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Abstract

Permanent quark confinement is one of the various possible phenomena
in a non-Abelian gauge field theory. Here we consider the theory in a box
with periodic boundary conditions. The edges ot the box are taken to
infinity in the end. Various kinds of twists can be included in the bound-
ary conditions, corresponding to the amount of electric or magnetic flux
trapped in the box. An exact duality relation gives restrictions on the
dynamical properties of these fluxes. Instantons further affect this
dynamics. We speculate on their role in spontaneous chiral symmetry
breakdown.

1. Introduction

[t has long been speculated that topological features of non-
Abelian gauge theories are responsible for the permanent con-
finement of quarks inside hadrons. On the other hand there
exist different models with non-Abelian gauge fields which do
not seem to confine their fundamental fermions, for example
the Georgi-Glashow model and the Weinberg—Salam model. It
we consider a space—time bounded by the walls of a box then
the question whether or not such a thing as confinement takes
place is a question about the limit for the box becoming infinitely
large. In statistical physics this is called the thermodynamic
limit. What we want to show is that in this limit phase tran-
sitions might occur, from one into another mode. One of those
modes is a confinement mode, another is a ““Higgs mode™, a
third is a “Coulomb” or “Georgi—Glashow mode™.

Crucial for understanding this situation is the consideration
of electric or magnetic flux. This flux is most easily defined if
we give the box periodic boundary conditions. Twists in these
boundary conditions, not unlike the twists of a Moebius strip,
allow one to define magnetic and electric flux, trapped in the
various principle directions in the box.

Another type of topological twist gives rise to the well-
known instanton field configurations. Although these are twists
in a four-dimensional space—time, they do interfere in a non-
trivial way with the magnetic and electric twists. A consequence
is that the string tension parameter cannot be a smooth non-
vanishing function of the instanton angle 6. We will explain
how this comes about, and how our observation might be
related to spontaneous chiral symmetry breaking.

The first part of this lecture coincides with lectures given
elsewhere [1]. Here we elaborate more on the effects due to
Instantons.

2. The periodic box

We give space—time the topology S; ® S; ® S; ® R, where R
stands for the time axis. Time runs from — oo to o°. Later R is
also replaced by S, in the Euclidan direction, Inside the box,
space—time is flat. These are no quarks yet (at best they are
external sources, to be or not to be bound together by string-
like configurations).

Now in the continuum theory the gauge fields themselves

are representations of SU(NV)/Z(N), where Z(/N) is the center of
the group SU(N):

Z(N) = {2™"N1, p=0,...,N—1)} (2.1)

This is because any gauge transtformation of the type (2.1)
leaves 4 ,(x) invariant. A consequence of this is the existence
of another class of topological quantum numbers in this box
besides the familiar Pontryagin number. Consider the most
general possible periodic boundary condition for 4,(x) in the

box. Take first a plane {x,, x, } in the 1, 2 direction with fixed
values of x5 and x,. One may have

A,u(alaxz) = Ql(x2)Ap(01x2) (2.2)
Ay(xy,a2) = Q(x,)A4,(x,,0)
Here,a,,a, are the periods.
€24, is short for
]
QA48+ — 5B, AT (2.3)

g1

The periodicity conditions for £, ,(x) follow by considering
eq. (2.2) at the corners of the box:

2;(az)82,(0) = 25 (ay )$2,(0)Z

where Z is some element of Z(/N).
One may now perform continuous gauge transformations on

A,(x),
Ap(xl , X, ) > §Ux, axZ)Ap X1,X2),

(2.4)

(2.5)

where Q(x,,Xx,) (non-periodic) can be arranged either such that
(2,(x,)— 1 or such that £2,(x,)— /, but not both, because Z in
eq. (2.4) remains invariant under eq. (2.5) as one can easily
verify. We call this element Z(1, 2) because the 12 plane was
chosen. By continuity Z(1, 2) cannot depend on x5 or x,. For
each (uv) direction such a Z element exist, to be labeled by
Integers

Nupy = — Ny, (2.6)
definded modulo N. Clearly this gives
Ndd-12 — p/6 (2.7)

topological classes of gauge field configurations. Note that these
classes disappear if a field in the fundamental representation of
SU(N) is added to the system (these fields would make unaccept-
able jumps at the boundary). Indeed, to understand quark
confinement it is necessary to understand pure gauge systems
without quarks first.

As we shall see, the new topological classes will imply the
existence of new vacuum parameters besides the well-known
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instanton [2] angle 6. The latter still exists in our box, and will
be associated with a topological quantum number v, an arbitrary
integer.

3. Order and disorder loop integrals

To elucidate the physical significance of the topological numbers

n,, we first concentrate on gauge field theory in a three dimen-
sional periodic box with time running from —oe to e. To be
specific we will choose the temporal gauge,

e =10 (3.1)

(this is the gauge in which rotation towards Euclidean space is
particularly elegant). Space has the topology (S,)’. There is an
infinite set of homotopy classes of closed oriented curves C in
this space: C may wind any number of times in each of the
three principal directions. For each curve C at each time ¢ there
is a quantum mechanical operator A(C, t) defined by

A(C,t) = Tr Pexp J igA(X, 1) - dx, (3.2)
C

called Wilson loop or order parameter. Here P stands for path
ordering of the factors A(x, ) when the exponents are expanded.
The ordering is done with respect to the matrix indices. The
A(x, t) are also operators in Hilbert space, but for ditferent x,
same ¢, all A(x, t) commute with each other. By analogy with
ordinary electromagnetism we say that A(C) measures magnetic
flux through C, and in the same time creates an electric tlux
line along C. Since A(C) is gauge-invariant under purely periodic
gauge transformations, our versions of magnetic and electric
flux are gauge-invariant. Therefore they are not directly linked
to the gauge covariant curl G,(x).

There exists a dual analogon of A(C) which will be called
B(C) or disorder loop operator [3].Cis again a closed oriented
curve in (S,)°. A simple definition of B(C) could be made by
postulating its equal-time commutation rules with A(C):

[A(C),A(C)] =0
[B(C), B(C")] = 0:
A(C)B(C') = B(C)A(C) exp 2min/N,

(3.3)

where n is the number of times C' winds around C in a certain
direction. Note that »n is only well defined if either C or C' is in
the trivial homotopy class (that is, can be shrunk to a point by
continuous deformations). Therefore, if C' is in a nontrivial
class we must choose C to be in a trivial class. Since these com-
mutation rules (3.3) determine B(C') only up to factors that
commute with 4 and B, we could make further requirements,
for instance that B(C) be a unitary operator.

An explicit definition of B(C) can be given as follows. First
we go to the temporal gauge, 4, = 0. We then must distinguish
a “‘large Hilbert space™ # of all field configurations 4(x) from
a ‘“physical Hilbert space” H C#. This H is defined to be the
subspace of #of all gauge invariant states:

H = {{Y):(AX) Y)Y = (QAX) )}

where 2 is any infinitesimal gauge transformation in 3 dim.
space. Often we will also write 2 for the corresponding rotation

in#"
H = {|y); QY) = |Y), Q infinitesimal }.

(3.4)

(3.5)

Now consider a pseudo-gauge transformation QL€ defined to
be a genuine gauge transformation at all points x & C', but
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singular on C'. For any closed path x(6) with 0 <0 < 27 twist-
ing n times around C' we require

QL (x(2m)) = QLCT (x(0)) e2™in/N (3.6)

This discontinuity is not felt by the fields 4(x, t) which are
invariant under Z(/). They do feel the singularity at C' how-
ever. We define B(C') as QL€ but with the singularity at '
smoothened; this corresponds to some form of regularization,
and implies that the operator differs from an ordinary gauge
transformation. Therefore, even for |{) € H we have

B(CHIY) # |¢) (3.7)

For any regular gauge transformation £2 we have an £’ such that
QQlcl = qlclg’ (3.8)

Therefore if |¢)E H then B(C')|Y)E H, and B(C') is gauge-
invariant. We say that B(C") measures electric flux through C'
and creates a magnetic flux line along C'.

We now want to find a conserved variety of Non-Abelian
gauge-invariant magnetic flux in the 3-direction in the 3 dimen-
sional periodic box. One might be tempted to look for some
curve C enclosing the box in the 12 direction so that A(C)
measures the flux through the box. That turns out not to work
because such a flux is not guaranteed to be conserved. It is
better to consider a curve C' in the 3-direction winding over
the torus exactly once:

C' = {x(s),0<s<1;x(1) = x(0) + (0,0,a3)} (3.9)

B(C") creates one magnetic flux line. But B(C") also changes
the number n,, into n,, + 1. This is because Q¢ makes a
Z(N) jump according to (3.6). If €2, ,(x) in (2.2) are still
defined to be continuous then Z in (2.4) changes by one unit.
Clearly, n,, measures the number of times an operator of the
type B(C') has acted, i.e., the number of magnetic flux lines
created. n,, is also conserved by continuity. We simply define

(3.10)

i — €jjr My

with m, the total magnetic flux in the Ak-direction. Note that
m corresponds to the usual magnetic flux (apart from a numeri-
cal constant) in the Abelian case. Here, m is only defined as an
integer modulo V.

4. Non-Abelian gauge-invariant electric flux in the box

As in the magentic case, there exists no simple curve ( such that
the total electric flux through C, measured by B(C'), corresponds
to a conserved total flux through the box. We consider a curve
C winding once over the torus in the 3-direction and consider
the electric flux creation operator A(C). But first we must
study some new conserved quantum numbers.

Let |¢) be a state in the before mentioned little Hilbert
space /. Then, according to eq. (3.5), [{) is invariant under
infinitesimal gauge transformations £2. But we also have some
non-trivial homotopy classes of gauge transformations £2. These
are the pseudoperiodic ones:

Qa;,x,,x3) = 0,x,,x3)Z,
(x5 + 0, x5 )25
Q(xl,xz,ﬂ:}) T Q(x11x210)23
Z1 1 3 € center Z(N) of SU(N),

Uxy,a9,X3) =

(4.1)

and also those £ which are periodic but do carry a non-trivial



Pontryagin number v. A little problem arises when we try to
combine these two topological features. the Z, , 3 an be labeled
by three integers k; , 3 between O and /V.

Z.f = eZTTifE t/N (42)
But how is v defined? The best definition is obtained if we con-
sider a field configuration in a four dimensional space, obtained

by multiplying the box (S,)” with a line segment:
o0<r< |

Now choose a boundary condition: A(r = 1) = QA(t = 0).
Then . if the fields in between are continuous. then

= JG“uéuud4x/32ﬂ2 (4.3)
is uniquely determined by 2. On §,; this would be the integer
v. Now however, it needs not to be integer anymore because of
the twists in the periodic boundary conditions for (S,)*. We
find that the required boundary condition, with an £2 satistying
eq. (4.1), can easily be fulfilled by a tield 4, in an Abelian sub-
algebra of the gauge system. The integral (4.3) is then easy to
work out:

(mk) "
%

P = D (4.4)
where v is integer and m is the magnetization defined in the
previous section. Notice that v is only well defined if m and k
are given as genuine integers, not modulo V. Taking this warning
to heart, we write Q[k,»| for any £ in the homotopy class
[k, v].

Notice that not only do the 4, (x) transform smoothly under
2k, v],since they are invariant under the Z(/V) transformations
of eq. (4.1). but also their boundary conditions do not change.
These €2 commute therefore with the magnetic flux m. If two £2
satisfy the same equation (4.1) and have the same v, they may
act differently on states of the big Hilbert space #, but since
they differ only be regular gauge transformations they act

identically on states in /H, defined in eq. (3.5). We may simul-
taneously diagonalize the Hamiltonian H, the magnetic flux m,

and [k, v]:

Qlk,v] |P) = elC®&D |y, (4.5)

where w(k, v) are strictly conserved numbers. Now the £2
operators form a group. Defining for each 2 the number p as In

(4.4) we have

Qlky,p1] 2k, ,p2] = Q[ky +ky,py + 02 (4.6)

SO

Wk, vy)+ wk,,vy) = wky +ky,v, +1,) (4.7)

and

wk + N, v) = wk, v+ (Im)) (4.8)

if 1is an integer. We find that w must be linear in k and v:

w(k,v) = ;j(ek) | : (mk) + Ov (4.9)
N N

where ¢; are integer numbers defined modulo N, and @ is the
familiar instanton angle, defined to lie between 0 and 2.

Now let us turn back to A(C) defined in eq. (3.2). If Cis
the curve considered in the beginning of this section, A(C) is
not invariant under [k, v]| because
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A(C) > TrUxq ) | Pexp .[ igA dx | §27"(x; +a;3)

= gremngily 400" : (4.10)
Theretfore,
Ak, v] 1Y) = Q[k,v] e2™RN 4(O)|y) (4.11)
[
Qk, ] |y) = ey, (4.12)
and
AC)Y) = Y1), (4.13)
then
Qlk,v] [y = elwtenrami/N |y’ (4.14)
Therefore A(C) increases e; by one unit:
e, A(C)|Y) = A(C)ey + 1)|Y) (4.15)

¢4 1s a good indicator for electric flux in the 3-direction, up to
a constant. It is strictly conserved. However if we let 6 run from
0 to 27 then e turns into e + m. It is therefore physically perhaps
more appropriate to identify

0

c m
2

(4.16)

as being the total electric flux in the three directions of the box.

5. Free energy of a given flux configuration

Let us write down the free energy F of a given state (e, m, )
at temperature 7= 1/kf:

ePF = Try P.(e)P,,(m)Py(6) eFH (5.1)

Here H is the Hamiltonian and A the little Hilbert space. P are
projection operators. P,,(m) is simply defined to select a given
set of n; = €;;,my,, the three space-like indices of eq. (2.6).
P,(e)P,(0) is defined by selecting states | ) with

Qlk, v] |y) = exp(%i—(k,eh—%i—(mk)-l-i@v)lgb) (5.2)
Theretore
1 - 2mi 01
P,(e)Py(0) = — Y exp( (ke)—-——(mk)—iﬂv)
’ N N N
Q[k, v] (5.3)

Now e PH is the evolution operator in imaginary time direc-
tion at interval (3, expressed by a functional integral over a
Euclidean box with sides (@, ,a,, a3, B):

A(x,PB)=A()(x)
(A(l)(X)‘e_ﬁH ‘A(2)(X)) = IDA eS(A) / (54)
A(x, 0)=A(1)(x)
We may fix the gauge for A,,(x) for instance by choosing
A(2)3 (x) =0
Ay (x,y,0) =0
A(2)1 (x,O, O) = () (55)

We already had A,(x,¢)=0. Since only states in A are con-
sidered, we insert also a projection operator

j D2
Qel

where / is the trivial homotopy class.
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“Trace” means that we integrate over all A, = A4(,, there-
fore we get periodic boundary conditions in the 4-direction.
Insertion of [=;DS2 means that we have periodicity up to
gauge transformations, in the completely unique gauge

As(x,8) = A5(x,0)= A4,(x,,0,0) = 4,(x,0,0,0) = O
(5.6)

Equation (5.3) tells us that we have to consider twisted boundary

conditions in the 41,42, 43 directions and Fourier transform:

1 2mi | mk
IYE Ey exp( N (ke)—16(v+ —AT))
x Wk, m,v,a,}

E_BF(Eimtgt a,) —

(5:7)

Here W{k, m,v,a,} is the Euclidean functional integral with
boundary conditions fixed by choosing n;; = €My Nia = K
a, = (3, and a Pontryagin number v. Because of the gauge choice
(2.2) this functional integral must include integration over the

Q belonging to the given homotopy classes as they determine
the boundary conditions such as (2.2).

The definition of W is completely Euclidean symmetric. In
the next section I show how to make use of this symmetry with
respect to rotation over 90° in Euclidean space.

6. Duality

The Euclidean symmetry in eq. (5.7) suggests to consider the
following SO(4) rotation:

O
l 0

g il
=1

— S—

Let us introduce a notation for the first two components of a
vector:

x, = (x,x3),
f - (x11x2)3
x = (x3,x). (6.2)
We have, from eq. (22.7):
N = N l
exp[—-BF‘(e?e?ﬁ?nI?ma‘ejaaaaaﬁ)] - m Z
k.1
e = (ke) + (I m
s | o
p N e ) m )
- _ |
—H3F([,€3,k,m3,9,a,6,a3) (63)

Notice that in this formula the transverse electric and magnetic
fluxes are Fourier transformed and interchange positions. Notice
also that, apart from a sign difference, there is a complete
electric-magnetic symmetry in this expression, in spite of the
fact that the definition of F in terms of W was not so symmetric.

Equation (6.3) is an exact property of our system. No approxi-
mation was made, We refer to it as “duality”.

7. Long-distance behaviour compatible with duality

Equation (6.3) shows that the instanton angle 6 plays no role in
duality. It does however affect the physical interpretation of e
as electric flux, see eq. (4.16). From now on we put 6 = 0 for
simplicity, and omit it. But we come back to this point in
Section 8.
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Let us now assume that the theory has a mass gap. No mass-
less particles occur. Then asymptotic behavior at large distances
will be approached exponentially. Then it is excluded that
FF(e,m,a,f)— 0, exponentially as a, — oo, for all e and m,
which would clearly contradict eq. (6.3). This means that at
least some of the flux configurations must get a large energy
content as a, 3 = oo. These flux lines apparently cannot spread
out and because they were created along curves C'it is practically
inescapable that they get a total energy which will be pro-
portional to their length:

E = lim F = pa (7.1)
g+

However, duality will never enable us to determine whether it
is the electric or the magnetic flux lines that behave this way.
From the requirement that W in eq. (5.7) is always positive one
can deduce the impossibility of a third option, namely that only
exotic combinations of electric and magnetic fluxes behave as
strings (provided 6 = 0).

For futher information we must make the physically quite
plausible assumption of “‘factorizability™:

F(e,m)—> F,(e)+ F,(m) ifa, f—>oo (7.2)
Suppose that we have confinement in the electric domain:
F,(0,0, 1)~ pas (7.3)

where p is the fundamental string constant. Then we can derive
from duality the behavior of /,,,(m).

First we improve (7.3) by applying statistical mechanics to
obtain F, for large but finite . One obtains:

: |
exp(— BFe(er, €2,0,a,8)+ Ca.B)) = ) o=
+ + ALY LR Rl

NN

-

+ - + -— L o = _
X ’Y?‘m“)’gfnz@w(”:_’?l —ey)on(ny—ny,—e,y)

(7.4)
Here
Y1 = Naas gr
g = Mlﬂ3 e-ﬁpa?,
| N-l
5N(_x) s il e?nikx!N
N k=0
1 ifx = 0(mod N) (7.5)
- 0 ifx = other integer number o

The sum is over all nonnegative interger values of n; (the orien-
tations + are needed if NV = 3). The y’s are Boltzmann factors

associated with each string-like flux tube.
We now insert this, with (7.2),into (6.3) puttingey; = m3 = 0.
One obtains

exp(— BF,,(m,;,m,,0,a,B)) = C exp (2 z v, cos(2m,m/N)
’ (7.6)
where C' is again a constant and

Y1 = Aa,f eP%%

Y2 = Aa,f e

(7.7)

At [ — oo we get
Fp(m,0,a,8) > Ep(m,0,2) = 2 Ei(m;, a)
I

with



: ( 2717?11) y

Ey(m,,a) = 2X\|1 —cos ay; ¢P%% (7.8)
N

and similarly for £, and £

One reads off from eq. (7.8) that there will be no magnetic
confinement, because if we let the box become wider the
exponential factor e™#%2“ causes a rapid decrease of the energy
of the magnetic flux. Notice the occurrence of the string con-
stant p in there.

Of course we could equally well have started from the pre-
sumption that there were magnetic confinement. One then would
conclude that there would be no electric confinement, because
then the electric flux would have an energy given by eq. (7.8).

A third possible mode in the thermodynamic limit is the so-
called Coulomb mode. Both electric and magentic charges occur
explicitly. The mathematics of this mode is further explained in

1] .

8. 0-dependence

In our duality equations (6.3) the instanton angle 6 seems to
play no special role. However the fact that 6 occurs explicitly
In the equations of Section S does have consequences, which we
will now explore.

Let us consider the periodic box in three-space with a given
non-vanishing amount of magnetization, parametrized with
integers m. Take e = 0, so that no electric fluxes are present.
Now vary the instanton angle # continuously from 0 to 2. We
now see fromeq. (5.7) that then

F(O,m,2nm,a,B) = F(m,m,0,a,f) (8.1)

In other words: we went continuously from the case e =0 to
the case e = m.

This observation is closely related to a similar feature observed
for magnetic monopoles in a Georgi-Glashow model with non-
trivial instanton angle: if § runs continuously from zero to 2
then the electric charge of a monopole runs continuously from
zero to one unit [4]. For the case that 8/2n is fractional it is
reasonable to expect that the monopole has a fractional electric
charge. Indeed one can show that attributing fractional electric
charge to a magnetic monopole is not inconsistent with Dirac’s
quantization condition [4].

Let us return to our periodic box and assume that electric
confinement takes place at all #. Then one observes a difficulty.
The tree energy of the configuration with e # 0 will have to be
much higher than at e = 0. But if the function (0, m,0,...) —
F(—m,m,0,...) is to be a continuous function of 8, then it
must change sign at some point. A zero is likely to occur at § =
m, In contradiction with the hypothesis that the energy of an
electric flux tends to infinity in a large box.

There are now two possibilities: either confinement only
occurs within a finite interval of 6 values, excluding 0 = 7, or
the sign flip of this function becomes a discrete jump at 6 = .
Such jumps are characteristic for a phase transition and indeed
this is what I think one can conclude: if confinement persists
tor all #, then there is a phase transition at 6 = m. At present
however the details of this phase transition are not very clear
to me.

9. Further speculations

[t could be that the transition compares with the so called
“roughening transition” in lattice models; the nature of the
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string-like structures in the theory changes abruptly but no clear
singularity is seen in the free energy of the original theory. But
it is also possible that at the transition point confinement breaks
down altogether. In that case the transition is more drastic, also
tor other properties of the model, such as the particle mass
spectrum. Let us speculate for a moment that this is the case.

Then introduce a multiplet of fermions in the fundamental
representation of the color gauge group. Besides color they have
flavor; the flavor multiplicity is called F. All flavors are given
identical mass, for simplicity, but, as a start, we introduce also
a ys term in the mass matrix:

L' = .05 %(mo timsys)Yir (2:1)
where i counts color and f counts flavor:
f=1,...F (9.2)

Of course the ys term can be rotated away by a chiral rotation,
but then 6 has to be rotated accordingly. Now in the case of F
flavors a rotation of the mass vector (m,,ms) by an angle ¢
corresponds to a rotation of 6 by ¢F. The arguments of the
previous sections all refer to the quark-less case, which corre-
sponds to the limit m§ + mz — o. If a phase transition occurs
at 0 = m, then that transition must also occur at fixed and
vanishing 6, it the mass vector (m,,ms) is rotated by an angle ¢
approaching #/F. The resulting phase transition boundaries for
the case /= 3 are sketched in Fig. 1. They are the solid lines,
at large values for my or ms.

[t is unlikely that these phase boundaries just stop some-
where. Probably they continue all the way to the origin, where
a larger singularity will develop. We now suggest that this singu-
larity at the origin causes chiral symmetry to be spontaneously
broken. The mass terms are coupled to the vector (Y¥, Yiys §).
A smooth behavior of the system at m,ms = 0 would require
(YY) = 0. But because of the singularity and because we have
separate phase regions surrounding the origin we may have that
the value of () depends on the direction in which the origin is
approached. It is no longer required to vanish by symmetry. If
(YY) and (Yrysy) would vanish then no singularity would de-
velop at my= ms= 0. So we seem to obtain necessarily a spon-
taneous breakdown also of chiral SU(F) ® SU(F) symmetry.

> m

e phase transition due to instantons
----- extrapolated phase boundary
& singularity describing spontaneous

chiral symmetry breakdown

Fig. 1. Singularities in the mass matrix: case of three flavors.
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