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Abstract 
Motivation: Protein–Protein interactions (PPIs) play critical roles in numerous cellular processes. By modelling the 3D structures of the corre
spond protein complexes valuable insights can be obtained, providing, e.g. starting points for drug and protein design. One challenge in the 
modelling process is however the identification of near-native models from the large pool of generated models. To this end we have previously 
developed DeepRank-GNN, a graph neural network that integrates structural and sequence information to enable effective pattern learning at 
PPI interfaces. Its main features are related to the Position Specific Scoring Matrices (PSSMs), which are computationally expensive to gener
ate, significantly limits the algorithm's usability.
Results: We introduce here DeepRank-GNN-esm that includes as additional features protein language model embeddings from the ESM-2 
model. We show that the ESM-2 embeddings can actually replace the PSSM features at no cost in-, or even better performance on two PPI- 
related tasks: scoring docking poses and detecting crystal artifacts. This new DeepRank version bypasses thus the need of generating PSSM, 
greatly improving the usability of the software and opening new application opportunities for systems for which PSSM profiles cannot be 
obtained or are irrelevant (e.g. antibody-antigen complexes).
Availability and implementation: DeepRank-GNN-esm is freely available from https://github.com/DeepRank/DeepRank-GNN-esm.

1 Introduction
Protein–protein interactions (PPIs) are essential for many bio
logical processes. Obtaining 3D structural information on the 
corresponding assemblies is key to uncover their functions, 
and misfunctions in case of disease. Experimentally, this is 
typically done by cryo-electron microscopy or tomography, 
X-ray crystallography or, to a less extent, Nuclear Magnetic 
Resonance spectroscopy. This is, however, often a labour- 
intensive and costly process. As a result, computational 
approaches, often supplemented by a limited amount of data, 
have emerged as valuable alternatives. This has been done 
classically by docking and/or integrative modelling 
approaches (Koukos and Bonvin 2020, van Noort et al. 
2021, Braberg et al. 2022). Artificial Intelligence (AI) has 
also entered the field of complex prediction, in particular 
with various applications of AlphaFold2 (Jumper et al. 2021) 
and Alpha Fold-multimer (Evans et al. 2022) to the predic
tion of protein–protein (Zhu et al. 2023, Gao et al. 2022) 
and protein-peptide (Johansson-Åkhe and Wallner 2022, 
Tsaban et al. 2022, Chang and Perez 2023) complexes.

One of the challenges in computational approaches is 
accurately identifying near-native PPI conformations from 
the large pool of generated models, which is often referred to 
as ‘scoring’. Multiple in-silico approaches have been pro
posed to this end (Xue et al. 2015, Geng et al. 2019, Casadio 
et al. 2022), including physics-based scoring function 

implemented, e.g. in HADDOCK (Dominguez et al. 2003), 
knowledge-based statistical potentials such as GOAP (Zhou 
and Skolnick 2011), classical machine learning methods such 
as iScore (Geng et al. 2020), meta predictors (Jung et al. 
2023) and, in recent years, deep learning approaches such as 
DOVE (Wang et al. 2020), DeepRank (Renaud et al. 2021), 
GNN-DOVE (Wang et al. 2021) and a Graph Neural 
Network (GNN) version of DeepRank, DeepRank-GNN 
(R�eau et al. 2023), which was shown to have the best perfor
mance at the time of publication. It was recently applied to 
the classification of physiological versus non-physiological 
interfaces in homomeric complexes, showing the best perfor
mance of all single predictions (Schweke et al. 2023).

DeepRank-GNN converts 3D structures of PPI complexes 
into residue-level graphs and uses the resulting graph interac
tion networks for making predictions. It was trained on two 
tasks: classification of crystallographic interfaces and scoring 
of PPI complexes. In both cases, the Position-specific Scoring 
Matrices (PSSMs) were found to be the main features driving 
the predictions. PSSMs provide valuable information about 
the evolutionary conservation profiles of residues at interfa
ces of PPIs, helping to identify functionally important resi
dues. However, computing PSSMs is computationally 
expensive, particularly when aiming at larger alignment 
depths that enhance the results’ reliability. This requirement, 
coupled with the need for a non-redundant protein sequence 
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database, can pose challenges for users of the software and 
impact its overall usability. Despite the availability of pre- 
computed PSSMs at external databases such as 3DCONS 
(Sanchez-Garcia et al. 2017) and Conserved Domain 
Database (Lu et al. 2020), they often have limitations in their 
content. Therefore, there is a need to find more flexible and 
fast way to compute features to enhance the usability of 
DeepRank-GNN.

The scaling of large language models (LLMs) to incorporate 
billions or even trillions of training parameters has unlocked un
precedented capabilities, enabling advanced reasoning and the 
generation of lifelike images and text (Wei et al. 2022). This 
transformative progress in natural language processing has not 
only revolutionized the field but has also paved the way for the 
development of protein language models. Evolutionary Scale 
Modeling-2 (ESM-2) is a state-of-the-art transformer architec
ture trained on millions unique protein sequences to predict the 
identity of randomly masked amino acids (Lin et al. 2023). By 
leveraging a massive-scale training approach that involves solv
ing missing puzzles with over 15 billion parameters, ESM-2 is 
able to effectively internalize complex sequence patterns across 
evolution and generate high-quality embeddings that are rich in 
both evolutionary and functional insights. ESM-2 embeddings, 
which are very fast to compute, are therefore valuable for vari
ous protein-related tasks, such as structure prediction, design, 
and functional annotation (Lin et al. 2023).

To bypass the lengthy computation of PSSMs, we present 
here DeepRank-GNN-esm, a new version of our DeepRank- 
GNN algorithm that incorporates ESM-2 embeddings. The 
process of generating ESM-2 embeddings for a protein se
quence is significantly more efficient in terms of computa
tional resources and time investment as it does not rely on 
multiple sequence alignments (MSAs). We show that those 
embeddings can substitute the PSSM features at no loss in 
performance. By integrating ESM-2 embeddings into 
DeepRank-GNN, we achieve a significant acceleration in PPI 
scoring tasks, resulting in improved usability without 
compromising the performance. We also show that combin
ing PSSMs and ESM-2 embedding does lead to an improve
ment in overall scoring performance, indicating that they do 
contain complementary information. Our algorithm is freely 
available as a Python package (https://github.com/DeepRank/ 
DeepRank-GNN-esm), featuring two re-trained models, 
making it easily accessible for researchers in the field of struc
tural biology and bioinformatics.

2 Methods
2.1 Dataset
2.1.1 BM5 and CAPRI datasets
We used the same training and test dataset as previously used 
for DeepRank and DeepRank-GNN and available from the 
SBGRID data repository (Meyer et al. 2016) (https://doi.org/ 
10.15785/SBGRID/843). It consists of docked models of 143 
complexes from the Docking benchmark dataset version 5 
(BM5) (Vreven et al. 2015), excluding antibody-antigen com
plexes and complexes with more than two chains. To address 
potential variations in model performance arising from the 
selection of data subsets for training, as noted by (R�eau et al. 
2023), we randomly divided the 128 complexes and their as
sociated models into training (80%) and evaluation (20%) 
datasets by complex for cross-validation while reserving 15 
complexes as the independent test set. The final models were 

obtained by training on the full training dataset as aligned 
with the training methodology used in the final model of 
DeepRank-GNN. Additionally, as an independent test set, 
we took 13 complexes from the CAPRI score set (Lensink 
and Wodak 2014) as described in DeepRank and DeepRank- 
GNN, details of which can be found in Supplementary Table 
S1, to further validate our algorithm's performance.

2.1.2 MANY/DC benchmark
We explored the application of our proposed models on the 
task of detecting crystal artifacts from true biological interfa
ces. Classification of biological or crystallographic PPIs is 
challenging. In a recent community-wide investigation on 
assigning protein complexes to correct oligomeric state, 
DeepRank-GNN achieved the highest AUC among 252 scor
ing functions (Schweke et al. 2023). To further investigate 
the efficacy of ESM features, we trained two binary classifica
tion models on the MANY dataset (Baskaran et al. 2014) and 
assessed their performances on the DC dataset (Duarte et al. 
2012), following the methodology employed by DeepRank 
and DeepRank-GNN. The MANY/DC benchmark is accessi
ble from https://doi.org/10.15785/SBGRID/843.

2.2 Graph generation
To construct the protein graphs, we selected protein residues 
located within 8.5 Å of the interface of the complex as graph 
nodes. Interface edges and internal edges of the graphs were 
defined as previously described (R�eau et al. 2023). Node and 
edge features were computed and stored in HDF5 format for 
efficient processing. We calculated ESM-2 embeddings for 
each protein sequence with model and scripts provided by 
Lin et al. (2023) and assigned the embedding for each residue 
to the corresponding graph node. Details of the ESM-2 
embeddings computation can be found in the Supplementary 
Method S1 section.

2.3 Model training
DeepRank-GNN (R�eau et al. 2023) is structured around a se
ries of Graph Convolution Layers (GCLs), activation layers, 
and pooling layers. Two GCLs with attention mechanism are 
applied separately to the interface graphs and the internal 
graphs. Pooling layers serve the dual purpose of reducing 
node count and extracting higher-level features. This is 
achieved through the implementation of clustering algo
rithms, followed by a max pooling step.

We adapted the model architecture of DeepRank-GNN 
(R�eau et al. 2023) and trained three algorithms (DeepRank- 
GNN-esm-pssm, DeepRank-GNN-esm and DeepRank- 
GNN-no-pssm) to predict the fraction of native contacts 
(fnat) for PPI conformations. The various features used in 
each model are listed in Table 1. During model training, we 
used a mean squared error loss function, optimized the mod
els using the Adam algorithm with a batch size of 128 and a 
learning rate of 0.001. We trained all models for 20 epochs. 
Supplementary Figures S1–S3 show the training and valida
tion loss curves, along with the corresponding AUC values, 
for both the final models trained on the complete dataset and 
the models generated during cross-validation.
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3 Results
3.1 Combining PSSMs and ESM embeddings 
improves the scoring performance
3.1.1 Performance of 10-fold cross-validation on the BM5 
evaluation set
We trained DeepRank-GNN-esm-pssm, which combines 
both PSSM and ESM embeddings as features, using 10-fold 
cross-validation on the BM5 training set. The average AUC 
obtained across all folds on their evaluation set is 0.639 ± 
0.054 (see Supplementary Fig. S1).

The model performance of the final DeepRank-GNN-esm- 
pssm model trained on the full training set is evaluated on the 
independent validation set using AUC and six machine learn
ing metrics: Precision, MCC (Matthews's correlation coeffi
cient), F1, Recall, R2, and Pearson correlation coefficient (see 
Supplementary Method S2 for their definitions). DeepRank- 
GNN-esm-pssm model has the highest AUC (0.95) during 
training (Supplementary Fig. S4). Since the dataset is highly 
imbalanced, we focus our discussion on the F1 score and 
MCC. The training results show that the DeepRank-GNN- 
esm-pssm model, which combines PSSMs and ESM embed
dings, outperformed the original DeepRank-GNN model 
with a 7.59% increase in F1 and an 8.23% increase in MCC 
(Table 2). Moreover, the DeepRank-GNN-esm-pssm model 
shows a stronger correlation between predicted fnat values 
and the ground truth than the original model, as indicated by 
a higher R2 value (0.916 versus 0.826). This enhanced corre
lation is clearly visible in the scatter plot in Supplementary 
Fig. S5.

The enhanced performance on the validation set can be at
tributed to two factors. Firstly, the DeepRank-GNN-esm- 
pssm model uses the ESM embeddings, which provide both 
more node features (1328) and additional information. The 
larger feature size results in an increased number of learnable 
parameters, enhancing the model's ability to generalize pat
terns from the input data (Table 1).

3.1.2 Performance on the BM5 and CAPRI test sets
We first evaluated all 11 DeepRank-GNN-esm-pssm models 
on the independent BM5 test set by computing the AUC us
ing a DockQ threshold of 0.23 to distinguish between good 
and bad models (the model outputs a continuous scale output 
between 0 and 1). To create a smoother curve, the true 

positive rate (TPR) values are estimated at particular false 
positive rate (FPR) values using interpolation. The results, 
depicted in Fig. 1, demonstrate that the final model (foldall) 
achieves the highest AUC value (0.938) compared to all mod
els obtained in cross-validation. Interestingly, nine models 
trained on subsets of the data outperforms the original 
DeepRank-GNN model. The variation in performance be
tween folds also highlights the dataset dependency of the al
gorithm. To be aligned with DeepRank-GNN, we selected 
the final model trained on the full dataset for subse
quent analysis.

As the second test set, to ensure a fair comparison of the 
model’s performance outside of BM5, we compared it with 
six other scoring methods on the CAPRI score set, including 
DeepRank (Renaud et al. 2021), DeepRank-GNN (R�eau 
et al. 2023), GNN_DOVE (Wang et al. 2021), HADDOCK 
(Dominguez et al. 2003), iScore (Geng et al. 2020), and 
GOAP (Zhou and Skolnick 2011). As metric for the compari
son, we use the per-complex success rate, which is calculated 
by counting the number of docking cases in which at least 
one near-native model is found among the top-k ranking 
models, divided by the total number of cases. Table 3 demon
strates the superior performance of DeepRank-GNN-esm- 
pssm over DeepRank-GNN, particularly in relation to the 
top five ranks. DeepRank-GNN-esm-pssm achieves a 30.8% 
success rate in correctly identifying the structures, surpassing 
DeepRank-GNN (23.1%). While DeepRank-GNN shows su
perior performance in scoring near-native conformations 
when assessing Top50 models, we consider the performance 
at earlier ranks to be more crucial for PPI scoring tasks.

These results demonstrate the improved scoring perfor
mance achieved by combining PSSMs and ESM-2 embed
dings in the DeepRank-GNN architecture.

3.2 ESM embeddings can substitute PSSM features 
without any performance loss
3.2.1 Performance of 10-fold cross-validation on the BM5 
evaluation set
To further explore the feasibility of substituting the PSSM 
features with ESM embeddings, we compared the perfor
mance of a modified version of our model, termed 
DeepRank-GNN-esm, which excludes all PSSM-related fea
tures (PSSM, PSSM-IC, and Cons). Despite not reaching the 
same performance level as the DeepRank-GNN-esm-pssm 

Table 1. Model features and the number of total trainable parameters.

Featuresa Dimension

Modelb

1 2 3 4

Type 20 � � � �

Polarity 4 � � � �

BSA 1 � � � �

Charge 1 � � � �

Cons 1 � �

PSSM_IC 1 � �

PSSM 20 � �

Embedding 1280 � �

Distance 1 � � � �

Total trainable parameters 52169 51465 10505 11209

a Type represents the amino acid type, BSA the buried surface area of 
the complex, Cons the Conservation score (from PSSM), PSSM IC the 
Information content (from PSSM), PSSM the Position-specific scoring 
matrix, distance the normalized distance between graph nodes.

b Model 1: DeepRank-GNN-esm-pssm, Model 2: DeepRank-GNN-esm, 
Model 3: DeepRank-GNN, and Model 4: DeepRank-GNN-no-pssm.

Table 2. Comparison of model performances on the BM5 evaluation set.

Metricsa

Modelb

1 2 3 4

Precision 0.83 0.824 0.778 0.685
MCC 0.776 0.771 0.717 0.655
Recall 0.758 0.754 0.701 0.682
F1 0.793 0.788 0.737 0.683
R2 0.916 0.921 0.826 0.683
Pearson_r 0.957 0.96 0.909 0.842
AUC 0.872 0.87 0.842 0.827
Success rate % (Top1) 89.8 89.8 85.8 80.3
Success rate % (Top5) 97.6 96.1 96.1 92.1
Success rate % (Top20) 100 97.6 98.4 96.9
Success rate % (Top50) 100 100 99.2 98.4

a A true positive is defined as a model with DockQ > 0.23. The best 
value for each metric is marked in bold.

b Model 1: DeepRank-GNN-esm-pssm, Model 2: DeepRank-GNN-esm, 
Model 3: DeepRank-GNN, and Model 4: DeepRank-GNN-no-pssm.
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model, the DeepRank-GNN-esm model demonstrated superi
ority over the original DeepRank-GNN model, with a 7.56% 
increase in recall and a 7.53% increase in MCC (Table 2). 
These findings indicate that PSSM features can be substituted 
by ESM embeddings as an effective alternative which does 
not require the more costly computation of the PSSM.

Both PSSM and ESM embeddings have the inherent capac
ity to capture evolutionary conservation, enabling the detec
tion of functionally important residues. ESM embeddings 
offer a substantial increase in information compared to 
PSSMs, both in terms of the database involved in the compu
tation process and the dimensionality of the features. This is 
attributed to the fact that PSSM features, with 20 features per 
residue, are derived from sequence alignment with the non- 
redundant (NR) database, whereas ESM embeddings, with 
1280 features per residue, are obtained from training on a 
significantly larger volume of sequences (�138 million 
sequences). This distinction potentially explains the effective
ness of substituting PSSM feature with the embeddings. In 
contrast, the DeepRank-GNN-no-pssm model, which 
excludes both PSSM and ESM embeddings, has high training 

loss even after 20 epochs (Supplementary Fig. S4), which 
indicates its limited ability to effectively learn from the input 
data. This model also shows the lowest performance across 
all metrics.

3.2.2 Performance on the BM5 and CAPRI test sets
Our comparison of model performance (Table 4) on the BM5 
test set demonstrates that the DeepRank-GNN-esm model 
outperforms the original DeepRank-GNN model in terms of 
overall AUC. The DeepRank-GNN-no-pssm model, which 
excludes both PSSM and ESM-2 embeddings, exhibits the 
lowest AUC value (0.78). Within Top50 ranks, both models 
with protein language embeddings are able to identify correct 
conformations for 13 targets, surpassing the original 
DeepRank-GNN model by over 10%.

The AUC curves of 11 DeepRank-GNN-esm models on 
BM5 test set are plotted in Fig. 2.

In the CAPRI score set, the DeepRank-GNN-esm model 
exhibits the highest predictive performance (69.2% top50), 
in par with iScore and GNN-Dove, even surpassing the 
DeepRank-GNN-esm-pssm model. Within the top 50 ranks, 
the DeepRank-GNN-esm model successfully identifies cor
rect complex conformations for nine out of 13 targets. 
DeepRank-GNN, DeepRank and HADDOCK closely follow 
with success rates of 61.5% (Table 3). Notably, six graph- 
based approaches, including DeepRank-GNN and its three 
derivatives, iScore, and GNN_Dove, consistently demon
strate higher success rates at earlier ranks, distinguishing 
themselves from the other methods. iScore performs well at 
rank 1, while the DeepRank-GNN-esm model excels at later 
ranks. Combining the DeepRank-GNN-esm model with 
iScore predictions could potentially yield even better 
predictions.

There are two plausible explanations for the observed su
perior performance of DeepRank-GNN-esm over DeepRank- 
GNN-esm-pssm. Both ESM-2 embeddings and PSSM capture 
evolutionary information, employing them simultaneously 
may lead to data redundancy and amplify noise within the 
data. Further, the larger set of features used by DeepRank- 
GNN-esm-pssm increases the complexity and the number of 
trainable parameters. This can make convergence more chal
lenging, as evidenced by the higher overall training loss after 
training for 20 epochs (Supplementary Fig. S1).

3.2.3 Application of DeepRank-GNN-esm model for discrim
inating physiological from non-physiological interfaces
Next to scoring, we also trained our models on the task of 
discriminating biological interfaces from crystallographic 
ones using the MANY dataset (Baskaran et al. 2014) for 
training and the DC dataset (Duarte et al. 2012) as indepen
dent test set. During the training process, we monitored the 

Table 3. Comparison of model on the CAPRI Score set.

Algorithma AUC

Success rates (%)

Top1 Top5 Top20 Top50

Model1 0.78 15.4 30.8 46.2 53.8
Model2 0.79 15.4 30.8 46.2 69.2
Model3 0.71 7.7 23.1 46.2 61.5
Model4 0.66 7.7 30.8 46.2 46.2
DeepRank 0.59 15.4 15.4 53.8 61.5
HADDOCK 0.55 23.1 23.1 46.2 61.5
iScore 0.64 38.5 46.2 53.8 69.2
GOAP 0.42 0 23.1 46.2 53.8
GNN-Dove 0.54 15.4 53.8 69.2 69.2

a Model 1: DeepRank-GNN-esm-pssm, Model 2: DeepRank-GNN-esm, 
Model 3: DeepRank-GNN, and Model 4: DeepRank-GNN-no-pssm. The 
best value for each metric is marked in bold.

Table 4. Comparison of model performances on the BM5 test set.

Algorithma AUC

Success rates (%)

Top1 Top5 Top20 Top50

Model1 0.81 60 73.3 80 86.7
Model2 0.87 66.7 80 80 86.7
Model3 0.7 60 66.7 66.7 73.3
Model4 0.78 60 66.7 73.3 73.3

a Model 1: DeepRank-GNN-esm-pssm, Model 2: DeepRank-GNN-esm, 
Model 3: DeepRank-GNN, and Model 4: DeepRank-GNN-no-pssm. The 
best value for each metric is marked in bold.

Figure 1. Receiver operating characteristic curves of DeepRank-GNN- 
esm-pssm model on the BM5 test set (a true positive is defined as a 
model with DockQ > 0.23).
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loss curves and calculated AUC values (Supplementary Fig. 
S6). In contrast to the scoring dataset, in this case both the 
training and test datasets are perfectly balanced and the accu
racy is therefore a suitable metric for comparing the perfor
mance of the models. Both DeepRank-GNN-esm-pssm and 
DeepRank-GNN-esm achieve an accuracy of 0.83 (Table 5), 
comparable to the reported accuracy of DeepRank-GNN 
(0.82) on the DC test dataset. Our results demonstrate the ef
fectiveness of ESM features in accurately identifying true bio
logical interfaces from crystal artifacts.

3.3 Computational speed
The gain in efficiency of using ESM-2 embeddings compared 
to traditional PSSM profiles is significant: Generating a single 
PSSM profile requires a non-redundant protein database of 
176 GB and takes approximately two hours when computed 
on a single core. In contrast, generating ESM-2 embeddings 
for the same sequence only requires a pre-trained model of 
2.5 GB size and takes approximately 5 s. This represents a 
more than 100-fold increase in efficiency compared to the 
PSSM generation process. These findings are supported by 
data presented in Supplementary Table S2, which highlights 
the efficiency gains achieved by ESM-2 embeddings. Our 
data also indicate that there is no significant increase in 

model inference time associated with the use of protein lan
guage model features.

4 Conclusions
By integrating language model-based features into our exist
ing deep learning framework, we have developed the 
DeepRank-GNN-esm algorithm, which enhances the scoring 
of protein–protein complexes. Adding the language model 
embeddings results in an increased prediction performance. 
Overall, our findings on two PPI-related tasks (scoring and 
discrimination of biological interfaces) suggest that PSSM 
features can be replaced by ESM-2 embeddings. This comes 
with the advantage of bypassing the requirement of pre- 
generating the PSSM, a cumbersome and computationally 
more expensive process, while maintaining or even slightly 
improving the performance. This opens new avenues for fu
ture research, particularly in the case of antibody-antigen 
complexes or protein-peptide complexes where PSSM profiles 
may not be applicable. To the best of our knowledge, 
DeepRank-GNN-esm is the first method to apply protein lan
guage models in graph neural networks for protein–protein 
models evaluation tasks.
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Figure 2. Receiver operating characteristic curves of DeepRank-GNN- 
esm model on the BM5 test set (a true positive is defined as a model 
with DockQ > 0.23).

Table 5. Comparison of model performances on the DC test set.

Modela Accuracy (%)

PISA 79 
PRODIGY-Crystal 74 
DeepRank 86 
Model1 83
Model2 83
Model3 82

a Model 1: DeepRank-GNN-esm-pssm, Model 2: DeepRank-GNN-esm, 
Model 3: DeepRank-GNN.
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