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Step-wise workflow to improve the value of artificial intelligence in clinical research. AI, artificial intelligence.
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Abstract

Artificial intelligence (AI) is increasingly being utilized in healthcare. This article provides clinicians and researchers with a step-wise foundation for 
high-value AI that can be applied to a variety of different data modalities. The aim is to improve the transparency and application of AI methods, with 
the potential to benefit patients in routine cardiovascular care. Following a clear research hypothesis, an AI-based workflow begins with data selec
tion and pre-processing prior to analysis, with the type of data (structured, semi-structured, or unstructured) determining what type of pre-pro
cessing steps and machine-learning algorithms are required. Algorithmic and data validation should be performed to ensure the robustness of the 
chosen methodology, followed by an objective evaluation of performance. Seven case studies are provided to highlight the wide variety of data mo
dalities and clinical questions that can benefit from modern AI techniques, with a focus on applying them to cardiovascular disease management.

Despite the growing use of AI, further education for healthcare workers, researchers, and the public are needed to aid understanding of how AI 
works and to close the existing gap in knowledge. In addition, issues regarding data access, sharing, and security must be addressed to ensure full 
engagement by patients and the public. The application of AI within healthcare provides an opportunity for clinicians to deliver a more personalized 
approach to medical care by accounting for confounders, interactions, and the rising prevalence of multi-morbidity.

Keywords Artificial intelligence • Healthcare • Management • Treatment

Introduction
Recent digital innovations provide an exciting prospect to improve the 
treatment, prevention, and prognostic evaluation of patients across the 
spectrum of healthcare. In cardiovascular disease (CVD), similar to 
other non-communicable diseases, the global number of deaths has in
creased by 31% from 1990 to 2010, despite a 21% reduction in 
age-standardized death rates in the same period.1 Complicating effect
ive management, a quarter of CVD patients have five or more co
morbidities, a four-fold increase from 2000 to 2014.2 New analytical 
and data-driven approaches could lead to a step-change in our under
standing of multi-morbid patient groups, and open up the possibility of 
personalized therapeutic strategies.3

A wide range of data sources are now available for healthcare research, 
ranging from secondary/pooled analysis of clinical trials, to registries and 
electronic healthcare records (EHRs).4,5 Real-world data sets are often 
attractive due to their size, whereas data collected for research purposes 
are typically based on more selected populations, but with higher quality 
and less missing data.6 Artificial intelligence (AI) approaches have been de
veloped in short order to deal with large or complex data sets,3,7–10 but a 
lack of transparency and understanding by health professionals has re
stricted their application and ability to impact patient management.

In this article, we summarize the what and why of applying AI techniques 
to health data, and then provide clear case examples of how such ap
proaches can be performed on clinical data sets, leading to novel findings 
of relevance to routine practice. This framework for AI is designed to build 
a stronger foundation for collaboration between physicians and health 
data scientists, providing better understanding that can improve study de
sign and clinical value. For further education and for readers with prior ex
perience, we also provide the technical basis for the choice of 
machine-learning approach. The aim is to open up these new technologies 
and encourage widespread but appropriate use, whilst enhancing scrutiny 
and knowledge of their limitations in order to advance patient care.

Workflow for the application of 
artificial intelligence techniques
The methods that underpin most AI applications in healthcare originate 
from the field of machine learning, which describes iterative learning by 

a computer algorithm that simulates (or betters) human intelligence. 
Healthcare applications have also benefited from progress made in 
other areas such as natural language processing and the integration of 
genomics and metabolomics (enriched data sets). A workflow for the 
application of AI techniques should start by questioning whether there 
are appropriate methodologies and data sets to address the research 
hypothesis. Conventional statistical analysis will often suffice; e.g. where 
mono-disease questions are raised and higher dimensional interactions 
are not anticipated.

An overall approach to the use of AI within healthcare is described in 
Figure 1. Following the development of a clear hypothesis, researchers 
(working with experienced data scientists) should first consider the 
type of data to be examined. This allows the research team to select 
computational algorithms based on the depth of data available (if granu
lar and/or multi-modal), whether they are derived from noisy (but often 
large) data sets in the real-world, or if they are dynamic data such as 
wearable streams. To enhance research output, consider then in a step- 
wise fashion the aspects of data pre-processing, the desired approach 
to the algorithm employed for machine learning, and importantly, 
how findings will be evaluated and validated (see Figure 2 for examples). 
For each step, the technical processes involved are detailed in the 
Supplementary material online, Technical Appendix.

Step 1: type and collation of data
This first step will critically determine the design of the study, and facili
tate appropriate analysis. No AI model is completely unbiased, and that 
begins at the point of data origin: where and for what purpose the data 
were collected. This question might already determine what underlying 
biases are present in the data and is not unique to an AI analysis; e.g. 
bias towards a certain ethnicity or age group. Furthermore, different 
classifications of data might be collected from different data modalities. 
This includes: (i) structured information such as demographics and 
blood biomarkers; (ii) semi-structured information, which includes 
text-based or continuously measured data such as time-series mea
surements from accelerometers (where raw data can be transformed 
into a sequence or graph structure11); and (iii) unstructured data, which 
include any type of imaging data. In the study design phase, the choice of 
data set is often determined by the research question; however, re
searchers should be aware that unstructured data may require more 
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technical pre-processing. In terms of research output, the case studies 
highlight that structured data can be more readily interpreted to health
care (e.g. Case 1), but unstructured data provide latent, hidden, or 
otherwise unknown relationships (e.g. Case 5). It can also be advanta
geous to use and link different types of data (as in Case 4). It is import
ant to note that the linkage, i.e. the process of combining data for the 
same entities from different anonymized sources, is performed in a se
cure and privacy-preserving way. There are no boundaries for what is 
acceptable in terms of sample size, as this is dependent on the type of 
data (e.g. a wearables study may only have a dozen patients, but with 
millions of measurements for each patient over an extended period 
of time). Where there are only limited observations, AI techniques 

are likely to be of limited extra value. Another important consideration 
is the endpoints of the study, and whether these are well-defined, vali
dated, or adjudicated.

Step 2: pre-processing of data
Underlying biases in the data need to be explored, and then the data 
transformed into usable formats for machine-learning algorithms. The 
output of any AI model is only as good as its input; therefore, pre- 
processing is a critical step to plan a study and understand its findings. 
For numerical variables, this often means transforming values into a 
normal distribution (standardization) or bringing the values into a pre- 
defined range (normalization). Categorical data types are commonly 
encoded in a binary format. Missingness should be investigated, in par
ticular if data are not missing at random, and then consideration of case 
deletion or imputation. Some data sets with a large number of variables 
may require a reduction in the dimensionality of the data (e.g. Case 2), 
either by linear approaches (such as principle component analysis) or by 
non-linear methods such as multi-dimensional scaling or neural 
network-based autoencoders. Other data types require different kinds 
of pre-processing: time-series data may be normalized by the capture 
period (e.g. Case 5); and images can be contrast-adjusted, scaled, or seg
mented (e.g. Case 7).

Step 3: choosing the right 
machine-learning approach
This step assists with the choice of AI technique employed, determined 
by the clinical question or hypothesis, and the setting of how the ma
chine will learn. In the supervised setting, the machine-learning ap
proach uses labelled data to perform some form of prediction (e.g. 
length of stay, disease prognosis); in essence, it is using the human- 
derived output to train its prediction. In the unsupervised setting, the 
computational algorithms have no ground truth to compare with, so 
they are expected to infer relevant relationships between variables 
or with the stated outcome (e.g. define subphenotypes, patterns, or 
up/down-regulated gene expression).

A wide variety of machine-learning algorithms are now available. 
Decision Trees are constructed by splitting the training data iteratively 
until the data cannot be split further. Random Forests build models con
taining a number of Decision Trees, with each tree learned on a random 
subset of the data. Neural networks consist of multiple layers of compu
tation, optimized to maximize predictive performance on a data set. 
Deep neural networks (DNN) use multiple additional layers to model 
complex non-linear relationships, with convolutional neural networks 
(CNN) being a specific class of DNN that provides feature selection 
during the learning process. Autoencoders learn a latent data represen
tation of the original information via passage through a bottleneck layer. 
Additional machine-learning algorithms arise from the field of data inte
gration, such as the two-way orthogonal partial least squares (O2PLS) 
approach, which decomposes two data sets into joint, orthogonal, 
and residual subspaces. The joint components capture the relationship 
between the data, while the orthogonal parts encode variation specific 
to each data set. Further advances, such as group sparse two-way or
thogonal partial least squares (GO2PLS), can improve objectivity and in
terpretation.12 All of these AI approaches have been used in the 
healthcare setting, and with constant evolution, this list of resources 
will continue to expand.

Unstructured
Semi-structured
Structured and multi-omics

Standardize / normalize
Imputation
Dimensionality reduction

Supervised learning
Reinforcement learning
Unsupervised learning
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Figure 1 Artificial intelligence framework for clinical application. An 
overview of a framework to apply artificial intelligence, with standar
dized assessment and reporting of data acquisition, data pre- 
processing, and machine learning. These steps are interlinked with 
evaluation and validation to provide clinical value in real-world 
applications
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Step 4: validating and evaluating methods 
and results
Appropriate validation is needed in order to know how the study find
ings will apply to the real world. The importance of evaluating machine- 
learning output is no different from any other prediction task, and there 
remain challenges in generalizing from one data set to another, and then 
again to actual clinical practice. External validation should be the default 
approach for all AI studies, and usually involves estimating performance 
on completely unseen data. A gold-standard method is to apply a learn
ed model to one or more data sets originating from a different cohort or 
study, preferably from a different site or time interval. Solely relying on 
internal validation methods is not advisable, although in some circum
stances it may not be possible to share data or learn models. Options 
include k-fold cross-validation, in which the data are divided into distinct 
k subsets (folds), and each of the k subsets is used once for testing and 
the remaining (k − 1) subsets for training a model. The performance me
trics on each fold can be aggregated to estimate the overall performance 
of the final model based on unseen data. To ensure an unbiased valid
ation, each data point should be independent of any other data point, 
with data originating from the same patient in the same fold to avoid 

information leakage. An alternative to k-fold cross-validation is boot
strapping, which randomly splits the input data set into training and 
test sections many times with replacement in order to estimate model 
performance on unseen data and to construct confidence intervals. 
Overfitting of prediction models is a particular concern during the train
ing stage of the machine-learning approach. For large data sets, the ori
ginal data can be split into partitions (e.g. 70% for training and 30% to 
test), whereas for smaller data sets, full internal cross-validation is re
quired. This enables researchers to select the best parameters internally 
without biasing further evaluation of the algorithm’s performance.

The evaluation of any machine-learning algorithm involves perform
ance measures such as classification statistics, including true positive 
rate or sensitivity, true negative rate or specificity, and positive or nega
tive predictive values. The F1 score (or Sørensen–Dice 
coefficient which is proportional to F1) is the harmonic mean of preci
sion (positive predictive value in binary samples) and recall (sensitivity in 
binary samples) and is a measure of accuracy (correctly predicted cases 
compared with the complete number of samples in the data set). All 
these measures depend heavily on the underlying data set and the dis
tribution of classes. A somewhat more objective measure is possible 
from receiver operating characteristic (ROC) analysis, in which the 
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Figure 2 Examples of analytic steps based on data modality. Examples of pre-processing and machine-learning approaches based on the type of data 
available. CNN, convolutional neural network; DNN, deep neural network; LSTM, long short-term memory recurrent network; O2PLS, orthogonal 
two-way PLS; PCA, principal component analysis; PLS, partial least squares regression; SVM, support vector machine
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area under the curve expresses the performance of an approach re
gardless of the underlying class distribution. For time-to-event analyses, 
the same concordance probability measured by the ROC is calculated 
by the Harrel’s C-statistic. Both the F1 score and area under the ROC 
range from 0 to 1, with higher values indicating better performance.

The explainability of AI approaches is of substantial interest in health
care. Commonly, AI approaches outperform human experts in specia
lized tasks, yet they do not give a reason for a particular prediction. 
Underlying biases in the data might lead to misclassification, and so cau
tion must be used when interpreting AI approaches if they influence the 
care of patients.

Case studies in the application of 
artificial intelligence techniques
The following case studies exemplify the potential clinical value of AI 
techniques. A summary of the case studies mapped to the AI workflow 
is presented in Table 1, providing worked examples across a variety of 
different data sources and data modalities that can aid interaction be
tween clinical and data scientists. Patient and public involvement is crit
ical to the development, community acceptance, and effective 
dissemination of research findings.13 Table 2 provides an insight into 
the use of AI in routine healthcare from a patient and public perspective.

Case study 1: treatment efficacy of 
beta-blockers using advanced clustering
Workflow

(i) Structured data from clinical trials; (ii) unsupervised clustering; (iii) 
internal and external validation by bootstrapping and 
leave-one-trial-out approach.

Rationale
Beta-blockers are highly effective in reducing mortality in patients with 
heart failure and reduced ejection fraction (HFrEF) in sinus rhythm, ir
respective of patient age, or sex.14 However, the efficacy of beta- 
blockers was not demonstrated in patients with HFrEF and atrial fibril
lation (AF), with a hazard ratio in this subgroup of 0.97 vs. placebo [95% 
confidence interval (CI): 0.83–1.14].15

Findings
Nine randomized trials provided individual patient data on 2837 HFrEF 
patients with an electrocardiogram (ECG) demonstrating AF at the 
time of randomization (see Supplementary material online, Table S1
for additional methods). The median age was 65 years (IQR: 56–72), 
24% women, and the baseline left ventricular ejection fraction was 
27% (IQR: 21–33). All-cause mortality over a mean of 1.3 years of 
follow-up by intention to treat was not different between patients 
with AF randomized to beta-blockers or placebo (19.7% vs. 21.1%). 
Structured data underwent unsupervised AI clustering, with pre- 
processing using variational autoencoders as a dimensionality reduction 
algorithm. Four of five clusters showed a consistent lack of efficacy from 
beta-blockers. However, one cluster of younger AF patients did dem
onstrate a significant reduction in mortality with beta-blockers (odds 
ratio: 0.57, 95% CI: 0.35–0.93; P = 0.024; Figure 3A).3 Validation demon
strated good reliability and repeatability of results.

Critical interpretation
An unsupervised neural network-based approach was able to cluster 
patients with heart failure into different treatment groups based on 
their responses to beta-blocker therapy. Discovering novel patient sub
groups may be valuable for future drug development and the design of 
clinical studies. As with any clinical trial, selection criteria can lead to dif
ferences with the real-world population, where additional patient het
erogeneity could affect results.

Case study 2: integration of 
high-dimensional omics data
Workflow

(i) Structured omics data; (ii) unsupervised—GO2PLS; (iii) external al
gorithm validation.

Rationale
The GO2PLS method was applied to integrate two heterogeneous 
omics data sets using simultaneous dimension reduction and feature se
lection. ChIP- and RNA-seq data from 13 patients with hypertrophic 
cardiomyopathy (HCM) and 10 controls were integrated (see 
Supplementary material online, Table S2), with better separation of 
cases and controls compared with conventional principal component 
analysis.12 GO2PLS was validated on a different data set with transcrip
tomics and inflammatory markers from mucosal samples taken from 
patients with primary sclerosing cholangitis-inflammatory bowel dis
ease (PSC-IBD; n = 10) and ulcerative colitis (n = 10).16

Findings
The two sets of omics data were analysed; 1387 differentially expressed 
transcripts from RNA sequencing and seven inflammatory markers 
from flow cytometry. Using GO2PLS, the predicted sample scores 
showed a segregation of patients with PSC-IBD vs. ulcerative colitis. 
For the top selected genes, a functional association network was con
structed using the STRING17 open-access database of known and pre
dicted protein–protein interactions (Figure 3B). An enrichment analysis 
using the open-access DisGeNet18 gene-disease database was per
formed, and the genes selected by GO2PLS were significantly enriched 
for the IBD gene set (P < 0.0001, corrected for multiple testing). 
Additionally, hub genes responsible for the regulation of immune and 
inflammatory responses were found (chemokine ligand 1, CXCL1).16

Critical interpretation
Integration of different types of clinical data using machine learning, in
cluding genomics and proteomics, was an effective way of pinpointing 
target genes for new translational studies. Although based on small 
sample size and therefore limited in interpretation, the method used 
was validated by experiments on an external data set.

Case study 3: application of text mining on 
healthcare data
Workflow

(i) Semi-structured data from EHR; (ii) supervised text mining; (iii) ex
pert validation and EHR-coded data validation.
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Rationale
Clinical notation is a rich source of information in the EHR, containing 
more detail on the health status of each patient than coded data alone. 
The challenge lies in appropriate extraction, validation, integration, and 
analysis of natural language.19,20 A supervised Komenti text-mining 
framework was used on clinical letters to identify patients with HCM 
not currently under specialist care, in addition to AF and heart failure 
status,21 and anticoagulant use.22 The approach was evaluated using a 
combination of expert manual validation and by comparing the derived 
cohort with coded EHR data (see Supplementary material online, 
Table S3).

Findings
The text-mining pipeline found 23 356 letters with keywords for HCM, 
of which 11 083 were relevant and described 3120 patients. The final 
classification determined 1753 real HCM cases, of which 333 patients 
had a positive family history, 357 had AF, and 205 had heart failure.16

Manual validation revealed an accuracy of 86.3% (95% CI: 82.3%– 
90.3%), with sensitivity against the structured EHR data of 86.5%. The 
214 patients identified by the text-mining approach were not currently 
under specialist care. The accuracy of the anticoagulant prescription was 
93.6% (95% CI: 88.6%–98.6%). When cross-checked against clinical 

records, 39 patients with AF were not anticoagulated and subsequently 
referred for treatment to prevent stroke and thromboembolism.21

Critical interpretation
Text-mining approaches can be used to identify patients with rare diseases, 
reducing the time, and effort required to discover patients, and enhancing 
their access to specialist management. This requires sufficient infrastructure 
and the ability to work securely on patient records, which in this case led to 
the optimization of patient treatment to improve clinical outcomes.

Case study 4: predicting heart failure using 
electrocardiograms
Workflow

(i) Structured and unstructured data from EHR; (ii) supervised neural 
network; (iii) train-test split validation.

Rationale
Heart failure is a major public health concern, but there is limited scope 
to adequately identify those patients at risk who could benefit from 
preventative therapies. The 12-lead ECG encodes substantial 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Overview of cases and mapping to artificial intelligence framework

Case Data 
modality

Data origin Learning 
setting and 

method

Number of participants Validation Key outcome from AI 
approach

1 Structured Clinical trials Unsupervised; 
autoencoders and 

clustering

n = 15 660 with HFrEF; 2837 with 
concomitant AF

Bootstrapping; 
leave-one-study-out 

cross-validation

Differentiation of patients 
based on interacting 

comorbidities and mortality 
benefit from beta-blocker 

therapy

2 Structured Omics Unsupervised; 
GO2PLS

Development cohort: n = 23; 13 
with HCM. Validation cohort: n = 

20; 10 with primary sclerosing 
cholangitis; 10 with ulcerative 

colitis

External validation Integration of omic data sets to 
identify target genes and 

pathways for drug 
development and repurposing

3 Semi-structured EHR (text) Supervised; 
natural language 

processing

n = 3120; 1787 with HCM  
(17 199 letters)

Expert comparison; EHR 
coding comparison

Identification of patients that 
could benefit from therapies 
and specialist management

4 Unstructured EHR (data) Supervised; deep 
neural network

n = 65 565 patients with 137 018 
electrocardiograms

Train-test split Prediction of incident heart 
failure using routinely captured 

ECG data

5 Unstructured Cohort within a 
clinical trial

Supervised; 
convolutional 

neural network

n = 41 with AF; wrist/smartphone 
devices with mean recording 
period 4.8 months (SD: 1.63)

Cross-validation Approach to remotely monitor 
patients using wearable 

consumer devices

6 Unstructured Observational 
cohort

Supervised; deep 
neural network

n = 4700; 1990s recordings of 
PPG

Train-test split; 
cross-validation; 
bootstrapping

Potential for effective screening 
of early vascular ageing using 

smartphones

7 Unstructured Images Supervised; 
convolutional 

neural network

n = 2480; 649 with PH; validation 
of segmentation: n = 831

Cross-validation; expert 
evaluation

Improved ability to determine 
patient prognosis based on 

cardiac imaging data

AI, artificial intelligence; EHR, electronic healthcare record; GO2PLS, group sparse orthogonal partial least squares; HCM, hypertrophic cardiomyopathy; PH, pulmonary hypertension; 
PPG, photoplethysmography.
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information, of which only a small fraction is currently used in clinical 
practice. Within a large, secondary-care EHR, ECGs were linked to 
the incidence of heart failure determined by ICD-10 codes. A DNN 
model of digital ECG data was trained, optimized, and internally vali
dated (see Supplementary material online, Table S4).

Findings
The analysis cohort consisted of 62 430 patients, with a median age of 
60 years (IQR: 44–73), 48% women, and a median follow-up of 2.5 years 
(IQR: 0.7–4.5). The DNN model of 131 827 ECGs yielded an ROC area 
of 0.807 for incident heart failure (95% CI: 0.797–0.816; Figure 3C). This 
was superior (P < 0.0001) when compared with a model trained on 
clinical parameters alone (ROC: 0.730, 95% CI: 0.717–0.742). A com
bined ECG and clinical parameter DNN model yielded an ROC area 
of 0.826 for incident heart failure (95% CI: 0.816–0.836).

Critical interpretation
The application of neural network models to routine digital ECGs can 
identify patients at risk of developing heart failure. Although supported 
by internal validation, this approach requires external validation before 
implementation by clinicians to consider pre-emptive therapy to pre
vent heart failure and its substantial complications.

Case study 5: integration of wearable data
Workflow

(i) Unstructured wearable sensor data; (ii) supervised neural network; 
(iii) cross-validation.

Rationale
Monitoring of patients is typically limited to sporadic measurement 
during clinical care episodes, whereas wearable devices provide an op
portunity for dynamic assessment in a range of environments. This 
study investigated whether a wrist-worn wearable device connected 
to a smartphone could provide equivalent information as traditional 
clinical trial assessments, tested within a randomized controlled trial 
of patients with AF and heart failure.23 Ambulatory heart rate and 
physical activity (step count) measurements were continuously col
lected from participants (Figure 4A), and compared with static meas
urement of heart rate on ECG and 6-min walk distance at trial visits 
to predict changes in New York Heart Association class. A CNN 
was developed using the wearable sensor data, consisting of a four- 
layer network with data augmentation and unsupervised pre-training 
to maximize generalizability (see Supplementary material online, 
Table S5). Performance was assessed by the F1 score and validated 
by leave-one-out cross-validation, with 95% CIs estimated by boot
strapping resampling.

Findings
Wearable data were collected from 41 patients randomized to either 
digoxin or beta-blockers, with 17 women (41%) and a mean age of 
75.7 years [standard deviation (SD): 8.6]. The mean data collection per
iod was 4.8 months (SD: 1.6). The CNN model using continuous wear
able sensor data yielded an F1 score of 0.55 for prediction of New York 
Heart Association class at the end of the trial (95% CI: 0.40–0.70; with 
chance being 0.35). This was comparable with using a static 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Patient and public perspectives on artificial intelligence

Thoughts about AI? What are the challenges of implementing AI in healthcare?

• An exciting new approach that offers huge potential for better healthcare. • Lack of understanding and training on AI among healthcare staff, and 
how it could support their clinical work.

• Could improve and speed up diagnosis, treatment, and referral processes. • Cost of undertaking AI, with rapid technical advances resulting in 
equipment becoming obsolete quickly.

• Becoming commonplace in daily life but not as visible for healthcare. • Large energy requirement for computer processing and lack of 
environmental awareness in line with developing public attitudes.

• Applying AI appropriately to health problems is a first important step, with the 
hope that useful AI can then be tested to improve the day-to-day care of patients.

• Need for transparent processes to ensure and demonstrate 
accuracy of data and reliability of algorithms.

Where are the opportunities for using AI in the healthcare setting? What do patients and the public want and need before more 
widespread use of AI in healthcare?

• Better monitoring, awareness, and interest in healthcare issues, e.g. using 
consumer wearable devices.

• Better communication with the public is required to improve 
understanding of AI in healthcare, and ensure future engagement.

• Potential to reduce the need for patients to attend primary or secondary 
healthcare facilities.

• Reassurance regarding data security, in particular ownership, privacy, and 
potential sale of data to third parties and companies.

• Can leverage existing data sets without further direct patient involvement and 
ability to augment clinical decision-making.

• Technological developments must not accentuate existing health 
inequalities, but work to reduce them.

• Can help with unknowns by revealing information not immediately obvious to 
clinicians, which could improve treatments for patients.

• Clear explanation of how real-world use of AI can lead to benefits for 
patients and the healthcare system.

• To facilitate more efficient mass screening, reduce false positives and focus 
therapy on those at higher risk of poor outcomes.

Written and compiled by the cardAIc patient and public involvement and engagement team.
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AF, atrial fibrillation; CNN, convolutional neural network; HF, heart failure; PPG, photoplethysmography.
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measurement of 6-min walk distance and an ECG-derived heart rate at 
baseline, with an F1 score of 0.59 (95% CI: 0.44–0.74).

Critical interpretation
Scalable deep-learning frameworks have the capacity to remotely moni
tor patients with chronic conditions, after consideration of missing data 
and appropriate methods to deal with multi-channel time-series data. In 
this proof-of-concept study, continuously acquired wearable data pro
vided equivalent information as conventional 6-min walk distance, 
showing the potential for consumer devices to replace inconvenient 
clinical tests.

Case study 6: prediction of vascular ageing 
based on smartphone-acquired 
photoplethysmography
Workflow

(i) Unstructured photoplethysmography (PPG) sensor data; (ii) super
vised neural network; (iii) train-test split, cross-validation, and 
bootstrapping.

Rationale
Smartphone-recorded PPG provides an opportunity for large-scale, 
non-invasive screening of cardiovascular conditions. Crowd-sourced 
PPG data from the ‘Heart for Heart’ initiative provided 90 s recordings 
from 4769 individuals. Simultaneous recordings of the red, green, and 
blue light spectrums obtained through PPG were pre-processed by de- 
trending, de-modulating, and denoising the raw signal. A peak detection 
algorithm was constructed, and low-quality signals were filtered. 
Machine-learning-based ridge penalized regression (RPR) was applied 
to extracted PPG features, and CNNs were applied to the whole 
PPG signal. Clinical features (sex, weight, height, and smoking status) 
with and without PPG data were compared in two groups according 
to their age, as a surrogate marker for vascular ageing (see 
Supplementary material online, Table S6).25

Findings
The 3612 participants had complete data, with a mean age of 49 years 
(SD: 15) and 1407 (39%) women. Raw PPG signals were successfully 
modulated (Figure 4B). The RPR approach selected two features (turn
ing point ratio and the ‘a’ wave of its second derivative), whereas the 
best-performing CNN was a 12-layer ResNet. Comparable prediction 
performance was noted with both approaches. Using clinical features 
alone, the ROC area was 0.742 (95% CI: 0.635–0.841). ROC area in
creased to 0.947 with RPR by adding two PPG features in addition to 
clinical features (95% CI: 0.902–0.984). ROC area increased to 0.953 
with the best CNN (95% CI: 0.916–0.989).

Critical interpretation
Computational approaches are able to isolate PPG signal features that 
are associated with age-related vascular changes. This case shows the 
potential for large-scale, person-led screening to identify individuals 
who could benefit from early therapy to prevent vascular dysfunction. 
Further work is required to evaluate beyond surrogate endpoints and 
test directly against clinical prognosis.

Case study 7: using cardiac motion to 
predict survival in pulmonary 
hypertension
Workflow

(i) Unstructured geometrical data produced from cardiac magnetic res
onance imaging; (ii) supervised neural network; (iii) expert, cross- 
validation, and bootstrapping.

Rationale
Pulmonary hypertension (PH) can lead to failure of right heart function 
and subsequent morbidity; however, the ability to accurately predict 
survival in PH is currently lacking. A deep CNN approach was devel
oped to segment three-dimensional cardiac magnetic resonance im
aging data into five regions (Figure 4C).24,26 The trained segmentation 
network was used to extract the right ventricular cavities acquired 
from 302 PH patients with known clinical outcomes (see 
Supplementary material online, Table S7). Segmentation accuracy was 
compared with semi-automated annotations and then quality- 
controlled by two experienced clinical experts.27 Survival prediction ac
curacy was tested using bootstrapped internal validation.26

Findings
The 649 patients with PH were included between 2004-2017, with a 
median follow-up of 371 days. The performance of the CNN-based 
segmentation model was evaluated on an independent set of 831 
healthy subjects. Average Dice coefficients were excellent for each seg
ment: 0.962 for the left ventricular cavity; 0.873 for the left ventricular 
wall; 0.923 for the right ventricular cavity; and 0.76 for the right ven
tricular wall. The average C-statistic for predicting survival outcomes 
using the CNN model was 0.75 (95% CI: 0.70–0.79), which was signifi
cantly higher (P < 0.005) when compared with a benchmark that uses 
conventional human-derived volumetric indices and clinical risk factors 
(C-statistic 0.59, 95% CI: 0.53–0.65). Segmentation results from 20 PH 
patients comparing automatic and manual measurements showed no 
significant difference between machine and human performance.

Critical interpretation
A supervised AI approach using CNN and autoencoders was able to 
accurately track heart motion on heart images, and predict survival in 
patients with PH. Similar to other studies where AI outperformed ex
pert evaluation, the integration of such approaches into routine clinical 
practice is the next major challenge, plus critical elements of ongoing 
evaluation to ensure efficient clinical workflow and improved patient 
management.

Discussion
This AI framework provides physician researchers with an understand
ing of how and when to apply AI algorithms to different types of health
care data, and to encourage better collaboration with health data 
scientists. The step-wise approach starts from initial data selection 
and pre-processing, consideration of the right learning algorithm, and 
then evaluation and validation of results. To demonstrate potential im
pact, this framework was applied to a variety of data sources, ranging 
from structured data (clinical trials, omics, and patient records), semi- 
structured data (text mining), to unstructured data (time series, wear
ables, and imaging). Depending on the research question and data set, 
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each data type required a different approach for pre-processing, learn
ing methodology, and validation. The case studies highlight how the de
velopment in AI techniques, when applied correctly to clinical data 
sources, can achieve a step change in treatment selection, risk stratifi
cation, and patient well-being.

The application of AI in clinical medicine is an evolving technology 
with the potential to significantly expand knowledge and improve 
healthcare delivery. Multi-morbidity, and heterogeneous pathophysi
ology and clinical presentation that are commonplace in CVD limit 
traditional statistical methods, which struggle to include multi- and high
er dimensional interactions between patient factors.3,9,28,29 Recent ad
vances have also led to an increase in the potential application of 
AI-based methods, including large data volumes from EHR systems, 
registries, and trial collaborations,6 and complex data from wearable 
devices and body systems imaging.9 Using a data-driven approach, AI 
techniques can complement conventional statistical methods in a num
ber of ways. For example, using neural networks to define novel phe
notypes and treatment responses that can accelerate the drive 
towards personalized medicine.3,30 New text-mining approaches can 
be used to capture previously inaccessible information from clinical en
counters, extracting the essence of the data into a machine-readable 
format for analysis while retaining depth and granularity.7,22 These nat
ural language processing algorithms also present an exciting opportun
ity to validate outcomes from innovative EHR-embedded clinical 
trials.31 In the field of imaging, AI workflows can improve cost-efficiency 
by facilitating image acquisition and providing similar (or better) accur
acy than human performance.24,28,32 Sensor data from consumer de
vices can be exploited by AI to digitize the process of remote data 
collection and disease monitoring, providing real-time data in the pa
tient’s own environment,33 and contributing to disease prevention by 
effective screening.25,34 As with any emerging technique, the actual im
pact of AI is still being demonstrated, and this also applies to the case 
studies described. However, there is an encouraging example of AI de
ployment in the form of the first large, cluster-randomized trial of AI. 
Used on cardiac ECGs in 22 641 patients, the AI approach was able 
to improve the diagnosis of poor heart function.35 Although the abso
lute effect and impact were limited (diagnosis in 2.1% with AI vs. 1.6% 
for controls; P = 0.007), this trial demonstrates the applicability of AI 
techniques and also the rigour needed to test them. In the longer 
term, the evaluation of algorithms would benefit from routine bench
marking against current clinical practice, to understand the added value 
for clinical decision-making and healthcare workflow.

While recognizing the potential for AI-enhanced approaches, we 
should be mindful of underlying assumptions and limitations. 
Adequate pre-processing of data is vital so that any AI analysis has a ro
bust basis for delivering new insight with predictions that make biologic
al sense. Machine-learning algorithms, particularly in the field of deep 
learning, are often ‘black boxes’ (Graphical Abstract) where the action 
of computational processes is opaque.36 There is also an increasing 
gap in knowledge,37 with AI technology rapidly outpacing common 
knowledge among health researchers, clinicians, and the general public. 
This paper attempts to address some of these issues, but further struc
tured education is needed across all stakeholders for a broader under
standing about the use of AI algorithms in both clinical research and 
daily life. The lack of validation that is pervasive in the current literature 
is a major concern; in a systematic review of 82 studies using 
deep-learning algorithms, only 25 performed an external validation.38

This has led to new reporting guidelines for AI-based clinical trials 
(the CONSORT-AI extension),39,40 but gaps remain in the transpar
ency of reporting. Researchers should be clear about their methods 

and be guided by the FAIR principles (Findability, Accessibility, 
Interoperability, and Reusability),41 so that other research groups can 
access data, provide independent validation, and ensure clinical value.

The social construct and licence for AI-based healthcare studies need 
specific consideration. In particular, researchers must carefully way up 
data privacy issues, consent (opt-in and opt-out approaches), the justi
fication for data access, data sharing, and dissemination. These issues 
were recently highlighted by an international stakeholder group 
(CODE-EHR), providing a clear framework and checklist to encourage 
better use of structured healthcare data in clinical research.42,43 Strong 
patient and public engagement in the development and management of 
the research can be helpful to ensure these factors are embedded with
in the design of the study.13 Finally, while this article is designed to aid 
the application of novel AI techniques, the implementation of AI within 
routine healthcare remains in its infancy.44 Further work is needed (and 
ongoing) to ensure that challenges in implementation are addressed, in
cluding robust evaluation, governance, and acceptability to both care 
receivers and care givers.45

Conclusion
A better and more focused application of AI has the potential to en
hance stratification of patient risk and treatment response, aiding clin
ical decision-making and moving towards personalized therapeutic 
approaches. Appreciation is needed of the limitations of each data 
source and the different options for machine-learning algorithms, fol
lowed by detailed evaluation and validation. This approach is a founda
tion that can improve the precision and generalizability of AI to redefine 
complex disease phenotypes, discover new therapeutic targets, and en
hance the delivery of healthcare for the public good.

Key summary points
• AI approaches are widely used in healthcare, but their application var

ies and their methodology is often not transparent.
• A better use of AI for clinical research studies is limited by a lack of 

knowledge among all stakeholders, including clinicians, researchers, 
patients, and the public.

• A step-wise AI framework is defined to encourage improved applica
tion of these new technologies to a wider variety of clinical data.

• Case examples demonstrate how the integration of modern AI ap
proaches can enhance the analysis of healthcare data, improve clinical 
decision-making, and subsequently lead to better outcomes for pa
tients with CVD.
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