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Abstract

A common problem in the analysis of multiple data sources, including individual
participant data meta-analysis (IPD-MA), is the misclassification of binary vari-
ables. Misclassification may lead to biased estimators of model parameters, even
when the misclassification is entirely random. We aimed to develop statistical
methods that facilitate unbiased estimation of adjusted and unadjusted exposure-
outcome associations and between-study heterogeneity in IPD-MA, where the
extent and nature of exposure misclassification may vary across studies. We pre-
sent Bayesian methods that allow misclassification of binary exposure variables
to depend on study- and participant-level characteristics. In an example of the dif-
ferential diagnosis of dengue using two variables, where the gold standard mea-
surement for the exposure variable was unavailable for some studies which only
measured a surrogate prone to misclassification, our methods yielded more accu-
rate estimates than analyses naive with regard to misclassification or based on
gold standard measurements alone. In a simulation study, the evaluated misclas-
sification model yielded valid estimates of the exposure-outcome association, and
was more accurate than analyses restricted to gold standard measurements. Our
proposed framework can appropriately account for the presence of binary expo-
sure misclassification in IPD-MA. It requires that some studies supply IPD for the
surrogate and gold standard exposure, and allows misclassification to follow a
random effects distribution across studies conditional on observed covariates (and
outcome). The proposed methods are most beneficial when few large studies that
measured the gold standard are available, and when misclassification is frequent.
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1 | INTRODUCTION

Individual participant data meta-analysis (IPD-MA) com-
prises the pooling and subsequent analysis of the
participant-level data from multiple studies. As an IPD-
MA summarizes the evidence through synthesis and
analysis of all data available to answer a specific research
question, it is generally seen as the highest standard of
scientific evidence." It is therefore unsurprising that IPD-
MA have become increasingly common to summarize
the evidence from experimental and observational stud-
ies, and that their results can substantially impact clinical
practice. Although IPD-MA are frequently conducted to
study the efficacy of therapeutic interventions, they can
also be used to investigate etiologic, diagnostic, and prog-
nostic variables. In observational research, data are com-
monly gathered using methods or instruments that are
prone to measurement error (ME), but this may also
occur in randomized controlled trials (RCTs).>™

ME is any difference between the value that is
observed for a variable and its true value. ME may arise
due to a variety of random or systematic causes, such as
errors in measurement instruments or their application,
the reading of such instruments, poor recall, misunder-
standing items on questionnaires, and data entry and
management. The presence of ME may introduce
(upward or downward) bias in estimators of parameters,
even when the error is entirely random and independent
of other variables.””’

ME in categorical variables is referred to as misclassi-
fication. It is commonly believed that misclassification of
the exposure leads to attenuation of exposure-outcome
associations.® As a result, researchers often interpret esti-
mates as conservative and dismiss the need for more
advanced analyses that account for ME.’ However, atten-
uation is only guaranteed to occur when the misclassifi-
cation is non-differential (that is, misclassification is
independent of the outcome given the measured
covariates),””'%"'* the exposure has no more than two
categories and all covariates are measured without
error.® When a covariate is also measured with error, the
bias introduced by including the mismeasured covariate
in a multivariable regression analysis becomes much
more difficult to quantify.® Further, extreme misclassifi-
cation can reverse the sign of the observed association."”

In an individual participant data meta-analysis (IPD-
MA), misclassification may be present in one or more
studies. For instance, when the IPD from previously pub-
lished studies are combined, a less accurate measurement
instrument for a certain exposure variable may have been
used in some studies. If one of these instruments is prone
to misclassification, this will result in a biased estimator
for the corresponding exposure's effect. Therefore, in
IPD-MA it is generally recommended to standardize

13,14

measurements, and where possible to adjust for misclas-
sification to reduce bias.'®"’

In meta-analysis, methods must also account for the
effects of clustering in individual studies'® and should
allow for heterogeneity of the effect of interest. Hence,
methods that account for misclassification must do so as
well. Further, it may occur that different measurement
methods are used across studies. This directly implies
that a gold standard measurement may be missing for
entire studies. Applying a regression calibration to
account for misclassification requires that the estimated
probability of misclassification s transportable to other
studies. This may be tenable when the measurement
instruments, protocol, population, and setting are the
same in the included studies, but this would be a rare
occasion in the context of IPD-MA. Hence, a method that
accounts for possible heterogeneity across studies in mis-
classification as well as outcome prevalence and the
exposure-outcome association should then be applied.

In this article, we consider a binary exposure in an
IPD-MA that is prone to misclassification error. We dis-
tinguish between measurements that are obtained
(or defined) according to the gold standard, and measure-
ments that are made using an instrument that is prone to
error (further referred to as the surrogate exposure). We
subsequently discuss how valid inferences (at least to a
certain degree) can be made while the gold standard
measurements for the exposure are missing in some stud-
ies, using information on the surrogate exposure and the
observed participant characteristics. We adopt a Bayesian
estimation framework that extends previously proposed
methods'®*' for addressing misclassification in single
studies and in aggregate data meta-analysis (AD-MA).

In Section 2 we provide our motivating example of
the diagnosis of the dengue virus. In Section 3 we discuss
existing methods for dealing with misclassification, and
provide our extensions thereof. We apply these methods
in Section 4 and provide a discussion in Section 6.

2 | MOTIVATING EXAMPLE:
DIAGNOSING DENGUE

An estimated 100 million infections of dengue occur
globally each year.** Although dengue infection is often
asymptomatic, it can also be fatal and patients can pre-
sent with various clinical symptoms ranging from mild
febrile illness to hemorrhagic fever, organ impairment
and hypovolaemic shock.”*** In its early phase, dengue
can be difficult to distinguish from other febrile illnesses
(OFI) such as influenza, chikungunya, measles, leptospi-
rosis, and typhoid due to the similarity of clinical symp-
toms, which include headache and rash. Therefore, the
identification of laboratory and other clinical variables
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that aid in the differential diagnosis of dengue is impera-
tive.”” In this motivating example we focus on the
strength of the association between muscle pain and den-
gue versus OFI, conditional on the presence of joint pain.

To assess the added diagnostic value of muscle pain in
the differential diagnosis of dengue versus OFI, a multivari-
able logistic prediction model can be developed. Suppose
several studies have fit such models to data and that for
some studies the presence of muscle pain data have been
tainted by misclassification. In order to show the potential
impact of the misclassification, we use simulated IPD for
10 studies (Figure 1), that are based on real data gathered
in three cross-sectional studies of the IDAMS consortium
(see Supporting Information A in Data S1) that aimed to
improve the differential diagnosis of dengue.”” The IPD
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were generated according to three scenarios with varying
heterogeneity in the outcome model.

In the first scenario we defined the heterogeneity param-
eters such that all studies have the same true prevalence of
the outcome (dengue infection) conditional on the exposure
(muscle pain) and covariate (joint pain) and the same true
exposure-outcome association, conditional on the covariate
joint pain. In the second scenario we allowed for heterogene-
ity in the true prevalence of dengue conditional on the expo-
sure and covariate but not in the true exposure-outcome
association, conditional on the covariate. In the third sce-
nario we allowed for the presence of heterogeneity in both
the true prevalence of dengue conditional on the exposure
and covariate as well as the true exposure-outcome associa-
tion of muscle pain, conditional on the covariate. This third

Muscle pain full data Muscle pain surrogate
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Prevalence of dengue and muscle pain measurements in the motivating example. Muscle pain was not observed in Studies

1 to 5. The values for Studies 1 to 5 under “Muscle pain full data” indicate the true values of the prevalence that were not observed [Colour

figure can be viewed at wileyonlinelibrary.com]
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scenario resembles the real-world scenario where the diag-
nosis of dengue is made more difficult by the possible pres-
ence of chikungunya, which is also a febrile illness.

As chikungunya is associated with (often even worse)
muscle pain,®* the association between muscle pain and
dengue may be smaller (or entirely absent) in studies where
chikungunya is prevalent, compared with studies where it
is not present. In all scenarios, we allowed the true preva-
lence of muscle pain and the true probability of misclassifi-
cation to vary across studies. The challenge is to account
for this rate of misclassification that is heterogeneous across
studies and depends on patient covariates, while simulta-
neously accounting for heterogeneity in the prevalence of
dengue, and heterogeneity in the muscle pain-dengue asso-
ciation. In the following sections we first provide a short
overview of methods for accounting for misclassification in
single studies and in AD-MA before we move on to
accounting for these sources of heterogeneity in IPD, such
in this IPD-MA of the muscle pain-dengue association.

3 | METHODS

Many methods have been developed to adjust for misclas-
sification of exposures in the analysis of a single study.
These include regression calibration and multiple
imputation-based methods. Methods for adjusting meta-
analyses of aggregate data for misclassification have also
been proposed. We start by briefly summarizing these
methods and their characteristics. More detailed informa-
tion is available from Keogh et al.*

3.1 | Adjusting for misclassification in a
single study

In regression calibration, the outcome is regressed on the
expected value of the exposure, given the surrogate expo-
sure and covariates. The expected value of the exposure
can be estimated by regressing the exposure on the surro-
gate exposure and covariates for participants for whom
all these variables have been measured. When modeling
a continuous outcome with linear regression using this
approach the estimator for the exposure-outcome associa-
tion is unbiased, provided that the error is nondifferen-
tial, the ME is constant across studies or validation data
are available for each study where the outcome is mea-
sured, and no other biases (such as confounding or selec-
tion bias) are present.® However, regression calibration
has been demonstrated to yield (somewhat) biased esti-
mators when applied to logistic regression.®”®*> As
regression calibration does not use the observed outcome
for estimating the expected value of the exposure, it can-
not account for differential misclassification.

Alternatively, one may apply multiple imputation for
measurement error (MIME), which treats the gold stan-
dard (and the surrogate measurement) as just another var-
iable to be imputed using all other variables. MIME
models typically include the outcome as covariate, which
naturally accounts for differential error if the imputation
model is correctly specified. However, it overestimates the
uncertainty in the imputation of the true exposure,*® and
has not been investigated for IPD. Before discussing IPD,
we turn to methods for adjusting for misclassification in
meta-analysis of contingency tables and aggregate data.

3.2 | Adjustment for misclassification in
a meta-analysis of contingency tables

Most meta-analyses are based on aggregate data. When
the exposures are binary, the aggregate data for the
exposure-outcome associations are often presented as
counts in contingency tables. Provided that contingency
tables for the surrogate-gold standard exposure associa-
tion are also available, one can adjust for the misclassifi-
cation in the surrogate exposure-outcome association
that is unadjusted for covariates.*!

3.2.1 | Misclassification assumptions in
meta-analysis

As the rate of misclassification may differ across studies,
Lian et al. recently developed a model that accounts for
clustering and heterogeneity. They relaxed model
assumptions such that the frequency of misclassification
is not required to be constant across studies but is
allowed to vary across studies by applying a random
effect.”! That is, the degree of misclassification is allowed
to vary across studies by applying a random effect. The
resulting coefficients for the misclassification model and
for the exposure-outcome model need not come from the
same studies if this can be assumed. This is advanta-
geous, as it implies that studies in which misclassification
was not investigated can be included in the analysis.
Although the model of Lian et al. does not assume that
misclassification in the measured exposure is common
across studies, their model's assumptions nevertheless
require that misclassification is independent of any patient-
level covariates, given the value of the gold standard mea-
surement of the exposure.*' In particular, they assume that
misclassification depends solely on study-level variables.
This is an important distinction, as misclassification that is
non-differential given covariates, may be differential when
these covariates are not taken into account.” Thus, if mis-
classification rates are different for the levels of the outcome
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and patient-level covariates can explain those differences,
then these covariates must be taken into account.

3.3 | Adjustment for misclassification in
AD-MA

Extending methods that rely on stratified contingency
tables to the analysis of covariate-adjusted exposure-
outcome associations may be impractical. It would require
that studies provide contingency tables that are stratified
for the outcome, gold standard measurement of the expo-
sure, surrogate exposure, and every adjustment variable.
Clearly, this may be infeasible for a large number of vari-
ables. Alternatively, one may opt to adjust for misclassifica-
tion in a meta-analysis of aggregate data, that is, using
exposure-outcome associations (and standard errors)
reported in the form of regression coefficients such as (log)
risk or odds ratios that have been adjusted for covariates. If
all of these reported estimates (including the standard
errors) are appropriately adjusted for misclassification in
their respective studies, one could analyze these with tradi-
tional meta-analysis methods. On the other hand, if the
estimation of these covariate adjusted exposure-outcome
associations did not include accounting for misclassifica-
tion, then this would have to occur in the meta-analysis.

If IPD are available for the gold standard and surrogate
measurements of the exposure, one might apply a misclassi-
fication model to adjust the reported exposure-outcome
associations for misclassification, but this would require
misclassification to be dependent solely on study level vari-
ables.”! This assumption would clearly be violated in case
the misclassification is dependent on participant-level cov-
ariates. For instance, in our motivating example, the mis-
classification of muscle pain was associated with the
participant-specific value of joint pain. If the measurement
for joint pain is missing for a participant, then the informa-
tion to estimate the expected value of the missing measure-
ment of muscle pain is missing for that participant. In the
case of AD-MA, this implies that the covariate joint pain
would be missing for the entire study. Thus, any
participant-specific misclassification would not be accounted
for. In the next section we describe how the assumption that
misclassification in meta-analysis depends on solely on
study-level variables can be relaxed if IPD are available.

3.4 | Adjustment for misclassification in
a meta-analysis of individual

participant data

We extend the methods of Nelson et al.*° and Lian et al.*!
to incorporate participant-level covariates in a one-stage

Synthesis Methods—YV1 LEY-L

IPD-MA for potentially misclassified binary exposures. As
such, we allow the probability of misclassification to
depend on study-level variables and on individual
participant-level covariates that are observed without
error. Further, modeling of IPD allows us to estimate the
adjusted (i.e., multivariable) exposure-outcome associa-
tions. For example, suppose that misclassification of mus-
cle pain may occur in the differential diagnosis of dengue.

Let x; denote the gold standard measurement of the
binary exposure (e.g. muscle pain) for participant i,i=
1,..,n; in study j, j=1,...,J. The surrogate exposure is
given as x;; and represents a possibly misclassified mea-
surement of the exposure. We assume that xj; and x; have
been observed for some participants in some studies, and
that for some participants in some studies both have been
observed. Further, we assume that z; is a covariate
(e.g., joint pain) without ME and that y; is a binary out-
come (e.g., dengue).

Following the approach described by Richardson and
Gilks,?” we specify three submodels to account for misclas-
sification: a measurement submodel, an exposure submo-
del and an outcome submodel. In the measurement
submodel, the surrogate exposure (i.e., the measurement
of the exposure that is prone to misclassification) is pre-
dicted, conditional on the latent gold standard measure-
ment of the exposure, to determine the extent of
misclassification. The measurement submodel models the
relation xj; ~ f (x;,z;) (i.e., it imposes parametric assump-
tions on the distribution of x;*j). In the exposure submo-
del, the latent gold standard measurement of the
exposure is regressed on covariates that are measured
without error, in order to predict the gold standard mea-
surement of the exposure in participants for whom it is
missing. Hence, the exposure submodel models the rela-
tion x; ~ f(z;). In the outcome submodel, the outcome is
regressed on the latent gold standard measurement of
the exposure and on covariates that are measured
without error, to determine the exposure-outcome rela-
tionship. The outcome submodel models the relation
¥ ~f (xi,z;). Although our model generalizes to multi-
ple covariates, we restrict our notation to a single covari-
ate for simplicity. We first consider non-differential
misclassification models, which assume that Vi is inde-
pendent of x*;, conditional on x; and z;;.

34.1 | Common effects IPD-MA

We start with describing an IPD-MA misclassification
model containing three submodels that assumes common
effects across studies. Hence, all data are analyzed as if
they were measured in a single study. In this first model,
the probability of misclassification only depends on the
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value of the gold standard measurement of the exposure.
The measurement (sub)model is then given by:

x;;|x;j ~ Bernoulli (p;)
’ (1)
g(p;;) = Jo0y + oo (1 = xy)

where we choose the following prior distributions for the
coefficients: Ago ~ N (0, Ui,(,)»‘f’oo ~N (0, szﬁoo) and g(.) is
a link function. For instance, one could choose the logit
for g(.), such that intercept parameters represent log odds
and (exposure) coefficient parameters represent log odds
ratios. For coefficients, we use the first subscript to
denote the variable it is associated with (0: intercept, 1:
Zjj, 2: X;), and the second to denote the level of the effect
(0: fixed effect, j: random effect). This is equivalent to a
measurement submodel proposed by Nelson et al.,* as
Ao and ¢y, are parameters that determine g(sensitivity)
and g(1 — specificity), respectively. The above parametri-
zation allows us to introduce covariates to the measure-
ment submodel in subsequent steps. We leave the
variance parameters unspecified, as fixed values may be
supplied for these, though one may also supply prior dis-
tributions for the variance parameters.

The exposure submodel aims to estimate the relation-
ship between the gold standard measurement of the
exposure and covariate(s). It is simultaneously applied to
predict the probability that the exposure is present in par-
ticipants for whom the gold standard measurement of the
exposure status is missing. For participants for whom the
gold standard measurement of the exposure status is
missing, the expected value given covariates is imputed
following this submodel. We note that misclassification
models cannot restore the true value of the gold standard,
but can account for missing values of the gold standard.
This submodel is given by:

X;j|zij ~ Bernoulli (Py) ,

g(pij> =Yoo+ 710%ij>

where we have chosen the priors for the coefficients as

w~N (0, o, ) and y;~N (0, afm). Thirdly, of course,
we describe the submodel that is designed to assess the
(adjusted) exposure-outcome association. This outcome
submodel is given by:

Y|y, zi ~ Bernoulli (), .
g(m) = Poo + Pr0Zij + BaoXijs

where oo NN(O, a/%oo) P NN(O,_G_},N), b NN(O, a;m),
Poo 1S an intercept, f,, is the coefficient for the covariate,

and p,, is the coefficient (log odds ratio) for the exposure
of interest. When an adjusted exposure-outcome associa-
tion is to be estimated, such as when adjustments for con-
founding need to be made, the confounder should be
included in this submodel, which is represented by z;. In
practice, one may adjust for multiple confounders in this
misclassification model, but here we adjust for a single
variable for simplicity. Equations (1), (2), and (3) together
make up the least complex misclassification model that
we consider here and are illustrated in Figure 2. The pos-
terior distribution of this model is given by the product of
the likelihoods of the three submodels, and the prior dis-
tributions of the three submodels:

P(400; $00)P (00> 710)P(Boos Pr0s o) HH

(xy x> oo ¢00) H HP Xij|Zijs Y00> 10 H H
p (yij|xij’ Zij,ﬂowﬂloaﬁzo)

Although the implementation of aforementioned misclas-
sification models is fairly straightforward in an IPD-MA,
their justification becomes problematic when studies differ
with respect to case-mix, baseline risk, exposure-outcome
associations, or the extent of misclassification. We, there-
fore, discuss how to adjust the submodels accordingly.

34.2 | Accounting for between-study
heterogeneity in the distribution of the
exposure

A common situation in IPD-MA is the presence of het-
erogeneity in case-mix distributions.’® In particular,
when the distribution of the gold standard measurement
of the exposure variable varies across studies and the
exposure submodel does not account for this, then inade-
quate predictions will be made for the unobserved gold
standard measurements. We may model the varying
prevalence of the gold standard measurement of the
exposure x by applying random intercepts to the exposure
submodel, replacing Equation (2) with (note that we omit
the random parameters from the conditional notation):

X;j|zij ~ Bernoulli (py) ,

g(pij) =Yoo T Yoj T ¥10%ijs (4)

with random intercepts:
2
ij ~N (0’ Tyoj) )

where we choose the following priors for the coefficients:
wo~N (0, o, ) and y;y~N EO, o2 ) Whereas it is
00 710
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Diagrams of model Equations (1), (2), and (3) (left) and (4), (6), and (8) (right). Green squares: fully observed data, blue
circles: at least partially observed data, not in boxes: parameters. Variance parameters omitted. Note that in our examples and simulation, x

5

and y are fully observed [Colour figure can be viewed at wileyonlinelibrary.com]

common to assume a Normal prior distribution for
regression coefficients and the intercept,' the choice for
a prior distribution for the variance parameters is less
straightforward. A prior with too heavy tails will give
too much prior weight on high variance, whereas a
prior with thin tails will put too much prior weight on
a low variance.”® We here consider a half-Normal
(i.e., the positive half) distribution for parameters for
heterogeneity = between studies, namely r?oj ~
half —-N (0, ém> but would like to highlight that several
alternatives have been proposed, such as the half-Cau-
chy, half-t, and inverse-gamma distributions.*®*° This
submodel may further be expanded by adding random
effects for the covariates as well, which we omit here for
brevity.

3.4.3 | Accounting for between-study
heterogeneity in misclassification

For various reasons, the extent of error in the measure-
ment of the exposure may vary by study in an IPD-
MA. This may be modeled by applying random inter-
cepts in the measurement submodel, which can be
interpreted as that the log-odds sensitivity and
1—specificity vary by study. The measurement submo-
del is then given by:

* . *
x;|x; ~ Bernoulli (Py) ,

g(p}}) = (oo + o) + (¢oo + ¢0j) (1—xy),
with random intercepts : (5)

/10] ~N (0, T/210j> N

¢Oj ~N (0’ Tj)oj) )

where we choose the following priors for the coefficients:
Joo ~N (0, oﬁm),d)oo NN(O, 035) and the following
priors for the heterogeneity parameters: T/Zlo,- ~ half —
N(0,¢,) and 23 ~half N (0,&,, ).

3.44 | Adjusting for participant-specific
misclassification

A more complex situation arises when misclassification is
related to participant-level covariates. For instance, recall
of exposure values may be poorer in the elderly, the
answering of questionnaires may be hampered by poor lit-
eracy, and measurement instruments might be designed
for specific subgroups of participants. Participant-specific
misclassification is particularly problematic if the case-mix
distributions vary across studies, as estimates of exposure-
outcome associations will then be affected differently across
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studies. For this reason, the presence of such error can be
accounted for by incorporating patient-level covariate
effects in the measurement submodel:

* . *
X x5, zij ~ Bernoulli (plj) ,

g(p?j) = (%00 +40j + Mz x; + (‘f’oo + o+ ¢1Zij> (1—xy),

with random intercepts :
AOj ~N (O, Ti)j) )
¢Oj ~ N(Oi Tj’oj) )

(6)
where we choose the following priors for the coefficients:
doo~N (0,62, ),20~N (0,62, ), o0 ~N(0,03, ) and
$1o~N (0, aj,w), and the following priors for the hetero-
geneity parameters: Ti,, ~half - N (0, 5,101.) and 15,01_ ~

half —N (o, %) :

3.4.5 | Accounting for between-study
heterogeneity in outcome frequency

Commonly, in data from an IPD-MA and other clustered
data sets the frequency of the outcome varies by study.
To account for this effect of clustering within studies, it is
generally considered vital that random intercepts for the
outcome are applied in an IPD-MA.'® We can add these
to the outcome submodel as follows:

Yyjlxij» zij ~ Bernoulli (),
g(7y) = Poo + Poj + Prozij + PaoXijs .
with random intercepts : (7)

2
ﬂOjNN(Oa Tﬁoj),

where we choose the following priors for the coefficients:

ﬁOO ~N 0,0/2}00), ﬁZONN(O’G[Z)’ZO)’ ﬂlONN(O’GIZ}m)’
and 23, ~half = N (0,¢;, ).

3.4.6 | Accounting for between-study
heterogeneity in exposure-outcome associations

Further, the strength of the true exposure-outcome asso-
ciation might also vary by study. To model this, one may
adopt a random effects model for the outcome, which
does not assume there is a single exposure-outcome

association.>! Instead, it assumes there is a distribution of
exposure-outcome associations and it estimates the cen-
ter and variance of that distribution.

Yijlxij, 2 ~ Bernoulli (),

g(”l’j) = Poo + Poj + ProZij + PaoXij + Pajxijs
with random effects: (8)

2
Poi NN(O’ T/’OJ)’

ﬁZj NN(09 T/%)Zj) )

where we choose the following priors for the coefficients:
Boo NN(O, o;m) Bro ~N<0, o;;m), B~ N(o, agm), and
for the heterogeneity parameters: T/Zio,- ~half - N (O, 5/301),

and 1/2}21_ ~half - N (O, f,;zj). In this model $,, is the center

of the exposure-outcome association distribution and rep-
resents the overall association, f, is the study-specific

exposure-outcome association and 112,2_ is the heterogene-
)

ity of the exposure-outcome association across studies.
The random effects assumption is commonly adopted in
meta-analysis where sources of between-study heteroge-
neity cannot (fully) be explained using participant-
specific information but need to be accounted for. It is
also considered a rather safe assumption, as a random
effects model will estimate the variance of the exposure-
outcome association at near zero when that association
does not vary in the sample. Conversely, a common
effects model will lead to inadequate estimates when the
common effects assumption does not hold. Equations (4),
(6), and (8) together are illustrated in Figure 2.

The models considered here are identifiable only if
sufficient information is present in the data.'*** For
instance, to estimate Equations (2) and (4) requires that
the gold standard measurement of the exposure x; is
observed for sufficient individuals. Strictly speaking, a
single (large) study where the gold standard and surro-
gate measurements have been observed should be suffi-
cient to estimate the participant-level effects, though
more studies would be necessary to estimate the study-
level effects. For instance, in our motivating example x;
is available for participants in half of the included
studies.

Here we have assumed that the outcome y is available
for every participant in every study of the IPD-MA.
Though, if unavailable, it could be imputed following
Equations (3), (7), or (8). To ensure congeniality this
imputation model must at least contain the exposure and
covariates of the outcome submodel.*
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3.4.7 | Accounting for differential
misclassification

So far we have assumed the error in the measurement of
the exposure is non-differential, that is that conditional
on the gold standard measurement of the value of the
exposure and on the perfectly measured covariates, the
error in the measurement is unrelated to the outcome. In
any other case the error is differential. An example of dif-
ferential error is recall bias in a case-control (or case-ref-
erent) study, where individuals may overestimate
(or underestimate) their exposure, as a result of a known
outcome. A cause for this may be that the recall period
for the (self-report of the) exposure differs for controls
and cases, which may especially be an issue in a cross-
over study>**® or in a case-control study.>®

For example, in a case-control study on breast cancer,
Morabia and Flandre observed that defining menopause
using the cases’ and controls' respective age leads to dif-
ferential misclassification, as on average menopause
occurs later in cases than in controls.’” Further, Levois
and Switzer report on studies on environmental tobacco
smoke exposure and lung cancer. They discuss multiple
studies in which the probability of misclassification of
smoking or magnitude of ME in smoke exposure differed
between lung cancer cases and controls.*® Greenland rec-
ommends that in the absence of a reason to assume that
misclassification is non-differential, a method that
accounts for differential misclassification would be pre-
ferred.®® For example, differential misclassification would
be unlikely in a cohort study where data is collected
prospectively,®® though even in this case it is not ensured
that the misclassification is non-differential.** The
methods we described can be extended to allow for differ-
ential misclassification, by replacing Equation (6) with:

x;‘j |xij, yy5> Zij ~ Bernoulli (p;) ,
g (P:}) = (/100 + Agj + A10zij + lzoyij>xij

+ (¢oo + oj + P12+ ¢2oyU) (1—2xy) (
with random intercepts:

]*Oj ~N (0, Tﬁoj) ,

¢Oj ~N (0’ Tj’oj) )

9)

where we choose the following priors for the coefficients:
/100 ~ N(O, 6%00) s /110 ~ N(O, 6%10) . /120 NN(O, 0%20) ) ¢00 ~

N(O, 03500> s 1o ~ N(O, af/)m) 7 ~N<0, aj)m>, and for

2

the heterogeneity parameters we choose: Ty ™

Synthesis Methods—YV1 LEY-L =

A0, P10

00, 00 P20, B2;

700, Y0j

A20, P20

ﬁOO

Diagrams of model Equations (4), (9), and (8).

FIGURE 3
Green squares: fully observed data, blue circles: at least partially
observed data, not in boxes: parameters. Variance parameters
omitted. Note that in our examples and simulation, x* and y are
fully observed. [Colour figure can be viewed at
wileyonlinelibrary.com]

half - N(0,,,) and 73 ~half~N(0,,, ). It might

seem at first that including the outcome y; in the measure-
ment submodel leads to a circular model formulation.
However, the outcome Vi is used to predict the value of
xj;, not x;;. As xj; is not present in the outcome submodel,
the model is not circular. This model is illustrated in
Figure 3. It bears much resemblance to (Bayesian)
MI. The difference is that in MI no measurement submo-
del is specified and the surrogate measurement instead
appears on the right-hand side of the exposure submodel.
That is, in the MI approach the surrogate is treated as just
another variable, whereas in our approach it is treated as
a surrogate of the gold standard. We provide a description
of a stratified differential misclassification model in Sup-
porting Information B in Data S1.

We have implemented our methodology in the mis-
class R package, which is available on Github (github.
com/VMTdeJong/misclass).

4 | MOTIVATING EXAMPLE:
APPLICATION OF METHODS TO
DENGUE IPD-MA

To illustrate the impact of misclassification on observed
exposure-outcome associations in an IPD-MA, we apply
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several modeling strategies to estimate the association
between muscle pain (x;) and dengue (y;) in patients sus-
pected of dengue, where muscle pain is possibly misclas-
sified (x;;.). Hereto, we generated three scenarios for a
dengue IPD-MA using real data on dengue as described
in Section 2. In all scenarios we allowed the true preva-
lence of muscle pain and the true probability of misclassi-
fication to vary across studies. In the first scenario we
defined the heterogeneity parameters such that all studies
have the same (true) prevalence of dengue conditional on
the exposure and the covariate (z;) and the same (true)
exposure-outcome association of muscle pain, conditional
on the covariate. In the second scenario we allowed for
heterogeneity in the true prevalence of dengue condi-
tional on the exposure and the covariate but not in the
true exposure-outcome association, conditional on the
covariate. In the third scenario we allowed for the pres-
ence of heterogeneity in both the true prevalence of den-
gue conditional on the exposure and covariate as well as
the true exposure-outcome association of muscle pain,
conditional on the covariate.

We aim to highlight the ability of the methodology
we have presented here to restore this association and its
uncertainty, while simultaneously accounting for the
clustering of participants within studies and allowing for
heterogeneity in the muscle pain-dengue association.

41 | Methods

We apply 11 Bayesian binary logistic modeling strategies to
estimate the muscle pain-dengue association and its hetero-
geneity across studies. First, we model the full data with a
mixed effects model as if the gold standard measurement
was observed for all participants in all studies. In reality, this
would not be possible as the gold standard would not be
observed for some participants, but here it serves as a refer-
ence for comparison with the models that are restricted to
the observed data. Second, we apply a mixed effects model
on the subset of the data for which the gold standard mea-
surement of the exposure was observed, that is, we apply a
so-called complete case analysis. Third, we apply a naive
mixed effects modeling strategy, in which we take the sur-
rogate measurement as a proxy for any participant for
whom the gold standard measurement is not observed.
Finally, we apply the eight models described in Section 3.4.
These models range from not accounting for heterogeneity
and accounting for the simplest form of misclassification to
accounting for heterogeneity in all submodels and for a dif-
fering extent and nature of misclassification. Although
many more combinations of the submodels exist, for brevity
we chose to apply them in the order as outlined, which
results in eight full models for accounting for

misclassification. We note that some alternative specifica-
tions would not be sensible, as the exposure submodel needs
to contain at least the variables that are included in the out-
come submodel. We use prior distributions as described
above, except that we applied inverse-gamma distributions
for the parameters for heterogeneity across studies. We chose
a value of 0.1 for each of the ¢ parameters for the prior pre-
cision of the Normal distributions of the coefficients. We
chose a value of 0.001 for the shape and rate parameters
of the inverse gamma distributions for the variances of
the random effects and random intercepts.

We estimated all the models with a Gibbs sampler
with two independent chains. After 1000 adaptation and
1000 warm-up samples, 25,000 samples for the estimation
of the parameters were performed in each chain. To
reduce autocorrelation, we thinned the samples by a fac-
tor 5. The presented estimates are based on the remain-
ing 2x5000 samples. The code and data for our
motivating example is available on Github (github.com/
VMTdeJong/Misclassification-Dengue).

4.2 | Results

In each of the scenarios (see Section 2), all models
yielded positive estimates with 95% credibility intervals
that excluded zero, which in each case may lead to the
conclusion that muscle pain is positively associated with
dengue. However, we observed considerable differences
between the point estimates and estimated 95% credibil-
ity intervals of the different models, especially for the
common muscle pain-dengue association.

4.2.1 | Scenario 1: homogeneous conditional
baseline prevalence and exposure-outcome
associations across studies

In the first scenario, the estimated association (log-odds
ratio) between muscle pain and dengue in the full data was
0.82 (95% CI: 0.67: 0.98, Table 1). The complete case analy-
sis (0.64, 95% Credibility Interval: 0.41: 0.87) and especially
the naive analysis (0.47, 95% CI: 0.34: 0.60) underestimated
this association. The misclassification methods were able to
restore the muscle pain-dengue association to various
degrees. The model entitled Adjusting for participant-
specific misclassification (comprising Equations (6), (4),
and (3)), which was the correctly specified model, esti-
mated the log odds ratio for the association at 0.72 (95% CIL:
0.54: 0.90). Surprisingly, the underspecified misclassifica-
tion models estimated the association with similar or even
less error. The overspecified (i.e., models with excess
parameters) misclassification errors estimated the
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TABLE 1 Multivariable log odds ratio and heterogeneity
estimates (95% Credibility Interval) for the presence of muscle pain
for diagnosing dengue in Scenario 1

Model Pao (95% CI)
0.82 (0.67: 0.98)
Complete cases 0.64 (0.41: 0.87)

Naive 0.47 (0.34: 0.60)

75, (95% CI)

0.05 (0.02: 0.14)
0.06 (0.02: 0.23)
0.06 (0.02: 0.16)

Full data (reference)

Misclassification models

Common effects 0.74 (0.55: 0.93)

Accounting for 0.72 (0.53: 0.91)
between-study

heterogeneity in the

distribution of the

exposure

Accounting for
between-study
heterogeneity in
misclassification

0.75 (0.56: 0.93)

Adjusting for 0.72 (0.54: 0.90)
participant-specific

misclassification

Accounting for 0.71 (0.54: 0.90)
between-study
heterogeneity in

outcome frequency

Accounting for 0.05 (0.02: 0.16)
between-study

heterogeneity in

exposure-outcome

associations

0.71 (0.53: 0.91)

Accounting for
differential
misclassification

0.70 (0.52: 0.90)  0.05 (0.02: 0.16)

Accounting for 0.66 (0.45: 0.88)  0.05 (0.02: 0.15)

stratified
differential
misclassification

Note: The center of the distribution was estimated by the median of the
posterior distribution. Empty cells for 75, (95% CI) indicate it is assumed to
equal zero in the respective model. The names for the misclassification
models refer to the respective sections in the main text.

association with a larger error, though the errors were still
smaller than the naive and complete case analyses.

All misclassification models estimated the between-
study heterogeneity of the muscle pain-dengue associa-
tion well, as the estimates were very similar to the refer-
ence estimate of 0.05 (95% CI: 0.02: 0.14) in the full data.
Note that all models overestimated the between-study
heterogeneity of the muscle pain-dengue association, as
the true values were equal to 0 in this scenario. This may
be a result of the influence of the prior distributions for
the heterogeneity parameter 74, or due to some

Synthesis Methods—YV1 LEY-L =

TABLE 2
estimates (95% Credibility Interval) for the presence of muscle pain

Multivariable log odds ratio and heterogeneity

for diagnosing dengue in Scenario 2

Model Pao (95% CI)
0.76 (0.61: 0.92)
Complete cases 0.66 (0.42: 0.89)

Naive 0.56 (0.42: 0.70)

Ty (95% CI)

0.07 (0.02: 0.22)
0.08 (0.02: 0.33)
0.06 (0.02: 0.19)

Full data (reference)

Misclassification models

Common effects 0.75 (0.58: 0.92)

Accounting for 0.69 (0.53: 0.86)
between-study

heterogeneity in the

distribution of the

exposure

Accounting for 0.76 (0.59: 0.93)
between-study
heterogeneity in

misclassification

Adjusting for 0.73 (0.57: 0.90)
participant-specific

misclassification

Accounting for 0.74 (0.58: 0.91)
between-study
heterogeneity in

outcome frequency

Accounting for 0.75 (0.57: 0.94)  0.09 (0.02: 0.27)
between-study

heterogeneity in

exposure-outcome

associations

Accounting for 0.72 (0.54: 0.91)  0.08 (0.02: 0.25)
differential

misclassification

Accounting for 0.67 (0.48: 0.88)  0.07 (0.02: 0.23)

stratified
differential
misclassification

Note: The center of the distribution was estimated by the median of the
posterior distribution. Empty cells for 75, (95% CI) indicate it is assumed to
equal zero in the respective model. The names for the misclassification
models refer to the respective sections in the main text.

heterogeneity existing in the sample. The 95% CI of 7, in
the complete case analysis was wider (0.02: 0.23) than the
95% CI for the other models. This is unsurprising as it
uses only a subset of the available data.

4.2.2 | Scenario 2: heterogeneous baseline
prevalence across studies

In this second scenario, the estimated association (log-
odds ratio) between muscle pain and dengue in the full
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TABLE 3 Multivariable log odds ratio and heterogeneity
estimates (95% Credibility Interval) for the presence of muscle pain
for diagnosing dengue in Scenario 3

Model Pao (95% CI)
0.87 (0.60: 1.14)
Complete cases 1.02 (0.67: 1.38)

Naive 0.60 (0.31: 0.89)

75, (95% CI)

0.32 (0.18: 0.61)
0.23 (0.05: 0.73)
0.37 (0.21: 0.69)

Full data (reference)

Misclassification models

Common effects 0.81 (0.63: 0.99)

Accounting for 0.58 (0.41: 0.75)
between-study

heterogeneity in the

distribution of the

exposure

Accounting for
between-study
heterogeneity in
misclassification

1.09 (0.92: 1.28)

Adjusting for 1.04 (0.88: 1.22)
participant-specific

misclassification

Accounting for 0.97 (0.73: 1.20)
between-study
heterogeneity in

outcome frequency

Accounting for
between-study
heterogeneity in
exposure-outcome
associations

0.79 (0.48:1.11)  0.35(0.19: 0.67)

Accounting for
differential
misclassification

0.80 (0.48: 1.10)  0.35 (0.18: 0.68)

Accounting for 0.82(0.48:1.14)  0.34(0.17: 0.67)

stratified
differential
misclassification

Note: The center of the distribution was estimated by the median of the
posterior distribution. Empty cells for 75, (95% CI) indicate it is assumed to
equal zero in the respective model. The names for the misclassification
models refer to the respective sections in the main text.

data was 0.76 (95% CI: 0.61: 0.92, Table 2). Again, the
complete case analysis (0.66, 95% CI: 0.42: 0.89) and
naive analysis (0.56, 95% CI: 0.42: 0.70) underestimated
this association. The misclassification models all esti-
mated the common muscle pain-dengue association with
less error than the naive and complete case analysis. The
model entitled “Accounting for between-study heteroge-
neity in outcome frequency” (comprising Equations (6),
(4), and (7)), which was the correctly specified model,
estimated the association at 0.74 (95% CI:. 0.58: 0.91),

which was nearly identical to the estimates by the analy-
sis on the full data. In addition, all misclassification
models had narrower 95% Credibility Intervals than the
complete case analysis.

All considered models estimated the (lack of)
between-study heterogeneity in the muscle pain-dengue
association adequately. In the analysis on the full data
this heterogeneity was estimated at 0.07 (95% CI: 0.02:
0.22). Again, the 95% CI for the complete case analysis
was the widest (95% CI: 0.02: 0.33).

4.2.3 | Scenario 3: heterogeneous baseline
prevalence and exposure effects across studies)

In this final scenario, the analysis on the full data yielded
a muscle pain-dengue association of 0.87 (95% CI: 0.60:
1:14), whereas the complete case analysis estimated it at
1.02 (95% CI: 0.67: 1.38, Table 3) This neatly illustrates
that the error in the muscle pain-dengue association esti-
mated by complete case analysis is caused by an
increased variance rather than bias, as the estimate by
the complete case analysis is now increased with respect
to the analysis on the full data, whereas in the other sce-
narios it was underestimated. As expected, the naive
analysis underestimated the association yet again, at 0.60
(95% CI: 0.31: 0.89).

Three of the misclassification models’ point estimates
were further away from the point estimate by the full
data than the complete case analysis' point estimate,
which highlights that applying a misclassification model
is not guaranteed to reduce the error in the point esti-
mate. Yet, these were all underspecified models that did
not account for the various forms of heterogeneity. The
correctly specified model entitled “Accounting for
between-study heterogeneity in exposure-outcome associ-
ations” (comprising Equations (6), (4), and (8)) estimated
the muscle pain-dengue association at 0.79 (95% CI: 0.48:
1.11), which was close to the estimate on the full data.
The overspecified models yielded similar estimates.

Except for the complete case analysis, all models that
estimated the between-study heterogeneity for the muscle
pain-dengue association yielded adequate estimates for
this variance, as compared to the reference. The complete
case analysis underestimated the amount of between-
study heterogeneity, whereas the underspecified misclas-
sification models (wrongly) assumed it to be equal to 0.

43 | Summary

Overall, the results of this motivating example on the
association between muscle pain and dengue highlight
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the impact of misclassification on an exposure-outcome
association. The misclassification models estimated the
exposure-outcome association with less error (where the
full data are taken as reference) than both the complete-
case and naive approaches, with the exception for some
models that were underspecified in Scenario 3. This sug-
gests that even in these scenarios for relatively small IPD-
MAs, the more complex (possibly overspecified) models
seem more suitable than the simpler (possibly underspe-
cified) models.

In general, the models provided adequate estimates of
the heterogeneity of the muscle pain-dengue association.
The exception was the complete case analysis, which
yielded different point estimates due the fact that these esti-
mates were based on different data and which yielded
wider credibility intervals due to the fact that these interval
estimates were based on less data. In conclusion, the mis-
classification methods that accounted for heterogeneity in
the various submodels gave the best available estimates of
the muscle pain-dengue association and its heterogeneity.

5 | SIMULATION STUDY

We performed a simulation study to assess the impact of
misclassification on estimated associations (#,,) and the
heterogeneity of this association (T ) in an IPD-MA and
to assess the validity of our methodology We highlight
the ability of misclassification models to provide unbi-
ased estimators of these associations while propagating
the uncertainty induced by misclassification and the vari-
ous forms of heterogeneity, to facilitate valid inference.
We provide more details and a more extensive simulation
study in Supporting information C in Data S1.

The data were simulated similar to that in Scenario
3 of the motivating example on the diagnosis of dengue:
there was heterogeneity in the distribution of the expo-
sure of interest (muscle pain), in the true prevalence of
the exposure conditional on the exposure and covariate
(joint pain), and in the true exposure-outcome associa-
tion conditional on the covariate.

We applied three models. First, we applied complete
case analysis, that is only on the participants for whom
the gold standard exposure was observed. Second, we
applied a naive model in which the surrogate measure-
ment of the muscle pain was used for participants for
whom the gold standard measurement was not available.
Third, we applied the misclassification model we describe
in section “Accounting for between-study heterogeneity
in exposure-outcome associations”, which is given by
Equations (6), (4), and (8).

We estimated all the models with a Gibbs sampler
with two independent chains using JAGS 4.3.0. We

Synthesis Methods—YV1 LEY-L

performed 1000 replications of the simulation in R
3.5.2. The code for our simulation study is available on

Github (github.com/VMTdeJong/Misclassification-
IPDMA).
5.1 | Simulation results of the summary

estimate of the exposure-outcome relation

As expected, the estimator of complete case analysis was
unbiased (Figure 4, left). The estimator of the naive
method that used x* where x was not available was
biased, and the misclassification model was nearly unbi-
ased. Due to the reduced sample size for the complete
case analysis, the variance of the estimates increased,
which increased the RMSE (Figure 4, right). As a result,
this method had the largest RMSE. The misclassification
method had the lowest RMSE. The proportion of 95%
credibility intervals that covered the true effect size was
very high for the complete case analysis (Figure 4, mid-
dle). The estimates for the variance were frequently over-
estimated (not shown), perhaps as a result of the
influence from the prior for the variance. The coverage
rate for the misclassification model was also too high,
though it was closer to nominal. The naive method had
nominal coverage. In conclusion, the misclassification
model provided the best available estimates of the
exposure-outcome association.

5.2 | Simulation results of the
heterogeneity of the exposure-outcome
relation

All methods' estimators for the heterogeneity of the
exposure-outcome relation were biased (7 ), though the
magnitude varied (Figure 5, left). The estimator of the
complete case analysis was the most biased, and that of
the naive method was similar to that of the misclassifica-
tion model.

The complete case analysis the highest RMSE
(Figure 5, right). The naive IPD method and the misclas-
sification model had the lowest RMSE. For all of the
methods, the 95% Credibility Intervals had below nomi-
nal coverage for estimating the heterogeneity of the
exposure-outcome relation (Figure 5, middle).

6 | DISCUSSION

As ME or misclassification may cause bias in estimated
exposure-outcome associations, standard errors and
between-study heterogeneity in IPD-MA, it is essential to
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FIGURE 4 Bias, Coverage of the 95% credibility interval and root mean square error (RMSE) for the summary estimate of the exposure-

outcome relation. AD, aggregate data; IPD, individual participant data. Gold indicates the model only used studies for which the gold

standard x was available. The naive models used x* for each observation for which x was not available [Colour figure can be viewed at

wileyonlinelibrary.com]

account for this. We have unified methods for misclassifi-
cation in meta-analysis in a one-stage Bayesian meta-
analysis framework. Our methodology allows for the
incorporation of covariates on the individual participant
level to facilitate valid inference regarding therapeutic
and etiologic effects, and added diagnostic and prognostic
value. This modeling of the individual participant out-
come, exposure and covariate values occurs via three sub-
models: one for modeling the measurements, one for
modeling the (gold standard) exposure, and one for
modeling the outcome of interest. By doing so, both
individual-level and study-level effects are accounted for

in each part of the analysis. This, in turn, may restore the
association between the exposure and the outcome.

In our motivating example data sets, the association
between muscle pain and dengue was estimated with
reduced error by applying the proposed misclassification
models with individual participant covariate -effects.
These models account for the potential between-study
heterogeneity in the prevalence of dengue and yielded
adequate estimates of between-study heterogeneity of the
muscle pain-dengue association.

In our simulations, we considered multiple scenarios
where baseline outcome prevalence conditional on
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exposure outcome relation across studies. AD, aggregate data; IPD, individual participant data. Gold indicates the model only used studies
for which the gold standard x was available. The naive models used x* for each observation for which x was not available. [Colour figure can

be viewed at wileyonlinelibrary.com]

covariates and exposure effects were heterogeneous
across studies, as well as the exposure-outcome associa-
tion and the degree of misclassification, and compared
the performance of several models. We found that ana-
lyses that only used data from studies in which the gold
standard was measured, that is, complete case analyses,
produced unbiased summary estimators of the exposure-
outcome relation, but did so with considerably increased
error unless in at least 7 out of 10 studies the gold stan-
dard was measured. Hence, the feasibility of restricting
the analysis to patients with complete data for the (gold

standard) exposure will depend on the remaining sample
size. If this number is low, the variance of the resulting
estimates will be large. In the extreme case, gold standard
measurements are entirely unavailable for participants
for whom the outcome is available, making this method
impossible. In addition, the validity of a complete case
analysis may become challenging when patients
(or studies) for which only surrogate exposure are avail-
able differ with respect to covariates that are not part of
the outcome model. As expected, our simulations also
showed that naively using a possibly misclassified
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surrogate measurement for the exposure when the gold
standard is not available, introduced bias in the estima-
tors for the exposure-outcome association.

This bias could be avoided or mitigated by using our
proposed methodology for misclassification models. As
the misclassification models use all available data, the
resulting standard error is smaller than that of models
that use only the observations for which only the gold
standard is available. In our simulation, this resulted in
estimates that were consistently better than those of the
naive and gold standard methods, or that were equally
good. However, we did observe bias for estimators of the
heterogeneity of the exposure-outcome relation (using all
approaches), which is no surprise as estimating this
parameter is notoriously difficult in meta-analyses of few
studies.”*** We found that applying a misclassification
model on the individual participant data were particu-
larly beneficial when the misclassification was strongly
related to covariate values and when the number of stud-
ies where the gold standard exposure was measured was
low. We found that three studies that have measured the
gold standard measurement is sufficient (Scenario 2) to
greatly reduce the bias resulting from misclassification,
but the bias could not be prevented entirely in this case.

In general, over-specification should not induce bias in
the estimators, provided that the sample contains enough
information to estimate all parameters. Nor should it affect
the coverage as the models appropriately account for the
uncertainty. However, we stress that if we had applied an
underspecified misclassification model, we would expect to
have observed (some) bias in the estimators for the
exposure-outcome association, as well as less favorable sta-
tistical properties in terms of RMSE and coverage. After all,
although the misclassification was non-differential given
covariates, once those covariates are removed from the
model the misclassification may become differential.®

Contrary to our expectations, the fully Bayesian
method that naively used the possibly misclassified x*
when the gold standard x was not available, was very
well able to estimate the heterogeneity in the heterogene-
ity of the exposure-outcome relation. However, this may
have been a result of two biases canceling each other out,
as all methods estimators for the heterogeneity of the
exposure-outcome relation were positively biased due to
a limited sample size per study, influence from the priors
and a relatively small amount of studies, and the naive
methods produced estimates for the summary estimates
of the exposure outcome-relation that were biased toward
zero. When all estimates in a meta-analysis are drawn
toward the null and the SE is kept constant, the heteroge-
neity estimate is guaranteed to be drawn toward zero.

Another surprise is that the estimation of heterogene-
ity of the exposure-outcome relation by the naive and

misclassification methods was hardly affected by the
number of studies for which the gold standard was
observed; 3 of 10 (the lowest in our simulations) was suf-
ficient. This is a sharp contrast with the methods that
relied on the gold standard, which needed at least seven
studies, or perhaps nine.

6.1 | Limitations and future directions
Although we recommend the implementation of mis-
classification models, an alternative strategy is to imple-
ment models that require fewer assumptions and do
not depend on Bayesian MCMC sampling methods.
Two such methods, RC and Multiple Imputation for
Measurement Error correction (MIME), do not specify
measurement submodels and require fewer distribu-
tional assumptions, and are therefore described as func-
tional methods'? or reclassification methods.”® In
contrast, in structural methods such as ours, a model is
specified, which when analyzed with Bayesian methods
allows for the appropriate propagation of uncertainty.
However, this requires assumptions on the distribution
of the gold standard measurement of the exposure and
its surrogate measurement.'”> However, we focused on
the scenario where the exposure is a binary variable
that is potentially misclassified, which is common in
epidemiology. This binary variable is assumed to follow
a Bernoulli distribution, so specification of an exposure
submodel does not add a major assumption® aside from
congeniality, which is also required for RC and MIME.
Although both of these methods have been applied to
account for misclassification in single studies, neither
has yet been adapted to the heterogeneous setting that
is IPD-MA. This would require the specification of mul-
tiple heterogeneity parameters. We suggest that further
research may focus on integrating these into the IPD-
MA framework.

In case the exposure is a continuous variable which
has been transformed into a binary variable at a specific
cut-off point, alternative assumptions are needed for
modeling the distribution of the exposure and its ME (see
e.g., Reference 12). Our method could be further
extended in case multiple surrogate exposure measure-
ments are available for some or each participant, by spec-
ifying a measurement submodel for each surrogate
measurement.

In the simulation study, we applied only one misclas-
sification model as this simulation was intended as a
proof of concept, not to assess the relative performance of
all the described models in a variety of scenarios. All of
the methods discussed here require covariates that pre-
dict the value of the gold standard measurement of the
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exposure to be fruitful. If the available covariates are not
predictive of the missing gold standard exposure or the
surrogate exposure, only noise would be added by includ-
ing individual participant covariate effects in the expo-
sure and measurement submodel, respectively.

Due to the influence of misclassification on exposure-
outcome associations and the presence of between-study
heterogeneity, and the increase in parameters that are
required to account for this, a larger amount of data are
necessary than in an IPD-MA where misclassification is
absent. This should be especially the case for the more
complex misclassification models. In our simulation
study, however, 3000 individual participants spread over
10 studies was sufficient for the estimators of the
exposure-outcome relation to be unbiased and this bias
was very small for 1000 participants. In a typical IPD-
MA, where the sample size is often much larger, there
should be enough information to estimate the more com-
plex misclassification models.

6.2 | Conclusion

In an IPD-MA, the gold standard measurement of an
exposure may be entirely unavailable for all participants
in some studies, or unavailable for some participants in
all studies, leaving the researcher with only surrogate
measurements for these participants. If ignored, this
induces bias in the estimators for exposure-outcome asso-
ciations and other parameters of interest, which must be
accounted for. Our Bayesian methodology can be applied
to participant level data to reduce the error in the esti-
mate of the exposure-outcome association compared with
analyses restricted to participants for whom the gold
standard measurement is observed, while appropriately
propagating uncertainty for all parameters. This may pro-
vide unbiased estimators of the exposure-outcome associ-
ation and coverage of the true effect by the 95% CI,
provided that the model is specified correctly.
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