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Abstract Multiple-list capture-recapture data can be used to estimate the size of a
population. In this manuscript two problems are studied and solved using a common
solution. The first problem is that the lists refer to different but overlapping popu-
lations. An example is that lists refer to different but overlapping regions, different
but overlapping periods in time, or different but overlapping age groups. The second
problem is that each list has a set of covariates and the sets of covariates are not iden-
tical. By considering both problems as missing data problems, a solution is obtained
through the EM algorithm. This approach is illustrated by two examples.
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1 Introduction

One of the ways to estimate the size of an unknown population is by using capture—
recapture methods. In epidemiology these methods use two or more lists (or registra-
tions) with individuals. The lists of individuals are linked, and the overlap is studied
through the construction of a contingency table. If there are S lists, a contingency
table is formed with 25 cells. For example, if there are three lists, the count in cell
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(1,0, 1) represents the number of individuals that appear in lists 1 and 3 but not in
list 2. By definition, the number of individuals in cell (0, 0, 0) is unknown, and the
statistical problem is to estimate the population size. For reviews of this research
area, see the International Working Group for Disease Monitoring and Forecasting
(IWGDMF) (1995), Chao et al. (2001), and Tsay and Chao (2001).

A popular statistical method that is often used for the estimation of the count in
cell (0,0, 0) is the loglinear model (see, for example, Fienberg 1972; Bishop et al.
1975; Cormack 1989). Typically a loglinear model is estimated for the contingency
table where the cell (0, 0, 0) is treated as a structural zero. Once the model is found
that describes the counts in the cell adequately, the parameter estimates of this model
are projected onto cell (0, 0, 0), yielding an estimate of the number of individuals
missed by all lists. By adding up this number to the number of individuals observed
at least once a population size estimate is obtained.

The loglinear model may reveal different inclusion probabilities for each of the
lists, but also—if the number of lists is at least three—dependencies between the
lists. It may well be that the inclusion probabilities and dependencies differ for co-
variates, and if such covariates are available, a loglinear model should take them into
account. It is well known that list dependence may be caused by heterogeneity of in-
clusion probabilities (see, for example, INGDMF 1995), and therefore it is generally
advisable to include covariates into the loglinear model.

However, usually two problems are encountered in taking covariates into account.
First, it may be that there are covariates that are related to the definition of the pop-
ulation. For example, it may be that list 1 is listing individuals in regions 1 and 2,
whereas list 2 is listing individuals in region 2 and 3. Thus list 1 refers to a popu-
lation that is different from the population list 2 refers to. Using standard methods,
only the population in region 2 could be estimated, as individuals living in region 1
being in list 1 cannot be linked to any individual in list 2, and similarly for the indi-
viduals living in region 3 that are listed in list 2. Many other examples can be given,
such as lists being operative in different but overlapping time periods, or lists being
operative for different but overlapping age groups, or one list being operative for fe-
males whereas the other is operative for males as well as females, and so on. What
they have in common is that the lists are referring to different but overlapping popu-
lations, and covariates are available that make it possible to separate these different
but overlapping populations.

A second problem that may be encountered is that the lists refer to the same pop-
ulation, but that the covariates that are available differ over the lists. For example,
a set of lists deal with both males and females, but for one of the lists, gender is not
recorded. So there are covariates available in all of the lists, and these covariates are
used, for example, in linking the individuals over the different lists. But as different
lists may be founded with different purposes, it is only natural that the covariates
available in the lists are not identical.

Until recently both problems have not been dealt with in an optimal way. That is,
for the first problem, if the lists referred to different but overlapping populations, us-
ing standard methods, only the overlapping part of the population was estimated; the
second problem was solved using standard methods by simply ignoring the covariates
that did not appear in each of the lists.
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Structurally missing data problems 7

Recently both problems were solved in separate papers but with a common so-
lution (see Zwane et al. 2004; Sutherland et al. 2007; Zwane and Van der Heijden
2007). The common solution to both problems is that there is a missing data prob-
lem. In the first problem, when, for example, list 1 is listing individuals in regions 1
and 2, whereas list 2 is listing individuals in region 2 and 3, the missing data problem
is that region 3 is missing for list 1 and region 1 is missing for list 2. For the second
problem, when a set of lists deal with both males and females, but for one of the lists,
females are not recorded, females are considered missing for this latter list.

This missing data problem is solved by estimating the missing data using the
Expectation—Maximization (EM) algorithm (Little and Rubin 1987). It can be shown
that the assumptions that are made in applying the EM algorithm are less stringent
than those that are made with the usual approach to ignore part of the data.

In this manuscript we summarize the work of Zwane et al. (2004) and Suther-
land et al. (2007). We present both problems in one framework and discuss several
practical issues that may be encountered in their application. We present two applica-
tions to illustrate their work. One application deals with a capture—recapture problem
where five lists are defined over different but overlapping time periods. Another ap-
plication deals with a capture-recapture problem where two lists have different sets
of covariates.

2 Theory

To motivate the problem, we will first provide the two typical problems that we
sketched in the introduction in more detail.

Problem 1: lists refer to different but overlapping sub-populations The first problem
is that lists refer to different but overlapping sub-populations. A first example is that
sub-populations are defined regionally: lists refer to different but overlapping regions.
For example, if there are two lists, it may be that list 1 is observed in both region 1
and region 2 but list 2 is only observed in region 2. Here a sub-population estimate
for region 1 and for region 2 may be interesting. Another, slightly more complicated
example, is that list 1 is observed in regions 1 and 2, whereas list 2 is observed
in regions 2 and 3. Here estimates for each of the three sub-populations may be of
interest. Another example that is often encountered in practice is that sub-populations
are defined in time: lists are often built up in different time periods, for example, list
1 is referring to individuals observed in time periods 1 and 2, whereas for list 2,
only observations for period 2 are available. Here estimates for the sub-populations
in period 1 and in period 2 may be of interest. We refer to Zwane et al. (2004), who
discuss an example of incidence of spina bifida where five lists cover different time
periods.

We will consider one example in more detail: the example is that there are two lists,
where in region 1 lists 1 and 2 are available, and in region 2 only list 1 is available.

Let us assume first the standard situation for this example, namely that both lists
are observed in both regions. After linking the two lists, Table 1 can be formed. As
the elements a and e are not observed, the statistical problem is here to estimate them.
This will then lead to a population size estimate for region 1 and for region 2.
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Table 1 Multiple list

capture-recapture data in two Region List 1 List2
regions Not included Included
1 Not included a b
Included c d
2 Not included e f
Included g h

The standard approach to do this is using hierarchical loglinear models where the
unobserved elements a and e are treated as structural zeros. If we denote loglinear
models by placing the variables defining the highest fitted margins between brack-
ets, the most complicated loglinear model is [IR][2R]. We call model [1R][2R] the
maximal model, since for this model, the fitted values are equal to the observed fre-
quencies. The term [1R] shows that region is related to the inclusion probability of
list 1 (i.e., the inclusion probability for list 1 in region 1 may be different from the
inclusion probability for list 1 in region 2), and the term [2R] shows that region is
related to the inclusion probability of list 2. This notation also shows that the inclu-
sion probabilities of list 1 and list 2 are independent in each region. In this standard
approach more restrictive loglinear models can be fitted, for example, [1][2R], where
the inclusion probabilities of list 1 are homogeneous over regions 1 and 2, but the
inclusion probabilities of list 2 may be different over regions 1 and 2.

Consider now the situation that in region 1 there are two lists available and in
region 2 only list 1 is available. In this situation elements a, e, and f are not observed,
and the sum g + A is observed. Now in order to arrive at population size estimates for
region 1 and region 2, there are two statistical problems, namely first to disentangle
the sum g + A into separate elements g and 4, and, second, to estimate the unobserved
elements a, e, and f.

Interestingly, if one is not interested in the separate estimates for regions 1 and 2
but rather in the sum of the estimates for regions 1 and 2, then an estimate of this pop-
ulation size may be obtained by ignoring region. Zwane et al. (2004) prove that two
assumptions need to be fulfilled for this estimate to be unbiased: first, independence
of lists 1 and 2 in each of the regions and, second, that the inclusion probability of
the list of observed in both regions, i.e., list 1, is homogeneous over the two regions.
Though this result may be interesting and useful, it does not lead to separate estimates
for regions 1 and 2, and this may regularly be of interest.

Problem 2: lists have different (sets of) covariates We now consider the second
typical problem. Often the lists used in a multiple-list capture-recapture problem
have one or more covariates in common, namely those covariates that were used for
uniquely linking the records in the list, such as age, gender, city of birth, and address.
However, there may also be covariates that are unique for a specific list. For example,
as we will see in an example that we will discuss later in this manuscript, when civil
information collected by local government offices is linked to criminal information,
the local government office may have detailed information about the marital status
and age of father and mother of an individual, whereas this information may not
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Structurally missing data problems 9

Table 2 Lists 1 and 2 with

covariates A and B List 1 Covariate A List2
Covariate B
Not included Included
By By By By
Not included Ay a b c
Ay e f g h
A3 i Jj k 1
Included Aq m n 4 p
Ay q r s t
A3 u v w X

be available in the list for criminal information. Similarly, in the list for criminal
information we may find information about the criminal history of an individual that
will most likely not be available in the list of the local government office.

Usually in multiple-list capture-recapture problems only the covariates that both
lists have in common are used in an analysis, but covariates that are unique for a
list are ignored. Zwane and Van der Heijden (2007) have shown that this may lead
to biased estimates of the population size. Second, such an approach of ignoring
unique covariates makes it impossible to relate these covariates to the population size
estimates.

We will now illustrate this problem. The example is that there are two lists, list 1
and list 2, and covariate A with levels A1, Ap, and A3 and covariate B with levels B;
and B;. The data can be collected in a table such as Table 2.

In this situation the elements a, b, e, f, i, and j are not observed and have to be
estimated. If both covariates A and B are collected in lists 1 and 2, then the traditional
approach of using loglinear models can again be employed for estimation the popu-
lation size. Here the most complicated loglinear model that can be fit is [AB1][AB2];
again we use the phrase maximal model for [AB1][AB2] since for this model, the
observed frequencies are equal to the fitted counts and no further parameters can be
added to the model as it would make the model unidentified. In the maximal model
the assumption that has to be made is independence of lists 1 and list 2 given A and
B, so that a is estimated using ¢, m, and o, and similarly for the other unobserved
elements. In the maximal model [AB1][AB2] the inclusion probability for list 1 and
the inclusion probability for list 2 are functions of A and B jointly, and more restric-
tive loglinear models can be tried to investigate whether the inclusion probabilities
are, for example, only functions of main effects of A and B.

Assume now that covariate A is only available in list 1 and covariate B is only
available in list 2. Then problems become more complicated. First, as before, the
elements a, b, e, f,i, and j are not observed. Second, due to the fact that A is only
available in list 1 and not in list 2, the levels of A are unknown in the situation that list
2 is observed but list 1 is not unobserved; as a result, we do not know the elements
c,d, g, h,k,and [, but we only know the sums (¢ + g + k) and (d + h + [). Third,
due to the fact that B is only available in list 2 and not in list 1, the levels of B are
unknown in the situation that list 1 is observed but list 2 is not unobserved; as a result,
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10 P.G.M. van der Heijden et al.

we do not know the elements m, n, q, s, u, and v, but we only know the sums (m +n),
(g +r),and (u + v).

Now in order to arrive at population size estimates for list 1 and list 2 stratified for
A and B, there are two statistical problems, namely first to disentangle the sums
(c+g+k),d+h+1D, m+n), (g+r), and (u + v) into separate elements
c, g k,d,h,l,m,n,q,r u,and v, and, second, to estimate the unobserved elements
a,b,e, f,i,and j.

Solution to the problems What both problems have in common is that both can be
considered as missing data problems. A general solution that can be applied to these
missing data problems is the EM algorithm (Little and Rubin 1987) proposed in this
context by Zwane et al. (2004), Sutherland et al. (2007), and Zwane and Van der Hei-
jden (2007). The EM algorithm can be used if the missing data are missing at random
(MAR; Little and Rubin 1987), that is, the probability of missingness depends only
on the observed data. This is often a reasonable assumption here, because the data
are missing by design. As a result, the missingness provides no information about the
underlying process, implying that the missing data mechanism is ignorable.

Due to the similarities between the missing covariate problem and the problem
where some lists only operate in a sub-population of the full population, they can both
be tackled as one problem, and the EM algorithm can be used to obtain maximum
likelihood estimates. The EM algorithm comprises iterations of pairs of steps. In the
E-step, the contributions of the missing data to the cell probabilities (sufficient statis-
tics) are estimated, and in the M-step the complete-data analysis is applied, with the
contributions estimated in the previous E-step in place of their unknown complete-
data values. Since the E-step depends on some of the parameters estimated in the
M-step, iterations are necessary. In the capture-recapture problem with categorical
covariates the EM-algorithm is practical since both the E- and M-steps are simple.
The algorithm is iterated until it converges. After convergence the parameter esti-
mates are used to find point estimates for the structurally zero cells and an estimate
of the population size.

Interestingly, for both typical problems that we discussed above, the maximal mod-
els become more restrictive. Thus far this was only discussed for the models in prob-
lem 2, where lists have different (sets of) covariates (see Zwane and Van der Heijden
2007), but this also holds for the models in problem 1 in which lists refer to different
but overlapping sub-populations.

Maximal models when lists have different (sets of) covariates We first summarize
the results of Zwane and Van der Heijden (2007) for the situation of two lists (for the
situation of more than two lists, we refer to their paper). In general, there can be three
types of covariates, namely (i) covariates collected in A that only appear in list 1;
(i1) covariates collected in B that only appear in list 2; and (iii) covariates collected
in C that appear in both lists 1 and 2. The maximal model is [1BC][2AC][ABC].
The most complex log-linear model (maximal model) that can be fitted to these
data is the log-linear model given by [1BC][2AC][ABC]. The maximal model does
not include the interactions between 1 and A, and between 2 and B, due to that A
exists only when 1 is observed and B exists only when 2 is observed, resulting in
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Table 3 Summary of modeling decision for dual list problems

Situation Model Decision

A, B, C present [1BC][2AC][ABC] Ignore A and B if conditionally independent
No A [1BC][2C] Ignore B

No A [1BC][2C] Ignore B

No B [1C][2AC] Ignore A

No C [1B][2A][AB] Ignore A and B if independent

No A and C [1B][2] Ignore B

No B and C [1][2A] Ignore A

No A, B, C [11[2]

them being inestimable. In other words, the MAR assumption is that 1 is not directly
related to A, and that 2 is not directly related to B, but indirect relations may exist
and will go over the three-factor interaction between A, B, and C.

Simplified situations exist when A, B, or C are not available, and in particular
when A and B are available but (conditionally) independent given C. We summarize
these results in Table 3 and refer for proofs to Zwane and Van der Heijden (2007).

First, when A, B, and C are available but A and B are independent conditional
on C, then the sum of the population size estimates for the full table of 1, 2, A, B,
and C equals the sum of the population size estimates for the marginal table of 1, 2,
and C. We make a few remarks.

1. If A, B, and C are available but the current practice is followed to ignore A and
B, then this will only result in an unbiased population size estimate when in the
population A and B are independent given C.

2. Evenif A, B, and C are available and A and B are independent given C, then it
may still be worthwhile to apply the EM-approach because the EM-approach will
yield estimates for every combination of levels of A, B, and C.

3. If A, B, and C are available, one approach to find an adequate model is to start
with the maximal model [1BC][2AC][ABC], since here the fitted values are equal
to the observed counts (likelihood ratio chi-square will be 0 with O df). Subse-
quently interactions may be dropped if this will not significantly deteriorate the
fit. The maximal model with an additional conditional independence assumption
between A and B given C is equivalent to loglinear model [1BC][2AC]. There-
fore, model [IBC][2AC] and all hierarchical loglinear models that are nested in
this model by additional parameter restrictions will yield the same sum of the
population size estimates found for every combination of levels of A, B, and C.

4. When there are no variables in A, the variables in B can be ignored if interest only
goes out into the sum of the population size estimates; in the same way, when there
are no variables in B, the variables in A may be ignored.

Maximal models when lists refer to different but overlapping sub-populations In
the typical example that we discussed above there are two lists and two regions; in
region 1 both lists 1 and 2 are observed, but in region 2 only list 1 is observed. If
both lists were observed in both regions, the maximal model would be [1R][2R]. We
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12 P.G.M. van der Heijden et al.

note that there are six frequencies and six parameters. Now assume that in region 2
only list 1 is available. See Table 1. Then elements a, ¢, and f are not observed, and
the elements b, ¢, d and the sum g + & are observed. Thus there are four observed
frequencies, and therefore the maximal model can only have four parameters. These
are: the general mean and main effects for list 1, for list 2, and for region.

Finding the maximal model is not always easy, but as a rule of thumb it may be
helpful to note that no models can be estimated containing interactions for which
there are no corresponding marginal frequencies (sufficient statistics). For example,
in Sect. 4 we find an example where certain interaction parameters of a list with time
cannot be estimated for those years that the list was not available.

3 Example 1: lists refer to different but overlapping populations

As a first example, we will introduce the data set on neural tube defects (NTDs) in
the Netherlands that will be used to illustrate the procedure presented in the paper. It
deals with NTD-registrations that are active over different periods. For details about
the data, see Van der Pal et al. (2003).

In the Netherlands cases with NTD’s are registered in several national databases.
Furthermore the Dutch Association of Patients with a NTD also conducts its own
surveys. In this analysis we will use five registrations, which we describe briefly.

1. Dutch Perinatal Database I (LVRI): This is an anonymous pregnancy and birth
registry of low-risk pregnancies and births, even if care only relates to a part preg-
nancy or delivery. Data over the period 1988 through 2002 are used.

2. Dutch Perinatal Database Il (LVR2): This list registers anonymous data concern-
ing the birth of a child in secondary care. Data over the period 1988 through 2002
are used.

3. National Neonate Database (LNR): This list contains anonymous information
about all admissions and re-admissions of newborns to paediatric departments
within the first 28 days of life. Data was used for the period 1992-2002.

4. Dutch Association of Patients with an NTD (BOSK): A short questionnaire was
sent to every member of BOSK with an NTD affected child between 1988 and
2002.

5. Dutch Monitoring System of Child Health Care (NSCK): NSCK registers live born
infants with an NTD who visit a paediatrician for the first time. All paediatric
departments participate. Data was used for the period 1993-2001.

Children were linked on date of birth, zip code, mother’s date of birth, and gender
of child (Van der Pal et al. 2003). It should be noted that abortions are possible in
LVRI and LVR2, whereas they cannot appear in the other registrations. Therefore we
consider only children with a pregnancy duration from 24 weeks (the legal limit for
pregnancy termination in the Netherlands).

None of these databases include all cases of neural tube defects because of, for
instance, non-participation of health care professionals. Therefore capture-recapture
methodology has to be used to estimate the size of babies born with NTDs. The stan-
dard approach to estimate the number of NTD would be to fit loglinear models with a
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structural zero cell for observations that are in none of the registries. In this situation,
however, the usual approach could not be adopted, since some of the registrations
were not available for all of the years. Before 1992 three registries were available,
in 1994 four registries were available, in the period 1993-2001 five registries were
available, and in 2002 four registries were available. The frequencies for all years are
given in Table 4. Compared to data that have already been published in Zwane et al.
(2004), here the period 1999-2002 is added.

Instead of the standard approach, the EM algorithm was used to estimate the num-
ber of NTD-affected infants who were not registered in the years one or more reg-
istries did not yet exist or no longer existed. A loglinear model was fitted in the M-step
of the algorithm.

The results are summarized in Table 5. In Model 1, the loglinear model is the main
effect model. To account for unobserved heterogeneity, in Model 2, the procedure
proposed by the International Working Group on Disease Monitoring and Forecast-
ing (1995) was followed, by including a first-order heterogeneity term hetterm.2 for
the heterogeneity of capture probabilities (this first-order heterogeneity term states
that all two-factor interactions are equal). In Model 3, including a second-order het-
erogeneity term hetterm.3 leads to a lower AIC value, so in the models that follow
this term was dropped. Model 4 allows all inclusion probabilities to vary over time.
In Model 5, we drop the interaction between nsck by year; the other interactions be-
tween list and year cannot be dropped. In Model 6, we add the two-list interactions.
By making the model more complicated (for example, by adding three-list interac-
tions or two-list interactions changing over time), it becomes unstable. Model 6 has
the lowest AIC, and the deviance of this model of 351 for 251 degrees of freedom is
adequate for our purposes. An analysis of residuals did not reveal any clear trends.

To obtain the total number of infants born with NTD for each of the years in the
1988-2002 period, the observed number of infants and the number of missing infants
we had calculated via the capture—recapture analysis were summed. The parametric
bootstrap was used to calculate confidence intervals for the total number of infants for
each year. The advantage of the bootstrap method is its simplicity and the fact that
the bootstrap can yield confidence intervals that are nonsymmetric. For analytical
formulae, we refer to Sutherland et al. (2007). We note that the parametric bootstrap
also allows one to take model uncertainty into account, and we refer to Zwane et al.
(2004) and Zwane and Van der Heijden (2007) for examples, but we did not do this
here since, in comparison to Model 6, Models 1 to 5 have essentially no support from
the data.

In the parametric bootstrap method, random samples are drawn from an estimated
probability distribution derived from a fitted model. For the fitted model, Model
6 was used. So, for the first bootstrap sample, a sample of 3 892 observations is
drawn from the probability distribution derived from the maximum likelihood esti-
mates of the completed table under Model 6 (3 892 is the estimated population size).
The observations can fall into each of the cells of the completed table of dimension
2 x2x2x2x2x15,1i.e., including the 15 structurally zero cells and the cells for
which only margins were observed. Subsequently, the observations falling into the
15 cells ‘00000’ are omitted, and the observations falling into cells for which only
margins are known in the original data are added up. For example, for 1988, the ob-
servations falling in cell ‘00000’ are ignored, and the observations of the remaining
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Table 5 Selected models with deviance and AIC

Model  Design matrix Num. par. df Deviance  AIC N

1 Ivrl + 1vr2 4 bosk + Inr + nsck + 20 317 996.5 1036.5 3178.7
year

2 Ivrl + 1vr2 4 bosk + Inr + nsck + 21 316 861.5 903.5 43212
year + hetterm.2

3 Ivr]l 4 Ivr2 + bosk + Inr + nsck + 22 315 861.5 905.5 4332.8
year + hetterm.2 + hetterm.3

4 Ivrl 4 1vr2 + bosk + Inr + nsck + 81 256 5119 6939 41883

year + hetterm.2 + Ivrl:year +
Ivr2:year + bosk:year + Inr:year +
nsck:year

5 Ivrl 4 1vr2 + bosk + Inr + nsck + 73 264 518.5 672.5 41945
year + hetterm.2 + lvrl:year +
Ivr2:year 4 bosk:year + Inr:year

6 Ivr1 4 Ivr2 4 bosk + Inr + nsck + 82 255 350.9 522.9 3891.8
year + hetterm.2 + lvrl:year +
Ivr2:year + bosk:year + Inr:year 4
Ivrl:1vr2 + lvrl:bosk + lvrl:Inr +
Ivrl:nsck 4 lvr2:bosk + Ivr2:Inr +
Ivr2:nsck + bosk:Inr + bosk:nsck

31 cells are added up into the 7 cells that were observed for 1988, see Table 4. Then
an analysis is carried out on the resulting data using Model 6. This leads to a set of 15
population size estimates for the first bootstrap sample, one for each year. This pro-
cedure is repeated 500 times, yielding 500 sets of population size estimates. Since no
condition on years was made, the number of observations for each year may fluctuate
across bootstrap samples.

The outcome of the analysis is found in Table 6. The first column shows the esti-
mated number of newborns with NTD older than 24 weeks in the Netherlands in the
period 1988-2002. The width of the 95 percent confidence intervals shows that the re-
liability of the prevalence increases if more registries are available. From a technical
point of view it is interesting to see that, in the period 1993-2001, the period when
all five registries were available, the 90 percent confidence interval is considerable
smaller than in the period 1988-1992. Using the total number of live and stillbirths in
the Netherlands for that year (obtained from Statistics Netherlands), the prevalence
per 1000 is calculated.

It is an important question in public health whether the increased intake of folic
acid use produces a decrease in the prevalence of NTD. In the years before the rec-
ommendation of folic acid use or before an effect of the increased intake of folic acid
use could be expected (1988-1997), the average estimated prevalence was 1.37 per
1 000 live and stillbirths. From 1998, a decrease in the estimated prevalence of NTD
is noticed (average estimated prevalence over the years 1998 to 2002 equals 1.21).
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Table 6 Neural Tube Defects, results for final model. Table shows estimated population size for NTD,
90 percent confidence interval, number of live and stillbirths in the Netherlands, prevalence per 1000 live
and still births, 90 percent CI

Year Number NTD Margin Number born Prevalence Margin

1988 260 194-366 187712 1.39 1.03-1.95
1989 270 217-340 190079 1.42 1.14-1.79
1990 267 223-321 199 104 1.34 1.12-1.61
1991 222 185-268 199732 1.11 0.93-1.34
1992 307 260-402 197 848 1.55 1.31-2.03
1993 247 222-281 196 819 1.25 1.13-1.43
1994 268 234-312 196 666 1.36 1.19-1.59
1995 295 256-336 191474 1.54 1.34-1.75
1996 248 216-284 190468 1.30 1.13-1.49
1997 284 250-326 193428 1.47 1.29-1.69
1998 234 206-270 200378 1.17 1.03-1.35
1999 256 227-290 201389 1.27 1.13-1.44
2000 261 224-300 207619 1.26 1.08-1.44
2001 223 195-260 203599 1.10 0.96-1.28
2002 251 202-320 203028 1.24 0.99-1.58

Table 7 Two-list

capture—recapture data for Police Registration Official Registration

Dutch Antilleans in the Official Not included Included

Registration and the Police

Registration Not included ? 64247
Included 201 5095

4 Example 2: lists have different sets of covariates

In this second example the question of interest is the size of the population of Dutch
Antilleans that stay in the Netherlands without being officially registered. This ques-
tion was asked to us by the Ministry of Justice as they suspected a sudden rise of
young Dutch Antilleans who did not register (the Dutch Antilles are a former colony
of the Netherlands that still hold a legal relation to the Netherlands) (for details about
the research problem, see Van der Heijden et al. 2006).

In order to obtain an answer we take an unusual approach. Consider Table 7, where
we display the data for the year 2000. In this table the column list is the Official
Register that is kept by separate Dutch city hall administrations and collected by
Statistics Netherlands. As the row list, we may take some other list, in this instance
we took the Police Registration. Thus 64 247 and 5 095 are counts of Dutch Antilleans
being registered in the Official Registration, and these are the Dutch Antilleans we
are not interested in since we are only interested in the Dutch Antilleans who are not
officially registered. The Dutch Antilleans in the police registration, counts 201 and
5095, are only partly of interest for answering our research question, namely only
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the 201 Dutch Antilleans are of interest since they are not in the Official Registration.
Yet if we would know the number of Dutch Antilleans who are neither in the Official
Registration nor in the Police Registration, then we could add up this estimate to
201 and we would have an estimate of the Dutch Antilleans who are not officially
registered.

This approach to estimate the size of a population is unusual since usually in
capture—recapture problems the size of the population of interest is found by adding
up counts 64247 + 201 4 5095 with the estimate for “?”. In this context this would
be the estimate of the size of the complete Dutch Antillean population, whereas we
are only interested in the size of the Dutch Antillean population that is not officially
registered. We note that, as a second registration next to the Official Registration, any
other registration could have been used instead of the Police Registration to obtain
the same goal. However, the Police Registration has the advantage that it is already
linked to the Official Registration.

In capture-recapture problems like this each registration has its own covariates,
and very often the list of covariates is substantial. This is also the case for this exam-
ple. However, since we are dealing with a contingency table problem, we can only
choose a limited number of covariates in order not to let the data in the contingency
able to become too sparse. In choosing covariates we pick covariates for which we
suspect that they have an impact on the inclusion probabilities. For this problem,
there are three types of covariates. The first type of covariates are covariates that both
registrations have in common; here we take gender G and age A (with levels 13-17,
18-24, 25-44, 454-). The second type are covariates that are unique for the Official
Registration; here we take length of stay in the Netherlands L (0-5 years, 518 years,
+18 years) and marital status M (married, unmarried, divorced). And last, the third
type of covariates are covariates that are unique for the Police Registration, which
is the number of times they have been apprehended by the police T (once, twice, or
more) and whether they are known as a hard drug user H (no, yes).

Since the Netherlands knows very strict privacy regulations and we were only
allowed by Statistics Netherlands to report observed data were counts would not be
below 30, we only report the data in Table 7 and other summaries of the data analyses
in tables below.

We show two analyses, one “classical” analysis, where we only make use of the
two covariates that the Official Registration and the Police Registration have in com-
mon, and one analysis where we also include the covariates that are unique to either
the Official Registration or the Police Registration. We denote the Official Registra-
tion by O and the Police registration by P.

The “classical” analysis is to build a contingency table of the Official Registration
O, the Police Registration P, gender G, and age A. Because the combination “not
in O” and “not in P” is impossible, the corresponding cells are structurally zero.
Therefore the maximal model that can be fitted to the data is the model where O and
P are assumed to be independent given age A and gender G jointly. More restrictive
models were tried, but they turned out to have a worse fit. Therefore we now discuss
the estimates for model [GA O][G A P] (see Panel A of Table 8).

The total population of Dutch Antilleans is estimated to be 72 322, where 69 342
are in the Official Registration, and 2 980 are estimated to be not in the Official Reg-
istration (201 of these were observed in the Police Registration but not in the Official
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Table 8 Dutch Antilleans. Results from standard analysis and EM approach

Panel A: Results for standard loglinear models

Gender Age Notin OR InOR Total InOR InPR 2.5 50 97.5
Male 13-17 415 3127 31685 1.3 12.1 8.1 41.2 81.7
Male 18-24 272.0 6101 6373.0 43 16.2 1932 2704 355.1
Male 25-44 662.1 16826 17488.1 3.8 13.9 521.8 659.5 802.6
Male 45+ 296.9 7775 80719 3.7 5.4 1582 2927 4619
Female 13-17 106.7 3058 31647 34 2.8 0.0 100.7 255.0
Female 18-24 317.3 6210 65273 49 4.4 149.7 313.8 514.6
Female 25-44 678.6 16441 17119.6 4.0 3.2 4012 6778 965.3
Female 45+ 605.2 9804 10409.2 5.8 0.8 1272 5749 12489
Total 2980.2 69342 723222 4.1 7.3 23939 29525 3703.8
Panel B: Results for EM approach

Gender Age NotinOR InOR  Total InOR InPR 25 50 97.5
Male 13-17 39.4 3127 31664 1.2 12.1 79 379 71.8
Male 18-24 258.7 6101 6359.7 4.1 16.2 185.7 261.1 338.4
Male 25-44 629.0 16826 17455.0 3.6 13.9 508.7 629.0  766.1
Male 45+ 280.6 7775 80556 3.5 5.4 152.5 2743  421.6
Female 13-17 100.7 3058 31587 32 2.8 0.0 1004 2452
Female 18-24 299.7 6210 6509.7 4.6 44 1529 2984  460.0
Female 25-44 640.5 16441 170815 3.7 3.2 4002  654.1 934.6
Female 45+ 570.3 9804 103743 55 0.8 118.7 556.8 11753
Mar. stat. L.ostay NotinOR InOR  Total InOR InPR 25 50 97.5
Unmarried 0-5 926.8 17230 181572 5.1 10.0 720.8 927.7 11727
Unmarried 5-18 763.4 19561 203242 3.8 9.0 5972 7659 969.1
Unmarried 18+ 225.1 6750 69751 32 9.0 175.6  225.7 286.6
Married 0-5 154.2 3490 36446 42 3.7 119.5 154.2 197.6
Married 5-18 207.7 6237 64446 32 23 158.1 208.8 267.9
Married 18+ 186.8 6632 68183 2.7 2.2 142.7 187.8 244.0
Divorced 0-5 99.0 1890 1989.1 5.0 6.6 76.6 98.9 126.8
Divorced 5-18 147.6 3988 41355 3.6 5.8 114.8 148.1 189.2
Divorced 184 108.4 3564  3672.1 3.0 5.8 83.9 108.5 137.8
Times seen Harddrug Notin OR InOR  Total InOR InPR 2.5 50 97.5

1 No 1454.9 19148 20603.0 7.1 84 11106 1453.1 18579
1 Yes 5.4 236 2410 22 7.7 0.0 0.0 28.1
2+ No 1279.8 39147 404270 3.2 7.0 952.5 12902 1673.9
2+ Yes 78.7 10811 10889.8 0.7 6.4 16.2 75.7 166.8
Total 2818.9 69342 721609 3.9 73 22024 28274 3580.0
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Registration). We calculated a bootstrap confidence interval for this number, and this
interval turned out to be skewed, ranging from 2394 to 3 704. For males, there is a
peak in not being registered for the group aged 18-24 (4.3 percent of this gender-age
group), and for females, there are two peaks, namely one for 18-24 (4.9 percent) and
one for 45 and older (5.8 percent). Notice that from the younger males a substantial
part is known in the police registration.

We now turn to the analysis where we make use of covariates that are unique
to either the Official Registration or to the Police Registration. The maximal model
that can be fit to these datais [GATHO|[GALMP][GATHLM], i.e., (i) the term
GAT H O shows that the inclusion probabilities for the Official Registration are a
function of Gender, Age, number of Times apprehended and known as Hard drug
user; (ii) the term GALM P shows that the inclusion probabilities for the police
registration are a function of Gender, Age, Length of stay, and Marital status, and
(iii) the term GAT HLM shows that all covariates are allowed to be related. We
note that condition (iii) is important since it is proven by Zwane and Van der Heij-
den (2007) that, if the unique covariates in the Official Registration are not directly
related to the unique covariates in the Police Registration, then these unique covari-
ates have no impact on the estimate of the total population size. In other words, model
[GAT HO][G ALM P] or more parsimonious models would lead to the same popula-
tion size estimate as the model in the “classical analysis” and therefore, when interest
only goes out to the total population size—and not to the relation of the covariates
with the population size—these covariates could be left out of the analysis.

In our model search we tried several models but we encountered numerical prob-
lems due to the fact that, when fitting models with including higher-order margins
as GATHO and GALM P, many of related observed marginal frequencies were
zero. Therefore we had to work with more parsimonious models. First, we fit model
[GAO]IT HO][GAP][LM P], i.e., the inclusion probability for the Official Regis-
tration is a function of Gender and Age jointly as well as of number of Times ap-
prehended and known as Hard drug user jointly; the inclusion probability for the
Police Registration is a function of Gender and Age jointly as well as of Length
of stay and Marital status jointly; we further note that there are no direct relations
between the unique covariates in the Official Registration on the one hand and the
unique covariates in the Police Registration on the other hand, and this model then
leads to a population size estimate that is identical to the population size estimate
in model [GAO][GAP] in the “classical” analysis. In this model the deviance is
42975, 46 parameters are fitted, and the model has an AIC of 43 067. Second, we fit
the model [GAO]JITHONGAPILMP]TLITMIHL]HM], i.e., compared to
the first model, we now add direct interactions between the unique covariates in the
Official Registration and the Police Registration. In this model the deviance is 36 518,
54 parameters are fit, and the model has an AIC of 36 626. We do not present further
models since these models become unstable due to the fact that in more complicated
models margins are fitted to the data to contain zero frequencies. Estimates for this
model are found in Panel B of Table 8.

First we notice that, compared to the “classical” analysis, the estimated population
size goes down from 2 980 to 2 819. We show estimated population sizes for subpop-
ulations stratified by, first, Gender and Age, second, by Marital Status and Length of
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Stay, and third, by number of Times apprehended and known as Hard drug user. There
is no clear picture for Martial status, but for Length of stay, we find that Dutch Antil-
leans with a length of stay shorter than 0-5 years are relatively more often not known
in the Official Registration. Hard drug users are relatively more often known in the
Official Registration, whereas Dutch Antilleans who are more often apprehended are
also more often known in the Official Registration.

In evaluating the findings for this example, we have to conclude that we are not
certain about the validity of the assumptions made, and hence we have to handle the
findings with care. First, there is the possibility that the link between the Official
Registration and the Police Registration is imperfect. This is discussed in detail in
Van der Heijden et al. (2006), and they conclude from discussions with the police
and Statistics Netherlands that this problem is likely to be negligible. Second, there
is the open population problem. The main problem here is that it is possible that,
among the Dutch Antilleans appearing in the Police Registration but not in the Offi-
cial Registration, there are individuals who just spend a holiday in the Netherlands.
The estimates are correct if this assumption is not violated, but if this assumption is
violated, the estimates found are too high (namely, the 201 in Table 7 should be lower,
and this will make the estimates for ‘?” lower). Thirdly, we assume that being in the
Official Registration and being in the Police Registration are independent when we
control for the covariates. If there is a negative relation between the two (i.e., being
known in the Police Registration goes together with not being known in the Official
Registration), then the estimates are too low. The validity of these assumptions could
be further studied using qualitative field methods—by interviewing police officers,
civil servants working for the Official Registrations and interviewing relevant Dutch
Antilleans, but this is beyond the scope of this study.

If one is willing to assume that, over the years, the violation of assumptions is
constant, then it is possible to study potential rises and falls of the population size
estimates. Van der Heijden et al. (2006) report an estimate of 2 818 (in confidence
interval 2 202-3 580) in 2000, an estimate of 5 806 (4 939-6 824) in 2001, an estimate
of 8330 (7 548-9210) in 2002, and 11 147 (10 041-12 413) in 2003. This would then
lead to the conclusion that the population size of the Dutch Antilleans not in the
Official Register is indeed rising.

5 Discussion

The EM algorithm was used in this paper to solve two problems: the first problem
is that the lists refer to different but overlapping populations. The second problem is
that each list has a set of covariates and the sets of covariates are not identical.

For this second problem, we showed an example with categorical covariates. The
EM algorithm can in principle be used for capture-recapture models with continu-
ous covariates, but the expectation involves complex numerical integration. For these
situations, we prefer the use of multiple imputation. The main advantage of multiple
imputation over maximum likelihood methods is that it is computationally much sim-
pler for most practical situations (Sinharay et al. 2001). For continuous covariates, we
have studied this in Zwane and Van der Heijden (2008).
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