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Summary
Background There is an urgent need for objective and sensitive measures to quantify clinical disease progression and
gauge the response to treatment in clinical trials for amyotrophic lateral sclerosis (ALS). Here, we evaluate the ability
of an accelerometer-derived outcome to detect differential clinical disease progression and assess its longitudinal
associations with overall survival in patients with ALS.

Methods Patients with ALS wore an accelerometer on the hip for 3–7 days, every 2–3 months during a multi-year
observation period. An accelerometer-derived outcome, the Vertical Movement Index (VMI), was calculated,
together with predicted disease progression rates, and jointly analysed with overall survival. The clinical utility of
VMI was evaluated using comparisons to patient-reported functionality, while the impact of various monitoring
schemes on empirical power was explored through simulations.

Findings In total, 97 patients (70.1% male) wore the accelerometer for 1995 days, for a total of 27,701 h. The VMI was
highly discriminatory for predicted disease progression rates, revealing faster rates of decline in patients with a worse
predicted prognosis compared to those with a better predicted prognosis (p < 0.0001). The VMI was strongly asso-
ciated with the hazard for death (HR 0.20, 95% CI: 0.09–0.44, p < 0.0001), where a decrease of 0.19–0.41 unit was
associated with reduced ambulatory status. Recommendations for future studies using accelerometery are provided.

Interpretation The results serve as motivation to incorporate accelerometer-derived outcomes in clinical trials, which
is essential for further validation of these markers to meaningful endpoints.
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Introduction
Amyotrophic lateral sclerosis (ALS) is characterised
by the progressive loss of motor neurons, resulting in
significant paralysis of voluntary muscle groups,
limitations in daily life and, ultimately, death within,
on average, three to five years after symptom onset.1

Extensive clinical heterogeneity in symptom onset,
progression rates and survival time is a characteristic
feature of ALS and, combined with the lack of sen-
sitive outcome measures of clinical progression, one
of the main drivers of numerous futile clinical
trials.2–4
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Current outcomes for ALS clinical trials rely on
subjective, mostly survey-based outcomes to assess
various aspects of daily functioning and symptom-
atology.5,6 Although these outcomes have been
well-adapted and successfully identified beneficial
treatment effects,7 they have a limited ability to detect
subtle changes over time.8 Consequently, clinical trials
require large sample sizes or long follow-up durations,
increasing costs and exposure to placebo, or alterna-
tively, utilise overly restrictive eligibility criteria in an
attempt to only include those patients with similar
clinical progression rates. In addition, summation of the
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Research in context

Evidence before this study
Accelerometer-derived outcomes obtained using wearable
sensors could enhance the efficiency of drug development for
amyotrophic lateral sclerosis (ALS), but require validation with
conventional clinical outcomes to support their use in clinical
trials. PubMed searches were conducted until September 2022
using the following search terms: “amyotrophic lateral
sclerosis”, “ALS”, “motor neuron disease*”, “MND”,
“wearable*”, and “acceleromet*. While identified studies have
demonstrated that outcomes derived from wearable sensors
are able to describe patient-reported functional loss, little
attention was given to their ability to differentiate between
disease progression rates or overall survival.

Added value of this study
In this prospective cohort study, we determine the ability of
an outcome derived from a hip-worn accelerometer to detect
differential clinical disease progression and assess its
longitudinal associations with overall survival in 97 patients
with ALS during a multi-year observation period. We show

that the outcome is highly discriminatory for predicted
disease progression rates and strongly associated with overall
survival. In addition, we establish that the outcome is highly
related to patient-reported functional loss and ambulatory
status. Finally, we identify potential clinically meaningful
differences and explore the influence of different monitoring
schemes on statistical power, which could provide valuable
insights for the design of future studies using accelerometery.

Implications of all the available evidence
Utilizing digital tools like wearable sensors allows for an
objective, detailed, and near-continuous collection of data in
the home setting, potentially enhancing the detection of
functional treatment effects. Furthermore, these technologies
might ultimately offer a less burdensome, decentralised, and
more patient-focused trial design. The data presented in this
study serve as a motivation to incorporate accelerometer-
derived outcomes in clinical trials, something which will be
essential for exploring their potential as candidate surrogate
markers.
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different disease domains introduces multidimension-
ality,9,10 complicating the assessment of treatment
effects.11

Hence, the development of more sensitive and
robust outcomes could enhance the efficiency of drug
development. Contrarily to survey-based methods, out-
comes based on digital health technology purposely
assess only one disease domain (e.g., speech, motor, or
respiratory function) and allow for an objective and
detailed assessment, potentially improving their quan-
tification of domain-specific disease progression.11–13 For
the assessment of motor function, various devices have
been developed,14 collecting data during specific exer-
cises or obtaining data passively throughout the day.
Advantages of outcomes derived from passive moni-
toring are that they are not bound to the patient’s ability
to complete a specific exercise, may have higher
compliance,15 and may better reflect the patient’s real-
world functioning.16 As these outcomes commonly
measure precise characteristics of body movements, it is
not always immediately apparent what their clinical
relevance is. Additional information is therefore
required to facilitate meaningful interpretation and
support their utility for and uptake in clinical trials.17,18

Previous studies have demonstrated that
accelerometer-derived outcomes using passive moni-
toring are able to describe disease progression in pa-
tients with ALS, showing significant correlations with
the ALS functional rating scale (ALSFRS-R).19–24

Currently, however, there has been little attention to
whether these outcomes accurately differentiate be-
tween rates of disease progression and fully encompass
the heterogeneous nature of ALS. Moreover, although it
is likely that accelerometer-derived outcomes relate to
survival,25,26 affirming this relationship is important, as
survival remains the gold standard for demonstrating
therapeutic benefit27 and a requirement by most regu-
latory agencies. Additionally, while already more closely
examined in other neuromuscular diseases,28,29 opera-
tional aspects of accelerometery, such as the required
monitoring scheme, have not been fully elucidated for
ALS and often remain arbitrary.14

Here we demonstrate that an outcome measure
(Vertical Movement Index [VMI]) derived from a hip-
worn accelerometer, is highly discriminatory for future
disease progression and strongly associated with overall
survival in patients with ALS, thereby supporting its use
as a potential outcome for clinical trials. We evaluate the
clinical utility of VMI through comparisons with patient-
reported functional loss and ambulatory status based on
the ALSFRS-R, deriving potentially meaningful differ-
ences, and explore the influence of different monitoring
schemes on statistical power through simulations.
Methods
Participants, procedures, and devices
The data for this study originated from two prospective
cohort studies performed between September 2016 and
January 2023 at the University Medical Centre (UMCU),
the Netherlands. Patients were included if they had a
diagnosis of possible, probable (laboratory supported) or
definite ALS, according to the revised El Escorial
criteria,30 or had been diagnosed with progressive
muscular atrophy (PMA) or primary lateral sclerosis
(PLS), were over the age of 18 years, and were able to
www.thelancet.com Vol 103 May, 2024
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provide informed consent (Supplementary Table S1).
Patients were recruited from the Treatment Research
Initiative to Cure ALS (TRICALS) database or the bio-
bank for motor neuron diseases of the UMCU, where
patients can register to be approached for new research
initiatives. The study physicians reviewed the medical
records of all participating patients to confirm their
diagnosis and to calculate their risk profiles according to
the ENCALS survival prediction model, as described in
detail elsewhere.31 In short, the risk profile is based on
the linear predictor of the ENCALS model, which was
developed for predicting individual time to death or
respiratory insufficiency based on data of >11,000 pa-
tients.32 The resulting baseline risk profiles predict
future disease progression rates and can consequently
be used to quantify disease heterogeneity. Subsequently,
patients were given the ActiGraph GT9X Link, which is
a small, lightweight, research-grade accelerometer (cost
as of 2021: $315). Patients were instructed to wear the
device on the right hip in the anterior axillary line, using
a belt clip, during waking hours for three to seven
consecutive days, repeating the assessment every two to
three months, for a maximum follow-up of eighteen to
24 months. The device was sent and returned by mail or
was handed over during study visits, together with a
wear time log detailing the start and stop date. In cohort
two, accelerometery was part of a more extensive lon-
gitudinal study, requiring patients to visit the clinic.
Follow-up visits were optional, meaning that patients
were asked after each in-clinic visit whether they would
like to return for another assessment. As such, patients
declining further in-clinic visits were withdrawn from
the study and their accelerometery assessments
stopped, resulting in variable follow-up time. In addi-
tion, the ALSFRS-R was either self-administered
remotely or administered by a physician during
in-clinic visits. The self-administered version was vali-
dated for the Dutch population, showing excellent inter-
rater reliability and acceptable inter-rater agreement
between patient and clinicians.33 Survival status was
monitored using an online nationwide population reg-
istry (data extraction in August 2023).

Ethics
Both cohort studies were approved by the Medical Ethics
Committee of the UMCU (registration numbers 16/606
and 15/656) and conducted in accordance with the
granted ethical approval. All patients provided written
informed consent to participate.

Data collection and processing
During wear time, tri-axial accelerometer data were
collected in free-living conditions at a sampling rate of
30 Hz. Sensor accelerations during wear periods were
auto-calibrated for local gravity34 and compared to their
expected accelerations to determine the device orienta-
tion on a day-to-day basis. Any identified discrepancies
www.thelancet.com Vol 103 May, 2024
in relation to the study protocol were corrected by
rotation of the axes (e.g., wearing the device upside
down). Frequency filtering (a 7th order IIR filter) and
amplitude thresholds were used to remove or curtail
accelerations probably attributable to non-human body
movements.35,36 The raw accelerometer data were then
summarised to activity counts during 10-s epochs while
applying the low-frequency extension (LFE) algorithm.36

The LFE algorithm reduced the activity count threshold,
thereby increasing the sensitivity for capturing lower
intensity activities. The resulting data consisted of
activity counts alongside the forward, vertical (i.e.,
movement against gravity), and sideway axes per 10 s.
Non-wear periods were identified using the non-wear
time classification algorithm reported by Choi et al.37

with optimised hyperparameters (periods were classi-
fied as non-wear if no activity was recorded for a mini-
mum interval of 210 min),38 and these periods were
subsequently removed. To obtain representative accel-
erometer data during a day, days with less than 8 h of
total wear time were excluded from the analyses. Data of
patients who participated in both cohorts were com-
bined and treated as part of their first cohort. Survival
time was defined as time from first accelerometer
measurement until death or latest known follow-up.
Survival time longer than 12 months since the last
accelerometer measurement, or longer than 30 months
since first assessment, were censored administratively.

Vertical Movement Index
Next, the Vertical Movement Index (VMI) was derived
from the processed accelerometery data. The VMI was
developed to measure the patient’s performance range,
thereby reflecting the variability in movements induced
by actions performed in an unsupervised environment.
The index is based on movements against gravity by
calculating the daily average variation alongside the
vertical axis (standard deviation of the natural logarith-
mic transformation of the daily activity counts + 1). By
calculating the variability in movements, VMI aims to
mitigate the noise caused by between-patient differences
in, for example, motivation and lifestyle. Consequently,
it aims to portray the patient’s ability to perform a range
of actions, regardless of how often the action occurred
during the day. The VMI has previously been identified
as a more sensitive outcome compared to classical
metrics, such as %active or Metabolic Equivalent of Task
(MET), while also showing excellent correlations with
the ALSFRS-R and King’s staging in patients with ALS.19

Sample size estimation
Our literature review found no data regarding the rela-
tionship between accelerometer-derived outcomes and
overall survival in patients with ALS. However, since
VMI was found to be highly correlated with the
ALSFRS-R total score,19 sample size was calculated us-
ing the well-established relationship of ALSFRS-R with
3
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overall survival. We assumed that every point increase in
ALSFRS-R total score reduces the hazard of death by
12% (HR 0.88) and that the baseline variability of the
ALSFRS-R has a standard deviation of 5.26 In total, 30
events would provide 92% power to detect the hypoth-
esised HR using the log-rank test with an alpha of 5%;
25 events would provide 86% power.

Statistics
As longitudinal assessments in ALS are typically
confounded by death, we analysed all data within the
joint-modelling framework.39 In brief, the joint modelling
framework consists of two parts: (1) a submodel
describing the longitudinal trajectory of a clinical
outcome, here the accelerometer-derived outcome VMI,
and (2) a submodel that describes the event process, here
time to death. By combining these models into a single
framework, where the longitudinal submodel serves as a
‘covariate’ in the time-to-event submodel, one can adjust
for the (informative) missing data mechanism in the
longitudinal data, while investigating the predictive ability
of the clinical outcome for the event. This framework was
used to answer two primary questions: (1) what is the
mortality-adjusted longitudinal trajectory of VMI and the
ability of the baseline risk profile to predict its rate of
decline, and (2) what is the relationship between VMI
and the immediate rate of death (hazard).

The longitudinal submodel consisted of a linear
mixed effects model, with time since first assessment in
months as a fixed effect, and a random intercept and
slope for time per patient as random effects. A second
model was constructed by adding the baseline risk
profile score and its interaction with time as fixed ef-
fects, to answer the question whether the average rate of
decline in VMI over time was dependent on the baseline
risk profile. For the survival submodel, the time since
first assessment in months to death was modelled using
a Weibull model, containing only the risk profile and
longitudinal submodel as covariates. The random-effect
terms followed a multivariate normal distribution. A
sensitivity analysis was performed investigating four
different association structures between the longitudinal
submodel and the hazard (i.e., current value, current
slope, current value and current slope, and history of all
values until current value).39 Overall model fit was
compared using the Akaike Information Criterion; the
best fitting model (current value) was used to answer the
various research questions. Similar models were used to
make dynamic predictions and illustrate the ability of
the current value of VMI to predict survival probabilities
for individual patients, and to investigate the relation-
ship of the ALSFRS-R total score and subdomain scores
with the immediate rate of death (hazard).

Next, we evaluated the longitudinal associations be-
tween VMI and the subdomains of the ALSFRS-R. In
brief, a multivariate linear mixed effect model was
defined as described elsewhere.11 From the multivariate
model, the associations between random effects were
investigated using Pearson correlation analysis to un-
derstand how a change in VMI was associated with a
change in each subdomain. In addition, the relationship
between VMI and patient’s ambulatory status based on
item eight of the ALSFRS-R of that same session was
assessed to determine the magnitude of VMI changes as
function of symptoms reported by the patient and explore
meaningful differences. Estimates of VMI per item score
were modelled using linear mixed effect model with item
score as fixed and random effect per patient.

Finally, to explore the influence of different moni-
toring schemes on statistical power, we first fitted our
final model to a typical clinical trial population (i.e.,
patients with risk profile scores between −6.0
and −2.0).40 Based on the parameter estimations of this
model, we then simulated clinical datasets for various
monitoring schemes by varying the sampling fre-
quency (biweekly, monthly and bimonthly) and moni-
toring period (1–7 days) for different study durations (6
and 12 months) and sample sizes (25 and 50) while
assuming an adherence rate of 90%. In each dataset,
we evaluated whether a differential progression in VMI
could be detected based on the time by risk profile
interaction term. We simulated each scenario 10,000
times and counted the number of simulations that
resulted in a p value < 0.05 (empirical power). Analyses
were performed using R software (version 4.3.2). Joint
models were fitted using the package JM (version
1.5–2). R code for all data preprocessing is publicly
available on GitHub repository (https://github.com/
tricals-methodology/remote-monitoring-als).

Role of funders
The funder of the study had no role in study design, data
collection, data analyses, interpretation, or writing of the
report.
Results
Study population and compliance
Between September 2016 and January 2023, hip-worn
accelerometer data of 97 patients with ALS were
collected as part of two prospective cohort studies (Fig. 1).
Demographics and disease-specific characteristics are
presented in Table 1. Overall, patients enrolled in the
first cohort had a longer symptom duration compared to
patients enrolled in the second cohort (median 24.9 vs.
18.5 months, respectively). The median follow-up for the
first cohort was 17.3 [12.4] months per patient and for the
second cohort, 6.9 [15.1] months per patient. The total
follow-up duration encompassed 1052 patient-months
with a median follow-up of 10.1 [14.6] months per pa-
tient. In total, 1969 valid wear days were available for
analysis with a total monitoring period of 27,284 h and a
mean daily monitoring time of 13.9 h/day. During
follow-up, the mean daily monitoring time of each
www.thelancet.com Vol 103 May, 2024
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Fig. 1: Overview of the dataset. Data collection from 2016 to 2023 along with the data extraction method and calculation of the Vertical
Movement Index.
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session decreased non-significantly from 13.6 h/day in
the patient’s first session to 13.4 h/day in the patient’s
last session (p = 0.92; likelihood ratio test). The wear time
adherence of 91.8% was excellent (1969 ≥8-h periods of
the 2145 days). A total of 32 patients died.

Rate of decline and heterogeneity in disease
progression between patients
The VMI declined over time with an average rate of 0.028
units per month (95% CI: −0.035 to −0.020, p < 0.0001;
Wald test). There was significant variability between pa-
tients (p < 0.0001; likelihood ratio test) in their rates of
decline, with patient-specific slopes ranging from −0.153
to 0.024 units per months. This is of significance given
the known heterogeneous nature of ALS and highlights
the potential of VMI to reflect differential disease pro-
gression rates between patients. This was further
explored by associating the VMI progression rate with the
patient’s baseline prognostic risk profile, a metric asso-
ciated with clinical progression,31 revealing faster rates of
decline in patients with a worse risk profile compared to
those with a better risk profile (p < 0.0001; Wald test,
Table 2). More specifically, with every unit increase in the
www.thelancet.com Vol 103 May, 2024
prognostic risk profile, the rate of decline in the VMI
increased by −0.008 per month (95% CI: −0.012 to 0.005).
For instance, when comparing two patients with a risk
profile score of −6 and −2, the first patient average
monthly decline in VMI would be 0.022 units, which
would be 0.054 units for the second patient. Results were
similar within each sub-cohort (Supplementary Table S2).
This relationship is further illustrated in Fig. 2a, showing
significant differences between the patient-specific rates
of decline in VMI for different prognostic risk groups
(p = 0.010; one-way ANOVA). The findings of the sex-
disaggregated analysis are described in Supplementary
Table S3. Of note, comparing VMI scores across days
revealed that on Sundays, patients had an average VMI
score that was 0.041 (95% CI: 0.067–0.016, p = 0.0015;
likelihood ratio test) points lower (or a decrease of 2.3%)
compared to other days of the week. Thus, there was a
small but systematic ‘Sunday effect’.

Relationship between rate of decline and survival
hazard
The relationship between baseline VMI and overall
survival is illustrated in Fig. 2b, demonstrating that
5
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Cohort 1 (n = 42) Cohort 2 (n = 55) Total (n = 97)

Demographics

Age (years), mean (SD) 59.9 (11.6) 61 (10.7) 60.5 (11.1)

Sex

Male 31 (73.8) 37 (67.3) 68 (70.1)

Female 11 (26.2) 18 (32.7) 29 (29.9)

Clinical characteristics

Diagnosis

ALS 39 (92.9) 55 (100) 94 (96.9)

PMA 3 (7.1) – 3 (3.1)

Symptom duration (months)

Median [IQR] 24.9 [21.4] 18.5 [14.7] 22.1 [17.6]

Range 6.9–217.9 2.2–93.9 2.2–217.9

Diagnostic delay (months)

Median [IQR] 7.5 [11.7] 11.7 [13.0] 9.6 [13.5]

Range 2.1–130.1 1.0–64.7 1.0–130.1

ΔFRS (points per months)

Median [IQR] 0.34 [0.53] 0.37 [0.49] 0.34 [0.49]

Range 0.05–1.24 0.03–4.15 0.03–4.15

Bulbar onset 7 (16.7) 12 (21.8) 19 (19.6)

Spinal onset 34 (81.0) 43 (78.2) 77 (79.4)

Spinal arm onset 14 (41.2) 20 (46.5) 34 (44.2)

Spinal leg onset 18 (52.9) 22 (51.2) 40 (51.9)

Missing 2 (5.9) 1 (2.3) 3 (3.9)

Generalised onset 1 (2.4) – 1 (1.0)

ALSFRS-R total score, mean (SD) 36.3 (8.1) 39.1 (5.3) 37.9 (6.8)

Bulbar subdomain 10.1 (2.7) 10.4 (1.9) 10.3 (2.3)

Fine subdomain 7.9 (3.6) 8.9 (2.9) 8.4 (3.2)

Gross subdomain 7.3 (3) 8.3 (2.7) 7.8 (2.8)

Respiratory subdomain 11.1 (1.8) 11.5 (0.9) 11.3 (1.4)

Ambulatorya 40 (95.2) 54 (98.2) 94 (96.9)

Only lower limb involvementb – 4 (7.3) 4 (4.1)

VC %predicted (GLI-2012), mean (SD) 101.4 (16.1) 92 (16.9) 95.8 (17.1)

Missing 5 (11.9) 1 (1.8) 6 (6.2)

Riluzole use 30 (71.4) 41 (74.5) 71 (73.2)

Missing 2 (4.8) – 2 (2.1)

Body mass index (kg/m2), mean (SD) 24.8 (3) 25.4 (3.3) 25.1 (3.2)

Linear predictor risk profile score, mean (SD) −5.25 (1.79) −5.08 (1.80) −5.16 (1.78)

Time-related variables were summarised using median (IQR and range), mean and standard deviation (SD) for continuous variables, and frequency and percentage for
categorical variables. Abs. ALS, Amyotrophic Lateral Sclerosis; ALSFRS-R, ALS Functional Rating Scale; PMA, Progressive Muscular Atrophy; VC, Vitality Capacity; ΔFRS, 48—
ALSFRS-R total score/symptom duration. aAmbulatory defined as ALSFRS-R item 8 score of 2 or higher. bLower limb involvement defined as ALSFRS-R gross subdomain
score of 11 or lower.

Table 1: Demographics and clinical characteristics at baseline.

Articles

6

patients who had a lower baseline VMI also experienced
a significantly lower probability of survival compared to
those who had a higher baseline VMI (HR 2.57, 95% CI:
1.23–5.35, p = 0.0092; log-rank test). In a time-varying
model – accounting for the change in VMI over time
(Table 2)—the current value of VMI was strongly asso-
ciated with the hazard for death (HR 0.20, 95% CI:
0.09–0.44, p < 0.0001; Wald test), increasing the hazard
five-fold with every unit decrease. These findings were
consistent across cohorts (Supplementary Table S2).
The results of the sex-disaggregated analysis are
reported in Supplementary Table S3. To illustrate how
longitudinal changes in the VMI affect the survival
probability of patients, dynamic predictions of the two
example patients are presented in Fig. 3. For both pa-
tients, two survival predictions are shown using the
accumulated VMI data available until month 6. As can
be seen, both patients are predicted to have a similar
probability of survival for the subsequent months. These
survival probabilities change, however, when additional
VMI measurements become available, reflecting the
dynamic nature of the prediction. In this case, patient B
www.thelancet.com Vol 103 May, 2024
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Longitudinal submodel Coefficient 95% CI p value

Time (months) −0.070 −0.090 to −0.050 <0.0001

Risk profile 0.020 −0.025 to 0.065 0.38

Time (months) × Risk profile −0.008 −0.012 to 0.005 <0.0001

Survival submodel Hazard ratio 95% CI p value

Risk profile 2.24 1.57–3.18 <0.0001

VMI—current value 0.20 0.09–0.44 <0.0001

The results are based on the joint-modelling framework, which combines a linear mixed effects submodel with a survival model. As such, one can estimate the longitudinal trajectory
of VMI and its relation with survival hazard while adjusting for (informative) missing data. p values based on the Wald test (n = 97). Abs. VMI, Vertical Movement Index.

Table 2: Longitudinal trajectory of VMI and its relationship with survival hazard.

Articles
declines rapidly according to the VMI, correctly reflect-
ing the decreased probability of survival during the next
few months. The relationship of the ALSFRS-R total and
subdomain scores with overall survival are reported in
Supplementary Table S4. Current values of both the
total score and all subdomain scores were strongly
associated with the hazard for death (HR ranging from
0.78 [95% CI: 0.67–0.90, p = 0.00093; Wald test] for
every unit decrease in the gross subdomain score to 0.92
[95% CI: 0.89–0.95, p < 0.0001; Wald test] for every unit
decrease in the total score).
Fig. 2: VMI heterogeneity and relationship with survival hazard. We calcu
Linear Unbiased Prediction (BLUP), and correlated each BLUP to its corr
relationship. Risk profile scores were divided into quantiles. Outliers were d
for the first quartile and third quartile, respectively. p value based on the
excluded) (a). In addition, we illustrated the relationship between baselin
“higher” and “lower” score based on their position in relation to the medi
Movement Index.

www.thelancet.com Vol 103 May, 2024
Clinical utility
To further explore the clinical utility of VMI, we
compared the average VMI to the score of the ALSFRS-
R of the same session. The multivariate relationship
between changes in VMI and the ALSFRS-R sub-
domains is presented in Fig. 4a, revealing high corre-
lations of VMI with the fine motor domain (Pearson’s r
0.86, 95% CI: 0.80–0.90) and gross motor subdomain
(Pearson’s r 0.79, 95% CI: 0.70–0.85). Fig. 4b illustrates
the relationship between VMI and the patient’s ability to
walk (item eight ALSFRS-R). As can be seen, the VMI
lated a patient-specific VMI slope from our joint model, i.e., the Best
esponding risk profile score (predicted prognosis) to illustrate their
efined as values lower or higher than 1.5 times the interquartile range
one-way ANOVA (n = 95; two patients with a single wear day were
e VMI and overall survival. The VMI at baseline were divided into a
an. p value based on the log-rank test (n = 97) (b). Abs. VMI, Vertical

7
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Fig. 3: Survival predictions using VMI. Dynamic predictions of the probability of survival for two patients (patient A-B) based on the accu-
mulated data available at that time. The left part of each panel shows the observed longitudinal trajectory of the VMI; the right part shows the
estimated survival probability (95% CI). The lower panels illustrate how the probability of survival is dynamically updated as more VMI data
become available. Patient B died during follow-up around month 16 (†). Abs. VMI, Vertical Movement Index.
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was significantly different (p < 0.0001; likelihood ratio
test) across ALSFRS-R functional scores. More specif-
ically, when comparing each score with its lower sub-
sequent score, the VMI decreased by 0.19 (95% CI:
0.11–0.28) for “normal” vs. “early difficulties”, 0.32
(95% CI: 0.22–0.43) for “early difficulties” vs. “with
assistance”, and 0.41 (95% CI: 0.29–0.52) for “with
assistance” vs. “non-ambulatory.”

Implications for study design
Lastly, to translate findings to future clinical trial design,
we evaluated the impact of the monitoring scheme on
empirical power. As such, we defined a typical clinical
trial cohort based on the risk profile,40 thereby excluding
28 patients. Based on the remaining cohort
(Supplementary Table S5), we explored the impact of
various monitoring schemes on statistical power for
different follow-up durations and sample sizes (Fig. 5).
As can be seen, more frequent assessments and longer
monitoring periods resulted in higher statistical power.
This gain in power of more frequent assessments
decreased, however, as a function of study duration and
sample size. For a study with a 6-month follow-up
period, a monthly sampling frequency—each with a 7-
day monitoring period—would require 50 patients to
detect differential VMI progression rates with 80% po-
wer. However, sample size can be reduced by 50% if the
follow-up period were to be prolonged to 12 months. A
complete list of the simulation parameters is reported in
Supplementary Table S6.
Discussion
In this study, we have shown that an accelerometer-
derived outcome, based on passively collected data us-
ing wearable sensors in patients with ALS, was highly
discriminatory for future disease progression rates and
strongly associated with overall survival time. These
findings do not only contribute to the growing body of
evidence demonstrating the longitudinal association
between accelerometer-derived outcomes and conven-
tional ALS disease progression measures, but also sup-
port their capability to disentangle and quantify clinical
heterogeneity among patients with ALS. These
www.thelancet.com Vol 103 May, 2024
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Fig. 4: VMI relationship with patient-reported functionality. A correlation matrix of the changes in VMI and the ALSFRS-R subdomain scores to
illustrate their relationship; estimates are derived from a multivariate linear mixed effects model (n = 97) and contrasted using Pearson cor-
relation analysis (95% CI) (a). In addition, the relationship between VMI and the patient’s ambulatory status based on item eight of the ALSFRS-
R is presented. p value based on the likelihood ratio test (n = 97) (b). Abs. ALSFRS-R, ALS Functional Rating Scale, VMI, Vertical Movement
Index.
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characteristics serve as a motivation to incorporate
accelerometery-derived outcomes in clinical trials. Their
uptake will be essential for further validation of these
outcomes, particularly regarding the relationship with
disease-modifying interventions, thereby exploring their
potential as candidate surrogate markers, and help to
determine meaningful effect sizes.

Advances in digital health technology have enabled
the increasing use of digital tools in clinical trials.41 Pas-
sive monitoring using wearable accelerometers allows for
an objective, detailed, and near-continuous collection of
data in the home setting, potentially enhancing the
detection of domain-specific treatment effects. Further-
more, these technologies provide the opportunity to
alleviate the burden of participating in trials by reducing
the required number of in-clinic visits, and improve
enrolment rates by increasing study accessibility.42 Ulti-
mately, these benefits might offer a less burdensome,
decentralised, and more patient-focused trial design,
holding great promise for drug development.43

Although mostly studied as a proof-of-concept in
ALS,14 previous research has shown the feasibility of
accelerometery, demonstrating significant correlations
with the ALSFRS-R.19–24 This study additionally delineated
www.thelancet.com Vol 103 May, 2024
the relationship between the longitudinal trajectory of
VMI and overall survival, and demonstrated its ability to
differentiate between fast- and slow-progressing patients.
This holds significance as it aids in interpreting effect
sizes in terms of clinical relevance, thereby contributing
to the translation of accelerometer-derived markers to
meaningful outcomes.17,18 In addition, as accelerometer-
derived measures are not directly relatable to ‘tangible’
daily concepts, additional information is needed to relate
them to meaningful patient experience.44 By relating the
VMI to the symptoms reported by the patient, this study
identified potential meaningful differences that could
serve as relevant effect sizes in future studies. Never-
theless, to ultimately prove the value for clinical trials,
and explore its potential as a surrogate marker, one has to
establish whether the clinical effect of a drug (e.g., on
ALSFRS-R or survival) is sufficiently reflected in the
VMI.17,18,45 With a view to care, it could be worthwhile to
distinguish normal from abnormal VMI values to inform
patients about looming clinical milestones, such as the
need for assistive devices including walking aids or
wheelchair dependency. This would require normative
values for the VMI, preferably in a sex, age, and
education-matched cohort of non-ALS controls.
9
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Fig. 5: Power estimates for VMI. Based on the parameter estimates derived from a typical clinical trial cohort (risk profile score −6.0 to −2.0;
n = 69), we simulated clinical datasets and varied the sampling frequency and monitoring period for different study durations and sample sizes
(a and b). For each scenario (10,000 simulations), we evaluated whether differential progression in VMI could be detected, based on the time by
risk profile interaction term using the likelihood ratio test, and counted the number of simulations that resulted in a significant interaction term
(empirical power).
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The benefit of VMI is that it is conceptually easy to
understand, applicable without the need for complex
statistical methods, and derivable from any hip-worn
device measuring the tri-axial accelerations. A potential
disadvantage of this metric, however, is its reliance on
hip-worn accelerometery, which has some disadvan-
tages in wear comfort compared to, for example, wrist-
worn accelerometery.46 On the other hand, wrist-worn
accelerometery has its own limitations, including the
additional variability it introduces and its potential lower
sensitivity for longitudinal changes.21 To mitigate this
increased variability, one option would be to intensify
the monitoring scheme, as shown in Fig. 5, which
might be more feasible and less burdensome for wrist-
worn accelerometery. Hence, it is of interest to evaluate
the trade-off between increased monitoring burden and
greater wear comfort in future settings, while acknowl-
edging the additional variability that may arise due to
behavioural changes between days and across seasons.
In this regard, it might be preferable to implement a
monitoring period of at least seven days to average out
within-patient variability stemming from differences in
daily routines. Of note, previous research showed that
wrist-worn accelerometers were better correlated with
functional loss in fine motor function, while hip-worn
based outcome measures were more related to
changes in gross motor function.21,23 Interestingly, this
study revealed strong correlations between changes in
VMI and functional loss in both fine and gross motor
function. Although this finding is potentially an artefact
of the domain definition,9,10,47 it is possibly also attrib-
utable to hip-worn sensors not solely capturing lower
extremity movement (e.g., turning of the upper chest
might result in slight hip movement). An important
consideration remains, therefore, to determine whether
a uniform metric can be derived that measures the same
www.thelancet.com Vol 103 May, 2024
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disease concept when utilizing either hip- or wrist-worn
accelerometery.

Our study has several limitations. First, our study
utilised the baseline risk profile score to describe ALS
heterogeneity. Although this multivariable score com-
prises seven predictors of disease progression rate,31 the
inclusion of additional known predictors, such as ge-
netic factors or neurofilament levels,48 would likely have
enhanced our quantification of ALS heterogeneity. This
would decrease the degree of unexplained disease pro-
gression, thus leaving less effect to be explained by VMI.
As such, the estimation VMI values would probably be
lower. Furthermore, variations in cognitive function49 or
symptoms of anxiety or depression over time may have
influenced our estimates of the VMI trajectory and its
relationship with overall survival time. In this regard,
the association between VMI and survival time was
expressed as a HR, which inherently carries the poten-
tial of selection bias that may have influenced the results
of this study.50 Second, we were unable to investigate
whether VMI relates to conventional outcome measures
that assess domain-specific motor function, such as
muscle strength, or to key clinical milestones, such
as the use of assistive devices. Although there is a strong
association between VMI and the motor domains of the
ALSFRS-R,19 which was also supported by our findings,
the results of additional clinical studies, comparing
accelerometery with, for example, (remote) muscle
strength measurements,51 would further facilitate the
interpretation of accelerometer-derived outcomes.
Furthermore, the assessment of other domains that may
be affected, such as speech and vital capacity, as well as
patient-reported outcomes (PROMs), such as global
measures of change or quality of life, would enable
additional comparisons with accepted measures of
‘ground truth’, which are essential to facilitate clinical
interpretation and to determine meaningful
changes.17,18,44 Third, although this study provides
important insights into the potential of accelerometer-
derived outcomes in clinical trials, the limited sample
size prevents the thorough examination of the sensi-
tivity or VMI in non-ambulatory patients or during pe-
riods when short-term functional improvements might
occur (e.g., initiation of assistive devices). The latter
could be valuable in demonstrating the ability of these
outcomes to measure positive changes in functionality
despite the current lack of disease-modifying treat-
ments. Fourth, our current simulation approach
exploring the influence of different monitoring periods
on statistical power was primarily based on fixed pa-
rameters, which may affect the results if these param-
eters are considerably different. This approach can be
improved by sampling from a probability distribution
around each parameter, thus providing more realistic
estimates for future settings.52 Fifth, this study was
performed solely in the Dutch population. We anticipate
www.thelancet.com Vol 103 May, 2024
more challenges regarding the use of accelerometery in
regions with limited access to the internet or where the
use of telehealth might be less common; also, patients
with a lower ‘digital literacy’ level may encounter more
problems; this may be an important source of selection
for decentralised studies in general.53 Sixth, while motor
function often exhibits the most rapid progression
during a typical trial,5,11 it does not fully encompass the
ALS phenotype. To fully capture disease progression,
accelerometery measurements should be supplemented
with additional outcomes that can be assessed with
remote monitoring tools,51,54,55 evaluating multiple do-
mains that may be affected.

In conclusion, we have shown that an outcome
derived from passive hip-worn accelerometery was
highly discriminatory in disentangling differential dis-
ease progression rates and strongly associated with
overall survival time, supporting its use as an outcome
measure for ALS clinical trials. Accelerometer-derived
outcomes should, however, be obtained in parallel
with conventional primary outcomes during clinical
trials, in order to further validate these markers as
potentially meaningful candidate surrogate endpoints.
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