviated as Fc); 4, R = C₆H₄CN-4; 5, R = C₆H₄(C=CSnMe₃)-4; X = H: 7, R = Ph; 8, R = Fc; 9, R = C₆H₄CN-4] have been prepared. Studies directed towards the coordinative properties of the C₂ unit of 1 have been carried out and heterotrimetallic [μ -(Me₃SiC=C{Pt}CI][Co₂(CO)₆] (10) could be synthesised. The

Introduction

The growing interest in the application of organometallic compounds as building blocks for new materials has led to a large number of publications on their synthesis,^[1] and the evaluation of theoretical aspects.^[2] In particular, the assembly, chemistry, and the physical properties of a number of homo- and heterometallic acetylenic compounds have been investigated containing metals such as Re,^[3] Pt,^[4] Pd,^[5] Ru,^[6] Os,^[7] Fe,^[8] Rh,^[9] or Ti,^[10] and Au.^[11] Also, a variety of tungsten carbonyl containing complexes have been studied, e.g. by McCleverty et al.^[12] and other groups.^[13] Many of these mixed-metal σ -acetylide compounds contain a Fc group [Fc = $(\eta^5 - C_5 H_4)$ Fe $(\eta^5 - C_5 H_5)$] as electron "reservoir". The main features of these molecules include: (i) high and readily modified electron density at the metal centres, which should lead to (ii) facile hyperpolarisability due to interaction(s) along the π -conjugated backbone, which connects the different metals.^[14] In this context, the application ethynyl functionalised molecules such of as $Me_3SiC \equiv C{Pt}Cl \quad (1, Me_3SiC \equiv C{Pt})$ = $Pt(C_6H_2 \{CH_2NMe_2\}_2-2, 6-\{C\equiv CSiMe_3\}-4]^+$) seems attractive, since in this platinum containing molecule a metal centre is directly attached to a conjugated π -system, and is further stabilised by the N-donor units of the ligand framework.^[15] The Pt-monochloride 1 (Scheme 1) was therefore chosen as a precursor of such heterometallic compounds.

successful attachment of ${\bf 1}$ to a $\mbox{Ph}_3\mbox{PAu}$ unit leads to linear

 $Ph_3PAuC \equiv C{Pt}Cl$ (11). Treatment of 11 with $FcC \equiv CSnMe_3$

produces the heterotrimetallic rigid-rod shaped complex

 $Ph_3PAuC \equiv C{Pt}C \equiv CFc$ (13). Cyclic voltammetric studies

carried out on these Ph₃PAu-capped molecules show that the

attachment of an organometallic entity on either side of the

C=C{Pt} fragment leads to a facilitation of the Pt^{II}/Pt^{IV} oxida-

Scheme 1. Precursor complex 1

A useful property of **1** is that it possesses two chemically unique reactive sites. These can be used for building-up bior trimetallic systems in sequential steps. Therefore, the C=C unit of **1** can be attached to a transition metal (TM) complex fragment in two different binding modes: (i) either *via* σ -bonding or (ii) through η^2 -coordination. Both approaches are presented herein. Furthermore, the Cl ligand of **1** can be substituted by, for example, σ -acetylides. This leads to the formation of linear heterometallic monoacetylides. This structural motif can be found in long-chain molecules, such as the hypothetical molecule **A** (Scheme 2), which offers a high degree of directionality along the acetylene-arene-metal vector.

Scheme 2. Model of a long-chain molecule showing high directionality (A) and its repeating unit (B)

Molecule A can be considered as being built-up from repeating units of the di-ionic substructure **B**. Thus, the attachment of the C₂ unit present in 1 to a TM complex fragment, and the substitution of Cl by a σ -acetylide group leads to the transformation of 1 into the structural type **B** molecule. Such molecules can be envisioned as model compounds of **A**. With the synthesis of these complexes, the

Eur. J. Inorg. Chem. 2000, 1457-1464

© WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2000

 [[]a] Lehrstuhl Anorganische Chemie der Technischen Universität, Straße der Nationen 62, D-09111 Chemnitz, Germany E-mail: heinrich.lang@chemie.tu-chemnitz.de

[[]b] Debye Institute, Department of Metal-Mediated Synthesis, Utrecht University, Padualaan 8, NL-3584 CH Utrecht, The Netherlands E-mail: g.vankoten@chem.uu.nl

behaviour of the subunit \mathbf{B} can be studied and evaluated towards its application in materials science.

Since Au is known to form very stable linear σ -acetylide complexes,^[11] we choose to investigate the Ph₃PAu moiety as the terminating fragment on the 4-ethynyl unit. The formation of Pt monoacetylides containing the anionic potentially tridentate NCN "pincer" ligand (NCN = [C₆H₃(CH₂NMe₂)₂-2,6]⁻) has been previously reported.^[16]

Results and Discussion

Preparation of Platinum Acetylides

Reaction of the platinum monochloride $Me_3SiC \equiv C{Pt}Cl$ (1; $Me_3SiC \equiv C\{Pt\} = [Pt(C_6H_2 - C_6H_2 - C_$ $\{CH_2NMe_2\}_2-2, 6-\{C\equiv CSiMe_3\}-4]^+$ ^[15] with an equimolar amount of LiC=CR {R = Ph, Fc [Fc = $(\eta^5 - C_5H_4)Fe(\eta^5 - \eta^5 - \eta^5)$ C_5H_5], C_6H_4 CN-4, C_6H_4 (C=CSnMe₃)-4} leads to the formation of the platinum acetylides 2-4 as air-stable, offwhite solids (Equation 1). The rigid-rod like molecule 5 has been obtained by a procedure that uses a Me₃Sn-substituted acetylene.^[17] Heterobimetallic 3 was synthesised alternatively by both routes. We tested this different approach because Cu^I catalysed reactions for the formation of Pt monoacetylides of this type have failed.^[16]

The deprotection of the acetylenic unit of compounds 1-4 yields the mono-substituted acetylenes 7-9 (Equation 2).^[15] The compound HC=C{Pt}Cl (6) has been described elsewhere.^[15]

Analytic and spectroscopic data of compounds 1-9 are listed in Table 1. For comparison, the data of the previously reported Pt monochlorides 1 and 6 are included.^[15]

Me ₃ SiC=C{Pt}C=CR	[n-Bu ₄ N]F(H ₂ O) ₃	HC≡C{Pt}C≡CR	(2)
2: R = Ph 3: R = Fc 4: R = C ₆ H₄CN-4		7: R = Ph 8: R = Fc 9: R = C ₆ H₄CN-4	

Compounds 1-9 display the $v_{C=C}$ frequencies of the acetylene units attached to the NCN system at the expected wavenumbers between 2090 and 2150 cm⁻¹ in their IR spectra.^[15,18] For the Pt σ -bound acetylenic units, the C=C stretching band appears between 2070 and 2090 cm⁻¹, respectively (Table 1). These values lie in the range reported for this type of vibration.^[4,16] In the ¹H NMR spectra of compounds 2-5 and 7-9, a common general feature can be observed with respect to the chemical shift of the signals of the CH₂NMe₂ units. A comparison with the chloridesubstituted Pt compounds 1 and 6 reveals that upon substitution of Cl by an acetylide, the singlet of the NMe₂ unit experiences a slight but diagnostic low-field shift, as does the resonance signal of the benzylic protons (Table 1). Both singlets appear with a set of satellites, due to the presence of spin active ¹⁹⁵Pt (I = 1/2, 33% abundance) with coupling constants $({}^{3}J_{PtH})$ between 40 and 46 Hz (Table 1). Of particular interest in the ${}^{13}C{}^{1}H$ NMR spectra is the signal of the Pt-substituted carbon atom of the NCN system. Compared to its position in compound 1 ($\delta = 147.4$) and 6 ($\delta = 147.6$) this signal appears strongly shifted to lower field in the spectra of 2-5 and 7-9 (Table 1). The C_{ortho} resonance signal is also shifted to lower field (by around 3 ppm), when compared to 1 or 6, respectively. This mirrors with Pt results obtained the monochloride $[PtCl(C_6H_3\{CH_2NMe_2\}_2-2,6)]$.^[16] The carbon atoms of the

Table 1. Most representative IR, ¹H and ¹³C {¹H} NMR spectroscopic data of 1-9

Compound Me_SiC \equiv C{Pt}X		IR ^[a]		1 H NMR ($^{3}J_{HH}$ [Hz]) ^[b]		$^{13}C{^{1}H} NMR^{[b]}$			
X =		$\nu_{C\equiv C}$	$v_{C\equiv CPt}$	CH ₃	CH_2	$C_{ipso}(Pt)$	$C_{ipso}(CH_2)$	<i>C</i> ≡CPt	C≡ <i>C</i> Pt
Cl	1	2145	_	3.04(37)	3.96(46)	147.4	143.3	_	_
C≡CPh	2	2148	2077	3.18(42)	4.05(44)	169.0	145.9	108.2	135.8
C≡CFc	3	2144	2089	3.19(42)	4.04(40)	166.2	145.9	103.7	130.6
$C \equiv CC_6H_4CN-4$	4	2145	2071	3.19(41)	4.08(42)	168.3	145.9	107.4	133.6
$C \equiv CC_{6}H_{4}(C \equiv CSnMe_{3})-4$ $HC \equiv C\{Pt\}X$	5	2148	2081	3.19(37)	4.07(39)	168.8	145.9	108.2	139.3
Cl	6	2099	_	3.06(38)	3.98(45)	147.6	143.4	_	_
C = CPh C = CFc $C = CC_6H_4CN-4$	7 8 9	2126 2090 2102	2083 2078 2083	3.21(43) 3.20(41) 3.20(40)	4.08(44) 4.07(40) 4.11(42)	169.1 169.2 168.4	146.0 146.0 146.0	108.2 103.7 107.7	131.1 130.7 133.6
0 4									

^[a] Recorded in KBr $[cm^{-1}]$. – ^[b] All spectra were recorded in CDCl₃, with the solvent signal [rel. to SiMe₄ (0.00 ppm)] as internal standard.

Pt-bound acetylenic unit exhibit signals at chemical shifts that are comparable to those of other known Pt-acetylides.^[4] Due to the low intensity of the C_{ipso} atom signals of the NCN unit [C(1)] and the platinum bonded acetylide ligands, ¹⁹⁵Pt-C satellites could not be detected.

The FAB mass spectra show the peak of the respective molecular ion M^+ at the expected m/z values as well as a typical fragmentation pattern such as m/z 481 $[C_{17}H_{28}N_2PtSi]^+$ or m/z 409 for $[C_{14}H_{19}N_2Pt]^+$.

Reactions of $[4-Me_3SiC \equiv CC_6H_2(CH_2NMe_2)_2-2,6]PtCl (1)$ with Cobalt Carbonyl and Copper(I) Salts

The replacement of two CO ligands of $[Co_2(CO)_8]$ by the C_2 unit of acetylene derivatives leads to the formation of dicobaltatetrahedranes.^[19] Hence, organometallic acetylides can readily yield mixed metal compounds. In order to study whether the same reactivity could be achieved with a {Pt}-substituted acetylene (i.e., with retention of the Pt-C and Pt-Cl bonds), **1** was reacted with equimolar amounts of $[Co_2(CO)_8]$ in toluene at 0 °C. This leads to the formation of the green trimetallic complex **10** in 50% isolated yield (Equation 3).

Compound **10** features a dicobaltatetrahedrane unit with the Pt-containing entity directly connected to this polyhedron. The values and pattern of the v_{CO} frequencies resemble typical values found for Co₂(CO)₆ fragments.^[19] The resonance signals in the ¹H NMR spectrum are generally slightly shifted to higher field, compared to **1**.^[15] The ¹³C{¹H} NMR spectrum displays virtually the same signal pattern as for **1**. However, the chemical shifts of the μ -C₂ unit with $\delta = 79.3$ (C=*C*Si) and $\delta = 107.6$ (*C*=*C*Si) experience a high-field shift of approximately 13 ppm for =*C*Si and a slight shift to lower field by ca. 1 ppm for *C*=*C*Si. The signals assigned to the carbonyl ligands are found as a broad singlet at $\delta = 196.7$. The FAB mass spectrum exhibits a peak for the molecular ion [M]⁺ at m/z = 796. Also, the sequential loss of all six CO ligands can be observed.

The reaction of copper(I) halides with acetylene derivatives is well-known and generally yields dimeric η^2 -acetylene copper(I) halides.^[20] In order to investigate if the C=C unit present in 1 can be used for the design of other bimetallic compounds, 1 has been reacted with [CuCl]_n or [Cu(NCMe)₄][BF₄]. However, even after prolonged stirring

Eur. J. Inorg. Chem. 2000, 1457-1464

(48 h) at low (-20 °C, CH₂Cl₂) or elevated temperatures (40–50 °C, C₆H₆), 1 did not react with [CuCl]_n. All spectroscopic evidence (IR, ¹H NMR, ¹³C{¹H} NMR) indicated the presence of starting materials only. This mirrors results obtained earlier in a Cu^I–(Me₃SiC=CPh) system.^[21] This result contrasts with reports on the formation of complexes of the type [Cu₂X₂(R'C=CR')₂] [e.g. R' = SiMe₃,^[20] Re(CO)₅^[22]]. In contrast to this lack of reactivity, the reaction of 1 with [Cu(NCMe)₄][BF₄] led to a mixture of products that could not be separated. Moreover, the IR spectrum of the crude reaction mixture gave no indication for the occurrence of Cu^I-alkyne coordination.

Preparation of Linear Mixed Metal Compounds

Due to their stability and easy accessibility, Au^I acetylides have attracted a great deal of interest. Also, the preferred geometry and the electron-rich character of the Au^I centre makes this class of compounds attractive candidates for materials science.^[11] In principle, the preparation of Au^I acetylides can be achieved by two routes: i) first a silvlprotected Pt acetylide is prepared, followed by deprotection of the C=C functionality, and subsequent reaction of the monosubstituted acetylene with Ph₃PAuCl, or ii) treatment of $HC = C{Pt}Cl$ (4) with Ph₃PAuCl and then substitution of Cl by acetylide anions. The first route seemed to us being of little advantage because the platinum monoacetylides of this type have been reported to be sensitive to halide sources, i.e., giving rise to cleavage of the Pt-acetylide bond.^[16] Therefore, the Au σ-acetylide complex 11 was synthesised first, according to well-established literature procedures (Scheme 3).^[23] For comparative purposes, the goldferrocenyl acetylide complex Ph₃PAuC≡CFc (12) was also prepared.

Scheme 3. Preparation of linear mixed metal (Au, Fe) complexes. i. [CuCl]_n, HNEt₂, 25 °C; ii. FcC≡CSnMe₃, THF, 50 °C.

Subsequently, complex 11 was reacted with $FcC \equiv CSnMe_3$ to form linear trimetallic 13 in virtually quantitative yield (Scheme 3). This reaction variation has been previously used in the synthesis of compound 5 (vide supra).

Experimental data with respect to the spectroscopic characterisation of complexes 11-13 are listed in Table 2.

The IR spectra of compounds 11-13 exhibit the C=C stretching modes for the Au-bonded acetylide at typical values (Table 2).^[23] The corresponding band for the Pt-bonded acetylide appears at much lower frequency than ob-

Compound Ph ₃ PAuX X =		IR ^[a] C≡CAu	C≡CPt	$^{31}P{^{1}H} NMR^{[b]}$ PPh ₃	$C = CAu^{13}C^{1}H^{13}NMR^{[b]}$
$ \begin{array}{c} Cl \\ C \equiv C \{Pt\}Cl \\ C \equiv CFc \\ C \equiv C \{Pt\}C \equiv CFc \end{array} $	11 12 13	2102 2109 2098	 1971	33.8 43.1 42.9 43.1	$^{-}_{105.4, 105.7}$ $^{102.5^{[c]}}_{-^{[d]}}$

Table 2. Most diagnostic spectroscopic data (IR, ${}^{31}P$ { ^{1}H } and ${}^{13}C$ { ^{1}H } NMR) of 11–13

^[a] Recorded in KBr ($\tilde{\nu}$ [cm⁻¹]). – ^[b] All spectra were recorded in CDCl₃ with the solvent signal [rel. to SiMe₄ (0.00 ppm)] as internal standard. – ^[c] Only one signal could be detected. – ^[d] Due to the low solubility of **13** in any organic solvent, a ¹³C{¹H} NMR spectrum could not be recorded.

served in compounds 2-5 (around 2070 cm⁻¹, Table 1). This points to a bond weakening of the Pt-centred $C \equiv C$ unit, which is obviously caused by the remote presence of the Ph₃PAu fragment. The ¹H NMR spectra exhibit no change in the chemical shifts of the $C \equiv C{Pt}$ fragment compared to 1 (Table 1). In the ¹H NMR spectrum of 13, however, the resonance signals of the {Pt} unit only appear as very broad singlets. In the ¹³C{¹H} NMR spectra of compounds 11 and 12, the acetylenic carbon resonance signals are found at chemical shifts that are typical for gold acetylides.^[11,23] Due to the low solubility of **13** in all common organic solvents, a ¹³C{¹H} NMR spectrum could not be obtained. Compared with Ph_3PAuCl ($\delta = 33.8$), the signal for the phosphorus atom datively bonded to Au has shifted by about 10 ppm to lower field when Cl is substituted by an acetylide anion (11-13, Table 2). This shift is characteristic for Au^I acetylides carrying organic groups and indicates that the presence of a remote Pt atom does not influence the behaviour of the AuPPh₃ unit in a spectroscopically noticeable manner. The FAB mass spectrum reveals the peak for the molecular ion $[M]^+$ at the expected m/z values, together with an expected fragmentation pattern. Most characteristic fragments are found at m/z = 459 $[C_{18}H_{15}AuP]^+$, $m/z = 409 [C_{14}H_{18}N_2Pt]^+$ and m/z = 210 $[C_{12}H_9Fe]^+$.

At -30 °C, crystals of the bimetallic complex 11 could be grown from a CH₂Cl₂/pentane solution. Unfortunately, these crystals were not of sufficient quality to obtain a full X-ray structural analysis (R = 0.1544). Nevertheless, the representation given in Figure 1 serves to corroborate the predicted linear arrangement of the metal centres in the heterobimetallic complex 11.

Figure 1. Structural representation of the heterobimetallic complex $11\,$

Electrochemical Behaviour

The mononuclear complex $Me_3SiC \equiv C\{Pt\}Cl$ (1), the heterobinuclear molecules 3, 11, and 12, as well as the heterotrinuclear compound 13 have been investigated by cyclic voltammetry. The results of the electrochemical measurements are listed in Table 3. For comparative purposes, the electrochemical data of Ph₃PAuCl have been measured and these are also presented.

It appears that the reductive irreversible one-electron process for the system Au^I/Au⁰ is generally shifted to a more negative potential upon substitution of the Cl ligand by acetylide (Table 3). However, the strength of the shift depends on the nature of the organometallic fragment. While for the NCN-Pt substituted acetylide a shift by approximately 0.2 V is found, the same effect for C=CFc is larger (ca. 0.4 V). This indicates that the reduction of Au^I to Au⁰ is more hampered by the presence of a Fc fragment than by the NCN-Pt unit. However, in the cyclic voltammetric experiment with the heterotrimetallic complex 13, the Aucentred reductive process could not be detected due to the low solubility of 13 and the proximity of the edge of the electrochemical window in this system. This may also be explained by a shift of the Au^I/Au⁰ reduction potential beyond this electrochemical edge. The cyclic voltammogram of 1 exhibits a concerted irreversible two-electron oxidative process that can be assigned to the system Pt^{II}/Pt^{IV}. This process is typical for Pt monochlorides of this type.^[16] Upon substitution of the Cl by acetylide, as demonstrated in Me₃SiC=C{Pt}C=CFc (3), a similar effect can be observed as in the Au^I-centred reductive process: a shift to a more negative value of the Pt^{II}/Pt^{IV} oxidation potential by ca. 0.4 V. A similar observation has been reported earlier for PtCl[C₆H₃(CH₂NMe₂)₂-2,6].^[16] In this case, a shift of the Pt^{II}/Pt^{IV} oxidation to a more negative potential by ca. 0.2 V was reported when Cl was replaced by, e.g. C≡CSiMe₃. Surprisingly, the Pt-containing unit of the complexes described in the present study shows no reduction process at all. The attachment of the $C \equiv C{Pt}Cl$ fragment to Ph₃PAu also leads to a shift of the Pt^{II}/Pt^{IV} oxidation to a more negative potential. As in the case of the Pt-Fc complex 3, this indicates a facilitation of the oxidative process (Table 3). In the heterotrimetallic complex 13, this process is shifted to a more negative value than in the bimetallic compound 11 (Table 3) but less than in complex

Table 3. Cyclic voltammetric data of compounds 11–13, Ph₃PAuCl and 1 are presented for comparison; the cyclic voltammograms have been recorded in THF solutions in the presence of $[nBu_4N][PF_6]$ ($c = 0.1 \text{ mol } dm^{-3}$) at 25 °C under N₂; scan-rate 100 mV s⁻¹; potentials are referenced to FcH/FcH⁺ couple ($E_{1/2} = 0.00 \text{ V}$)

Compound		Oxidation $E_{1/2}$ (Fc) [V]	$\Delta E [{ m mV}]$	$E_{\rm ox}({\rm Pt})$ [V]	Reduction $E_{red}(Au)$ [V]	$E_{\rm red}({\rm Pt})$ [V]
$Ph_{3}PAuCl Me_{3}SiC \equiv C{Pt}Cl Me_{3}SiC \equiv C{Pt}C \equiv CFc Ph_{3}PAuC \equiv C{Pt}Cl Ph_{3}PAuC \equiv CFc Ph_{2}PAuC \equiv C{Pt}C \equiv CFc Ph_{2}PAuC \equiv C{Pt}C \equiv CFc $	1 3 11 12 13	-0.13 -0.15 -0.02	- - 75 - 80 90	0.76 0.38 0.53 	-2.70 	- - - - -

^[a] Due to low solubility of 13 and the proximity of the reductive process Au^{I}/Au^{0} to the edge of the electrochemical window, a reductive process could not be observed.

3. Looking at the reversible one-electron redox process of the Fc entity, the attachment of C=CFc to Ph₃PAu or Me₃SiC=C{Pt} also results in a shift to a more negative potential, with about equal magnitude. Still, the assembly of these three fragments to form complex **13** does not result in changes to the redox potential of the Fc unit with respect to the reference potential FcH/FcH⁺.

It can be concluded that the stepwise increase of size and composition of the organometallic systems in the described complexes 3-12 induces a facilitation of the oxidative processes in each of the metal-containing subunits. This indicates that the linking of further organometallic fragments to the 4-ethynyl-substituted Pt-NCN system induces a change in the electronic system of the Pt^{II} centre. The fact that this is also induced by the remote Ph₃PAu unit suggests that the extended π -system of the $-C \equiv CC_6H_2(CH_2NMe_2)_2$ -2,6-Pt⁺ fragment, which also includes the coplanar coordination plane of the Pt^{II} centre, is able to conduct electronic information.

Conclusions

A series of Pt monoacetylides containing the 4-ethynylsubstituted NCN-Pt unit has been synthesised and characterised. Their use as the basis for the preparation of multimetallic systems has been shown by the assembly of $Ph_3PAuC \equiv C{Pt}C \equiv CFc$, 13. Apart from the use of Liacetylides, Me₃Sn-substituted acetylenes have been applied to the high-yield synthesis of Pt monoacetylides. The $C \equiv C$ unit of Me₃SiC=C{Pt}Cl (1) can act as an η^2 -coordinating ligand, as was shown by the formation of a characteristically green-coloured dicobaltatetrahedrane complex by reaction of 1 with $Co_2(CO)_8$. Electrochemical studies of these heterometallic systems revealed that the reversible oxidation of the Fc units in complexes $Me_3SiC \equiv C{Pt}C \equiv CFc$ (3) and $PPh_3AuC \equiv C\{Pt\}C \equiv CFc$ (13), and the irreversible Pt^{II}/Pt^{IV} oxidation are both facilitated. On the basis of these results we conclude, that the 4-ethynyl NCN unit supports electronic communication between two metal atoms through the conjugated π -system. Further work will be directed towards the construction of longer chains of repeating $C \equiv C \{Pt\}$ units with high directionality approximating an organometallic polymer as suggested in type A complexes (vide supra) in a stepwise approach.

Experimental Section

General: All reactions were carried out under an atmosphere of dry nitrogen using standard Schlenk techniques. Tetrahydrofuran (THF) and diethyl ether (Et₂O) were purified by distillation from sodium/benzophenone ketyl; pentane was purified by distillation from CaH₂. - IR: Mattison Galaxy Series FTIR 5000. - NMR: Bruker AC 300 (¹H, ³¹P, and ¹³C); chemical shifts are reported in δ units (parts per million) downfield from tetramethylsilane with the solvent as the internal reference signal. - FAB-MS: JEOL JMS SX/SX 102A four sector mass spectrometer (10 kV accelerating voltage) at the Department of Mass Spectrometry, Bijvoet Center, Utrecht University. - MP: Büchi melting point apparatus. - Elemental analyses: H. Kolbe, Mikroanalytisches Laboratorium, Mülheim/Ruhr, Germany. - CV: Princeton Applied Research EG& G 263A analyser in a solution of $[nBu_4N][PF_6]$ ($c = 0.1 \text{ mol } dm^{-3}$) in THF at 25 °C; all potentials were referenced to the ferrocene/ ferrocenium couple as internal reference ($E_{1/2} = 0.00$ V).

Remarks: The starting materials $Me_3SiC \equiv C\{Pt\}Cl(1),^{[15]}$ $HC \equiv C\{Pt\}Cl(6),^{[15]}$ $HC \equiv CC_6H_4CN-4,^{[24]}$ 1,4-($Me_3SnC \equiv C)_2$ - $C_6H_4,^{[25]}$ $HC \equiv CFc,^{[26]}$ Ph₃PAuCl,^{[23]} and $Me_3SnC \equiv CFc^{[25]}$ were prepared following published procedures. Other reagents were purchased from commercial suppliers.

Synthesis of Me₃SiC=C{Pt}C=CPh (2): To a Et₂O solution (150 mL, -78 °C) of LiC≡CPh (190 mg, 1.80 mmol) was added 1 (880 mg, 1.70 mmol). The mixture was allowed to warm up (25 °C) and stirred (16 h, 25 °C). All volatile material was then evaporated in vacuo and the residue was extracted with Et₂O (3 \times 50 mL) and CH_2Cl_2 (3 × 40 mL). Separation from the solid residue was effected by centrifugation. The combined CH₂Cl₂ fractions were then concentrated to ca. 5 mL and addition of pentane (50 mL) yielded 2 (580 mg, 60% yield based on 1) as off-white solid; m.p. > 200°C. – IR (KBr): $\tilde{\nu}$ = 2148 [$\nu_{C=C}$], 2077 [$\nu_{C=C}$] cm^{-1}. – ¹H NMR (CDCl₃): $\delta = 0.21$ (s, 9 H, SiMe₃), 3.18 s, ${}^{3}J_{HPt} = 42$ Hz, NMe₂), 4.05 (s, ${}^{3}J_{\text{HPt}} = 44 \text{ Hz}, 4 \text{ H}, \text{C}H_{2}$), 7.01 (s, 2 H, C₆H₂), 7.1–7.5 (m, 5 H, C₆H₅). $- {}^{13}C{}^{1}H$ NMR (CDCl₃): $\delta = 0.1$ (SiMe₃), 55.9 (NMe_2) , 79.5 (CH_2) , 91.8 (SiC=C), 107.2 (SiC=C), 108.2 $(PtC \equiv C)$, 117.4 (iC/C_6H_2) , 122.4 (CH/C_6H_2) , 124.8 (CH/C_6H_5) , 127.8 (CH/C₆H₅), 128.5 (iC/C₆H₅), 131.6 (CH/C₆H₅), 135.8 (PtC=C), 145.9 (*iC*/C₆H₂), 169.0 (*iC*/C₆H₂). – FAB-MS; *m*/*z* (rel. int.): 583 (30) [M⁺], 482 (100) [M⁺ - C₈H₅]. - C₂₅H₃₂N₂PtSi (583.73): calcd. C 51.44, H 5.53, N 4.80; found C 51.32, H 5.55, N 4.73.

Synthesis of Me₃SiC=C{Pt}C=CFc (3): Experimental conditions and workup were identical to those for the preparation of 2. Experimental details: LiC=CFc (170 mg, 0.80 mmol), 1 (400 mg, 0.77 mmol), Et₂O (100 mL). Yield: 330 mg, 60% based on 1. – Mp:

> 200 °C. – IR (KBr): $\tilde{v} = 2144 [v_{C=C}]$, 2089 $[v_{C=C}] \text{ cm}^{-1}$. – ¹H NMR (CDCl₃): $\delta = 0.22$ (s, 9 H, Si*Me*₃), 3.19 (s, ³*J*_{HPt} = 42 Hz, 12 H, N*Me*₂), 4.04 (br s, 2 H, C₅*H*₄), 4.04 (s, ³*J*_{HPt} = 40 Hz, 4 H, C*H*₂), 4.15 (s, 5 H, C₅*H*₅), 4.36 (br s, 2 H, C₅*H*₄), 7.01 (s, 2 H, C₆*H*₂). – ¹³C{¹H} NMR (CDCl₃): $\delta = 0.1$ (Si*Me*₃), 55.9 (N*Me*₂), 66.9 (*CH*/C₅H₄), 69.4 (C₅H₅), 70.0 (*iC*/C₅H₄), 70.9 (*CH*/C₅H₄), 79.5 (*CH*₂), 90.9 (Si*C*=C), 103.7 (PtC=*C*), 107.2 (Si*C*=*C*), 117.3 (*iC*/C₆H₂), 122.4 (*CH*/C₆H₂), 130.6 (Pt*C*=C), 145.9 (*iC*/C₆H₂), 166.2 (*iC*/C₆H₂). – FAB-MS; *m*/z (rel. int.): 692 (20) [M⁺], 481 (100) [M⁺ - C₁₂H₃Fe]. – C₂₉H₃₆FeN₂PtSi (691.95): calcd. C 50.36, H 5.25, N 3.71; found C 50.48, H 5.23, N 3.97.

Synthesis of $Me_3SiC = C{Pt}C = CC_6H_4CN-4$ (4): Experimental conditions and workup were identical to those for the preparation of **2**. Experimental details: $LiC \equiv CC_6H_4CN-4$ (100 mg, 0.80 mmol), 1 (390 mg, 0.76 mmol), Et₂O (100 mL). Yield: 200 mg, 40% based on 1. – Mp: > 200 °C. – IR (KBr): $\tilde{v} = 2220 [v_{CN}], 2144 [v_{C=C}],$ 2089 $[v_{C=C}]$ cm⁻¹. - ¹H NMR (CDCl₃): $\delta = 0.22$ (s, 9 H, SiMe₃), 3.19 (s, ${}^{3}J_{\text{HPt}} = 41$ Hz, 12 H, NMe₂), 4.08 (s, ${}^{3}J_{\text{HPt}} = 42$ Hz, 4 H, CH₂), 7.03 (s, 2 H, C₆H₂), 7.3–7.5 (m, 4 H, C₆H₄). $- {}^{13}C{}^{1}H{}$ NMR (CDCl₃): $\delta = 0.1$ (SiMe₃), 55.9 (NMe₂), 79.5 (CH₂), 92.1 (SiC≡C), 106.9 (SiC≡C), 107.4 (PtC≡C), 107.7 (CN), 117.9 (iC/ C₆H₂), 119.7 (*iC*/C₆H₄), 122.5 (*CH*/C₆H₂), 131.5 (*iC*/C₆H₄), 131.6 (CH/C_6H_4) , 131.9 (CH/C_6H_4) , 133.6 (PtC=C), 145.9 (iC/C_6H_2) , 168.3 (iC/C₆H₂). - FAB-MS: m/z (rel. int.): 608 (10) [M⁺], 481 (100) $[C_{17}H_{27}N_2PtSi]^+$. - $C_{26}H_{31}N_3PtSi$ (608.74): calcd. C 51.30, H 5.13, N 6.90. A satisfactory elemental analysis could not be obtained.

Synthesis of $Me_3SiC = C{Pt}C = CC_6H_4(C = CSnMe_3)-4$ (5): Compound 1 (50 mg, 0.10 mmol) and 1,4-(Me₃SnC=C)₂C₆H₄ (90 mg, 0.20 mmol) were dissolved in THF (40 mL). The solution was stirred (10 h, 25 °C) and then concentrated to ca. 5 mL. Addition of pentane (50 mL) formed a precipitate that was separated from the supernatant solution. The residue was then dried (5 h, vacuo). Note: Me₃SnCl is volatile and very toxic. An extra cooling trap has to be installed right after the reaction vessel. Complex 5 (60 mg, 80% based on 1) was obtained as off-white solid. - Mp: > 200 °C. - IR (KBr): $\tilde{v} = 2148 [v_{C=C}], 2132 [v_{C=C}], 2089 [v_{C=C}] \text{ cm}^{-1}$. ¹H NMR (CDCl₃): $\delta = 0.22$ (s, 9 H, SiMe₃), 0.34 (s, ³J_{HSn} = 59.8 Hz, 9 H, SnMe₃), 3.19 (s, ${}^{3}J_{\text{HPt}} = 37$ Hz, 12 H, NMe₂), 4.07 (s, ${}^{3}J_{HPt} = 40$ Hz, 4 H, CH₂), 7.02 (s, 2 H, C₆H₂), 7.29 (s, 4 H, C_6H_4). $-{}^{13}C{}^{1}H$ NMR (CDCl₃): $\delta = -7.7$ (SnMe₃), 0.1 (SiMe₃), 55.9 (NMe₂), 79.5 (CH₂), 91.8 (SiC≡C), 93.2 (SnC≡C), 107.3 $(SiC \equiv C)$, 108.2 (PtC $\equiv C$), 109.7 (SnC $\equiv C$), 117.5 (*iC*/C₆H₂), 122.4 (CH/C₆H₂), 131.1 (*i*C/C₆H₄), 131.4 (CH/C₆H₄), 131.5 (CH/C₆H₄), 131.7 (*iC*/C₆H₄), 139.3 (Pt*C*=C), 145.9 (*iC*/C₆H₂), 168.8 (*iC*/C₆H₂). - FAB-MS; m/z (rel. int.): 770 (10) [M⁺], 607 (20) [M - SnMe₃]⁺, 481 (100) $[C_{17}H_{27}N_2PtSi]^+$, 73 $[C_3H_9Si]^+$. - $C_{30}H_{40}N_2PtSiSn$ (770.53): calcd. C 46.76, H 5.23, N 3.64; found C 47.01, H 5.01, N 3.32.

Synthesis of HC=C{Pt}C=CPh (7): To a solution of **2** (400 mg, 0.76 mmol) in CH₂Cl₂ (100 mL), was added [*n*Bu₄N]F·3H₂O (240 mg, 0.76 mmol). After stirring (2 h, 25 °C), all volatile material was evaporated and the residue was extracted with acetone (2 × 10 mL). Separation by centrifugation and drying (*vacuo*) yielded **5** (190 mg, 50%) as a brown solid. – Mp: > 200 °C. – IR (KBr): $\tilde{v} = 3302 [v_{=CH}]$, 2126 [v_{C=C}], 2083 [v_{C=C}] cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 3.01$ (s, 1 H, =CH), 3.21 (s, ³*J*_{HPt} = 43.4 Hz, N*Me*₂), 4.08 (s, ³*J*_{HPt} = 44 Hz, 4 H, CH₂), 7.04 (s, 2 H, C₆H₂), 7.2–7.5 (m, 5 H, C₆H₅). – ¹³C{¹H}</sup> NMR (CDCl₃): $\delta = 55.9$ (N*Me*₂), 75.0 (=*C*H), 79.6 (CH₂), 85.6 (*C*=CH), 108.2 (PtC=*C*)^a, 116.4 (*iCl* C₆H₂), 122.5 (*CH*/C₆H₂), 124.6 (*CH*/C₆H₅), 127.8 (*CH*/C₆H₅), 128.5 (*iC*/C₆H₅), 131.6 (*CH*/C₆H₅), 131.1 (Pt*C*=C), 146.0 (*iCl*)

 $C_6H_2),\,169.1~(\it iC/C_6H_2).-FAB-MS;\,\it m/z$ (rel. int.): 512 (20) [M⁺], 409 (100) [M⁺ - C_8H_5]. - C_{22}H_{24}N_2Pt (511.54): calcd. C 51.66, H 4.73, N 5.48; found C 51.78, H 4.72, N 5.36.

Synthesis of $HC = C{Pt}C = CFc$ (8): Experimental conditions and workup were identical to those for the preparation of 5. Experimental details: 3 (760 mg, 1.08 mmol), [nBu₄N]F·3H₂O (340 mg, 1.08 mmol), CH₂Cl₂ (30 mL). Yield: 330 mg, 60% based on 3. -Mp: > 200 °C. – IR (KBr): $\tilde{v} = 3272 [v_{=CH}], 2090 [v_{C=C}], 2078$ $[v_{C=C}] \text{ cm}^{-1}$. - ¹H NMR (CDCl₃): $\delta = 3.01$ (s, 1 H, =CH), 3.20 (s, ${}^{3}J_{HPt} = 41$ Hz, 12 H, NMe₂), 4.04 (t, ${}^{3}J_{HH} = 1.4$ Hz, 2 H, C_5H_4), 4.07 (s, ${}^{3}J_{HPt} = 40$ Hz, 4 H, CH_2), 4.15 (s, 5 H, C_5H_5), 4.36 (t, ${}^{3}J_{\text{HH}} = 1.4 \text{ Hz}, \text{ C}_{5}H_{4}$), 7.02 (s, 2 H, $\text{C}_{6}H_{2}$). $- {}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR $(CDCl_3): \delta = 55.9 (NMe_2), 66.9 (CH/C_5H_4), 69.4 (C_5H_5), 70.1 (iC/$ C_5H_4), 75.0 (C=CH), 77.2 (C=CH), 79.2 (CH₂), 103.7 (PtC=C), 116.2 (*iC*/C₆H₂), 122.5 (*CH*/C₆H₂), 130.7 (Pt*C*≡C), 146.0 (*iC*/ C_6H_2), 169.2 (*iC*/ C_6H_2). – FAB-MS; *m*/*z* (rel. int.): 619 (10) [M⁺], 409 (60) $[M^+ - C_{12}H_9Fe]$, 210 (10) $[C_{12}H_9Fe]^+$. - $C_{26}H_{28}FeN_2Pt$ (619.46): calcd. C 50.41, H 4.56, N 4.52; found C 50.28, H 4.51, N 4.46.

Synthesis of HC≡C{Pt}C≡CC₆H₄CN-4 (9): Experimental conditions and workup were identical to those for compound 7. Experimental details: 4 (260 mg, 0.51 mmol), [*n*Bu₄N]F·3H₂O (160 mg, 0.51 mmol), CH₂Cl₂ (30 mL). Yield: 100 mg, 40% based on 4. – Mp: > 200 °C. – IR (KBr): $\tilde{v} = 3302 [v_{=CH}]$, 2220 [v_{CN}], 2102 [$v_{C=C}$], 2083 [$v_{C=C}$] cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 3.01$ (s, 1 H, \equiv CH), 3.20 (s, ³J_{HPt} = 39 Hz, 12 H, NMe₂), 4.11 (s, ³J_{HPt} = 40 Hz, 4 H, CH₂), 7.05 (s, 2 H, C₆H₂), 7.3–7.5 (m, 4 H, C₆H₄). – ¹³C{¹H} NMR (CDCl₃): $\delta = 55.9$ (NMe₂), 75.3 (≡CH), 79.5 (s, ³J_{CPt} = 38 Hz, CH₂), 85.4 (C≡CH), 107.4 (CN), 107.7 (PtC≡C), 116.8 (*iCl* C₆H₂), 119.7 (*iCl*C₆H₄), 122.6 (*CH/*C₆H₂), 131.7 (*CH/*C₆H₄), 132.2 (*CH/*C₆H₄), 133.6 (PtC≡C), 146.0 (s, ³J_{CPt} = 35.9 Hz, *iCl*C₆H₂), 168.4 (*iCl*C₆H₂). – FAB-MS; *m/z* (rel. int.): 536 (10) [M⁺], 409 (60) [C₁₄H₁₉N₂Pt]⁺. – C₂₃H₂₃N₃Pt (536.55): calcd. C 51.49, H 4.32, N 7.83; found C 51.32, H 4.40, N 7.69.

Synthesis of $[\mu-(Me_3SiC=C{Pt}CI)][Co_2(CO)_6]$ (10): To a toluene solution (100 mL) of 1 (200 mg, 0.39 mmol), was added Co₂(CO)₈ (140 mg, 0.43 mmol) in one portion. After stirring (3 h, 25 °C), the solvent was reduced to ca. 10 mL and pentane (100 mL) was added. The supernatant solution was carefully decanted and the green precipitate redissolved in toluene (5 mL). Crystallisation at - 20 °C yielded 10 (140 mg, 50% based on 1) as a green solid. - Mp: 140 °C (dec). – IR (KBr): $\tilde{v} = 2087, 2035, 2015, 1990 [v_{CO}] \text{ cm}^{-1}$. – ¹H NMR (CDCl₃): $\delta = 0.40$ (s, 9 H, Si*Me*₃), 3.11 (s, ³*J*_{HPt} = 32 Hz, 12 H, NMe₂), 4.06 (s, ${}^{3}J_{HPt} = 42$ Hz, 4 H, CH₂), 6.96 (s, 2 H, C_6H_2). - ¹³C{¹H} NMR (CDCl₃): $\delta = 0.9$ (SiMe₃), 54.5 (NMe₂), 79.3 (C=CSi), 107.6 (C=CSi), 121.0 (CH/C₆H₂), 132.7 (*i*C/C₆H₂), 143.2 (*iC*/C₆H₂), 147.0 (*iC*/C₆H₂), 201-204 (CO). - FAB-MS; *m*/ z (rel. int.): 796 (20) $[M^+]$, 768 (25) $[M^+ - CO]$, 740 (30) $[M^+ -$ 2 CO], 712 (20) $[M^+ - 3 CO]$, 684 (10) $[M^+ - 4 CO]$, 656 (20) $[M^+ - 5 CO], 628 (20) [M^+ - 6 CO], 481 (100) [C_{16}H_{27}N_2PtSi]^+.$ C₂₂H₂₇ClCo₂N₂O₆PtSi (791.96): calcd. C 33.37, H 3.44, N 3.54; Si 3.55; found C 33.45, H 3.36, N 3.46; Si 3.59.

Reaction of 1 with [CuCl]_{*n*}. – **Method A:** [CuCl]_{*n*} (20 mg, 0.20 mmol) and **1** (50 mg, 0.10 mmol) are stirred in C_6H_6 (30 mL, 48 h, 50 °C). – **Method B:** [CuCl]_{*n*} (10 mg, 0.10 mmol) and **1** (30 mg, 0.6 mmol) are stirred in CH₂Cl₂ (30 mL, 24 h, -20 °C).

In both cases, after removal of the solvent (in vacuo), the spectroscopic investigation (IR, ¹H NMR, ¹³C {¹H} NMR) of the crude residue revealed the presence solely of 1.

Reaction of 1 with $[Cu(NCMe)_4][BF_4]$: Compound 1 (100 mg, 0.19 mmol) and $[Cu(NCMe)_4][BF_4]$ (30 mg, 0.10 mmol) are dis-

Eur. J. Inorg. Chem. 2000, 1457-1464

solved in CH₂Cl₂ (30 mL]. During the course of the reaction, the solution gradually turns brown. After stirring (24 h, 25 °C),the solvent is removed (in vacuo). Spectroscopic investigation (IR, ¹H NMR, ¹³C {¹H} NMR) of the residue showed that a complicated mixture of compounds had been formed.

Synthesis of $Ph_3PAuC = C{Pt}Cl$ (11): Compound 6 (127 mg, 0.30 mmol), Ph₃PAuCl (140 mg, 0.30 mmol) and [CuCl]_n (8 mg, 0.08 mmol) were dissolved in degassed HNEt2 (30 mL). After stirring (12 h, 25 °C) and evaporation (in vacuo), the residue was extracted with water (3 \times 10 mL) and then with C₆H₆ (3 \times 20 mL). The combined C₆H₆ extracts were evaporated and redissolved in CH₂Cl₂. The CH₂Cl₂ solution was dried over MgSO₄, filtered and evaporated (in vacuo). Complex 11 (170 mg, 60% based on 6) was obtained as an off-white solid. – Mp: > 200 °C. – IR (KBr): \tilde{v} = 2102 $[v_{C=C}]$ cm⁻¹. - ¹H NMR (CDCl₃): $\delta = 3.05$ (s, ³J_{HPt} = 37.8 Hz, 12 H, NMe₂), 4.09 (s, ${}^{3}J_{HPt} = 44$ Hz, 4 H, CH₂), 6.92 (s, 2 H, C₆ H_2), 7.3–7.6 (m, 15 H, C₆ H_5). – ¹³C{¹H} NMR (CDCl₃): $\delta = 54.4 \text{ (NMe}_2) 77.6 \text{ (CH}_2), 105.4 \text{ (C=C)}, 105.7 \text{ (C=C)}, 119.4$ (iC/C_6H_2) , 123.2 (s, ${}^{3}J_{PtC} = 33$ Hz, CH/C_6H_2), 129.1 (d, ${}^{3}J_{PH} =$ 11 Hz, CH/C_6H_5), 129.8 (d, ${}^{1}J_{PH} = 63$ Hz, iC/C_6H_5), 131.5 (CH/ C_6H_5), 134.3 (d, ${}^2J_{PH} = 14$ Hz, CH/C_6H_5) 142.9 (s, ${}^2J_{PtC} = 76$ Hz, iC/C_6H_2), 144.8 (iC/C_6H_2). $-{}^{31}P$ {¹H} NMR (CDCl₃): $\delta = 43.1$ (PPh₃). - FAB-MS; *m*/*z* (rel. int.): 904 (10) [M]⁺, 868 (60) [M - $Cl]^+$, 459 (100) $[C_{18}H_{15}AuP]^+$, 401 (20) $[C_{14}H_{18}N_2Pt]^+$. -C34H33AuClFeN2PPt (928.17): calcd. C 42.51, H 3.68, N 3.10; found C 42.45, H 3.74, N 3.12.

Synthesis of Ph₃PAuC=CFc (12): Ph₃PAuCl (100 mg, 0.21 mmol), $FcC \equiv CH$ (50 mg, 0.24 mmol) and K_2CO_3 (100 mg) were dissolved in MeOH (40 mL). After stirring (12 h, 25 °C), the reaction mixture was evaporated (in vacuo). The orange residue was extracted with $Et_2O(2 \times 20 \text{ mL})$ and $CH_2Cl_2(2 \times 10 \text{ mL})$. The combined CH_2Cl_2 extracts were concentrated to ca. 5 mL and pentane (30 mL) was added. The supernatant solution was decanted. After drying (in vacuo), 12 (120 mg, 90% based on Ph3PAuCl) was obtained as an orange solid. – Mp: 141 °C. – IR (KBr): $\tilde{v} = 2109 [v_{C=C}] \text{ cm}^{-1}$. - ¹H NMR (CDCl₃): $\delta = 4.11$ (t, ³*J*_{HH} = 3.6 Hz, 2 H, C₅*H*₄), 4.22 (s, 5 H, C₅ H_5), 4.44 (t, ${}^{3}J_{HH} = 1.4$ Hz, C₅ H_4), 7.4–7.6 (m, 15 H, C_6H_5). - ¹³C{¹H} NMR (CDCl₃): $\delta = 67.8 (CH/C_5H_4), 68.7 (iC/$ C_5H_4), 70.0 (C_5H_5), 102.5 ($C\equiv C$), 129.1 (d, ${}^{3}J_{PH} = 11$ Hz, CH/ C_6H_5), 129.9 (d, ${}^1J_{PH} = 63$ Hz, iC/C_6H_5), 131.5 (CH/C_6H_5), 134.3 (d, ${}^{2}J_{PH} = 14 \text{ Hz}, CH/C_{6}H_{5}$). $-{}^{31}P \{{}^{1}H\} \text{ NMR (CDCl_3): } \delta =$ 42.9 (PPh₃). - FAB-MS; *m*/*z* (rel. int.): 668 (90) [M]⁺, 459 (100) $[C_{18}H_{15}AuP]^+$, 210 (10) $[C_{12}H_9Fe]^+$. - $C_{30}H_{24}AuFeP$ (668.35): calcd. C 53.91, H 3.62; found C 53.82, H 3.51.

Synthesis of $Ph_3PAuC \equiv C{Pt}C \equiv CFc$ (13): Compound 11 (120 mg, 0.13 mmol) and FcC=CSnMe₃ (75 mg, 0.20 mmol) were dissolved in THF (20 mL). After stirring (6 h, 50 °C), the solution was concentrated to ca. 5 mL and Et2O (40 mL) was added. The supernatant solution was decanted from the precipitate that had formed. Subsequently, this was extracted with Et₂O (2×10 mL) and then dried (in vacuo). Complex 13 (100 mg, 80% based on 11) was obtained as an amber solid. – Mp: >200 °C. – IR (KBr): $\tilde{\nu}$ = 2098 $[v_{C=C}]$, 1971 $[v_{C=C}]$ cm⁻¹. - ¹H NMR (CDCl₃): δ = 3.19 (s, 12 H, NMe₂), 4.04 (br s, 2 H, C₅H₄), 4.04 (s, 4 H, CH₂), 4.15 (s, 5 H, C_5H_5), 4.36 (br s, 2 H, C_5H_4), 7.01 (s, 2 H, C_6H_2), 7.4–7.6 (m, 15 H, C₆H₅). $-{}^{31}P$ {¹H} NMR (CDCl₃): $\delta = 43.1. - FAB-MS$; m/z (rel. int.): 1078 (20) [M⁺], 867 (50) [M - Fc]⁺, 668 (10) [C₃₀H₂₄AuFeP]⁺, 459 (100) [C₁₈H₁₅AuP]⁺, 409 [C₁₄H₁₈N₂Pt]⁺, 210 (10) $[C_{12}H_9Fe]^+$. - $C_{44}H_{43}AuFeN_2PPt$ (1078.76): calcd. C 48.99, H 4.02, N 2.60; found C 49.12, H 4.08, N 2.68.

Acknowledgments

The authors would like to thank the Volkswagenstiftung, the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie and Utrecht University (1.5 year stay of SB) for financial support. Drs. M. Lutz and A. L. Spek are thanked for the X-ray study on **11**.

- ^[1] [^{1a]} Inorganic Materials (Eds.: D. W. Bruce, D. O'Hare), Wiley, Chichester, **1992**. – [^{1b]} S. R. Marder, J. W. Perry, Adv. Mater.
 1993, 5, 804–815. – [^{1c]} D. Astruc, Acc. Chem. Res. **1997**, 30, 383–391. – [^{1d]} P. J. Stang, B. Olenyuk, Acc. Chem. Res. **1997**, 30, 502–518. – [^{1e]} T. M. Swager, Acc. Chem. Res. **1998**, 31, 201–207.^[1f] B. Olenyuk, A. Fechtenkötter, P. J. Stang, Acc. Chem. Res. **1998**, 31, 1707–1728.
- ^[2] [^{2a]} D. R. Kanis, P. G. Lacroix, M. A. Ratner, T. J. Marks, J. Am. Chem. Soc. 1994, 116, 10089-10102. [^{2b]} D. R. Kanis, M. A. Ratner, T. J. Marks, Chem. Rev. 1994, 94, 195-242.[^{2c]} M. B. Sponsler, Organometallics 1995, 14, 1920-1927. [^{2d]} P. Belazoni, N. Re, A. Sgamellotti, C. Floriani, J. Chem. Soc., Dalton Trans. 1998, 1825-1835. [^{2e]} N. Re, A. Sgamellotti, C. Floriani, J. Chem. Soc. Dalton Trans. 1998, 2521-2529.
- ^[3] ^[3a] M. Brady, W. Weng, Y. Zhou, J. W. Seyler, A. J. Amoroso, A. M. Arif, M. Böhme, G. Frenking, J. A. Gladysz, *J. Am. Chem. Soc.* **1997**, *119*, 775–788. – ^[3b] S. B. Falloon, S. Szafert, A. M. Arif, J. A. Gladysz, *Chem. Eur. J.* **1998**, *4*, 1033–1042.
- ^[4] ^[4a] T. Kaharu, H. Matsubara, S. Takahashi, J. Mater. Chem.
 1991, 1, 145–146. ^[4b] P. Nguyen, G. Lesley, T. B. Marder, I. Ledoux, J. Zyss, Chem. Mater. **1997**, 9, 406–411. ^[4c] W.-Y. Wong, W.-K. Wong, P. R. Raithby, J. Chem. Soc., Dalton Trans.
 1998, 2761–2769. ^[4d] N. Ohshiro, F. Takei, K. Onitsuka, S. Takahashi, J. Organomet. Chem. **1998**, 569, 195–202.
- ^[5] [^{5a]} P. L. Porter, S. Guha, K. Kang, C. C. Frazier, *Polymer* 1991, 32, 1756–1760. [^{5b]} M.-C. Lagunas, R. A. Gossage, A. L. Spek, G. van Koten *Organometallics* 1998, *17*, 731–741.
- [6] [6a] M. S. Khan, A. K. Kakkar, S. L. Ingham, P. R. Raithby, J. Lewis, B. Spencer, F. Wittmann, R. H. Friend, J. Organomet. Chem. 1994, 472, 247–255. [6b] P. Steenwinkel, D. M. Grove, N. Veldman, A. L. Spek, G. van Koten, Organometallics 1998, 17, 5627–5655. [6c] M. I. Bruce, P. Hinterding, P. J. Low, B. W. Skelton, A. H. White J. Chem. Soc., Dalton Trans. 1998, 467–473.
- ^[7] [^{7a]} N. J. Long, A. J. Martin, F. Fabrizi de Biani, P. Zanello, J. Chem. Soc., Dalton Trans. **1998**, 2017–2021. [^{7b]} P. Ceroni, F. Paolucci, C. Paradisi, A. Juris, S. Raffia, S. Serroni, S. Campagna, A. J. Bord, J. Am. Chem. Soc. **1998**, 120, 5480–5487. [^{7c]} J. Lewis, P. R. Raithby, W.-Y. Wong, J. Organomet. Chem. **1998**, 556, 219–228.
- ^[8] [^{8a]} M. Tamm, A. Grzegorzewski, I. Brüdgam, H. Hartl, J. Chem. Soc., Dalton Trans. 1998, 3523-3528. [^{8b]} X. Gu, M. B. Sponsler, Organometallics 1998, 17, 5920-5923. [^{8c]} M. C. B. Colbert, J. Lewis, P. R. Raithby, M. Younus, A. J. White, D. J. Williams, N. N. Payne, C. Yellowlees, D. Beljonne, N. Chandhury, R. H: Friend, Organometallics 1998, 17, 3034-3043.^[8d] T. Weyland, K. Costuas, A. Mari, J.F. Halet, C. Lapinte, Organometallics 1998, 17, 5569-5579.
- [9] J.-D. Lee, L. M. Vrana, E. R. Bullock, K. J. Brewer, *Inorg. Chem.* **1998**, *37*, 3575–3580.
- ^[10] [^{10a]} Y. Hayashi, M. Osawa, Y. Wakatsuki, J. Organomet. Chem.
 1997, 542, 241–246. ^[10b] S. Back, H. Pritzkow, H. Lang, Organometallics **1998**, 17, 41–44. – ^[10c] S. Back, R.A. Gossage, I. del Río, G. Rheinwald, H. Lang, G. van Koten, J. Organomet. Chem. **1999**, 582, 126.
- [11] [11a] T. E. Müller, S. W.-K. Choi, D. M. P. Mingos, D. Murphy,
 D. J. Williams, V. W.-W. Yam, J. Organomet. Chem. 1994, 484,
 209-224. [11b] V. W.-W. Yam, S. W.-K. Choi, J. Chem. Soc.,
 Dalton Trans. 1996, 4227-4232. [11c] I. R. Whittall, M. G.
 Humphrey, M. Samoc, B. Luther-Davies, Angew. Chem. 1997,
 109, 386-388; Angew. Chem. Int. Ed. Engl. 1997, 36, 370-371.
 [11d] R. J. Puddephatt, Chem. Commun. 1998, 1055-1062.
- ^[12] [^{12a]} M. M. Bhadbhade, A. Das, J. C. Jefferey, J. A. McCleverty, J. A. Navas Badiola, M. D. Ward, *J. Chem. Soc., Dalton Trans.* **1995**, 2769–2778. – ^[12b] S. Sakanishi, D. A. Bardwell, S. Couchman, J. C: Jefferey, J.A. McCleverty, M. D. Ward, *J. Organomet. Chem.* **1997**, 528, 35–45.
- *ganomet. Chem.* **1997**, *528*, 35–45. ^[13] ^[13a] J. T. Liu, M.-F. Young, C. Tsai, Y. S. We, J. Organomet. Chem. **1998**, *564*, 257–266. – ^[13b] J. Mata, S. Uriel, E. Peris,

Eur. J. Inorg. Chem. 2000, 1457-1464

R. Lhusar, S. Houbrechts, A. Persoons, J. Organomet. Chem. 1998, 562, 197-202.

- ^[14] M. C. B. Colbert, A. J. Edwards, J. Lewis, N. J. Long, N. A. Page, D. G. Parker, P. R. Raithby, J. Chem. Soc., Dalton Trans. 1994, 2589-2598.
- ^[15] S. L. James, G. Verspui, A. L. Spek, G. van Koten, Chem. Commun. 1996, 1309-1310.
- ^[16] S. Back, R. A. Gossage, M. Lutz, I. del Río, A. L. Spek, H. Lang, G. van Koten, *Organometallics* 1999, submitted.
- ^[17] A. Seebald, C. Stader, B. Wrackmeyer, W. Bensch, J. Organomet. Chem. 1986, 311, 233-242.
- ^[18] J. Dale, Properties of Acetylenic Compounds, in: Chemistry of Acetylenes (Ed.: H. G. Viehe), Marcel Dekker, New York, 1969.
- ^[19] ^[19a] R. S. Dickson, P. J. Fraser, *Adv. Organomet. Chem.* **1974**, *12*, 323–377. ^[19b] D. Seyferth, T. Kugita, A. L. Rheinhold,

G. P. A. Yap, Organometallics 1995, 14, 5362-5366. - [19c] E. C. Constable, O. Eich, C. E. Housecroft, C. A. Johnston, *Chem. Commun.* 1998, 2661–2662.
 H. Lang, S. Blau, K. Köhler, *Coord. Chem. Rev.* 1995, 143,

- 113-168 and ref. cited therein.
- ^[21] S. Back, T. Stein, G. Rheinwald, H. Lang, Acta Crystallogr., Sect. C 1999, submitted.
- ^[22] W. Beck, personal communication.
- ^[23] M. I. Bruce, E. Horn, J. G. Matison, M. R. Snow, Aust. J. Chem. 1984, 37, 1163-1170.
- ^[24] S. Takahashi, Y. Kuroyama, K. Sonogashira, N. Hagihara, Synthesis 1980, 627-630.
- ^[25] W. E. Davidson, M. C. Henry, Chem. Rev. 1967, 67, 73-106.
- ^[26] J. Polin, H. Schottenberger, *Org. Synth.* **1996**, *73*, 262–269. Received November 24, 1999 [199427]