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Abstract

Surface rendering of MRI brain scans may lead to identification of the participant

through facial characteristics. In this study, we evaluate three methods that overwrite

voxels containing privacy-sensitive information: Face Masking, FreeSurfer defacing,

and FSL defacing. We included structural T1-weighted MRI scans of children, young

adults and older adults. For the young adults, test–retest data were included with a

1-week interval. The effects of the de-identification methods were quantified using

different statistics to capture random variation and systematic noise in measures

obtained through the FreeSurfer processing pipeline. Face Masking and FSL defacing

impacted brain voxels in some scans especially in younger participants. FreeSurfer

defacing left brain tissue intact in all cases. FSL defacing and FreeSurfer defacing pre-

served identifiable characteristics around the eyes or mouth in some scans. For all

de-identification methods regional brain measures of subcortical volume, cortical vol-

ume, cortical surface area, and cortical thickness were on average highly replicable

when derived from original versus de-identified scans with average regional correla-

tions >.90 for children, young adults, and older adults. Small systematic biases were

found that incidentally resulted in significantly different brain measures after de-iden-

tification, depending on the studied subsample, de-identification method, and brain

metric. In young adults, test–retest intraclass correlation coefficients (ICCs) were

comparable for original scans and de-identified scans with average regional ICCs >.90

for (sub)cortical volume and cortical surface area and ICCs >.80 for cortical thickness.

We conclude that apparent visual differences between de-identification methods
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minimally impact reliability of brain measures, although small systematic biases can

occur.
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1 | INTRODUCTION

Advances in magnetic resonance imaging (MRI) technology enable

researchers to collect good quality structural MRI scans of the brain.

However, brain scans also contain privacy-sensitive facial characteris-

tics. The participants' faces can be reconstructed with 3D rendering

software that is part of most MRI viewers. Recently, this topic

received attention from the scientific community as well as popular

journals after the release of a study in which face recognition soft-

ware was used to identify participants based on their MRI scan

(Schwarz et al., 2019). This study complements an earlier study that

shows how participants can be identified through their 3D renders by

humans (Prior et al., 2009). In light of the increasing number of world-

wide (public) neuroimaging collaborations (Poline et al., 2012) and

technical improvements, the question is whether sharing raw anatomi-

cal MRI images is still in line with privacy regulations (White, Blok, &

Calhoun, 2020). From an ethical viewpoint sharing identifiable data

may compromise the confidentiality participants consented to. For

these reasons, more and more open-access datasets contain MRI

scans that were subjected to some type of de-identification method.

Different efforts can be made to de-identify MRI scans (listed

here: open-brain-consent.readthedocs.io/en/stable/anon_tools.html).

First, brain extraction or skull-stripping removes nonbrain tissue. Sec-

ond, defacing algorithms remove facial and dental characteristics.

Examples of defacing methods are: fsl_deface (Alfaro-Almagro

et al., 2018; fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL), mri_deface (Bischoff-

Grethe et al., 2007; freesurfer.net/fswiki/mri_deface), pydeface

(github.com/poldracklab/pydeface), QuickShear (github.com/nipy/

quickshear/), mridefacer (github.com/mih/mridefacer/). Third, Face

Masking (Milchenko & Marcus, 2013, nrg.wustl.edu/software/face-

masking) masks the face and, optional, the ear region and thus preserves

more anatomical landmarks than defacing methods. An advantage of

the latter toolbox is that it can be applied to raw DICOM images, which

limits the number of intermediate processing steps. In a recent study, a

new method is introduced, mri_reface, to replace voxels in the face and

ear region with a population average (Schwarz et al., 2021). In this arti-

cle, we will focus on defacing with FSL, a method developed by and

used in the UK biobank study (Alfaro-Almagro et al., 2018), defacing

with FreeSurfer, for example, used in the BRAINS (Job et al., 2017),

CamCAN, (Taylor et al., 2017), ATLAS (Liew et al., 2018) and HID study

(Ozyurt et al., 2010) and Face Masking which is implemented in XNAT

(Marcus, Olsen, Ramaratnam, & Buckner, 2007), used in the repositories

of OASIS (Marcus et al., 2007), HCP (Marcus et al., 2013), and GSP

(Holmes et al., 2015).

De-identification methods are typically optimized for healthy

adults, but different results can be expected in other populations for

example, related to the amount of atrophy, that is, the closeness of the

brain to the skull. A recent study investigated the effects of different

de-identification methods (QuickShear, Face Masking, and FreeSurfer

defacing) in patients with multiple sclerosis, Alzheimer's Disease (AD),

and glioblastoma (de Sitter et al., 2020). In this study, we focus on age-

related effects by including children, young adults, and older adults

(with and without AD). From an ethical perspective, children are an

extra sensitive population. Possible age-related effects of de-

identification procedures on brain measures are also relevant in the

light of longitudinal studies investigating brain development or aging.

An optimal de-identification method (a) prevents participant iden-

tification, (b) leaves brain tissue intact, and (c) has a negligible effect

on brain measures, that is, the de-identified scan should approxi-

mately generate the same results as an unmasked scan. Previous

research shows that these criteria are not always met and even after

de-identification some participants can still be identified with facial

recognition software (Abramian & Eklund, 2019; Schwarz et al., 2021).

Furthermore, defacing can overwrite a small amount of brain voxels in

some cases (Alfaro-Almagro et al., 2018). Last, de-identification proce-

dures impact subsequent processing and outcome measures (Holmes

et al., 2015; de Sitter et al., 2020; Schwarz et al., 2021). In this study,

we focus on the effect of the three de-identification procedures on

brain measures, but we also describe visual aspects of the methods.

To evaluate the de-identification techniques, we started with a visual

check to rate the invasiveness, that is, whether brain voxels are preserved,

and to rate the presence of eyes and mouth characteristics after de-identi-

fication. Second, we assessed whether de-identification altered brain mea-

sures differently in children, young adults, and older adults. To this end, we

extracted regional subcortical and cortical volumes, cortical surface area,

and cortical thickness of original scans and de-identified scans. Last, we

quantified how the effects of de-identification techniques on brain mea-

sures compared to test–retest reliability in young adults.

2 | MATERIALS AND METHODS

2.1 | Samples

2.1.1 | Sample of children

The children's data consisted of 25 children from the general popula-

tion (8 male) with a mean age of 9.5 (0.9) years within a range from
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8 to 11 years. These data were collected as part of the first wave in a

large longitudinal study on brain development in Utrecht, the Nether-

lands: The YOUth cohort study (Onland-Moret et al., 2020). The sub-

set included in this study is labeled as pilot data. The children's

parents or guardians gave written consent. Included MR images were

of good quality after exclusion of scans with poor contrast or major

motion artifacts such as ringing.

2.1.2 | Sample of young adults

The sample of young adults consisted of 16 volunteers from the general

population (6 male) with a mean age of 23.6 (3.3) years within a range

from 19 to 31 years. To assess the test–retest reliability of the YOUth

MRI protocol, the adults were scanned twice using the same acquisition

parameters. The scan–rescan interval was between 6 and 8 days. The

adult dataset was acquired in the context of protocol development. The

adults signed written informed consent. All available scans were of good

quality without major motion artifacts or other artifacts.

2.1.3 | Sample of older adults

The elderly sample was selected from the large Alzheimer's Disease

Neuroimaging Initiative (ADNI, adni.loni.usc.edu). ADNI was launched

in 2003 as a public-private partnership, led by Principal Investigator

Michael W. Weiner, MD. The primary goal of ADNI has been to test

whether serial MRI, positron emission tomography (PET), other biolog-

ical markers, and clinical and neuropsychological assessment can be

combined to measure the progression of mild cognitive impairment

(MCI) and early AD. Selected scans were of good quality without

major motion or dental artifacts based on visual quality control in

addition to provided quality assessment codes. Furthermore, the sub-

set was created to ensure a heterogenous sample with regard to age,

sex and patient-control status. The older adults sample consisted of

43 elderly participants: 22 participants (7 male) with AD with a mean

age of 72.6 (7.5) years ranging from 56 to 86 and 21 age-matched

participants (9 male) without cognitive impairment with a mean age of

74.6 (5.9) years ranging from 65 to 85.

2.2 | Acquisition parameters

The ADNI subset was selected with uniform acquisition parameters,

that resembled the parameters of the YOUth MRI protocol, used for

the acquisition of the child and adult data. All acquisition parameters

can be found in Table 1.

2.3 | De-identification methods

All scans were subjected to three de-identification methods.

FreeSurfer defacing was applied using version 1.22 of the mri_deface

function (Bischoff-Grethe et al., 2007; https://surfer.nmr.mgh.

harvard.edu/fswiki/mri_deface) in FreeSurfer version 6.0 (Fischl

et al., 2002). FSL defacing was applied using version 1.0.0 of the

fsl_deface function (Alfaro-Almagro et al., 2018) in FSL 6.0.1

(Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012; https://fsl.

fmrib.ox.ac.uk/fsl/fslwiki/). The Face Masking toolbox was applied

with default coarseness and an ear mask using version December

26, 2017 of the mask_face function (Milchenko & Marcus, 2013;

https://nrg.wustl.edu/software/face-masking/). The toolbox is

implemented in neuroinformatics platform XNAT (Marcus, Olsen,

et al., 2007), but in this article we used the offline toolbox.

For face masking, we additionally compared different mask set-

tings in children and young adults by varying the coarseness of the

mask. Furthermore, we investigated the effect of switching the ear

mask option on or off (�e flag). The coarseness of the mask was var-

ied between 0.1 and 1.2 in steps of 0.1 (default value is 1) by adjusting

the grid step variable (�s flag). The coarseness variable applied to

both the face and ear mask.

2.4 | Visual inspection

A visual inspection of the de-identified scans was performed with

MRIcroGL (version July 14, 2017, www.mccauslandcenter.sc.edu/

mricrogl/). A 3D rendering was created to inspect the effect of de-

identification on the face and ear characteristics. Two raters rated the

fraction of participants in each age group where the eyes or

the mouth were preserved after de-identification. Next, all 2D axial

TABLE 1 Acquisition parameters

Children and young
adults

Older adults
ADNI 2

Parameters YOUth MRI protocol (Philips: MPRAGE)

Multicenter No, a single MR

scanner

Yes

Type of MR scanner Philips Ingenia Philips Achieva

Field strength (T) 3.0 3.0

Head-coil 32-channel SENSE

head-coil

8-channel SENSE

head-coil

Scan Structural T1W 3D

GRE

Structural T1W 3D

GRE

Scan orientation Sagittal Sagittal

TR (ms) 10 6.8

TE (ms) 4.6 3.1

Flip angle (degrees) 8 9

Field of view (mm) 240 � 240 � 200 256 � 240 � 204

Acquisition matrix 304 � 304 256 � 240

Reconstructed voxel

size (mm3)

0.75 � 0.75 � 0.80 1.00 � 1.00 � 1.20

Abbreviations: GRE, gradient echo; T1W, T1-weighted; T, Tesla; TE, echo

time; TR, repetition time.
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brain slices were checked and coded by three independent raters. The

raters rated whether brain tissue was left intact or whether more than

a few brain voxels were removed or blurred by the de-identification

method. For FSL defacing and Face Masking, the invasiveness of the

method in the ear area was assessed separately. FreeSurfer defacing

currently does not provide an option to remove ears.

Additionally, one rater assessed the invasiveness of different

coarseness settings in the child sample and the adult sample (first time

point). The mask setting that resulted in no overlap with brain tissue

in any participant (child or adult) was labeled “the noninvasive mask.”

2.5 | Visualization of de-identification

To show the effects of de-identification while preventing participant

identification, we created average brains (Caspi et al., 2020; Peper

et al., 2009). In short, the individual scans were registered to Talairach

space and corrected for nonuniformity followed by a series of linear

and nonlinear warpings of the scans (Collins, Holmes, Peters, &

Evans, 1995). The average child brain was created by averaging the

scans of all 25 children. The average young adult brain was created

using the first scan of each young adult, 16 in total. The average older

brain was created by averaging the scan of all older participants, 43 in

total. To visualize the effect of de-identification on the brain

(Figure 1), the average brains were used as input to the masking and

defacing tools.

2.6 | MRI processing

Face Masking was applied to the raw DICOMs, after which they were

converted from DICOM to NIfTI format (dcm2niix, https://github.

com/rordenlab/dcm2niix) together with the original DICOM files.

Face Masking could not be applied to NIfTI format. Both defacing

tools accept only NIfTI input and were therefore applied to the origi-

nal scans after conversion to NIfTI. FreeSurfer version 6.0 was used

for automatic brain segmentation and parcellation (Fischl et al., 2002;

freesurfer.net). Global and regional brain measures of subcortical vol-

ume, cortical volume, cortical surface area, and cortical thickness were

extracted. The Desikan–Killiany atlas was used for cortical parcellation

(Desikan et al., 2006). No additional quality check procedures were

performed on the segmentations and parcellations. Besides atlas-

based measures of cortical thickness, vertex-wise cortical thickness

was extracted. For the vertex-wise analysis, cortical thickness of each

scan was resampled to the average brain. After resampling, the corti-

cal surfaces were smoothed with a 3D Gaussian kernel

(FWHM = 10 mm).

2.7 | Statistical analysis

We computed several measures to assess the impact of de-

identification on brain measures: the intraclass correlation coefficient

(ICC) of absolute agreement (Bartko & Carpenter Jr., 1976; McGraw &

F IGURE 1 Visual appearance of scans before
and after de-identification. The first column
shows the original scan before de-identification
and the other columns show the visual
appearance of the scans after different de-
identification options. Each row shows the de-
identified average brain of a specific age group.
Within each row a sagittal slice is shown on top
and the 3D render below. To prevent
identification, the face renderings shown here are
renders of the average scans for each sample
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Wong, 1996; Shrout & Fleiss, 1979; Koo & Li, 2016) is traditionally

used in test–retest context and captures random variation as well as

systematic biases. To disentangle these two types of variation and get

a better understanding of the effects of de-identification on brain

measures, we computed Pearson correlation coefficients (Pearson's r)

for coherence, and paired t-tests and signed percentage differences

(PD) for assessment of systematic bias. As an indication of the vari-

ance introduced by de-identification we also computed the coefficient

of variation (CoV) and absolute PDs. All these statistics were com-

puted for the comparisons described below.

First, we investigated the differences between the original and

the de-identified scans in children, young adults (first time point),

and older adults. The ADNI data were analyzed as a whole and in two

separate groups based on diagnosis of AD. Second, the scan–rescan

adult data were used to calculate the test–retest reliability of brain

measures from de-identified scans and compare this to the test–retest

reliability of the original scans. Last, to separate the effect of de-

identification from test–retest reliability, we calculated the agreement

between brain measures from the first scan session and the second

scan session, masking, or defacing only the second scan. The test–

retest reliability of the original scans in this study was also reported

elsewhere (Buimer et al., 2020).

Additionally, the coarseness setting of the noninvasive mask was

defined based on the visual inspection described above. To compare the

mask with default coarseness and the noninvasive mask, both with and

without ear mask, we computed ICCs between brain measures derived

from the original scans versus one of the mask settings. This additional

analysis was done in the child sample and the adult sample (first time

point), because in older adults invasiveness was less of an issue likely

due to an increased distance between the skull and the brain.

All statistics were computed in R (version 3.5.0, April 23, 2018).

ICCs and their 95% confidence intervals were calculated with the “irr
package” (version 0.84). based on a single measure, absolute-agree-

ment, 2-way model. Local ICCs were visualized and average ICCs

are reported over all regions or vertices. When averaging Pearson

correlations or ICCs, the average was computed after Fisher's

Z transformation of the individual values and then transformed back.

2.8 | Visualization of reliability

For visualization of local reliability, ICCs were color-coded using colo-

rmap “jet” in MATLAB_R2017b. Next, region- or vertex-wise color-

coded cortical ICCs were overlaid on the cortical surface of the aver-

age brain using FreeSurfer's tksurfer.

3 | RESULTS

3.1 | Visual inspection

Figure 1 shows the effect of the different de-identification methods

from an outer and sagittal view. The first column shows the original

average scans for each age category. The 3D renders show facial and

ear characteristics in great detail. The second column shows that

defacing with FreeSurfer removes facial characteristics in a confined

part of the face only, preserving ear characteristics, and in some par-

ticipants sensitive information in the area of the eyes or the mouth.

Full preservation of the eyes occurred in up to 10% of the participants

and full preservation of the mouth in up to 27% of the participants,

but the inter-rater reliability for this assessment was low (Table 2).

The third column shows that defacing with FSL removes most facial

and ear characteristics, but some characteristics around the eyes

remain. Full preservation of the eyes occurred often in children (18%)

and only incidentally in young adults and older adults (Table 2). The

fourth column shows that Face Masking results in blurring of the full

face and ear area.

Defacing with FreeSurfer was not invasive. With this method no

brain tissue was removed across all scans. Defacing with FSL resulted

in the removal of some brain tissue in the majority of children and in

some young adults. Face Masking resulted in blurring of some brain

tissue in all children and some young and older adults. Both FSL

defacing and Face Masking were more invasive in younger partici-

pants compared to older participants. Furthermore, invasiveness was

higher in proximity to the ear compared to the face region. Table 3

lists the percentages of scans in which brain tissue was affected by

de-identification averaged over three ratings.

3.2 | The effects of de-identification on brain
measures

All original and de-identified scans were successfully processed using

FreeSurfer. Brain measures were altered by de-identification proce-

dures. However, the effect of de-identification on brain measures was

small, that is, absolute PDs were on average <5% for any age category

or de-identification method. Means, standard deviations, and

corresponding CoVs were comparable before and after de-identifica-

tion. Figure 2 shows the signed PDs for global brain measures. For

most brain measures the signed PDs averaged out to around zero, but

for cerebellar white matter volume and intracranial volume larger sys-

tematic biases were found depending on the age category and de-

identification method. Systematic biases for average cortical thick-

ness, total cortical surface area, and total cortical volume were very

small, as suggested by the signed PDs (Figure 2) and scatterplots

(Figure 3).

In children, all correlations were above .90 except for the ICC of

intracranial volume with FSL defacing (Pearson's r = .95; ICC = .87).

In young adults, all correlations for global brain measures were above

.90 except right hemisphere cortical thickness for all de-identification

techniques and left hemisphere cortical thickness with FSL defacing

and Face Masking (Pearson's r >.8; ICCs >.8). In older adults, only the

correlations for the cerebellar white matter were below .90 in the left

hemisphere for all methods (Pearson's r >.5; ICCs >.5) and in the right

hemisphere only for Face Masking (Pearson's r >.8; ICCs >.8). In addi-

tion to the lower correlations in the cerebellar white matter in the full
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group of older adults, lower correlations were found for right hemi-

sphere cerebellar gray matter in older adults without AD (Pearson's

r >.5; ICCs >.5).

The correlation between regional brain measures derived from

original scans and de-identified scans was on average higher than .90

using Pearson's r and ICCs. In general, similar correlations were found

TABLE 2 Presence of eyes and
mouth characteristics after de-
identification

Defacing FreeSurfer Defacing FSL Face masking

Children—eyes 8% 18% 0%

Young adults—eyes 0% 6% 0%

Older adults—eyes 10% 5% 0%

Children—mouth 4% 4% 0%

Young adults—mouth 13% 0% 0%

Older adults—mouth 27% 0% 0%

Note: For each sample, the percentage of individuals is given for whom the eyes or mouth was preserved

in the 3D render after de-identification. The percentages are the average of the percentages given by

two raters. The inter-rater variability was 0.48 based on a one-way model of absolute agreement.

TABLE 3 Invasiveness of each de-
identification method

Defacing FreeSurfera Defacing FSL Face masking

Children—face 0% 85% 100%

Young adults—face 0% 34% 10%

Older adults—face 0% 0% 6%

Children—ears NA 64% 100%

Young adults—ears NA 12% 56%

Older adults—ears NA 0% 24%

Note: For each sample, the percentage of individuals is given for whom the procedure was too invasive,

that is, brain tissue was blurred or removed due to de-identification of the face or ears. The percentages

are the average of the percentages given by three raters. The inter-rater variability was 0.63 based on a

one-way model of absolute agreement.
aCurrently, FreeSurfer does not provide an option to de-identify ears.

F IGURE 2 Average signed
percentage differences for global
brain measures after de-

identification. AD, Alzheimer's
Disease; CN, no cognitive
impairment; GM, Gray matter;
WM, White matter
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using Pearson's r or ICCs. Regional ICCs for cortical volume were high

in children, young adults, and older adults (Figure S1). Average

regional ICCs for cortical surface area in children, young adults, and

older adults were high for each method in each age category

(Figure S2). Average regional ICCs for cortical thickness in children,

young adults, and older adults were on average also high (ICCs >.93)

for each method in each age category (Figure 4, see Figure 5 for the

vertex-wise ICCs). Despite these high ICCs, cortical volumes in chil-

dren were significantly different in more regions than expected by

chance after Face Masking or FSL defacing, with in general smaller

volumes after de-identification. In older adults, cortical surface area

was significantly different in more regions than expected by chance

F IGURE 3 Individual global brain measures derived from original versus de-identified scans. AD, Alzheimer's Disease; CN, no cognitive
impairment
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after Face Masking and in the AD subsample after both Face Masking

and FreeSurfer defacing, with generally larger surface areas after de-

identification.

All statistics comparing regional and global brain measures of orig-

inal versus de-identified can be found in Tables S1–S5.

3.3 | Face masking: Varying the coarseness of the
mask in children and young adults

In order to better understand the effect of mask invasiveness on

reliability of brain measures we varied the coarseness settings of

the face and ear masks in children and young adults. In Figure S3,

we define settings for a noninvasive mask based on visual inspec-

tion. The noninvasive mask had a coarseness setting (grid step

value) of 0.6. At this value the brain tissue of all participants was

untouched by both the face and the ear mask. Figures S4 and S5

show the ICCs for brain measures in cortical regions for the nonin-

vasive and default mask (with and without ear mask) compared to

the original scans in children and young adults, respectively. We

show that different coarseness settings generate similar reliability of

brain measures. Furthermore, adding or removing the ear mask has

minimal effect on reliability.

3.4 | Effect of de-identification on test–retest
reliability of brain measures

Independent of de-identification procedures, global brain

measures were highly reliable, although reliability for cortical

thickness was lower than for the other measures. The test–retest reli-

ability for cortical thickness in the original scans was .89 for the left

hemisphere and .74 for the right hemisphere. The other global brain

measures had test–retest ICCs above .90. Test–retest reliability was

similar for scans with or without de-identification for regional brain

measures. Furthermore, de-identifying only the second scan did on

average not result in different regional test–retest ICCs. Figure 6

shows the regional test–retest ICCs for cortical brain measures with

or without de-identification. Figure 7 shows similar cortical test–

retest ICCs when de-identifying only the second scan.

All test–retest statistics can be found in Tables S6–S8.

4 | DISCUSSION

In this study, we evaluated three de-identification methods for struc-

tural MRI scans: Defacing in FreeSurfer, defacing in FSL, and the Face

Masking toolbox. Our main goal was to assess the effect of these

methods on the reliability of global and regional brain measures. In

addition, we aimed to determine the utility of these methods in cohort

studies investigating development or aging. To our knowledge this is

the first study into the effects of de-identification procedures that

includes neuroimaging data from children.

We show that using Face Masking and FSL defacing, voxels in

the brain are overwritten, especially in children and especially in

proximity to the ears. Face Masking provides the option to decrease

the coarseness of the mask. This prevents the blurring of brain tis-

sue and results in similar reliability measures. However, reducing

coarseness may come at the expense of the full covering of facial

features. The age-dependent effect of these de-identification

F IGURE 4 ICC of cortical
thickness derived from original versus
de-identified scans. The ICC for each
sample (children, young adults, and
older adults) is plotted on the
corresponding average scan. Each
column shows a different de-
identification technique. Within each
square, the left hemisphere (top) and
the right hemisphere (bottom) are
shown from an outer and medial
view. The lowest ICC (.07) was found
in the right frontal pole in young
adults using FSL defacing
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methods could be related to the distance of the skull to the brain,

which increases with aging due to atrophy. FreeSurfer defacing did

not remove voxels in the brain. Furthermore, FreeSurfer defacing

and FSL defacing did not succeed in fully removing facial character-

istics in all participants.

The obvious visual differences between the methods do not trans-

late to differences in the reliability of brain measure estimates. In gen-

eral, high correlations were found between brain measures derived

from original scans versus de-identified scans but in some regions lower

correlations were found independent of the used method. Pearson's

correlations were in most cases similar to ICCs. We found some evi-

dence for small systematic biases and significantly different brain mea-

sures after application of de-identification methods. These biases were

not equally distributed over the age groups, disease-status groups for

the ADNI data, and de-identification methods. This suggests age-

specific biases. Still, these effects were very small.

F IGURE 5 ICC of vertex-wise
cortical thickness derived from
original versus de-identified scans.
The ICC for each sample (children,
young adults, and older adults) is
plotted on the corresponding average
scan. Each column shows a different
de-identification technique. Within
each square, the left hemisphere (top)

and the right hemisphere (bottom) are
shown from an outer and medial view

F IGURE 6 Test–retest reliability
in young adults using different de-
identification techniques. The test–
retest ICC for each type of brain

measure is plotted on the average
adult scan. The first column shows
the test–retest reliability of the
original scans. The other columns
show the test–retest reliability if both
scans are subject to a de-
identification technique. Within each
square, the left hemisphere (top) and
the right hemisphere (bottom) are
shown from an outer and medial
view. Lowest reliability was found for
cortical thickness in the rostral middle
frontal gyrus of the right hemisphere
independent of de-identification
procedures. The poor reliability in this
region was not related to parcellation
or segmentation errors and could not
be explained by a single outlier
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The ICCs found in this study are comparable to test–retest ICCs

of the original scans in young adults, for a direct comparison of

ICCs see Figure 8. Theoretically, the amount of noise added by

defacing or Face Masking should be far less than the amount of noise

introduced in the test–retest procedure. Given that brain deviations

found in imaging studies are generally small, introducing an error that

is similar in size to test–retest differences is undesirable. However, we

argue that the amount of added noise is limited based on the finding

F IGURE 7 Test–retest reliability
in young adults de-identifying only
the second scan. The test–retest ICC
for each type of brain measure is
plotted on the average adult scan.
Each column shows the test–retest
reliability of the original scan
compared to a de-identified second
scan using different techniques.

Within each square, the left
hemisphere (top) and the right
hemisphere (bottom) are shown from
an outer and medial view

F IGURE 8 Test–retest ICCs
of global brain measures
compared to de-identification
ICCs. This figure allows for direct
comparison of the ICCs for global
brain measures in young adults
reported in our study. In gray,
test–retest ICC and 95%
confidence interval of the original
scans, that is, without any de-
identification. In purple, ICCs
comparing original adult scans to
de-identified adult scans. In blue,
test–retest ICCs when both scans
are de-identified. In green, test–
retest ICCs when only the second
scan is de-identified. The type of
de-identification applied is
indicated by the shape of the

data point. GM, Gray matter;
WM, white matter
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that ICCs between original first session scans and de-identified sec-

ond session scans were comparable to test–retest ICCs, suggesting no

additional effect of de-identification on reliability. In a previous study,

we modeled how these test–retest ICCs relate to power and effect of

interest (Buimer et al., 2020). Based on the ICCs found in the current

study, it can be hypothesized that as long as all scans are uniformly

processed, the sample size needed to detect an effect of interest is

the same for original and de-identified scans. However, sample sizes

may be decreased after the necessary visual quality control, which

could lead to more exclusions than usual. Scans might need to be

removed when privacy-sensitive features are not fully de-identified or

when brain tissue is impacted.

Regional test–retest ICCs of unmasked scans had an average of

.95 for subcortical volume, .96 for cortical volume, .98 for cortical sur-

face area, and .84 for cortical thickness. Lower reliability for cortical

thickness measures compared to cortical volume or cortical surface

area has been reported before (Iscan et al., 2015; Liem et al., 2015;

Wonderlick et al., 2009). Brain measures with a high between-subject

variability naturally generate higher ICCs. Surface area and subcortical

volume have a higher between-subject variability than cortical thick-

ness. This may explain why cortical thickness test–retest ICCs are

lower on average, but it does not explain the region-specific lower

ICCs when comparing atlas-based results with vertex-wise results. In

our study, the lower average ICC for atlas-based cortical thickness

was mostly driven by poor reliability in specific frontal regions in the

right hemisphere. Vertex-wise cortical thickness in these regions was

more reliable. Furthermore, lower test–retest ICCs were found in

areas that are known to be unreliable, such as the frontal pole

(Desikan et al., 2006).

Our study complements previous work from de Sitter

et al. (2020) and Schwarz et al. (2021). de Sitter et al. (2020) compared

three de-identification methods: QuickShear (Schimke & Hale, 2011),

Face Masking (Milchenko & Marcus, 2013), and FreeSurfer defacing

(Bischoff-Grethe et al., 2007). Brain measures of interest and

corresponding processing pipelines in this study were tailored to the

patient groups (e.g., BraTumIA for segmentation of glioblastoma) and

are therefore hard to compare to our populations, except for an analy-

sis using SIENAX on the ADNI data. Schwarz et al. (2021) compared

four different de-identification methods: FreeSurfer defacing

(Bischoff-Grethe et al., 2007), FSL defacing (Alfaro-Almagro

et al., 2018), pydeface (Gulban et al., n.d.), and the newly developed

method mri_reface (Schwarz et al., 2021). We add to this literature by

including neuroimaging data from children to directly compare the

effects of defacing on brain images of individuals at different ages and

by adding a test–retest dataset of subjects scanned 1 week apart.

Both earlier studies show that all de-identification methods impacted

subsequent image processing and highlighted the possible role of

altered image registration (de Sitter et al., 2020; Schwarz et al., 2021).

Accordingly, we noted that de-identification has a small effect on the

Talairach transformation at the start of the FreeSurfer segmentation

pipeline, which resulted in altered registration for all de-identification

methods used. Small effects on registration can have large effects on

brain measures in areas that are difficult to parcellate. In addition,

scan–rescan variability can affect registration, resulting in different

segmentations, and parcellations. Here, we show that in general, the

effects of repeated scanning (test–retest) were higher than the effects

of de-identification on brain measures. Similar results were found for

within-scanning-session test–retest reliability in ADNI data (Schwarz

et al., 2021). de Sitter et al. (2020) and Schwarz et al. (2021) both

describe a systematic bias toward lower brain volumes. We also found

some systematic biases, but these biases were not consistent across

all age groups, all methods, and all regions. The small systematic

effects did not translate in lower ICCs, which suggests that most study

results will not be impacted by such a bias because between-subject

variation will be similar if all scans are processed using the same de-

identification method. These biases may be more important when

studying longitudinal trajectories. Whether these biases would influ-

ence results and whether within-person effects of de-identification

are stable over time remains an open question at this point.

Neuroimaging results are impacted by methodological choices

such as scanner make and model, type of acquisition, study sample,

processing pipeline, and atlas (Vijayakumar, Mills, Alexander-Bloch,

Tamnes, & Whittle, 2018). In this study, we only used high quality

data obtained from T1-weighted scans acquired on a 3T Philips scan-

ner, and all scans were processed with FreeSurfer. Therefore, the

reported effects of de-identification could be study-specific. Other

scanners or different quality data may generate different results. With

regard to pipeline-specific effects, previous studies show the effect of

de-identifying ADNI data on brain measures using other processing

pipelines (de Sitter et al., 2020; Schwarz et al., 2021). Furthermore,

based on this study we cannot draw conclusions about brain measures

derived with other software or other types of image acquisitions such

as T2-weighted scans. Face Masking can be applied on CT scans and

T1- and T2-weighted MRI scans. Defacing with FSL can be applied on

T1- and T2-weighted MRI scans. Defacing with FreeSurfer is based

on a T1-weighted face mask, but in principle it would be possible to

use this method on T2-weighted MRI scans as well. Another limitation

of the current study is that only adult test–retest data were included.

No ethical approval was granted to collect test–retest data in the

YOUth cohort. For the ADNI cohort test–retest data (without

repositioning the participant in the scanner) is available. These test–

retest data were compared to the effects of de-identification before

(Schwarz et al., 2021). Last, an important limitation is that we were not

able to extensively study whether the de-identification methods were

successful, because we did not have access to photographs of the par-

ticipants. Automated facial recognition methods are probably the best

tool to test if de-identification was successful. A recent study using

automated facial recognition showed that defacing data with

FreeSurfer reduces the probability of identifying a participant from

97 to 10%. Using FSL defacing the probability was reduced even fur-

ther to 3% (Schwarz et al., 2021). Face Masking was not included in this

study because preliminary evidence suggests that this de-identification

technique could be reversible (Abramian & Eklund, 2019).

In conclusion, de-identification methods impact recognizable

facial characteristics, but the side effect is that brain measures are

impacted as well. We show that if de-identification is a necessity,

BUIMER ET AL. 3653



masking, or defacing can be considered, as global brain measures can

be estimated reliably and in general local brain measures are mini-

mally affected. We also observe that, these methods do not de-

identify all participants beyond recognition, which may lead to exclu-

sions of scans. Thus, the perfect de-identification method, that is,

one that does not impact brain measures and does not result in addi-

tional exclusion of scans, does not exist yet. This article highlights

the importance to further develop de-identification methods, espe-

cially for neuroimaging data from children.
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