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Abstract
We propose to combine the benefits of flexible parametric survival modeling
and regularization to improve risk prediction modeling in the context of time-
to-event data. Thereto, we introduce ridge, lasso, elastic net, and group lasso
penalties for both log hazard and log cumulative hazard models. The log (cumu-
lative) hazard in these models is represented by a flexible function of time that
may depend on the covariates (i.e., covariate effects may be time-varying). We
show that the optimization problem for the proposed models can be formulated
as a convex optimization problem and provide a user-friendly R implementation
for model fitting and penalty parameter selection based on cross-validation. Sim-
ulation study results show the advantage of regularization in terms of increased
out-of-sample prediction accuracy and improved calibration and discrimination
of predicted survival probabilities, especially when sample size was relatively
small with respect to model complexity. An applied example illustrates the pro-
posed methods. In summary, our work provides both a foundation for and an
easily accessible implementation of regularized parametric survival modeling
and suggests that it improves out-of-sample prediction performance.
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1 INTRODUCTION

The estimation of individualized survival probabilities is often of key interest in medical and biostatistical research (Har-
rell, 2015; Steyerberg, 2009). A suitable prediction model for this task describes survival probabilities as a function of time
and the covariates of interest. In this context, fully parametric models provide a very direct and possibly parsimonious
means to obtain predicted survival curves over time (Crowther & Lambert, 2014; Royston and Parmar, 2002). With respect
to the ubiquitous semiparametric Cox model (Cox, 1975, 1972), note that the way in which it elegantly avoids estimation
of the baseline hazard is not a feature in this context: the baseline hazard is of key interest to obtain predicted survival
probabilities.1
A particularly flexible class of parametric survivalmodels uses splines tomodel time andwas introduced byRoyston and

Parmar (2002), considerably increasing flexibility beyond classical parametric families (e.g., Weibull models), while still
providing smooth survival estimates over time. Software implementations for Royston–Parmar model implementation
are readily available (e.g., stpm2 (Lambert, 2010) in Stata (StataCorp, 2021) and rstpm2 (Liu et al., 2018) in R (R Core
Team, 2021)). Nonetheless, none of these implementations provides themeans for regularization (such as ridge regression
(Hastie, 2020; Hoerl &Kennard, 1970), lasso regression (Tibshirani, 1996), or elastic net regression (Friedman et al., 2010)),
while this has proven to be an important tool in predictionmodeling to improve out-of-sample prediction accuracy (Hastie
et al., 2017, 2015).
In this paper, we introduce such regularization methods for flexible parametric survival models with possibly time-

varying covariate effects. The main aim is to improve out-of-sample accuracy of predicted survival probabilities over time
in settings where sample size is limited with respect to model complexity. More specifically, we focus on models that
are multiplicative on the hazard scale (like the Cox model) or cumulative hazard scale (like the typical Royston–Parmar
model). The use of regularization methods with such models is nontrivial due to the presence of constrained functions of
time described by splines (e.g., the hazard and cumulative hazard function) and possible interactions with this function
(i.e., TV covariate effects). We provide a unified regularization approach for both log hazard and log cumulative hazard
models. A software implementation is made available in R package regsurv.

2 LOG (CUMULATIVE) HAZARDMODELS

Let ℎ(𝑡|𝒁) be the hazard at time 𝑡, conditional on an 𝑛 × 𝑝 covariate matrix 𝒁 (for 𝑛 subjects and 𝑝 covariates) with the
corresponding coefficient vector 𝜷 expressing the log hazard ratios. Furthermore, let 𝐻(𝑡|𝒁) denote the corresponding
cumulative hazard. A proportional hazards (PH) model for either lnℎ(𝑡|𝒁) or ln𝐻(𝑡|𝒁) can be written as

𝑔(𝑡) + 𝒁𝜷, (1)

where 𝑔(𝑡) is a function of time describing the baseline (cumulative) hazard, and 𝒁𝜷 captures the proportional (time-
constant) covariate effects. In the remainder, and in line with Royston and Parmar (2002), we use restricted cubic splines
of log time based on truncated power bases to model 𝑔(𝑡). The outer knots are taken to be the minimum andmaximum of
the observed event times, and a total of 𝑚 − 2 inner knots are set to ordered quantiles of the distribution of event times.
This leads to 𝑚 restricted cubic spline basis functions 𝑣𝑗 for 𝑗 ∈ {1, … ,𝑚} (details are provided in the online supporting
material, Part A). For 𝑢 = ln(𝑡), some set of knots 𝒌, and coefficients 𝜶, the transformation can be written as

𝑠(𝑢|𝜶, 𝒌) = 𝛼0 + 𝛼1𝑣1 + 𝛼2𝑣2 + ⋯ + 𝛼𝑚𝑣𝑚. (2)

Due to the nature of the truncated power bases, 𝑣1 is always equal to𝑢, and the subsequent basis functions are all nonlinear.

1While either the Breslow estimate (of the cumulative baseline hazard) (Lin, 2007) or the Kalbfleisch Prentice estimate (of baseline survival) allow for
survival predictions, both of these estimates involve a large number of parameters and are computationally intensive when sample size is large and/or
in the presence of time-dependent effects.
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2.1 TV covariate effects

TV (or nonproportional) covariate effects 𝛽(𝑡) can be included as covariate interactions with time. That is, either the
lnℎ(𝑡|𝒁) or ln𝐻(𝑡|𝒁) is modeled as

𝑠(𝑢|𝜶, 𝒌) + 𝒁𝜷 + 𝑠(𝑢, 𝒁𝐼|𝜸, 𝜿), (3)

where 𝑠(𝑢|𝜶, 𝒌) and 𝒁𝜷 are defined as in Equations (1) and (2), and 𝑠(𝑢, 𝒁𝐼|𝜸, 𝜿) denotes the interaction of restricted cubic
spline basis functions of 𝑢 with covariate matrix 𝒁𝐼 , where 𝐼 is the subset of covariates for which a time-dependent effect
is incorporated, 𝜿 denotes the knots for the spline of time, and 𝜸 denotes the corresponding coefficients. For example,
when two continuous covariates each interact with a restricted cubic spline representation of time with one interior knot,
𝑠(𝑢, 𝒁𝐼|𝜸, 𝜿) can be written as

𝑠(𝑢, 𝑍1,2|𝜸, 𝜿) = 𝛾1,1𝑣1𝑍1 + 𝛾1,2𝑣2𝑍1 + 𝛾2,1𝑣1𝑍2 + 𝛾2,2𝑣2𝑍2,

where the 𝛾 subscripts index the covariates and spline basis functions, respectively. Note that 𝜿 (the set of knots for inter-
actions with time) may differ from 𝒌 (the set of knots for the log cumulative baseline hazard) to allow for interactions
with time that are less (or more) granular then the model for the baseline hazard.2 For ease of reference, note that the
parameters in Equation (3) are grouped in baseline (cumulative) hazard parameters 𝜶, main (proportional) effect param-
eters 𝜷, and parameters relating to TV (nonproportional) effects 𝜸 . Note that while the proposed model in Equation (3)
can be used to model either the log hazard or the log cumulative hazard scale, the interpretation of the model coefficients
of course strongly depends on the chosen scale.

2.2 Log-likelihood

Writing 𝜽 = (𝜶 ∶ 𝜷 ∶ 𝜸), the general form of the log-likelihood is

𝑙(𝜽) = 𝜹lnℎ(𝑡|𝒁) − 𝐻(𝑡|𝒁) (4)

with 𝜹 the vector of event indicators taking value 0 for (right) censored cases and 1 for events. For log cumulative
hazard models, 𝑙(𝜽) is available in closed form. For log hazard models, numerical integration is needed to approxi-
mate 𝐻(𝑡|𝒁), which was performed by means of Gauss–Legendre quadrature (Bower et al., 2016; Crowther & Lambert,
2014; Novomestky, 2013). Details on the log-likelihood contributions for both types of models are available in the online
supporting material, Part B.

3 REGULARIZATION

Regularization can be implemented by means of penalized maximum likelihood. We have implemented both an elastic
net–type penalty and a group lasso penalty. Since the implemented penalties act on the size of the model coefficients, data
are standardized to mean zero and standard deviation one by default.

3.1 Elastic net

The elastic net penalty can be written as

𝑃𝑛𝑒𝑡(𝝎, 𝜽) = 𝜆

𝐷∑
𝑑=1

𝜔𝑑𝜙𝑑|𝜃𝑑| + 1

2
(1 − 𝜔𝑑)𝜙𝑑𝜃

2
𝑑

(5)

2 In fact, 𝜿 could also be a matrix 𝑲𝑰 with different sets of knots per time-dependent covariate effect.
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with global penalty scaling parameter 𝜆 scaling the weighted sum of regression coefficient-specific contributions to the
penalty. The regression coefficient vector 𝜽 has elements 𝑑 ∈ 1,… , 𝐷, corresponding parameter-specific penalty scaling
factors 𝜙𝑑 ∈ [0,∞), and mixing factors 𝜔𝑑 ∈ [0, 1]with extremes 𝜔𝑑 = 1 being a lasso penalty and 𝜔𝑑 = 0 a ridge penalty.
Note that in contrast to the well-known and widely applied elastic net penalty in generalized linear models (Friedman
et al., 2010), we allow for parameter-specific specification of the mixing factor (as opposed to a global choice). This allows
the user to combine penalties that only shrink and penalties that may also remove coefficients from the model. This is
especially relevant to the survival setting. For example, it allows one to choose ridge regression for baseline (cumulative)
hazard parameters (to avoid selection of individual basis functions) and a penalty that also provides parameter selection
for the remaining parts of the model. With respect to the penalty scale factors 𝜙𝑑, note that 𝜙𝑑 = 0 equals unpenalized 𝜃𝑑

and that 𝜙𝑑 = ∞ leads to 𝜃𝑑 = 0. Setting some elements of 𝝓 to zero could, for instance, be used to avoid penalization of
the baseline hazard.

3.2 Group lasso

We implemented a group lasso penalty that can be written as

𝑃𝐺𝐿(𝝎, 𝜽) = 𝜆

𝐺∑
𝑔=1

𝜔𝑔𝜙𝑔‖𝜽𝑔‖2 +
1

2
(1 − 𝜔𝑔)𝜙𝑔‖𝜽𝑔‖2

2
(6)

for partitions 𝑔 ∈ 1,… , 𝐺 of 𝜽. Note that in this case, mixing factors 𝜔𝑔 and penalty scaling factors 𝜙𝑔 relate to the norms
of𝐺 partitions of 𝜽 denoted by 𝜽𝑔. In addition to the usual group lasso formulation (e.g., Meier et al., 2008), and analogous
to the elastic net penalty, the group lasso penalty in Equation (6) allows for group-specific 𝜔𝑔, thus allowing some groups
to follow a group lasso penalty and others to follow a ridge penalty. As for the elastic net case, this allows users to only
shrink a subset of parameter-groups (ensuring that they stay in the model), while potentially also selecting among other
groups of parameters (group lasso). Note that in the group lasso case, we restrict 𝜔𝑔 to take a value in {0, 1}, but this could
be extended to the entire range [0,1].

3.3 Survival-specific nuances

In ridge, lasso, and elastic net implementations for generalized linear models, it is standard practice to avoid penalization
of the intercept by centering of both outcome 𝑦 and the columns of design matrix 𝑋, and to allow penalization of the
remaining parameters (Friedman et al., 2010; Hastie et al., 2017; Tibshirani, 1996). However, this strategy is not directly
applicable in the case of parametric survival analysis. First, centering of the outcome is not possible, and the intercept
therefore remains in the model and should be estimated. Our implementation treats the intercept as an unpenalized
parameter (i.e., the scaling factor for the intercept penalty (𝜙1) is always set to 0). Second, a log cumulative hazard model
needs at least an intercept and a slope parameter to provide a sensiblemodel. It is convenient that the first basis function of
the implemented restricted cubic splines provides this slope in the form of a linear contribution of log time. Nonetheless,
it may still be desirable to penalize the slope estimate. Thereto, log cumulative hazard models are estimated with a log
time offset (i.e., slope equal to 1), effectively shrinking the slope parameter toward unity instead of zero. Consequently, the
simplest model has an unpenalized intercept 𝛼0 and a log time offset, which can be recognized as an exponential survival
distribution with rate parameter 𝑒𝛼0 .

3.4 Tuning parameter selection

The choice of tuning parameters 𝝎 and 𝜆 can be informed by a grid search using resampling such as cross-validation or
bootstrapping. The log-likelihood or deviance can be used as ameasure of out-of-sample performance (Meier et al., 2008).3
In the software (also refer Section 7), we have implemented 𝑘-fold cross-validation over a grid of 𝜆 for fixed 𝝎. In short,

3 Note that the monotonicity constraints for log cumulative hazard models are only enforced for the covariate domain as reflected by the development
data. In presence of many TV effects, extrapolation beyond this domain may lead to invalid (nonnegative) hazard estimates. Therefore, in the context of
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the training data are split into 𝑘 parts, and each part in turn serves as a holdout set where the performance of models
fitted on the data not in part 𝑘 are evaluated. For each holdout fold 𝑘, all combinations on the grid of 𝜆 for a given 𝝎 are
evaluated and averaged in the end. This provides an estimate of the optimal 𝜆 value conditional on 𝝎 for the training data.
In principle, if tuning of 𝝎 is also desired, repeated cross-validation runs for different choices of 𝝎 may provide further
information. However, this is a computationally demanding task that comes with more uncertainty and may not lead to a
unique optimal value (van Nee et al., 2023). In practice, it is our experience that the degree of sparsity is hard to estimate
from the data. Preferably, the choice of 𝝎 is informed by some content knowledge about the expected degree of sparsity or
by desired model characteristics with respect to sparsity (e.g., use a lasso penalty when sparsity is expected, such as when
exploring many interactions, and use a ridge penalty when only shrinkage is expected to be required).

4 OPTIMIZATION

The general optimization problem can be formulated as

maximize 𝑙𝑝𝑒𝑛(𝜽) = 𝑙(𝜽) − 𝑃(𝜽) (7)

subject to ℎ(𝒖|𝜽, 𝒁) > 𝟎,

where 𝑙(𝜽) is the appropriate form of the log-likelihood in Equation (4) for either a log hazard or a log cumulative hazard
model, 𝑃(𝜽) is either the elastic net penalty (Equation 5) or the group lasso penalty (Equation 6), and ℎ(𝒖|𝜽, 𝒁) denotes
the hazard contributions. Note that for the latter, strict positivity could be relaxed to positivity except at event times.
The online supporting material (Part C) shows the necessary objective functions and constraints can be written in an
equivalent but convex form, such that convex optimization procedures can be used to find the global optimal value and
corresponding solution(s) 𝜽∗ (for fixed values of 𝝎 and 𝝓) (Boyd & Vandenberghe, 2015). Subsequently, efficient software
is available for the optimization (Boyd & Vandenberghe, 2015; Domahidi et al., 2013) and is easily accessible by means of
R package CVXR (Fu et al., 2020). More specifically, CVXR provides a user-friendly interface that transforms the standard
convex programming formof the problem into a second-order cone program, that can subsequently be solvedwith interior-
point solver ECOS (embedded conic solver) (Domahidi et al., 2013).

5 SIMULATION STUDY

The main aim of the simulation study was to compare key survival modeling methods in settings that strike a balance
between model complexity and sample size. The design and reporting of the simulation study adhere to the guidelines by
Morris et al. (2019).

5.1 Data-generating mechanism

We followed a proposal by Crowther and Lambert and simulated from a two-component Weibull mixture (Crowther &
Lambert, 2013). Themainmotivation was to generate survival data that are sufficiently complex to resemble real data, and
at the same time avoid that any of themodels under evaluation contain the exact data-generatingmechanism. Specifically,
we sampled from a Weibull mixture distribution that was additive on the survival scale. Details on the derivation are
available elsewhere (Crowther & Lambert, 2013), so we only restate the general form of the baseline hazard function

ℎ0(𝑡) =
𝜆1𝛾1𝑡

𝛾1−1𝑝𝑚𝑖𝑥e−𝜆1𝑡
𝛾1 + 𝜆2𝛾2𝑡

𝛾2−1(1 − 𝑝𝑚𝑖𝑥)e−𝜆2𝑡
𝛾2

𝑝𝑚𝑖𝑥e−𝜆1𝑡
𝛾1 + (1 − 𝑝𝑚𝑖𝑥)e−𝜆2𝑡

𝛾2
. (8)

log cumulative hazardmodels, the default cross-validation implementation optimizes the objective function 𝑙𝑝𝑒𝑛(𝜽) in the selected cases, while enforcing
the nonnegative hazards constraint in the whole sample.
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TheWeibull mixture parameters were setup such that they describe a nonmonotone hazard function that first increases
and subsequently decreases, such as might occur after an intervention with hazardous early side effects (e.g., difficult
surgery) or in cancer studies (Crowther & Lambert, 2013). This nonmonotone pattern was chosen since it requires a fairly
flexible model, and hence does not clearly favor simple parametric representations. The particular choice of parameters
for the Weibull mixture was 𝜆1 = 0.21, 𝜆2 = 0.05, 𝛾1 = 1.1, 𝛾2 = 1.4, and 𝑝𝑚𝑖𝑥 = 0.4, and cases were censored administra-
tively at time 𝑡 = 30. For ease of reference, we will further refer to time units in months. In terms of covariates, the main
aim was to simulate covariates with varying effect sizes and time-dependencies, as might be encountered in practice.
Due to the complexity associated with the modeling of TV effects, a setting was chosen with the number of covariates
considerably smaller than the number of events. Thereto, 11 covariates were simulated from a multivariate standard nor-
mal distribution with pairwise correlations set to 0.25. The particular choice of parameters for these 11 main effects was
0, 0, 0.5, −0.5, 0.25, −0.25, 0.125, −0.125, 0.0625, −0.0625, and 0.5, respectively. The effects of the first three covariates var-
ied with time according to 0.9𝑡, with coefficients −1, 0.75, and −0.5. Combining the time-constant and TV effects, the log
hazard ratio of the first and second covariates started at −1 and 0.75, respectively, and diminished over time, and the log
hazard ratio for the third covariate started at 0 and its effect increased over time to 0.5. The online supporting material
(Part D) visualizes the baseline hazard and TV effects corresponding to the data-generating mechanism. A population of
110,000 cases was generated from this data-generating mechanism. A fixed set of 10,000 was set aside as an independent
validation cohort. The data for model development, also known as the training or discovery data, were sampled from the
remaining 100,000 cases.
In addition to the main simulation setting, two additional settings were evaluated. First, to evaluate performance under

settings with more covariates, 20 standard normal noise variables were added to the above described data-generating
mechanism. Second, to evaluate performance under increased censoring, exponential censoring was added to the above
described data-generating mechanism to arrive at 50% censoring.

5.2 Simulation settings

For themain simulation settings, a total of 1000 simulation runs was performed for four development sample size settings:
100, 250, 500, and 1000. For the additional simulation settingswithmore covariates andwithhigher censoring, the𝑁 = 100

sample size was omitted since it was too small to evaluate all methods. In each simulation run, all survival models were
fitted on the development sample and evaluated in the independent validation sample. To emulate realistic settings, where
not all covariates that are relevant to the problem at hand are known and/or measured, the 11th covariate was considered
to be unmeasured for all modeling methods (and thus not included in the models). The main motivation was to avoid a
comparison of methods under near-perfect model specification that could not be expected in real data.

5.3 Survival modeling methods

Ten different modeling techniques were compared:

1. Regularized log hazardmodel including time-varying effects (RegHazTV): regularized log hazardmodels with the log
baseline modeled with a restricted cubic spline with 5 degrees of freedom (df), 10 linear main effects (i.e., for each
measured covariate), and including interactions with log time by means of a 2 degrees of freedom restricted cubic
spline for all 10 covariates. The log baseline hazard and main-effects parameters were penalized with a ridge penalty,
and the TV effects with a group lasso penalty with separate groups for each covariate. With respect to the TV effects
(i.e., interactions with spline basis functions), the group lasso penalty ensures that coefficients belonging to the same
spline transformation are simultaneously zero or nonzero.

2. Regularized log cumulative hazard model including time-varying effects (RegCumHazTV): same as (1), but on the
log cumulative hazard scale. NB: the interactions with time are therefore also on the log cumulative hazard scale and
hence differ from the specification in (1).

3. Cox proportional hazards model (CoxPH): a CoxPHmodel with 10 linear main effects. Predicted survival was derived
based on the Cox model and the corresponding Breslow estimate of the cumulative baseline hazard.

4. Coxmodel including time-varying effects (CoxTV): same as (3), but allowing for TV effects as a function of a 2 degrees
of freedom restricted cubic spline of log time. To encode these TV effects, the data set was transformed into start–
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HOOGLAND et al. 7 of 16

stop format with splits at all percentiles of the observed event times and subsequent derivation of the covariate-time
interaction columns (Therneau & Grambsch, 2011).

5. Cox proportional hazards lasso model (CoxPHlasso): same as (3), but with a lasso penalty on all parameters.
6. Cox time-varying effects ridge model (CoxTVridge): same as (4), but with a ridge penalty on all parameters. Note that

a regular lasso penalty is not directly applicable due to the presence of spline components.
7. Royston–Parmar proportional hazards model (RPrcsPH): a proportional Royston–Parmar model (i.e., log cumula-

tive hazard model) as implemented by (Liu et al., 2018), with a 5 degrees of freedom natural cubic spline for the log
cumulative baseline hazard and 10 linear main covariate effects.

8. Royston–Parmar time-varying effectsmodel (RPrcsTV): same as (7), but including interactionswith log time bymeans
of a 2 degrees of freedom restricted cubic spline for all 10 covariates.

9. Royston–Parmar proportional hazards model (RPssPH): a proportional Royston–Parmar model (i.e., log cumulative
hazard model) as implemented by Liu et al. (2018), with a smoothing spline for the log cumulative baseline hazard
and 10 linear main covariate effects.

10. Royston–Parmar time-varying effects model (RPssTV): same as (9), but including interactions with log time by means
of a smoothing spline for all 10 covariates.

Certain groups of methods can be distinguished within these 10 methods. For instance, we will refer to methods 1,
2, 4, 6, 8, and 10 as methods that allow for TV effects, and to the complementary set of methods 3, 5, 7, and 9 as PH
methods. In addition, the methods can be grouped into methods that incorporate regularization on the size of the model
parameters (methods 1, 2, 5, and 6) andmethods that do not (methods 3, 4, and 7–10).4 For all regularizedmodels, for a fair
comparison, the optimal value of the penalty parameter 𝜆 was estimated by means of 10-fold cross-validation minimizing
the deviance. In practice, note that while k-fold cross-validation already uses all the available data, the uncertainty of the
cross-validation estimates may be further reduced by repeated 𝑘-fold cross-validation.
In the additional simulation settings with added noise variables, these noise variables were added as main effects. In

the additional simulation settings with increased censoring, all methods models were specified exactly as for the main
simulation settings.

5.4 Performance measures

In the simulation study setting, the true survival probabilities are known for all individuals across all time points. For
further reference,we denote the true survival probability at time 𝑡 for individual 𝑖 as𝑝𝑖(𝑡), and its estimate as 𝑝̂𝑖(𝑡) (omitting
dependence on covariate vector 𝒙𝑖 from the notation). Root mean squared prediction error (rMSPE) was evaluated as a
measure of prediction accuracy and was defined as

rMSPE𝑠 =

√√√√ 1

𝑛𝑠𝑖𝑚

𝑛𝑠𝑖𝑚∑
𝑖

(𝑝𝑖(𝑡) − 𝑝̂𝑖(𝑡))2, (9)

where rMSPE𝑠 is the rMSPE for simulation run 𝑠 and 𝑛𝑠𝑖𝑚 is the number of cases in the validation data set. To emphasize
performance at particular time points, rMSPE was evaluated with 𝑡 set to each of the time points 2.5,5,7.5,10,20, and 30
months for all individuals. As ameasure of overall prediction performance, rMSPEwas evaluatedwith 𝑡𝑖 set to the observed
event times for the cases in the validation data set.
Likewise, both fixed time-point and time-averaged discriminative prediction performance were evaluated against the

true survival probabilities by means of Harrell’s C-statistic (Harrell, 2015; Harrell et al., 1996), which for our purposes can
be defined as

C-statistic𝑠 =

∑
𝑖

∑
𝑗≠𝑖

[
𝐼(𝑝̂𝑖(𝑡) < 𝑝̂𝑗(𝑡))𝐼(𝑝(𝑡)𝑖 < 𝑝(𝑡)𝑗) +

1

2
𝐼(𝑝̂𝑖(𝑡) = 𝑝̂𝑗(𝑡))𝐼(𝑝(𝑡)𝑖 < 𝑝(𝑡)𝑗)

]
∑

𝑖

∑
𝑗≠𝑖

[
𝐼(𝑝(𝑡)𝑖 < 𝑝(𝑡)𝑗)

] , (10)

4 Note that while the smoothing splines in methods 9 and 10 do use penalization, they effectively penalize nonlinear covariate contributions toward
linearity, as opposed to penalizing coefficient size.
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8 of 16 HOOGLAND et al.

F IGURE 1 Boxplots of root mean squared prediction error (rMSPE) for each of the evaluated methods. Boxes cover the interquartile
range and have a solid bar showing the median; whiskers extend to 1.5 times the interquartile range. The horizontal dotted line crosses the
median rMSPE for the best performing method in a specific sample size setting. NB: The scale of the 𝑦-axis differs between the subfigure for
𝑁 = 100 and the other subfigures to enhance visual clarity of the differences within scenarios.

where C-statistic𝑠 is the C-statistic for simulation run 𝑠, 𝑖 and 𝑗 index the individuals 1, … , 𝑛𝑠𝑖𝑚 in the independent vali-
dation data, and 𝐼(⋅) is the indicator function. As for rMSPE, performance was evaluated at fixed time points by setting
𝑡 to each of the time points 2.5,5,7.5,10,20, and 30 months, and as an overall average by setting 𝑡 to the subject-specific
observed event times in the validation data set for each individual.
Lastly, calibration performancewas assessed using graphical calibration curves as proposed byAustin et al. (2020) at the

same fixed time points. In short, calibration aims to evaluate whether the predicted survival probabilities for a particular
time points are close to the true probabilities as evaluated over the whole range of predicted probabilities. The typical
graph shows predicted versus “observed” probabilities, with perfect calibration corresponding to a straight line through
the origin with slope equal to 1. Since survival probabilities cannot be directly observed in practice, the right-censored
time-to-event data in the validation set are modeled as a flexible function of the complementary log–log of the predicted
cumulative incidence for each validation case, at a fixed time 𝑡, using hazard regression. Details can be found in appendix B
of Austin et al. (2020) and an implementation is available in R function calibrate() in our supplementary material.

5.5 Simulation study results

Figure 1 shows that the time-averaged rMSPE of the proposed regularized models (RegHazTV and RegCumHazTV) were
among the best performing methods in all sample size settings. In the smallest sample size setting (𝑁 = 100), prediction
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HOOGLAND et al. 9 of 16

F IGURE 2 Root mean squared prediction error (rMSPE) over time each of the evaluated methods. Note that the line for Cox
proportional hazards model (CoxPH) is hardly visible since its curve is almost identical to the curves of Royston–Parmar proportional hazards
model (RPrcsPH) and RPssPH. Solid lines are for models allowing for time-varying coefficients; dashed lines for proportional hazards models.
NB: The scales of the 𝑦-axis differs between the subfigures to enhance visual clarity of the differences within scenarios; rMSPE decreases with
increasing sample size.

accuracy of RegHazTVandRegCumHazTVwas comparable tomodelingmethods assuming PH, and clearly outperformed
other TV effects methods. With increasing sample size (𝑁 = 250), the other TV effects methods start to catch up with the
PH models. Further increase in sample size (𝑁 = 500) shows that the TV effects models start to more fully capture the
data-generating mechanism generally and overcomes their tendency to overfit: all of the TV effects models outperform
the PH methods. The final increase in sample size up to𝑁 = 1000 shows that the nonregularized time-dependent effects
models (CoxTV, RPrcsTV, and RPssTV) start to catch up with the proposed regularized models.
While time-averaged rMSPE provides a summary measure of accuracy, in practical applications there is often interest

in the prediction accuracy for particular clinically relevant time points (McLernon et al., 2023). Figure 2 shows rMSPE
results at each of the evaluated fixed time points. In linewith the time-average results, the proposed regularized parametric
methods performed well across all sample size settings. Their benefit was most apparent for later prediction times. As was
the case for the time-averaged results, the PH methods were at a clear disadvantage in large sample size settings (due to
misspecification), but had the edge over nonregularized TVmethods in the smallest sample size setting (due to decreased
risk of overfitting). The benefit of modeling TV coefficients strongly depends on the available sample size due to the
increase in model complexity. Furthermore, the gain in precision of course depends on the underlying data-generating
process, where the amount of deviation of the TV effects from a time-constant approximation will determine the gain in
precision when accounting for this. Importantly, this may depend on the time point of interest for prediction purposes.
As an illustration, across all of the simulation settings, the agreement between PH and TV models is best for predictions
around 10 months, which is where a time-constant approximation of the TV effects is close to the true value.
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10 of 16 HOOGLAND et al.

The online supporting material shows discriminative performance (Part E) and calibration performance (Part F) in the
validation data for all particular fixed time points of interest. For discrimination, time-averaged results are also provided.
Results were in line with the rMSPE results, with RegHazTV and RegCumHazTV consistently performing well in terms
of both time-averaged discriminative performance and discriminative performance at each of the fixed time points. With
respect to calibration, average calibration curves across simulations converged toward the diagonalwith increasing sample
size for all TV effects methods except for CoxTVridge. Average calibration curves for RegHazTV and RegCumHazTV did
so faster than other TV effects methods. PH-method curves clearly reflected misspecification in the larger sample size
settings, especially for early and late time points. The latter was according to expectation since the trends of the true TV
effects over time were all monotone and thereby cross the time-constant (PH) approximation that captures the average
across time, resulting in good approximations near the crossing point and bad approximations further away.
With respect to computation times, online supplementary FigureG.1 shows the computation times for each of themeth-

ods. Most methods were fast across all settings, providing results within seconds. The exceptions are RegCumHazTV,
RPssTV, CoxTVRidge, and RegHazTV, needing up to a median of 2, 7, 10, and 28, min, respectively, for a single run
(including tuning parameter selection) in the 𝑁 = 1000 setting.
Simulation results with respect to the two additional groups of settings are provided in the online supplementary mate-

rial (Part H). For settings with 20 added noise variables, the benefit of regularization was more apparent than in the main
simulation settings, with the proposed methods performing better than the alternatives in terms of fixed time-point or
time-averaged rMSPE, discrimination, and calibration. Patterns in the results were similar to the main results but exag-
gerated. In settings with increased censoring, results were very similar to the main simulation study results, with more
marginal and sample size-dependent benefit of the proposed regularization methods. An interesting difference with the
main results can be seen in the fixed time-point accuracy (rMSPE) results, where prediction error tends to increase with
the prediction horizon for all methods. This relates to the decrease in information in the data over time due to increased
censoring. In line, early prediction errors are very similar between methods, and differences become more apparent at
later prediction times.

6 VETERANS’ ADMINISTRATION LUNG CANCER (VALC) STUDY

The VALC study is a randomized trial of two chemotherapy treatments in males with advanced inoperable lung cancer
(Kalbfleisch & Prentice, 2002). The primary endpoint was time to death and 128 of 137 patients died during follow-up.
Data on a selection of variables are available in Kalbfleisch and Prentice (2002) and include time-to-event, event status,
and data on treatment assignment (standard vs. new chemotherapy), age (in years), prior therapy (yes/no), histological
type (squamous, small cell, adeno, and large cell), performance status (Karnofsky rating from 0 to 100, with higher scores
relating to better status), and time between diagnosis and randomization (in months). A CoxPH model including all of
thesemeasures asmain effects shows signs of nonproportionality based on theGrambsch andTherneau test on Schoenfeld
residuals (Therneau & Grambsch, 2011) (𝑝 = 3.2𝑒−5), with individual contributions of cell type (𝜒2

3
= 15.2, 𝑝 = 0.0016)

and Karnofsky rating (𝜒2
3
= 12.9, 𝑝 = 0.0003). This provides us with an interesting setting to illustrate the methods as

applied in the simulation study in suitable variations for this applied example (note that model specification was not
informed by the ad hoc nonproportionality test):

1. RegHazTV,with the log baselinemodeledwith a restricted cubic splinewith 4 degrees of freedom, allmain effects, and
including linear interactions with log time. The log baseline hazard parameters were penalized with a ridge penalty,
and the remaining parameters with a lasso penalty (group lasso in case of cell type which had three groups).

2. RegCumHazTV: same as (1), but on the log cumulative hazard scale.
3. A CoxPHmodel with all main effects. Predicted survival was derived based on the Breslow estimate of the cumulative

baseline hazard.
4. A Cox model similar to (3), but including time-varying effects (CoxTV) as a linear function of log time.
5. Cox proportional hazards ridge model (CoxPHridge): same as (3), but with a ridge penalty on all parameters. Ridge

was preferred over lasso due to presence of a categorical variable with three groups (cell type).
6. CoxTVridge: same as (4), but with a ridge penalty on all parameters.
7. RPrcsPH: a proportional log cumulative hazard model with a 4 degrees of freedom natural cubic spline for the log

cumulative baseline hazard and all main covariate effects.
8. RPrcsTV: same as (7), but including interactions with log time for all 10 covariates.
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HOOGLAND et al. 11 of 16

TABLE 1 Mean and standard error of the time-average C𝑡𝑑 (time-dependent C-statistic) and the C𝑡𝑑 up to 60-day follow-up (censoring
event times > 𝑡 = 60 days) are shown as derived based on 1000 out-of-bag estimates for the Veterans’ Administration Lung Cancer study.

Average C𝒕𝒅 (se) 60-day C𝒕𝒅 (se)
RegHazTV 0.698 (0.044) 0.742 (0.043)
RegCumHazTV 0.694 (0.047) 0.741 (0.043)
CoxPH 0.705 (0.035) 0.740 (0.044)
CoxTV 0.683 (0.057) 0.736 (0.045)
CoxPHridge 0.709 (0.034) 0.744 (0.043)
RPrcsPH 0.706 (0.035) 0.740 (0.044)
RPrcsTV 0.693 (0.043) 0.736 (0.046)
RPssPH 0.705 (0.035) 0.739 (0.045)
RPssTV 0.677 (0.060) 0.732 (0.046)
RegHazPH 0.713 (0.035) 0.752 (0.042)
RegCumHazPH 0.713 (0.035) 0.751 (0.042)

9. RPssPH: a proportional log cumulative hazard model with a smoothing spline for the log cumulative baseline hazard
and all main covariate effects.

10. RPssTV: same as (9), but including interactions with log time for all 10 covariates.
11. Regularized log hazard model (RegHazPH), same as (1), but without the time-varying effects.
12. Regularized log cumulative hazard model (RegCumHazPH): same as (2), but without the TV effects.

Due to the limited sample size in the VALC data, note that, compared to the simulation study, 1 df less was spent on the
baseline hazard for parametric models, and that TV effects were modeled linearly instead of using splines for all methods
where applicable. For the same reason, the last two models were added as simplifications of the first two in light of the
simulation results.
A bootstrapping approach was used to evaluate model performance (1000 repetitions). All penalty parameters were

selected based on 10-fold cross-validation as nested in the bootstrap procedure. Out-of-bag performance was measured in
terms of time-dependent C-statistic (Antolini et al., 2005) and graphical calibrations curves (Austin et al., 2020). Graphical
calibration curves were derived at 𝑡 = 60, which was close to the median event time (𝑡 = 62), and at 𝑡 = 120 and 𝑡 = 180.
The time-dependent C-statistic as described by Antolini et al. (2005) was adapted tomatchHarrel’s C-statistic for censored
data (Harrell et al., 1996) in case of PH by counting tied predictions for discordant outcomes as 0.5 instead of 0. It is defined
as

C𝑡𝑑 =

∑
𝑖

∑
𝑗≠𝑖

conc𝑖𝑗∑
𝑖

∑
𝑗≠𝑖

comp𝑖𝑗
(11)

with

comp𝑖𝑗 = 𝐼(𝑡𝑖 < 𝑡𝑗&𝑑𝑖 = 1) + 𝐼(𝑡𝑖 = 𝑡𝑗&𝑑𝑖 = 1&𝑑𝑗 = 0) (12)

and

conc𝑖𝑗 = 𝐼[𝑝̂𝑖(𝑡𝑖) < 𝑝̂𝑗(𝑡𝑖)] ⋅ comp𝑖𝑗 +
1

2
𝐼[𝑝̂𝑖(𝑡𝑖) = 𝑝̂𝑗(𝑡𝑖)] ⋅ comp𝑖𝑗 . (13)

Equation (12) defines comparability of pairs 𝑖, 𝑗, with case 𝑖 being comparable to case 𝑗 if its event indicator equals 1 (𝑑𝑖 = 1)
and 𝑗 has a later event time or equal event time and censored status (𝑑𝑗 = 0). Equation (13) defines concordance of the
predicted survival probabilities at time 𝑡𝑖 and adds the 0.5 for tied predictions of comparable pairs. Hence, C𝑡𝑑 estimates
the concordance probability among comparable pairs.
Results are shown in Table 1, Figure 3, and supplementary Figures I.1 and I.2 for all methods except CoxTVridge, which

did not converge regardless of the choice of penalty. Even though the differences were small, RegHazTV, RegCumHazTV,
RegHazPH, RegCumHazPH, and RPrcsTV performed somewhat better than the remaining methods in terms of average
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12 of 16 HOOGLAND et al.

F IGURE 3 Calibration curves for out-of-bag predictions at 60 days follow-up in the Veterans’ Administration Lung Cancer (VALC) data.
Solid lines represent the average calibration curve over 1000 out-of-bag estimates; dotted lines are for the 10th and 90th percentiles.

time-dependentC-statistic (C𝑡𝑑). The fixed time-horizon 60-dayC𝑡𝑑 statistics (censoring individualswith a time-to-event>
60 days) had a similar rank-ordering but were evenmore similar betweenmethods. In terms of calibration, the differences
are more apparent, with RegHazPH and RegCumHazPH being closest to the diagonal for 𝑡 = 60 days (Figure 3), 𝑡 =

120 days, and 𝑡 = 180 days (supplementary Figures I.1 and I.2, respectively). Calibration curves for the other regularized
models also look reasonable, especially for the earlier time points. Summarizing, differenceswere small, but regularization
was the preferred option on all performance measures. Even though allowing for TV effects is quite a stretch given the
limited sample size, the regularized time-dependent effects models performed reasonably well.

7 SOFTWARE

Regularized log hazard and log cumulative hazard modeling has been implemented in R (R Core Team, 2021) package
regsurv, which is available on GitHub (https://github.com/jeroenhoogland/regsurv) and provides functions for model
optimization, penalty parameter tuning, prediction, and plot methods for loss and coefficients paths across a penalty
parameter grid. Royston–Parmar modeling software is readily available (e.g., stpm2 (Lambert, 2010) in Stata (Stata-
Corp, 2021) and rstpm2 (Liu et al., 2018) in R), and the same holds for standard cox modeling (e.g., the survival package
(Therneau, 2022) in R) and regularized cox modeling (e.g., the glmnet package (Friedman et al., 2010, 2021, Simon et al.,
2011) and thepenalized package (Goeman, 2010) in R). R script for replication of the simulation study and applied example
is available as supplementary material.
Comparing regsurv against the popular glmnet and penalized in the context of survival modeling, the key difference

is that regsurv was developed for fully parametric models, whereas glmnet and the penalized package were developed
for Cox models. Both glmnet and penalized offer very fast implementations for lasso, ridge, and elastic net penalties
(and fused lasso in penalized) on the linear predictor parameters in a CoxPHmodel. These estimates are combined with
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a separate estimate of the baseline cumulative hazard (e.g., a Breslow estimate) for prediction purposes. While glmnet
also allows for TV coefficients, this implementation did not perform well in the simulation study. Also, prediction of sur-
vival probabilities or cumulative hazards from Cox models with time-dependent coefficients is not implemented. Briefly,
our regsurv package provides (i) smooth (cumulative) baseline hazard estimates; (ii) straightforward incorporation of
TV coefficients; (iii) simultaneous optimization and regularization of all model parameters based on the full likelihood,
(iv) group lasso penalization, (v) easy prediction from TV effects model, and (vi) the choice between log hazard or log
cumulative hazard modeling. This comes at the cost of computational complexity and the risk of misspecification that
comes with any fully parametric model.

8 DISCUSSION

We have introduced regularization methods for parametric survival models with a flexible baseline hazard or cumulative
hazard. This opens an important toolbox that constrains the risk of overfitting and increases prediction accuracy for a
flexible class of models. Importantly, these models explicitly model the baseline (cumulative) hazard, which is of interest
for the prediction of survival probabilities over time.
The introduced penalty functions include the elastic net penalty (and hence ridge and lasso penalty) and the group lasso

penalty. From a theoretical perspective, the corresponding optimization problems were shown to be convex, enabling a
unified optimization approach and providing guarantees with respect to global optimality of the solution(s). From an
applied perspective, a freely accessible software implementation was written in R package regsurv with high level func-
tions for model fitting, cross-validation, and prediction to make the methods easily accessible. Simulation results showed
that the proposed methods performed well in comparison to alternative methods including Cox regression, regularized
Cox regression, and Royston–Parmar models of various types. Importantly, regularization was beneficial even in large
sample size settings. In line with the simulation results, the applied example in the VALC study showed that the proposed
methods were competitive in terms of discrimination and had a slight edge in terms of calibration.
Regarding practical applications, it should be noted that while regularization helps to balancemodel complexity against

limited sample size, it is not an alternative to larger sample sizes (Riley et al., 2020; Van Calster et al., 2020). Especially
when sample sizes are small, it is difficult to estimate the regularization parameter(s). Hence, choices with respect to
model complexity and regularization should be made judiciously, based on available content knowledge and sample size
considerations (Riley et al., 2019). As a second practical consideration, some discussion on the choice between popu-
lar semiparametric options (e.g., a Cox model combined with a Breslow estimate of the cumulative baseline hazard) and
fully parametricmodels is warranted. Advantages of the latter include smoothness of (cumulative) hazards over time, ease
of model sharing, the relative ease with which TV effects can be incorporated, and the unified regularization approach
that enables optimization of the whole model in one go. A disadvantage is the risk of misspecification with respect to
the baseline hazard, which is mitigated by the use of splines. Benefits of the semiparametric approach include its famil-
iarity, well-known properties, easy access to software across platforms, and very flexible baseline cumulative hazard. In
our experience, the proposed regularized parametric approach is primarily beneficial when modeling TV effects, as also
illustrated in the simulation study. As a third practical consideration, the choice between log hazard and log cumulative
hazard modeling deserves some further attention. While performance was very comparable for both model types across
the investigated settings, log hazard models may be preferable in case of many TV effects. This is because they natu-
rally enforce nonnegative hazards even when extrapolating beyond the development data. Both our implementation of
the log cumulative hazards model and the version implemented by Liu et al. (2018) enforce this constraint only within
the domain of the development data, since the monotonicity of the time-covariate interactions essentially depend on the
covariate distributions.
With respect to limitations, it should be noted that the simulation study and applied example were intended as a proof-

of-concept for the introduced methodology, and future research may inform on a wider range of settings. Our particular
simulation setting reflected the tension betweenmodel complexity and sample size in the context of TV effects. Other set-
tings include higher dimensional main-effects settings (e.g., with 𝑝 ≫ 𝑛), models exploring many interaction effects, and
more extensive negative controls (where many parameters are actually zero). Also, simulations that are closely inspired
by real data may sometimes be very helpful to better understand method characteristics for a particular application. As a
second limitation, the computation time for regularization paths can be considerable for the log hazard models due to the
required numerical integration. Nonetheless, computation times for the glmnet implementation of Cox regression with
TV effects may be even longer without coarsening the grid of event times used to represent TV effects. Lastly, we have
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14 of 16 HOOGLAND et al.

implemented restricted cubic splines based on truncated power series since they allow the user to regularize either or
both of linear and nonlinear contributions. Different types of splines may offer different benefits for particular situations
(Perperoglou et al., 2019). For instance, in the context of parametric survival modeling without regularization, smoothing
splines have been implemented for log-cumulative hazard models (Liu et al., 2018) and log hazard models (Fauvernier
et al., 2019), avoiding the need for knot specification. As such, the interplay between different types of splines and regu-
larization is an interesting topic for further research, and has already been explored in the context of generalized linear
models (Chouldechova & Hastie, 2015).
Summarizing, parametric log hazard and log cumulative hazardmodels provide a flexible tool for survival analysis, and

the addition of regularization enhances control on overfitting in settings with limited sample size in light of model com-
plexity. This is of particular interest for the development of predictionmodels with the aim to predict survival probabilities
over time.
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