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Abstract
Flash floods are a major threat to life and properties in arid regions. In recent decades, Egypt has experienced severe flash 
floods that have caused significant damage across the country, including the Red Sea region. The aim of this study is to map 
the flood hazards in flood-prone areas along the Red Sea region using a Geographic Information System (GIS)-based mor-
phometric analysis approach. To evaluate the flood hazard degree, the adopted methodology considers various morphometric 
parameters such as basin area, slope, sinuosity index, shape factor, drainage intensity, circularity ratio, and curve number. 
GIS techniques were employed to delineate the watershed and the drainage network. The delineated watershed was used 
together with the digitized maps of soil and land use types to estimate the curve number and the morphometric parameters for 
each subbasin. The flood hazard degrees are calculated based on the considered morphometric parameters and distinguished 
based on a five-degree scale ranging from very low to very high. Results indicate that 47% of the study area has a very high 
flood hazard degree. Furthermore, morphometric analysis results align with the runoff results simulated by a hydrological 
model, where, for example, basins with a high to very high hazard degree exhibited high runoff. This suggests the influence 
of physical characteristics on the hydrological behavior of the watershed and further validates the morphometric analysis 
presented in this work. The results presented here can help policy planners and decision-makers develop appropriate measures 
to mitigate flash floods and achieve sustainable development in arid regions.

Keywords  Flood hazard mapping · GIS-based morphometric analysis · Sustainable development goals · The Red Sea 
region

Introduction

Flash floods are one of the most weather-related natural 
disasters. They are potentially dangerous because they 
occur rapidly and unexpectedly after intense precipitation 

events, often within minutes to a few hours. A flash flood 
may occur in particular geographical areas characterized 
by steep hillsides, impermeable shallow soils, and exposed 
bare rock (Elsayad 2013). In such areas, drainage channels 
may prove inadequate to accommodate excessive runoff 
of such heavy rainfall events, leading to damaging floods. 
Floods could pose significant negative impacts on human 
and environmental systems (Amaechina et al. 2022; Man-
zoor et al. 2022). Despite their negative impacts, flash floods 
could have several positive aspects and contribute to sustain-
able development by various means in many regions. For 
instance, flash floods can recharge groundwater aquifers, 
thus increasing water availability in regions with limited 
water supply, such as Egypt (Al-Qudah 2011). To address 
the water scarcity challenges in Egypt, rainwater utilization 
is incorporated into the national water resources policy of 
2037 as a policy measure to increase water supply in regions 
without access to Nile water, e.g., coastal areas (Ministry 
of Water Resources and Irrigation 2017; Gabr et al. 2023). 
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Embracing such sustainable practices can thus enhance com-
munity resilience and minimize flood impacts. Therefore, 
it is essential to explore potential hazards associated with 
flash floods to develop targeted strategies and inform the 
decision-making process.

In Egypt, country-wide annual rainfall patterns indicate 
an increasing trend, as shown in Fig. 1 (Central Agency for 
Public Mobilization and Statistics 2015; National Centers 
for Environmental Information 2020; Saber et al. 2020). 
Over the past decades, Egypt has experienced severe flash 
floods (Saleh 2017) that have caused major losses to human 
lives, properties, and the economy. For instance, heavy flash 
floods in 1994 affected 124 villages and killed more than 600 
people across four governorates in Upper Egypt (Moawad 
et al. 2016). Storm floods in 2010 caused substantial prop-
erty damage, impacting 2000 houses in North Sinai. Moreo-
ver, a heavy rainfall event in October 2016 led to the loss 
of tens of people lives in Ras Gharib city, situated in the 
Red Sea Governorate (Moawad et al. 2016; Elnazer et al. 
2017). The Red Sea coast region is currently experiencing 
an increasing trend in the frequency, severity, and impacts of 
heavy rainfall and flash flood events (Almasalmeh and Eizel-
din 2020; Arnous et al. 2022). These severe flash floods pose 
significant threats to local communities, industrial facilities, 
and the tourism industry in the Red Sea region (Elnazer et al. 
2017). Understanding and addressing flash floods is thus 
fundamental to reducing risks to livelihoods and protecting 
the environment, particularly in flood-prone regions such as 
the Red Sea region.

Flood hazard mapping approach is commonly applied 
to analyze floods risk and study flood characteristics 
such as depth and velocity of floodwater. Over the past 
decades, this approach has been significantly improved 

and integrated into policy planning and decision-making 
processes in flood-prone regions (Mudashiru et al. 2021). 
For instance, the city of Houston, Texas, faced a severe 
flooding in 2017, resulted in numerous casualties and 
caused significant damage to infrastructure, residents, and 
businesses. In response to the disaster, the Harris County 
Flood Control District (HCFCD) initiated the development 
of a comprehensive flood hazard map. This map aimed 
to inform the public about flood risks, enabling them to 
take appropriate measures to safeguard themselves and 
their properties (Natsios 2018; Malecha et al. 2021; Harris 
County Flood Control District 2023).

Morphometric analysis is essential in studying catch-
ment geomorphology (Sherief 2008). Estimating morpho-
metric parameters for a basin holds a significant importance 
as these parameters govern its hydrological response and 
provide valuable insights into its hydrogeological charac-
teristics. Therefore, studying morphometric analysis and 
understanding a basin’s response to heavy rainfalls, storms, 
and floods are vital for effective flood risk analysis (Diakakis 
2011; Cappelli et al. 2023). In data-scarce regions, morpho-
metric properties of basins are commonly utilized to assess 
flood risks (Elsadek et al. 2019a). Flood hazard mapping, 
integrating morphometric analysis and geographic infor-
mation systems (GIS), has emerged as a valuable tool for 
delineating and assessing the geohydrological properties of 
drainage basins (Mansour et al. 2023; Bogale 2021; Obeidat 
et al. 2021). For example, Omran et al. (2011) employed 
GIS techniques to generate flood hazard maps based on 
geomorphological parameters and to estimate flood risks 
in Wadi Dahab, Egypt. GIS techniques are instrumental in 
identifying flood risk zones and developing flood suscepti-
bility maps. Moreover, they are promising tools as they can 

Fig. 1   Annual rainfall estimates 
from the Precipitation Estima-
tion from Remotely Sensed 
Information Using Artificial 
Neural Networks Climate Data 
Records (PERSIAN-CDR) 
satellite and the Egyptian Mete-
orological Authority (EMA) 
in Egypt
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integrate multiple flood risk assessment methods through 
available features in GIS environments (Hagos et al. 2022).

Several studies have employed morphometric analysis 
to assess flood hazards. Youssef and Hegab (2019) utilized 
morphometric characteristics, geology maps, and hydrology 
data to determine flash flood susceptibility of watersheds 
within Ras Gharib area, Egypt. Their findings highlighted 
that three-quarters of the existing settlements are situated 
within high and very high susceptibility zones. Mashaly and 
Ghoneim (2018) incorporated morphometric parameters into 
a hydrological model to identify flood risk sites in the Red 
Sea region. Similarly, Mohamed et al. (2021) employed 
these methods to investigate the impact of hydrological 
parameters on flash floods in dry and semiarid regions like 
Wadi Al-Baroud El-Abiad in the Red Sea governorate, 
Egypt, by evaluating watershed morphometric characteris-
tics. Taha et al. (2017) estimated morphometric parameters 
and implemented remote sensing techniques and GIS to 
evaluate flash flood hazards in the subbasins of Wadi Qena. 
Elsadek et al. (2019a) conducted a morphometric analysis 
of Wadi Qena watershed using GIS techniques, finding that 
about half of the subbasins exhibited hazard degrees rang-
ing from moderate to high. Moreover, Mansour et al. (2023) 
employed morphometric analysis to map flash flood hazards 
for the Gulf of Suez in Egypt.

This study builds upon previous research methodologies 
to estimate flood hazards, particularly in data-scarce regions. 
While previous studies employed different methodologies 
and combinations of morphometric parameters for flood haz-
ard analysis, this research employs a GIS-based analysis that 
is capable of rendering and processing large geospatial data, 
unlike conventional methods; thereby, GIS methods prove 
highly advantageous in data-limited regions (Bogale 2021; 
Hagos et al. 2022). The main aim of this study is to improve 
morphometric analysis in large-scale and data-scarce regions 
through the application of GIS techniques. To achieve this, a 
GIS-based framework was developed, incorporating a novel 
combination of morphometric parameters covering various 
watershed geomorphological characteristics such as area, 
shape, topography, and drainage network. Furthermore, the 
framework integrates the curve number as a runoff indicator, 
a less-addressed aspect in previous studies (Diakakis 2011; 
Taha et al. 2017; Hagos et al. 2022). The significance of the 
curve number lies in its role in representing rainfall-induced 
runoff during storm events (Ali et al. 2022; Lee et al. 2023). 
Moreover, an automated GIS model is developed to stream-
line GIS processes and expedite all GIS processes. This 
automation is particularly valuable in large-scale studies 
where handling multiple DEMs can be time-consuming and 
challenging (ArcGIS Pro 2023). Our framework provides 
flexibility in analyzing flood hazard degrees, adaptable to 
any combination of morphometric parameters and other 
regions. Finally, the developed framework is applied to a 

study area located along the Red Sea coast, Egypt, spanning 
from Safaga to Port Ghalib, which remains unexplored at 
this large scale. The rest of the paper is organized as follows: 
(i) Study area description; (ii) Materials and methods; (iii) 
results and discussion; and (iv) Conclusion.

Study area description

The study area spans between Safaga and Port Ghalib, 
extending through Safaga in the Eastern Desert along the 
Red Sea coast of Upper Egypt, as shown in Fig. 2. It lies 
between longitudes 33.46°  E to 34.49°  E and latitudes 
25.59° N to 27.09° N. The topography exhibits diverse char-
acteristics, ranging from flat plains to steep mountains, with 
altitudes varying from −8 to 2,625 m above mean sea level. 
The study area encompasses critical infrastructure, tourist-
centric cities, and economic activities. Major highways, such 
as the Hurghada-Safaga road and the Safaga-Quseir road, 
run almost parallel to the Red Sea coast, while rail networks 
traverse the lower reaches of most of the study area. The 
area also includes vital harbors, such as the Safaga harbor. 
Situated in the east-northeast of the study area, Safaga is 
renowned for its exquisite beaches and a wide array of tour-
ist activities and medical tourism (The Red Sea Governorate 
2023). Similarly, Quseir, a significant coastal city, is under-
going tourism development and is known for its historical 
significance (Mashaly and Ghoneim 2018). However, cities 
along the Red Sea coast, like Hurghada, Safaga, and Quseir, 
face heightened vulnerability to flash floods (Mohamed 
2019).

The Red Sea region is prone to flash floods, with an 
annual probability of occurrence up to 20% (The World 
Bank Group 2021). Furthermore, the region is witnessing 
an increasing trend in rainfall intensity and frequency, with 
human and environmental impacts (Youssef et al. 2009). 
Specifically, severe flash floods have impacted the study 
area in recent decades, leading to profound consequences 
for human lives, livelihoods, and infrastructure (Sherief 
2008; Elsadek et al. 2019b). For example, in October 1979, 
a severe flash flood struck the Red Sea Governorate, result-
ing in severe damages to the Quseir-Qena road, the destruc-
tion of 500 properties, and the deaths of 19 individuals. 
Subsequent floods affected the study area in 1980, 1985, 
1989, 1991, and 1994 (Monsef 2018). The 1989 flood, trig-
gered by heavy rain of 50 mm/day in Quseir, damaged the 
railway near the city, impacting the Quseir-Quena highway 
and the Quseir-Marsa Alam coastal highway (Monsef 2018). 
In October 1990, flash floods severely damaged the Qena-
Safaga Railway, resulting in substructure failures totaling 
21,000 m3, damage to three kilometers of the superstruc-
ture, two station buildings, and four signal towers (Abuzeid 
et al. 2022). The 1994 flash flood caused road damage in 
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Quseir and damage to numerous buildings between Safaga 
and Quseir. Subsequent flood events, such as heavy rains in 
January 2010, disrupted traffic, caused casualties, and forced 
the closure of the Quseir-Qena highway for two days. More-
over, in May 2014, heavy rains hit the Red Sea Governorate, 
including the area between Safaga and Quseir, resulting in 
the destruction of 14 homes, road blockages, and blackouts 
(Monsef 2018). In September 2020, the Red Sea coast was 
struck with floods after heavy rain. This prompted closures 
on several highways in the area, including the Qift-Quseir 
road and the Safaga-Sohag road (Egypt Today staff 2020).

Materials and methods

The study employed GIS techniques and morphometric 
analysis to produce a flood hazard map for the study area. 
In doing so, land use and soil type maps, in addition to 
multiple digital elevation models (DEMs) with 30-m reso-
lution that cover the study area, were first collected. Then, 
the DEMs were merged in a GIS environment, and multi-
ple processes were carried out (e.g., correcting the DEM, 
generating the stream network and the delineation of the 
watershed). The land use and soil type maps were digitized 
in a hydrological environment to compute the curve num-
ber for the basins. After that, the morphometric parameters 

of the basins in the study area were estimated, and the 
flood hazard degrees were calculated for each parameter. 
Finally, the overall flood hazard degrees were calculated, 
and the flood hazard map was produced. To validate 
morphometric-based flood hazards degree, the results are 
cross-compared with outcomes from a hydrological model, 
considering the hazards associated with peak discharges 
of the basins. Furthermore, the significance of the curve 
number in flood hazard assessment was tested by com-
paring results with and without its inclusion. The overall 
methodology followed in the study is illustrated in Fig. 3.

In this study, 13 DEMs  are  used. The DEMS are 
available from the US Geological Survey (USGS) Earth 
Explorer (US Geological Survey 2021). These elevation 
data provide global coverage of void-filled data with 1 arc-
second (30 m) resolution and an open release of this high-
resolution global dataset (US Geological Survey 2018). 
The soil type and land use data of the study area were 
obtained from the soil association map of Egypt (El-Ram-
ady et al. 2019). The data show two different soil types 
in the study area: the first is “rugged rock land mainly of 
the basement complex,” and the second is “gravelly and 
gravelly sand beaches, sometimes with rock outcrops.” It 
also shows that there are two main classes of land use in 
the study area: “bare rock” and “bare soil very stony (deep 
soil).”

Fig. 2   Map of Egypt and the study area location
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Generation of the drainage network

The GIS analysis aimed to generate the stream network 
and delineate the watershed of the study area. The ArcGIS 
Pro software with version number 2.9.0 was used (ArcGIS 
Pro 2021). First, the coordinate system has been projected 
using the Egypt 1907/Red Belt coordinate system (EPSG 
2014). Then, the 13 digital elevation models were merged 
into one DEM. A raster of flow direction from each cell 
to its downslope neighbor(s) was generated to remove the 

defects in the data. This method is known as an eight-
direction (D8) flow model (Jenson and Domingue 1988). 
To produce a depression-less DEM, all sinks or areas of 
internal drainage were first detected, followed by statisti-
cal calculations, and then the sinks were filled using the 
fill tool in ArcGIS Pro, which uses the counterparts of 
multiple tools to fill all sinks. The tool can also be used 
to remove peaks, which are spurious cells with a higher 
height than would be predicted given the underlying sur-
face trend.

Fig. 3   Procedure for flood 
hazard mapping using GIS-
morphometric estimation
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A flow accumulation was then created to obtain the 
streams and, hence, extract the drainage network. The 
Strahler method was used to order streams (Strahler 1957). 
The Strahler method is the most commonly used approach 
for stream ordering. Stream order assigns numerical order 
to links in a stream network. This order is a method of rec-
ognizing and categorizing stream types depending on the 
number of tributaries. It is considered the major parameter 
in qualitative and quantitative analyses of any drainage basin 
(Elsadek et al. 2019a). Some stream characteristics can be 
deduced simply by knowing their order. The streams gener-
ated were then converted from the raster to features, and 
then the watershed delineation process was performed to 
preserve the drainage network of basins. The total drainage 
network containing basins and streams was clipped accord-
ing to the boundary of the study area to derive the required 
drainage network. Finally, a joining process was done to 
join the streams and the basin into one drainage network 

to act as a unit. From the previous analysis and watershed 
delineation, 43 basins have been identified. The watershed 
has a total area of 7,104.16 km2, and the resulting drainage 
network has a total length of 5,154.68 km. Figure 4 shows 
the drainage network, including the generated basins from 
the GIS analysis.

An automated GIS model, which is called “Model 
Builder” in the ArcGIS Pro environment, has been developed 
to conduct the required processes for watershed delineation. 
The model successfully completed all the processes in only 
39 min and 2 s. The PC used in the analysis has a processor 
with an Intel Core i7-10750H @ 2.60 GHz, 16 GB of RAM, 
and a 64-bit Windows 10 Home operating system. The auto-
mated GIS model significantly reduced the time and effort 
required to run the GIS processes on the digital elevation 
models (DEMs) used in the analysis. The automated model 
developed in this study has potential applications in other 
similar work that requires GIS analysis for morphometric 

Fig. 4   Delineation of basins 
and drainage network generated 
through the GIS analysis
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analysis. By automating the processes required for watershed 
delineation, this model can save time and effort when con-
ducting GIS-based analysis. Future studies can benefit from 
using this model for similar work, particularly in large-scale 
study areas where processing multiple DEMs can be time-
consuming and challenging.

Computation of the curve number for basins 
in a hydrological environment

The curve number is an empirical measure that is crucial 
in determining runoff in hydrological modeling (Ali et al. 
2022). It was developed by the USDA Natural Resources 
Conservation Service, formerly known as the Soil Conserva-
tion Service, or SCS (Sherief 2008). To compute the curve 
number for the basins, the merged DEM was imported into a 
hydrological environment. The Watershed Modeling System 
(WMS) version 11.1.0, Aquaveo LLC (Aquaveo 2021), is 
employed here. Flow direction and accumulation processes 
were done for that DEM, followed by a conversion of the 
DEM to stream arcs to generate the streams. Then, the basin 
data were defined and computed. In order to obtain the curve 
number of each basin, both the soil type and land use data 
were digitized in the study area and defined. The land use 
of the developing urban areas, or newly graded areas, in the 
Red Sea Governorate was also considered and included in 
the digitizing process.

Estimation of the morphometric parameters 
for basins

In order to implement the morphometric analysis for the 
study area, various parameters were estimated based on the 
computed basin data from the previous steps. The consid-
ered morphometric parameters in this study depict a number 
of different features, including the drainage network aspect, 
which is  represented by stream orders, stream lengths, 
stream number, stream frequency, and drainage density. In 
addition, they consider basin aspects, including areal char-
acteristics such as basin area, dimensional characteristics 
such as basin length and perimeter, shape characteristics 
such as circularity ratio and shape factor, and surface char-
acteristics reflected by basin slope. The curve number in this 
study represents the runoff aspect.

The area (A) of the basin is considered to be one of the 
most important elements in the morphometric analysis of 
stream systems (Sherief 2008). Strahler (1957) states that 
basins with similar characteristics in area and shape are also 
similar in their geomorphological characteristics. The basin 
slope (S) is the average basin slope, or average slope, of the 
cells comprising this basin. It is defined as the rate of rise or 
fall against horizontal distance; moreover, it is a measure-
ment giving the steepness of the ground surface. The slope 

gradient is a key factor affecting relative stability because it 
determines how strongly gravity acts on a soil mass (Sherief 
2008). It is considered one of the main factors controlling 
surface flow and potential flooding (Helmi et al. 2019). The 
sinuosity index (SI), Schumm (1956) explains it as a factor 
to define a flow deviation from the expected straight path. 
It can be obtained by dividing the maximum stream length 
in the basin by the basin length, which is the length of the 
straight-line distance of the basin. The shape factor (SF) is 
the length of the basin divided by its width, or the ratio of 
the square of the basin length to the basin area (Eq. 1). The 
calculated shape factor in WMS is the inverse of the form 
factor, which is commonly used in similar studies and indi-
cates the flow intensity of a basin in a defined area (Horton 
1932). The smaller the form factor value (and therefore the 
larger the shape factor value), the more elongated the basin 
will be, while the higher values correspond to the basin 
being circular. The area, slope, sinuosity factor, and shape 
factor were all calculated in the WMS software.

where Lb is the basin length in km, and A is the area of the 
basin in km2.

According to Miller (1953), the circularity ratio (CR) 
represents the relationship between the basin area and the 
area of a circle whose circumference is equal to the basin 
perimeter (Eq. 2). The values close to one are indicative of 
the greater circularity obtained by the basin, and vice versa. 
The circularity ratio for each basin was computed in Micro-
soft Excel software. Many factors influence the circularity 
ratio, including the length and frequency of the stream, land 
use, climate, land cover, geological composition, relief, and 
slopes of the basin (Elsadek et al. 2019a). Drainage intensity 
(DI) is defined as the ratio of stream frequency to drainage 
density (Eq. 3) (Faniran 1968). Drainage density represents 
channel closeness in the basin and can be defined as the ratio 
between the total stream lengths in the basin and the area of 
the basin. There are many factors affecting drainage density, 
such as relief, climatic changes, the type and permeability of 
rocks, and vegetation that controls the characteristic length 
of the stream (Moglen et al. 1998). Based on Horton (1945), 
stream frequency, which reflects the texture of the drainage 
network, is the ratio between the total number of stream 
segments of all orders in a basin and the basin area. For the 
curve number (CN), it was mentioned before that this param-
eter was computed in the hydrological environment using 
the WMS software based on the soil type and the land use.

(1)SF =
L2
b

A

(2)CR =
A

Ac

=
4�A

P2
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where A is the area of the basin in km2, Ac is the area of a 
circle with a circumference that equals the basin perimeter 
in km2, and P is the basin perimeter in km.

where F is the stream frequency of the basin in km−2, Dd is 
the drainage density of the basin in km−1, N stands for the 
total number of streams of all orders, while Lu symbolizes 
the total stream lengths in the basin in km.

Evaluation of the flood hazard degrees for basins

For the considered parameters, a hazard scale was set and 
used to assess the flash flood hazard in the study area. 
This scale ranges between one and five. One means a very 
low degree of hazard, while two represents a low hazard 
degree. The third hazard degree points to a moderate level 
of hazard. The fourth and fifth hazard degrees for a basin 
indicate that the flood hazard degree for that basin is high 
and very high, respectively. The hazard degrees for the 
basins were calculated as follows:

•	 Find out the minimum and maximum values of each 
morphometric parameter for all basins.

•	 Calculate the actual hazard degree for all parameters 
using their minimum and maximum values. By assum-
ing a linear relationship between degrees, the actual 
value of the hazard degree can be derived from the 
geometric relationship (Davis 1986).

•	 For parameters with a linear relationship:

•	 For parameters with an inverse linear relationship:

where Y  is the value of the morphometric parameter 
for a basin, while Ymax and Ymin are the maximum and 
minimum values of the morphometric parameter for all 
basins, respectively. The evaluation Hazard degree per 
each parameter for all basins can be determined based 
on Eqs. 4 and 5.

•	 For each basin, the total hazard degree is calculated 
by summing up flood hazard degree for all parame-
ters. Subsequently, these values are used to estimate 
the overall hazard degree per each basin using Eq. 4, 
resulting in values ranging from one to five.

(3)DI =
F

Dd

=
N∕A

Lu∕A
=

N

Lu

(4)Hazard degree =
4 ×

(

Y − Ymin

)

(

Ymax − Ymin

) + 1

(5)Hazard degree =
4 ×

(

Y − Ymax

)

(

Ymin − Ymax

) + 1

Results and discussion

Morphometric analysis of the drainage basins

The study area contains 43 basins, with basin areas rang-
ing from 6.55 km2 to 1,797.69 km2. The average area of 
the basins is 165.21 km2, while the average perimeter of 
the basins is about 80.19 km. The watershed has a total 
of 2,523 streams, linked in a fiveorder of stream network. 
The number of streams inversely proportional to the stream 
order, with the largest number of streams in first-order 
(1287 streams). The minimum basin length was found to 
be 5.40 km for basin B17, while the maximum is 67.46 km 
for basin B33 (see Fig. 5). The average slope of the basins 
is 0.14, while the average sinuosity index of the basins was 
found to be 1.23. The circularity ratio for the basins ranges 
from 0.12 to 0.31. The minimum curve number is 72.26, 
while the maximum value was found to be 94. The drain-
age density for the basin in the study area ranges from 0.49 
to 2.35 km−1, while the values of stream frequency ranges 
from 0.19 to 0.76 km−2. The low values of stream frequency 
indicates a scarce plant cover (Elsadek et al. 2019a). The 
values of drainage intensity for the basins are in the range 
of 0.27–0.58 km−1. The high values of the drainage intensity 
for the basins indicate a soil erosion susceptibility (Elsadek 
et al. 2019a). The values of the shape factor for the basins 
are in the range of 2.08 to 10.15. The morphometric param-
eters considered in the flood hazard assessment are shown 
in Table 1.

Flood hazard assessment

The final flood hazard map for the study area is shown in 
Fig. 5, and the overall hazard degrees for the basin are in 
Table 2. There are four basins with a very low hazard degree 
and 11 basins with a low hazard degree. It was also found 
that 16 basins have a medium hazard degree. On the other 
hand, the results show that 12 basins have high or very 
high hazard degrees. These basins cover an area of about 
5,717.51 km2 representing about 80% of the total study area. 
The basins with the highest hazard degree are basins B33 
and B42, whose areas are 1,797.69 km2 and 1,530.65 km2, 
respectively. These two basins cover about 47% of the study 
area. The low flood vulnerability of the basins with low or 
very low hazard degrees can be explained by their morpho-
metric parameters. The most common feature among these 
basins is the high value of the shape factor, ranging from 
3.22 (B17) to 10.15 (B12). The basins are also characterized 
by small slopes, ranging from 4.25 (B2) to 25.07% (B10), 
small areas, ranging from 6.55 km2 (B2) to 224.14 km2 (B5), 
and small circularity ratios, ranging from 0.12 (B36) to 0.3 
(B17). The low values of slope, area, and circularity ratio, as 
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well as the high value of the shape factor, suggest their low 
vulnerability to flooding (Obeidat et al. 2021; Elsadek et al. 
2019a; Redwan et al. 2021).

Similarly, the geomorphometric characteristics can help 
illustrate the high hazard degree in the basins. These basins 

have low values of the shape factor, ranging from 2.08 (B32) 
to 5.29 (B40) and steep slopes, ranging from 10.92 (B35) to 
36.16% (B15), which accordingly result in high flow veloci-
ties, low infiltration, and higher flood peaks (Ogarekpe et al. 
2020). Moreover, the curve number for these basins is high, 

Fig. 5   Flood hazard map of the study area
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ranging from 77.55 (B32) to 94 (B15), which increases 
the runoff and hence the flood vulnerability (Khalil 2018). 
The basins with the highest hazard degree (very high) are 
basins B33 and B42. This is because of the large area of 

the basins, which has a direct impact on flood vulnerability 
(Obeidat et al. 2021; Elsadek et al. 2019a). In addition, the 
shape factors for the two basins are low: 2.53 (B33) and 2.11 
(B42), indicating high peak flows with shorter durations and 

Table 1   Morphometric parameters of the basins

Basin no Area (km2) Slope (%) Sinuosity index Shape factor Curve number Drainage inten-
sity (km−1)

Circularity ratio

B1 14.57 4.90 0.93 6.92 77.00 0.41 0.17
B2 6.55 4.25 0.85 9.41 77.00 0.57 0.13
B3 36.78 4.75 1.31 5.52 77.00 0.44 0.17
B4 25.03 4.77 1.00 3.88 79.72 0.56 0.28
B5 224.14 19.63 1.31 5.48 72.26 0.39 0.16
B6 109.15 19.32 1.34 6.62 76.04 0.35 0.16
B7 73.77 9.39 1.25 6.15 82.10 0.39 0.15
B8 8.42 4.00 1.09 5.14 94.00 0.33 0.21
B9 51.35 12.88 1.09 4.54 80.80 0.37 0.24
B10 75.87 25.07 1.15 7.35 85.31 0.41 0.13
B11 7.17 4.32 0.92 9.90 86.71 0.30 0.13
B12 18.75 17.84 1.14 10.15 75.05 0.30 0.12
B13 15.19 33.24 0.98 3.49 92.50 0.46 0.24
B14 506.09 23.71 1.43 3.21 86.66 0.53 0.21
B15 7.90 36.16 0.93 3.95 94.00 0.42 0.31
B16 49.56 22.8 1.32 3.69 89.09 0.43 0.22
B17 9.04 6.61 0.93 3.22 77.00 0.36 0.30
B18 10.76 9.14 1.10 3.57 77.00 0.43 0.25
B19 37.49 15.00 1.28 5.11 86.03 0.61 0.18
B20 719.00 18.70 1.59 3.42 88.04 0.50 0.16
B21 142.17 19.06 1.33 4.74 87.48 0.50 0.14
B22 31.51 14.35 1.23 3.70 87.66 0.44 0.23
B23 108.76 18.69 1.39 4.44 86.52 0.50 0.13
B24 26.57 12.16 1.15 4.62 90.36 0.39 0.21
B25 26.31 14.17 1.14 5.37 86.20 0.39 0.16
B26 26.96 12.37 1.20 4.47 88.78 0.33 0.19
B27 12.87 12.34 1.17 6.96 81.64 0.33 0.14
B28 57.13 11.73 1.30 5.11 84.48 0.54 0.13
B29 79.64 15.07 1.23 3.59 85.83 0.52 0.22
B30 23.85 14.08 1.44 4.54 82.10 0.53 0.16
B31 10.38 14.85 1.15 4.59 77.00 0.35 0.21
B32 46.87 14.21 1.21 2.08 77.55 0.48 0.31
B33 1797.69 19.84 1.49 2.53 88.06 0.49 0.17
B34 34.64 13.33 1.22 4.40 83.59 0.37 0.16
B35 66.71 10.92 1.27 2.77 83.06 0.40 0.26
B36 19.79 8.48 1.12 7.43 85.18 0.27 0.12
B37 20.11 8.74 1.19 5.62 80.35 0.52 0.16
B38 8.93 7.09 0.99 3.30 77.00 0.48 0.30
B39 98.09 11.38 1.37 4.55 87.90 0.50 0.18
B40 184.86 18.38 1.54 5.29 87.79 0.58 0.12
B41 92.27 8.62 1.37 3.29 87.12 0.42 0.22
B42 1530.65 17.34 1.76 2.11 84.67 0.51 0.15
B43 650.82 18.05 1.65 3.35 87.44 0.55 0.14
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resulting in high flood vulnerability (Elsadek et al. 2019a; 
Joji et al. 2013; Adhikari 2020; Obeidat et al. 2021). Fur-
thermore, the two basins have high numbers of first-order 
streams, suggesting their high potential for flooding (Oga-
rekpe et al. 2020).

The impact of parameters on hazard degree is represented 
in the correlation matrix, as shown in Fig. 6. This study 
uses the Python programming language to calculate cor-
relation coefficients between the morphometric parameters 
and hazard degree and the Seaborn data visualization library 
to visualize the results (Seaborn 2022). The matrix was 
obtained using the most common Pearson product-moment 
correlation coefficient formula (Eq. 6) (Moore et al. 2013). 
As shown in the bottom row of the matrix, the shape factor 
has the most significant impact on the hazard degree, with a 
high negative value (− 0.82). Area and sinuosity factor has 
the same positive correlation coefficient of 0.57, followed 
by curve number, drainage density, and slope with positive 
coefficients of 0.51, 0.5, and 0.48, respectively. Finally, the 
circularity ratio has a value of 0.33. These results are con-
sistent with the findings from the literature discussed above 

on the impact of the morphometric parameters used in this 
study on flood vulnerability.

where ( rxy ) is the correlation coefficient between two vari-
ables X and Y, n is the number of dataset instances (here is 
the number of basins), xi and yi are the data points for the 
two variables for each instance, and x and yi are the means 
of the x and y values, respectively.

This study shows that basin B33, which is known as Wadi 
Queih, and basin B42, which is known as Wadi El-Ambagi, 
in the western section of the study area have very high haz-
ard degrees. Our results are consistent with previous find-
ings in the literature. For example, Nasr et al. (2022) used 
statistical and geospatial approaches, in addition to remote 
sensing data, to identify potential flash flood hazard areas 
in Wadi Queih and found that there is a significant risk of 
flooding in that area. Mashaly and Ghoneim (2018) studied 

(6)rxy =

∑n

i=1

�

xi − x
��

yi − y
�

�

∑n

i=1

�

xi − x
�2 ∑n

i=1

�

yi − y
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Table 2   Hazard degrees for the 
basins

Basin no Hazard degree*

B33 and B42 5
B13, B14, B15, B16, B20, B21, B32, B35, B40, and B43 4
B4, B8, B9, B18, B19, B22, B23, B24, B26, B28, B29, B30, B34, B38, B39, and B41 3
B1, B3, B5, B6, B7, B10, B17, B25, B27, B31, and B37 2
B2, B11, B12, and B36 1
* 5: very high, 4: high, 3: moderate, 2: low, and 1: very low

Fig. 6   Correlation matrix for 
morphometric parameters and 
hazard degree
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the characteristics of surface runoff in Wadi El-Ambagi, 
which is home to one of the few road networks connecting 
the Nile River Valley to the Red Sea coast. The study used 
a hydrological modeling approach in addition to a hydraulic 
model and found that a flood of 60 mm would surge certain 
areas of Quseir with flood waters up to 2 m deep, inun-
dating hundreds of buildings, segments of the Qift-Quseir 
highway, and the phosphate railroad. Monsef (2018), who 
used a hydrological model, and Zaid (2009), who carried out 
hillslope analysis, also reported that Wadi El-Ambagi is a 
flood-prone area. Youssef et al. (2009) used geological and 
geomorphological properties in a GIS-based environment 
to create hazard maps that identify Wadi El-Ambagi as one 
of the Red Sea coast’s flood-prone regions. There were two 
types of failures recorded in the study along the roads in 
that area due to flash floods. As expressed, the results of the 
current study and previous studies are consistent, as they all 
confirm that the two basins, Wadi Queih and Wadi El-Amb-
agi, are identified as severe flood-prone areas across different 
approaches and methodologies. This agreement confirms the 
validity of GIS-based morphometric analysis approach used 
in this study and its potential in flood risk analysis.

The outcomes of the morphometric analysis for flood 
hazard mapping in the study area are compared to the out-
puts of a hydrological model. The Hydrologic Modeling 
System (HEC-HMS) software, version 4.4.1 (US Army 
Corps of Engineers Hydrologic Engineering Center 2020), 
is employed here. Available rainfall data for the study area 
was obtained from the global weather data for SWAT (Soil 
Water Assessment Tool 2014) over a 36-year period from 
1979 to 2014. Rainfall records and their temporal distribu-
tion in the sub-basins were defined, and then the basin model 
was created in HEC-HMS. After that, a rainfall simulation 
with a precipitation rate of 50 mm/year was employed. The 
value of the precipitation was chosen to be uniform for the 
whole area to harmonize the spatial difference in rainfall in 
the study area. This value is the average of daily precipita-
tion of the most severe rainfall events that occurred across 
the whole study area, estimated at 50 mm/year. The peak 
discharge and runoff depth (volume per basin area) of the 
basins are shown in Table 3. Peak discharges were then clas-
sified into ranks from one to five in ArcGIS Pro with the 
same calculation procedure as hazard degrees, and a peak 
rank map was produced as shown in Fig. 7.

Overall, the hydrological model and its runoff peak ranks 
show similar hazard degrees that result from the GIS model 
(see Fig. 8). The outcomes of the model show that the basins 
B33 and B42, which have very high hazard degrees, have the 
highest peak ranks with discharges of 700 and 485.5 m3/s, 
respectively. The volumes of rainfall in these two basins are 
42.04 and 28.74 Mm3, which are also the highest among all 
basins. It was also found that the basins having high or very 
high peak ranks are: B14, B20, B33, B42, and B43, which 

are all marked as high or very high in hazard degrees. More-
over, the two models show an agreement on all the basins 
with low flood vulnerability (basins B1, B2, B3, B5, B6, B7, 
B10, B11, B12, B17, B25, B27, B31, B36, and B37). Such 
results show agreement between the two models, indicating 
that the study’s GIS-based morphometric analysis approach 
can be applied for future research to identify highly vulner-
able areas to flooding. To further evaluate the curve num-
ber’s significance in flood risk assessment, we compare the 
flood hazards with and without considering the curve num-
ber. The results, as shown in Fig. 9, indicate that omitting the 
curve number in the morphometric analysis overestimates 
the flood hazard degree in one-third of the basins. This sug-
gests that incorporating the curve number, a representative 
of runoff, in flood hazard assessment enhances the accuracy 
of estimating flood risk (Ali et al. 2022; Lee et al. 2023).

The study area is an arid region primarily covered with 
bare vegetation. Although the area experiences intense 
rainfall intermittently throughout the year, it is also sub-
ject to drought due to lack of rainfall throughout the year. 
While heavy rainfall leads to flooding, prolonged droughts 
amplify soil susceptibility to erosion and nutrient defi-
ciency (Olsson et  al. 2019). Understanding watershed 

Table 3   Output peak discharge and runoff depth values for the basins

Basin no Peak 
discharge 
(m3/s)

Runoff 
depth 
(mm)

Basin no Peak 
discharge 
(m3/s)

Runoff 
depth 
(mm)

B1 8.30 10.96 B23 83.00 21.69
B2 4.10 10.96 B24 44.90 27.73
B3 15.30 10.96 B25 34.60 21.24
B4 19.20 13.52 B26 43.70 25.10
B5 41.40 7.27 B27 11.90 15.55
B6 33.20 10.13 B28 40.60 18.94
B7 49.70 16.07 B29 75.80 20.73
B8 21.70 34.72 B30 20.60 16.07
B9 40.20 14.64 B31 7.10 10.96
B10 61.20 20.02 B32 27.20 11.45
B11 11.80 21.96 B33 700.00 23.39
B12 8.20 9.33 B34 30.20 17.82
B13 41.70 31.67 B35 52.10 17.18
B14 270.30 21.88 B36 20.20 19.85
B15 30.10 34.72 B37 15.80 14.16
B16 66.40 25.59 B38 7.10 10.96
B17 6.90 10.96 B39 93.70 23.72
B18 7.70 10.96 B40 132.20 23.55
B19 36.80 21.00 B41 84.00 22.56
B20 335.80 23.78 B42 485.50 18.78
B21 105.70 23.09 B43 301.70 22.92
B22 42.40 23.36
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hydrology is pivotal for prioritizing conservation efforts, 
mitigating drought impacts, and improving watershed 
management (Abdeta et al. 2020). Morphometric analysis 
plays a significant role in this context, with parameters like 
stream frequency and drainage density directly influenc-
ing drought conditions and soil erodibility (Elsadek et al. 
2019a; Tesema 2021). Basins exhibiting high values in 
these parameters, such as B2, B8, B11, and B15, indicate 
a greater vulnerability to drought susceptibility. Further-
more, factors like concentration time, driven by shape fac-
tor and circularity ratio parameters (Potter and Faulkner 
1987; Bali et al. 2012), play an important role in triggering 
a drought. Basins with high shape factor values tend to 
have longer concentration times, while those with high cir-
cularity ratios have shorter concentration times. Therefore, 
basins with high circularity ratio and small shape factors 
such as B4, B13, B17, B20, B22, B29, B35, and B41 are 
prone to drought risk. Furthermore, the slope of a basin 
is also a critical factor influencing drought and soil ero-
sion (Masroor et al. 2022). Basin with high slopes such as 
B13 and B15 are particularly susceptible to drought. These 
results highlight the role of geomorphological parameters 
in analyzing drought susceptibility. Furthermore, they 
underscore the necessity for robust conservation measures 
in drought-prone basins and proactive water management 
strategies to alleviate drought impacts.

Recommendations to achieve sustainable 
development goals (SDGs)

Egypt’s commitment to achieving sustainable development 
goals is evident by the launch of Egypt Vision 2030, and the 
signature of the Strategic Framework for Partnership with the 
United Nations (UN) (Egypt State Information Service (SIS) 
2023). Understanding basin geometry and drainage network 
parameters is crucial for minimizing economic impacts from 
floods. Unmanaged flash floods can damage railways, high-
ways, like those between Safaga and Quseir, harbors, like the 
Safaga harbor, and other infrastructure, especially in regions 
with high slopes. Land topography and past rainfall informa-
tion should be considered to avoid economic losses caused by 
flash floods. The study area, as shown, is vulnerable to flash 
floods that are expected to increase in the future due to climate 
change (Zhang et al. 2021). Therefore, identifying flood-prone 
areas using flood hazard mapping can protect local communi-
ties and contribute to achieving the SDGs and their targets. The 
SDGs encourage reducing and adapting to their effects. This 
study directly addressed Target 1.5, “Reduce climate-related 
extreme events.”, Target 11.2, “Provide safe and sustainable 
transport systems and improve road safety”. The flood map 
produced here can be used by the disaster management team to 
identify flood-prone areas, prioritize response efforts, and pre-
pare emergency measures. Although basins B33 (Wadi Quier) 
and B42 (Wadi El-Ambagi) have very high hazard degrees, 

Fig. 7   a Flood hazard degree map (left) vs b Peak runoff rank map (right)
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they could have high water volumes. Thus highlighting their 
potential contribution to improving water supply management 
in the region. For example, water harvesting facilities and 
small dams can be constructed in these basins to harvest storm 
water, mitigate flood risks, and recharge groundwater aquifers. 
Accordingly, the following targets can be achieved: Target 6.5, 
“Implement integrated water resources management,” and Tar-
get 12.2, “Sustainable management of natural resources.” On 
the other hand, future studies could benefit from the engage-
ment of local communities and stakeholders in effective flood 
risk management. This can help achieve Targets 6.b, “Partici-
pation of local communities in water management,” and 12.8, 
“Promote awareness for sustainable development.” Overall, 
the linkage between flood hazard mapping and the SDGs can 
help reduce the detrimental consequences of flash floods and 
promote sustainable development.

Conclusion

This study presents a GIS-based morphometric analysis 
framework to analyze flood risk. The developed framework 
was applied to a case study located between the Safaga and 

Quseir regions along the Red Sea coast in Egypt. This logis-
tic region is critical to the tourism industry and is vulner-
able to frequent flash floods. The approach considers various 
morphometric parameters, representing geomorphological 
characteristics of the catchment such as basin area, slope, 
sinuosity factor, shape factor, drainage intensity, circularity 
ratio, and curve number. The watershed and drainage net-
work were delineated using the ArcGIS Pro environment, 
where 43 subbasins were identified in the study area. An 
automated GIS model has been developed to expedite GIS 
processes reaching the delineation stage. This can be use-
ful for large-scale studies by efficiently handling multiple 
DEMs, which can be time-consuming and challenging. Fol-
lowing the delineation process, the morphometric param-
eters were estimated and used to calculate the hazard degree 
per basin. The hazard degree was identified according to a 
five-grade scale ranging from very low to very high. The 
resulted flood hazard map can be used to determine vulner-
able areas to flood risk. Results showed that there are two 
basins subjected to a very high hazard degree and ten basins 
with a high hazard degree. The 12 basins cover about 80% 
of the study area, suggesting the high vulnerability of the 
study area to floods.

Fig. 8   Comparison of flood hazard degrees based on morphometric parameters and peak runoff ranks
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The results of the morphometric analysis were compared 
to the hydrological simulation carried out using the HEC-
HMS model. High runoff values were observed in the basins 
with high to very high hazard degrees, and vice versa. For 
example, specifically, the two basins with a very high hazard 
degree were also found to have the highest peak discharges 
of (B33) 700 and (B42) 486 m3/s. This suggests that the 
morphometric analysis aligns with the hydrological char-
acteristics of the basin and their role in flood risk analysis. 
This also further justifies the results of the morphometric 
analysis presented here. On the other hand, the inclusion of 
the curve number in morphometric analysis enhances the 
flood risk assessment. The results presented above suggest 
that the study area is highly vulnerable to flash floods. This 
vulnerability could further increase in the future due to cli-
mate change. Therefore, identifying flood-prone areas using 
morphometric analysis, like in this study, can help protect 
local communities and reduce economic losses. Finally, the 
results of this study contribute to achieving SDGs through 
providing insights from flood hazard analysis. These insights 
can inform policy and decision-making processes aimed at 
reducing flood risks and promoting sustainable development.
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