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Abstract 
Background and Aims: Colonic bacterial biofilms are frequently present in ulcerative colitis [UC] and may increase dysplasia risk through patho-
gens expressing oncotraits. This prospective cohort study aimed to determine [1] the association of oncotraits and longitudinal biofilm presence 
with dysplasia risk in UC, and [2] the relation of bacterial composition with biofilms and dysplasia risk.
Methods: Faeces and left- and right-sided colonic biopsies were collected from 80 UC patients and 35 controls. Oncotraits [FadA of 
Fusobacterium, BFT of Bacteroides fragilis, colibactin [ClbB] and Intimin [Eae] of Escherichia coli] were assessed in faecal DNA with multiplex 
quantitative polymerase chain reaction [qPCR]. Biopsies were screened for biofilms [n = 873] with 16S rRNA fluorescent in situ hybridiation. 
Shotgun metagenomic sequencing [n = 265], and ki67-immunohistochemistry were performed. Associations were determined with a mixed-
effects regression model.
Results: Biofilms were highly prevalent in UC patients [90.8%] with a median persistence of 3 years (interquartile range [IQR] 2–5 years). 
Biofilm-positive biopsies showed increased epithelial hypertrophy [p = 0.025] and a reduced Shannon diversity independent of disease status 
[p = 0.015], but were not significantly associated with dysplasia in UC: adjusted odds ratio [aOR] 1.45, 95% confidence interval [CI] 0.63–3.40. 
In contrast, ClbB independently associated with dysplasia [aOR 7.16, 95% CI 1.75–29.28], and FadA and Fusobacteriales were associated with 
a decreased dysplasia risk in UC [aOR 0.23, 95% CI 0.06–0.83, p <0.01].
Conclusions: Biofilms are a hallmark of UC; however, because of their high prevalence are a poor biomarker for dysplasia. In contrast, colibactin 
presence and FadA absence independently associate with dysplasia in UC and might therefore be valuable biomarkers for future risk stratifica-
tion and intervention strategies.
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1.  Introduction
Ulcerative colitis [UC] is characterised by chronic inflam-
mation of the colonic mucosa and is an increasing burden 
worldwide.1 In UC, chronic inflammation may lead to the de-
velopment of mucosal dysplasia that can progress to colorectal 
cancer [CRC].2,3 Detection of dysplasia and risk stratification 
are dependent on invasive techniques including surveillance 
colonoscopies every 1–5 years. Cancer prevention in UC is 
limited by our knowledge on accurate predictors of dysplasia 
and human errors in dysplasia detection, with 30–55% of 
CRC diagnosed as interval lesions.4–6 Current non-invasive 
tests for CRC detection are based on faecal occult blood or 
haemoglobin detection, which is unreliable in UC because of 
high false-positive rates due to inflammation-related bleeding. 
Investigation of novel biomarkers might provide new leads for 
less invasive risk stratification. The colonic microbiota and its 
interaction with the [impaired] mucosal barrier may play a 
role in colitis-associated cancer development, and could po-
tentially provide novel biomarkers for dysplasia in UC.

The inner mucosal layer of UC patients is frequently 
covered with spatially organised bacteria in an adherent 
polymeric matrix, so-called biofilm.7,8 Cross-sectional studies 
have shown endoscopic visibility of biofilms in 34% of UC 
patients7 and microscopic detection in 70% of UC patients.8 
Bacteria frequently detected in mucosal biofilms in UC in-
clude Bacteroides fragilis, Escherichia coli, Klebsiella sp., 
Fusobacterium peridonticum, and Ruminococcus gnavus.7,8 
Biofilms provide a microenvironment for bacteria to thrive 
on the mucosal surface. Such bacteria may be pathogenic by 
carrying or producing pro-oncogenic bacterial products, so 
called oncotraits, as recently discovered in familial adenoma-
tous polyposis.9 Dejea et al. demonstrated that two oncotraits, 
colibactin from Escherichia coli and Bacteroides fragilis toxin 
[BFT], co-occur in biofilms and combined cause tumour for-
mation in mice. Besides BFT and Colibactin, intimin [Eae] of 
E. coli and Fusobacterium adhesin protein A [FadA] have also 

been linked to CRC development.10–14 These oncotraits are 
detectable in faeces and bear potential as biomarker for an 
increased dysplasia risk or presence of dysplasia.15 However, 
the exact role of oncotraits and bacterial biofilms and their 
potential as biomarkers of carcinogenesis in UC is unknown.

In this study we analysed longitudinal colonic biopsies and 
faecal samples from UC patients undergoing surveillance, to 
determine [1] the association of oncotraits and longitudinal 
biofilm presence with dysplasia risk in UC, and [2] bacterial 
composition and its relation with biofilms and dysplasia risk.

2.  Materials and Methods
2.1.  Study design
We performed a prospective cohort study and employed an 
additional retrospective longitudinal arm for in-depth biofilm 
characterisation of the included UC patients. For the add-
itional longitudinal biofilm assessment, only high-quality data 
were included, that is [1] patients with at least three colonos-
copies including the study procedure, and [2] colonoscopies 
withto at least left- and right-sided biopsies. Longitudinal 
data of the UC patients were gathered up the moment of the 
study colonoscopy.

2.2.  Study population
Patients were included at the Gastroenterology Department 
[Radboud University Medical Centre, The Netherlands] in a 
consecutive manner from December 2016 to September 2018. 
Cases with UC were included if they had [1] disease duration 
longer than 8 years, left-sided colitis, or extensive disease 
[Montreal score E2 or E3], and [2] before colonoscopic sur-
veillance in clinical remission [Montreal score S0] for patients 
with UC. Exclusion criteria were antibiotics within 3 months 
before colonoscopy. Control group patients [n = 35] were in-
cluded based on an indication for a colonoscopy for unex-
plained complaints of the intestine, such as changed bowel 
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habits [34.3%], unclarified abdominal pain [34.3%], iron 
deficiency anaemia [28.6%], faecal blood loss [34.3%], or 
other indications [22.9%], of whom 11 patients had two in-
dications and four patients had three indications. Exclusion 
criteria for this group were an inflammatory bowel disease 
[IBD] diagnosis, a history of CRC, colonic surgery, or anti-
biotics within 3 months before colonoscopy, and abnormal 
findings during study colonoscopy [Figure 1]. The study 
[NL55930.091.16] was approved by the Internal Revenue 
Board CMO-Arnhem Nijmegen [CMO 2016-2616] and the 
board of the Radboudumc. All participants gave written in-
formed consent.

2.3.  Tissue and faecal sample collection
Patients were asked to bring a cooled home-collected faecal 
sample to the appointment, with the instruction to col-
lect it shortly before bowel cleansing. Faecal samples were 
homogenised, aliquoted, and stored at −80°C, the day after 
collection. From all patients, biopsies were taken from the as-
cending and descending colon and, when present, at the site 
of a suspected dysplastic lesion. All biopsies were collected 
according to three different methods: 1] fixed in methacarn 
[60% methanol, 10% acetic acid, and 30% chloroform]; 
2] formalin; and 3] snap-frozen. Snap-frozen biopsies were 
stored at −80°C until use. Endoscopic assessment of the 
severity of inflammation was performed for each biopsy 
location using the endoscopic Mayo score. In addition, 
retrospective data from prior colonoscopies were collected 
through patient files.

2.4.  Pathology
Formalin- and methacarn-fixed biopsies were paraffin em-
bedded, and pathology diagnoses were retrieved from patient 

files. Pathology diagnoses were revised by a gastrointestinal 
[GI] pathologist on haematoxylin and eosin [H&E]-stained 
slides. Retrospective, formalin-fixed, paraffin-embedded 
tissue biopsies from UC patients were gathered from the 
Radboudumc archives up to the first registered surveil-
lance colonoscopy, resulting in 402 colonoscopies of which 
we analysed 873 biopsies from the 1240 available biopsies. 
Pathology data, such as inflammation score [mild, moderate, 
severe], and dysplasia grade [low-grade, high-grade] were 
extracted from pseudonymised pathology reports, and add-
itional data were collected through questionnaires, such as 
patient demographics, CRC risk factors, [IBD-related] medi-
cation, Simple Clinical Colitis Activity Index [SCCAI], and 
Bristol stool chart. Methods for tissue processing for periodic 
acid Schiff [PAS], immunohistochemistry [IHC], and fluores-
cent in situ hybridisation [FISH], and corresponding analysis 
are provided in the Supplementary Data 1.

2.5.  Biofilm scoring
Mucosa-associated bacteria were visualised with a uni-
versal 16S rRNA probe [Cy3-EUB338-Cy3] and fluorescence 
microscopy [Leica DMRA] [Supplementary Data 1]. The 
tissue was scored based on bacterial abundance and biofilm 
formation. Tissue was scored in four tiers: no bacteria [0], 
low [1], moderate [2], or high [3] bacterial abundance on 
the mucosa, which is a semi-quantitative measurement that 
associated with number of bacterial reads attained through 
shotgun metagenomic sequencing.16 Biofilms were defined 
as a continuous plaque of bacteria covering at least 100 μm 
of the epithelial surface and were measured with Fiji [ver-
sion 1.51n]. All biopsies from the study colonoscopy were 
scored by two independent observers, and a third observer 
was consulted in case of disagreement to reach consensus. For 
the longitudinal retrospective biopsies, a random selection of 
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Figure 1. Study workflow from inclusion to collection of data and samples to analysis.
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174 of the 873 biopsies was scored by a second observer. The 
agreement was 86.8%, resulting in a kappa of 0.63 with sub-
stantial agreement (95% confidence interval [CI] 0.48–0.77); 
Supplementary Table 1].

2.6.  Oncotrait prevalence
To detect the bacterial oncotraits, BFT from Bacteroides 
fragilis, colibactin [ClbB] and intimin [Eae] of Escherichia 
coli, and FadA of Fusobacterium sp., a multiplex poly-
merase chain reaction [PCR] was performed on faecal DNA 
[Supplementary Data 1].

2.7.  Metagenomics analysis
Bacterial DNA isolation was performed with a bacterial DNA 
enrichment step, was sequenced using shotgun metagenomic 
sequencing, and was analysed as previously described in 
Bruggeling et al., 2021,16 in which study control and UC pa-
tients contributed to a subset of the presented sequencing 
data [Supplementary Data 1 and Supplementary Table 2].

2.8.  Statistics
The number of patients needed for the study was based on 
previously observed biofilm rates in UC patients [70%]8 
versus controls [15%]17 and on the rate of BFT in controls 
[51.3%] and CRC patients [88.5%].18 Based on these rates, 
27 patients per group are needed for chi square statistics. To 
allow correction for at least one confounder in binary logistic 
regression, we aimed to include 40 controls, 40 high-risk, and 
40 low-risk UC patients. High-risk UC patients were con-
sidered those with current or previous dysplasia, or concomi-
tant primary sclerosing cholangitis [PSC]. All other patients 
were considered low-risk UC. Statistical tests were performed 
using Graphpad Prism v9.0.0 [GraphPad Software LLC, USA] 
and IBM SPSS Statistics v25 [Armonk, NY, USA]. Descriptive 
statistics were assessed, chi square tests were performed, and 
odds ratios are displayed with 95% confidence intervals. 
Correlations were assessed with Pearson’s or Spearman’s 
tests. A binary logistic regression model was used to: [1] as-
sess univariable associations with dysplasia, [2] adjust for 
confounders, and [3] independence of found associations.

A regression framework was made using Daggity 
[Supplementary Figure 1].19 Factors were selected for the 
multivariable model based on expert opinion and clin-
ical relevance. In addition, to adjust for repeated measures, 
a binary logistic mixed model was used with subjects as 
random effects to assess longitudinal biofilm data. Two-sided 
p-values <0.05 were considered statistically significant. For 
the cross-sectional data, we employed dysplasia at the study 
colonoscopy or in the prior 5 years as a composite endpoint. 
The following definitions were used for comparison of the 
longitudinal data: right-sided colon included caecum and 
ascending colon; left-sided colon included descending colon 
and sigmoid. Rectal biopsies were excluded because of sparse 
data.

3.  Results
3.1.  Patient demographics
3.1.1.  Baseline characteristics
After exclusion of 11 controls with abnormal colonoscopy 
findings [low-grade dysplasia, inflammation, microscopic col-
itis, and spirochetosis], 115 patients [n = 80 UC patients and 

n = 35 controls] were included. UC patients were more often 
male compared with controls [58.8% vs 31.4%, p <0.01], 
had a diagnosis of pancolitis [77.2%], PSC [16.3%], and 
a median disease duration of 21 years (interquartile range 
[IQR] 12.5–29.5). Of these, 68.8% used aminosalicylates and 
17.5% were on biologic therapy. The median retrospective 
follow-up time was 7.5 years [IQR 4.5–11.0 years]. Details of 
the study selection and baseline characteristics are displayed 
in Figure 1 and Tables 1 and 2.

3.1.2.  Dysplasia
Dysplastic lesions identified in UC patients [n = 11] during 
the study colonoscopy were all classified as tubular adenomas 
with low-grade dysplasia [58.3% right colon, 25% left colon, 
and 16.6% rectum] [Supplementary Tables 3 and 4]. Of the 11 
patients with dysplastic lesions during the study colonoscopy, 
eight patients [72.7%] had a history of one or more dysplastic 
lesions. In addition, 16 patients had a history of dysplasia, 
of which nine were within 5 years before but not during the 
study colonoscopy. Disease duration (odds ratio [OR] 1.06, 
95% confidence interval [CI]: 1.01–1.11), and pseudopolyp 
presence [OR 1.80, 95% CI: 1.00–3.23] were significantly 
associated with dysplasia development [p <0.05]. Family 

Table 1. Baseline characteristics for ulcerative colitis patients and 
controls*.

Characteristics Ulcerative 
colitis [n = 80]

Controls
[n = 35]

Total 
sample 
[n = 115]

Female sex, n [%] 33 [41.3] 24 [68.6] 57 [49.6]

Age, mean [+-SD] 52.0 [13.0] 55.1 [14.8] 53.5 [13.5]

Family history of CRC, FDR, n 
[%]

8 [10.0] 4 [11.4] 12 [10.4]

Smoking, n [%]

 � Current 7 [8.8] 4 [11.4] 11 [9.6]

 � Past 35 [43.8] 12 [34.3] 47 [40.9]

 � None 38 [47.5] 19 [54.3] 57 [49.6]

History of colon surgery, n [%] 3 [3.8] 0 [0.0] 3 [2.6]

Antibiotic use in past year, n [%] 13 [16.3] 11 [31.4] 24 [20.9]

History of neoplasms, n [%]

 � LGD 22 [27.5] 2 [5.7] 24 [34.8]

 � HGD 1 [1.3] 0 [0.0] 1 [0.9]

 � CRC 1 [1.3] 0 [0.0] 1 [0.9]

At inclusion with neoplasms, n [%]

 � LGD 11a [13.8] 0 [0.0] 11 [9.6]

PARIS grading, n neoplasms [%] 12 NA NA

 � Type lp 1 [8.3]

 � Type Is 7 [58.3]

 � Type IIa 3 [25.0]

 � Type IIb 1 [8.3]

Boston Bowel Preparation Score 
[BPPS],b median [IQR]

9 [2] 9 [1] 9 [1]

Endoscopic Mayo scoreb [total], 
median [IQR]

0 [1] 0 [2] 0 [1]

SSCAI, total score, median [IQR] 1 [2] 3 [3] 2 [2]

SD, standard deviation; FDR , first-degree relative; LGD , low-grade 
dysplasia; HGD , high-grade dysplasia; CRC , colorectal cancer; 
IQR , interquartile range; SSCAI , Simple Clinical Colitis Activity Index; 
NA , not applicable.
aOnepatient with two neoplasms with LGD.
bOne missing.
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history of CRC showed a non-significant increased odds [OR 
3.50, 95% CI: 0.79–15.60; p = 0.10]. All univariable associ-
ations with dysplasia are displayed in Table 3.

3.2.  Oncotraits
Oncotraits were assessed in faecal DNA of 59 UC patients 
[73.8%] and 25 controls [71.6%] who provided a faecal 
sample. One or more oncotraits were detected in 45 UC pa-
tients [76.3%] and 16 controls [64.0%]. FadA was most fre-
quently present in UC patients [52.5%] and controls [44.0%; 
p = 0.47], followed by BFT [39% UC vs 52.0% in controls; 
p = 0.27] and ClbB [39.0% in UC vs 48.0% in controls; 
p = 0.44] [Figure 2A and B]. Thus, no difference in prevalence 
of oncotraits was observed when comparing UC patients with 
controls. Whereas FadA and ClbB occur as single oncotrait in 
UC patients [33% and 26%, respectively], Eae did not occur 
without ClbB, and BFT did not occur alone. In UC patients, 
FadA and BFT were the most frequently observed combin-
ation. In general, oncotraits rarely occurred alone [35.6% 
single vs 64.4% multiple oncotraits in UC, and 18.8% vs 
81.2% in controls; p < 0.05].

In UC, ClbB was positively associated with dysplasia at the 
study colonoscopy or in the prior 5 years [OR 4.77, 95% 
CI 1.36–16.7], whereas FadA was negatively associated [OR 
0.23, 95% CI 0.06–0.84; Table 3]. After adjusting for disease 

duration, an aOR of 7.97 [95% CI 1.77–35.9] was observed 
for ClbB and aOR 0.15 [95% CI 0.03–0.67; p = 0.01] for 
FadA. BFT and Eae were not associated with dysplasia in 
UC. To assess the independence of found associations, an 
explorative model including both FadA and ClbB was used. 
The association of ClbB with dysplasia remained significant 
[aOR 4.0, 1.09–14.7]. ClbB had a positive predictive value 
[PPV] for dysplasia within the past 5 years of 42.93% [CI: 
29.64%–57.32%] and a negative predictive value [NPV] of 
86.11% [CI: 74.72%–92.86%]. FadA had a PPV of 12.90% 
[5.84%–26.15%] and NPV of 61.25% [49.41%–71.89%] 
for dysplasia in the past 5 years [See Supplementary Figure 2 
for NPV/PPV dependence on dysplasia prevalence].20

3.3.  Biofilms
3.3.1.  Biofilms at study colonoscopy
Biofilms [Figure 3A] were present in 50.0% of the con-
trols at any location [left and/or right colon; Figure 3B] [see 
Supplementary Figure 3 for images of biofilms]. In total, 
nine [27.3%] control patients with a right-sided biofilm had 
a left-sided biofilm as well. Biofilm prevalence was higher in 
high-risk [n = 38] UC patients [72.2%], PSC [84.6%], dys-
plasia during endoscopy [70.0%], and any history of dys-
plasia [69.6%], compared with patients without [a history 
of] dysplasia or PSC (low-risk [n = 42]; 57.5%), but this 

Table 2. Ulcerative colitis-specific baseline characteristics.

UC-specific baseline characteristics

Age at UC diagnosis, mean [±SD] 31.2 [12.5]

PSC, n [%] 13 [16.3]

History of post inflammatory polyps, n [%] 19 [23.8]

 � <100 14 [66.6]

 � >100 5 [6.3]

Number of colonoscopies,a median [IQR] 4 [4]

Follow-up after UC diagnosis until index colonoscopy, 
median years [IQR]

21 [17]

Maximal endoscopic extent [Montreal],a n [%]

 � E2 18 [22.8]

 � E3 51 [77.2]

Maximal histological extent [Montreal],b n [%]

 � E2 19 [24.4]

 � E3 49 [62.8]

 � Unknown 1 [1.3]

Maximal endoscopic inflammation severity, n [%]

 � Mild 18 [22.5]

 � Moderate 17 [21.3]

 � Severe 25 [31.3]

 � Unknown 20 [25.0]

IBD medication,c n [%]

 � Aminosalicylates 55 [68.8]

 � Immunomodulator 17 [23.0]

 � Biological 13 [17.5]

 � Prednisone 8 [13.5]

UC, ulcerative colitis; IQR , interquartile range; IBD , inflammatory bowel 
disease; PSC , primary sclerosing cholangitis; SD , standard deviation, .
aOne missing.
bTwo missing.
cSix missing.

Table 3. Univariable regression analysis for associations with dysplasia at 
the study colonoscopy or in the prior 5 years.

Risk factor OR [95% CI] p-value

Age [per year] 1.02 [0.98–1.06] 0.35

Smoking [history or present] 1.41 [0.61–3.22] 0.42

Medication

 � 5-ASA 2.14 [0.63–7.35] 0.23

 � Thiopurine + MTX 0.58 [0.17–1.99] 0.39

 � Anti-TNF 0.56 [0.11–2.80] 0.48

 � NSAIDs 1.56 [0.26–9.21] 0.63

 � Corticosteroids 0.45 [0.05–3.91] 0.47

 � PPI 1.49 [0.45–4.96] 0.52

 � Opioids 3.50 [0.21–59.13] 0.39

 � Bile acid binders 0.38 [0.04–3.30] 0.38

Biofilm presence

 � Any 1.59 [0.50–5.10] 0.43

 � Left-sided 0.88 [0.29–2.70] 0.82

 � Right-sided 1.32 [0.47–3.71] 0.60

Extensive disease 0.80 [0.27–2.33] 0.68

Familial history of CRC 3.50 [0.79–15.60] 0.10

Pseudopolyp presence 1.80 [1.00–-3.23] 0.049

PSC 0.50 [0.10–2.45] 0.39

Disease duration [cont., for each year] 1.06 [1.01–1.11] 0.03

Oncotraits

 � Eae 2.59 [0.73–9.2] 0.14

 � ClbB 4.77 [1.36–16.71] 0.02

 � BFT 1.06 [0.32–3.51] 0.93

 � FadA 0.23 [0.06–0.84] 0.03

OR, odds ratio; CI, confidence interval; 5-ASA, 5-aminosalicylates, MTX, 
methotrexate; TNF, tumour necrosis factor; NSAIDs, non-steroidal anti-
inflammatory drugs; PPI, proton pump inhibitor; CRC, colorectal cancer; 
PSC, primary sclerosing cholangitis.
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was not significant [Figure 3B B; Supplementary Table 5]. 
Biofilms occurred in 72.2% of patients with dysplasia at the 
study colonoscopy or in the prior five years versus 62.1% 
in the remaining group [p = 0.43]. Biofilms occurred numer-
ically more frequently in the ascending versus descending 
colon for both UC patients and controls [47 vs 36% in UC 
and 45 vs 32% in controls; p = 0.08] [Supplementary Table 
5].

Right-sided biofilms were not associated with age 
[p = 0.48], smoking [p = 0.13], extensive disease [p = 0.44], 
or SSCAI score [p = 0.07] [Supplementary Table 6]. Biofilms 
in the right-sided colon were significantly thicker com-
pared with left-sided biofilms [median 13.8 µm vs 9.2 µm; 
p = 0.031] [Figure 3C], whereas there was no difference in 
average biofilm length. There were no significant differences 
in biofilm thickness, length, and area between UC patients 
and controls [Supplementary Figure 4]. No correlation was 
observed between average biofilm and mucus thickness 
in right- [Spearman R 0.103] and left-sided colon biopsies 
[Spearman R 0.069] [Figure 3D and Supplementary Figure 
5]. Biofilms were associated with epithelial hypertrophy in 
UC patients measured by the increased number of epithe-
lial cells per crypt [median number of cells per crypt 42.5 
vs 51.1; p = 0.025], and a slight non-significant increase in 
Ki67-positive cells per crypt [22.0 vs 26.1; p = 0.11] [Figure 
3E and F].

3.3.2.  Longitudinal biofilm characteristics in UC 
and associations with dysplasia
In 65 UC patients, 264 colonoscopies with left and right bi-
opsies were performed, including 27 patients who developed 
dysplasia. Left- or right-sided biofilms were present at 141 
colonoscopies [53.4%]. Presence [at least on one occasion] of 
biofilms was observed in 59/65 [90.8%] of patients [Figure 

4A and B]. The rate of biofilm-positive surveillance was 
0.38 [IQR 0.0–0.6] and 0.43 [IQR 0.29–0.67] for left- and 
right-sided biopsies in UC patients with dysplasia compared 
with 0.24 [IQR 0.02–0.5] and 0.25 [IQR 0.02–0.75] for pa-
tients without dysplasia [Kolmogrov-Smirnof, not significant, 
Supplementary Figure 6]. In patients with dysplasia, biofilms 
were present before dysplasia development in 73% of the 
cases [n = 19], whereas for eight cases no biopsies were avail-
able to assess biofilms prior to dysplasia development [Figure 
4B]. The median duration of biofilm persistence in between 
biofilm-negative colonoscopies was 3 years [IQR 2–5 years] 
in patients with more than one biofilm-positive colonoscopy. 
Median number of colonoscopies in biofilm-positive inter-
vals was 2.5 years [IQR 2–3.3 years]. Biofilms were neither 
associated with endoscopically visible active inflammation 
in left- and/or right-sided biopsies [p = 0.43–0.92], nor with 
dysplasia [aOR after confounder correction for disease dur-
ation: 1.45, 95% CI 0.63–3.40].

3.3.3.  Bacterial composition in UC patients and 
biofilms
Metagenomic shotgun analysis of left- and right-sided biop-
sies revealed that the bacterial composition in UC patients 
differed from those in the control population, characterised 
by a lower Shannon diversity index [4.80 vs 6.01 in controls; 
p = 0.0009] [Figure 5A; Supplementary Table 7]. Only in UC 
patients, right-sided biopsies displayed a significantly lower 
Shannon diversity as opposed to left-sided biopsies [Figure 
5B], but was similar between UC patients with a low and high 
dysplasia risk [Figure 5C].

Biopsies with biofilms displayed a lower Shannon diver-
sity [p = 0.0152; Figure 5D], but were not different between 
control and UC patients [Figure 5E], or between UC pa-
tients with low or high dysplasia risk [Figure 5F]. ANCOM 
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analysis showed that biofilm presence could be predicted by 
Clostridiales, Bacteroidales, and Veillonellales [adj-p = 0.012] 
in metagenomes of controls and Selenomonadales and 
Synergistales in metagenomes of UC patients [adj-p = 0.011]. 

More specifically, presence of Eggerthellales and absence 
of Leptospirales could predict biofilms in right-sided biop-
sies of high-risk UC patients [adj-p = 0.023; Supplementary 
Table 8]. Noteworthy is the observation that high risk for 
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dysplasia in UC patients could be predicted by the absence 
of Fusobacteriales [p = 0.00892; Supplementary Figure 7], 
similar to the inverse relationship of FadA with high-risk UC 
patients.

4.  Discussion
Our study provides unique evidence that bacterial oncogenic 
factors show potential for dysplasia prediction and risk strati-
fication in UC patients. The oncotrait colibactin [ClbB] was 
independently associated with dysplasia in multivariate ana-
lysis and supports a role for colibactin in early carcinogenesis 
in UC patients. Contrarily, the commonly CRC-associated 
Fusobacteriales, along with its associated adhesin FadA, was 
negatively associated with dysplasia in UC patients. Bacterial 
biofilms were studied longitudinally, spanning median 10 
years in >800 biopsies of UC patients undergoing surveillance 
colonoscopies, and were intermittently present in the majority 
of UC patients [90.8%]. The high longitudinal prevalence of 
these biofilms impairs its usage as risk stratification tool in 
UC patients, and biofilms were not associated with dysplasia. 
Presence of biofilms associated with a lower Shannon diver-
sity and epithelial hypertrophy. Together our data suggest 
that specific bacterial factors, such as presence of ClbB and 
absence of FadA, associate with dysplasia in UC patients, and 
show potential for faecal oncotrait screening as risk stratifi-
cation tool.

An altered microbiome composition and function have 
been associated with the development and progression of 
UC.21 Currently, UC prediction algorithms based on micro-
bial markers are rapidly developing,22 but these microbial 
markers have unknown roles in development and prediction 
of [early] carcinogenesis.23 ClbB is located on the pks + island 
that encodes colibactin,24 which directly damages DNA 
and results in a mutational signature in human intestinal 
organoids which can be found in some CRC patients.10 Thus 
far, the direct link between colibactin and an increased CRC 
risk in human patients has been lacking.25 Here, we pre-
sent ClbB as independent factor associated with recent or 
prevalent dysplasia [aOR 7.97]. The prevalence of ClbB in 
our study was similar between controls and UC patients, as 
opposed to a previous report showing significantly higher 
colibactin levels in IBD patients compared with controls.26 
However, most of those patients had active IBD, whereas all 
patients in our study were in endoscopic remission. The high 
prevalence of ClbB in control patients, but also other popu-
lations like FAP,9 suggests ClbB may be relevant for dysplasia 
development in multiple populations and warrants further 
research.

FadA can bind to E-cadherin on epithelial cells and can 
promote inflammation and oncogenic processes.27 FadA and 
Fusobacteriales presence were associated with an absence 
of [prior] dysplasia, in contrast to literature indicating a re-
lation between CRC and increased FadA presence.28 Our 
contrasting results underline the growing concept that this 
bacterium is associated to later carcinogenic stages, pos-
sibly by being attracted to tumour metabolites,29 and is not 
actually an inducer of CRC, in contrast to colibactin.30,31 
Another study showed that FadA promotes CRC growth in 
mice but proposed that FadA only affects cancerous cells.31 
Moreover, Fusobacteria have variations in presence and ex-
pression of FadA,32 resulting in strain- rather than species-
dependent oncogenic potential.33 Recent literature even 

suggests that Fusobacteria supernatants induce expression of 
immunomodulatory TGFβ1 in vitro, possibly by its produc-
tion of butyrate.34 Our results support that Fusobacteriales 
do not associate with early dysplasia and we even observed 
an inverse relationship of Fusobacteriales and FadA in early 
carcinogenesis in UC.

Two other toxin-encoding genes, Eae and BFT, were not 
associated with dysplasia in UC patients. Eae, which has been 
shown to induce loss of DNA mismatch repair genes,35–37 did 
not occur without ClbB in our cohort, possibly because both 
genes are found in E. coli. The effect of Eae was not signifi-
cant and therefore is likely to play a minor role in dysplasia 
risk, as opposed to ClbB. B. fragilis and BFT were reported to 
be over-expressed in tissue biopsies of UC patients with active 
disease and to be frequently present in the mucosa of CRC pa-
tients and controls.8,18,38 Although compiling evidence shows 
the potential contribution of BFT to CRC development,30 our 
prospective study does not associate BFT with dysplasia in 
the UC population. In our study, BFT was frequently present 
in UC and control patients, and frequently occurred together 
with FadA, which shows an inverse relationship. Further lon-
gitudinal studies in humans are warranted to investigate com-
binations of oncotraits on CRC risk in UC patients.39

Colonic biofilms have been associated with gastrointes-
tinal symptoms in patients with UC and other IBDs,7,8 as well 
as sporadic CRC and FAP.35,40,41 A study from Baumgartner 
et al. detected visible biofilms in 34% and microscopic bio-
films in 79% of UC patients, comparable to our microscopic 
biofilm rate of 72.2% in high-risk UC patients at study col-
onoscopy. These authors found a low biofilm prevalence of 
6% in controls compared with the higher prevalence in our 
study [50%]. Importantly, this might be explained by the 
different selection of controls in our study, also allowing 
patients with symptoms to be included. Moreover, biofilms 
were numerically more frequent and thicker in the right-
sided colon compared with the more distal colon, were fre-
quently persistent over time, and showed an association with 
epithelial hypertrophy in UC patients. Samples with biofilms 
were associated with a higher bacterial abundance, but a 
lower Shannon diversity, than samples without biofilms,16 
indicating the outgrowth of specific bacteria; Clostridiales, 
Bacteroidales, and Veillonellales in metagenomes of controls, 
and Selenomonadales and Synergistales in metagenomes of 
UC patients. In a mouse model, biofilms from both CRC and 
control patients were carcinogenic,42 However, our longitu-
dinal data did not show a significant association between 
biofilm presence and dysplasia risk in UC patients. The near 
uniform longitudinal biofilm presence complicates the inves-
tigation of biofilms as a possible risk factor for dysplasia, be-
cause only few patients present without biofilms. Moreover, 
we were not able to show that biofilms associated with high 
dysplasia risk are different from biofilms in low-risk pa-
tients. We speculate that this is the consequence of biofilms 
harbouring a multitude of bacterial species, not all associ-
ated with pro-inflammatory or oncogenic characteristics.

4.1.  Strengths and limitations
We extensively assessed biofilm presence over time as well 
as cross-sectionally in a prospective fashion, providing a link 
with clinical and histological presence of inflammation and 
dysplasia. The UC population used for this study may pre-
sent with a higher disease burden compared with the general 
UC population, due the recruitment in a tertiary IBD referral 
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centre that includes patients with PSC, a longer disease dur-
ation and therapy-refractory disease. The majority of the 
UC patients presented with low-grade dysplasia [LGD]. 
Although the risk of advanced neoplasia is elevated after 
development of LGD, it is uncertain how and for whom pro-
gression will take place. Furthermore, our colonoscopy con-
trols were carefully selected and had no abnormal findings 
during colonoscopy such as dysplasia and inflammation. In 
addition, this is the first study that assessed oncotrait pres-
ence in UC in relation with dysplasia. Although we pro-
spectively collected data from our patients, the additional 
longitudinal analysis of biopsies that were collected prior 
to the study colonoscopy has a retrospective nature and in-
volved formalin-fixed rather than methacarn-fixed tissues, 
which may affect sensitivity of biofilm detection. Finally, 
from our controls we do not have a longitudinal follow-up, 
and we are unable to investigate whether the presence of 
oncotraits in controls is associated with dysplasia. The po-
tential additive or synergistic effects of bacterial oncogenes 
are subject of our ongoing investigations, and our results 
should be validated in larger longitudinal cohorts.

4.2.  Conclusion
With an incidence of 90.8%, longitudinal biofilms cannot 
serve as biomarkers to predict dysplasia development in 
UC patients. Although no association between biofilms and 
dysplasia was confirmed, it is likely that these biofilms and 
pathogenic inhabitants can increase dysplasia risk, consid-
ering recent literature.40–42 Our data on ClbB show for the 
first time that its presence in stool was significantly and inde-
pendently associated with dysplasia in UC patients. On the 
contrary, FadA showed an inverse significant association, 
therefore, both ClbB presence and FadA absence are useful 
biomarkers for UC-risk stratification. Since these markers 
are detectable in faeces, they could potentially be used to 
predict low-risk patients and thereby reduce the number of 
invasive endoscopic procedures for CRC prevention. More 
research is needed to investigate whether more oncotraits 
could be incorporated into faecal screening and whether 
such screening could aid beneficial effects of faecal transfers. 
Indeed, incorporation of ClbB faecal testing in a CRC detec-
tion model for the general population has shown promise 
and resulted in an improved sensitivity.43,44 This emphasises 
the potential for ClbB in future CRC risk stratification in UC 
and in improving the discriminatory value for use in clinical 
practice.
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