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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Delineating the geographic context of 
home addresses in exposome studies is 
challenging. 

• We integrated lacunarity analyses with 
model averaging to address contextual 
uncertainties. 

• Our multi-scale effect estimates differed 
from those using typical pre-selected 
buffer sizes. 

• Green space was inversely, and noise 
was positively related to mortality with 
null associations for air pollution. 

• Our analytic approach mitigated spur 
ious environment-health associations.  
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A B S T R A C T   

Background: Many studies on environment-health associations have emphasized that the selected buffer size (i.e., 
the scale of the geographic context when exposures are assigned at people's address location) may affect esti
mated effect sizes. However, there is limited methodological progress in addressing these buffer size-related 
uncertainties. 
Aim: We aimed to 1) develop a statistical multi-scale approach to address buffer-related scale effects in cohort 
studies, and 2) investigate how environment-health associations differ between our multi-scale approach and ad 
hoc selected buffer sizes. 
Methods: We used lacunarity analyses to determine the largest meaningful buffer size for multiple high-resolution 
exposure surfaces (i.e., fine particulate matter [PM2.5], noise, and the normalized difference vegetation index 
[NDVI]). Exposures were linked to 7.7 million Dutch adults at their home addresses. We assigned exposure 
estimates based on buffers with fine-grained distance increments until the lacunarity-based upper limit was 
reached. Bayesian Cox model averaging addressed geographic uncertainties in the estimated exposure effect sizes 
within the exposure-specific upper buffer limits on mortality. Z-tests assessed statistical differences between 
averaged effect sizes and those obtained through pre-selected 100, 300, 1200, and 1500 m buffers. 
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Results: The estimated lacunarity curves suggested exposure-specific upper buffer size limits; the largest was for 
NDVI (960 m), followed by noise (910 m) and PM2.5 (450 m). We recorded 845,229 deaths over eight years of 
follow-up. Our multi-scale approach indicated that higher values of NDVI were health-protectively associated 
with mortality risk (hazard ratio [HR]: 0.917, 95 % confidence interval [CI]: 0.886–0.948). Increased noise 
exposure was associated with an increased risk of mortality (HR: 1.003, 95 % CI: 1.002–1.003), while PM2.5 
showed null associations (HR:0.998, 95 % CI: 0.997–1.000). Effect sizes of NDVI and noise differed significantly 
across the averaged and prespecified buffers (p < 0.05). 
Conclusions: Geographic uncertainties in residential-based exposure assessments may obscure environment- 
health associations or risk spurious ones. Our multi-scale approach produced more consistent effect estimates 
and mitigated contextual uncertainties.   

1. Introduction 

The accurate assessment of the geographic context to which people 
are exposed has moved to the forefront in external exposome studies (Hu 
et al., 2023; Turner et al., 2017). People are exposed to substantial 
environmental stressors contributing to mortality risk (Chen and Hoek, 
2020; Fu et al., 2022; Zare Sakhvidi et al., 2022). For example, a growing 
number of studies have revealed associations between mortality risk and 
increasing levels of air pollution (Guo et al., 2022; Hu et al., 2022; 
Nabizadeh et al., 2019) and noise (Cai et al., 2021), while exposure to 
more green space appears health-protective (Yuan et al., 2021). How
ever, these associations' effect sizes and statistical significance have not 
always been confirmed (Klompmaker et al., 2020, 2021; Li et al., 2017), 
and the causes for such heterogeneous findings are not yet fully 
understood. 

A critical aspect of this debate is delineating the geographic context, 
possibly contributing to mixed findings (Helbich, 2018; Kwan, 2012; 
Labib et al., 2020a). Studies typically use administrative areas where 
people live (e.g., postal codes or census geographies) to determine 
people's health-influencing geographic context. However, this approach 
has been criticized (Flowerdew et al., 2008; Helbich, 2018). For 
example, each person within the same spatial unit gets similar exposure 
concentrations assigned, while those living close to the border may be 
more strongly affected by the exposure of the adjacent spatial unit than 
their own. Furthermore, administrative units vary in size and shape, 
possibly contributing to exposure uncertainties. 

To reduce the error in exposure measurements, it is a common 
practice to superimpose discrete neighborhood zones, typically repre
sented as buffers, onto people's geocoded residential address locations to 
assess environmental exposures (Bauwelinck et al., 2021; Vienneau 
et al., 2017; Villeneuve et al., 2012). This makes choosing an appro
priate buffer size representing the geographic scale of the exposure 
window a critical analytical decision (Ho et al., 2022). However, neither 
theoretical guidance nor well-accepted empirical approaches exist that 
allow the selection of optimal buffer sizes, resulting in the reliably ac
curate delineation of the geographic contexts (Markevych et al., 2017; 
Su et al., 2019). Furthermore, previous comparative studies (Gonzales- 
Inca et al., 2022; Helbich et al., 2021b; James et al., 2014) have raised 
concerns that environment-health associations could be partially sus
ceptible to contextual uncertainties arising from the chosen buffer size. 

It has been speculated that suboptimal geographic context choices 
may induce exposure measurement errors (Gotway and Young, 2002; 
Helbich et al., 2021b; Ho et al., 2022; Reid et al., 2018). Both the 
modifiable areal unit problem (i.e., suggesting that statistical analyses 
may be sensitive to the aggregation and zoning of geographic data) 
(Buzzelli, 2020; Helbich et al., 2021a; Lee et al., 2020) and the uncertain 
geographic context problem (i.e., suggesting that the geographic delin
eation of the context may affect exposure-outcome associations) (Kwan, 
2012) exemplify contextual uncertainties that may pose issues for sta
tistical assessments in environmental health studies. Although most 
studies have acknowledged that their geographic context choices result 
in delineating exposure assessments that might have altered statistical 
inferences (Parenteau and Sawada, 2011; Reid et al., 2018), very few 

have addressed this fundamental problem of appropriately delineating 
the ‘true’ causally relevant geographic context in their studies. 

Reviews have repeatedly stressed inconsistencies in demarcating 
geographic contexts (Browning and Lee, 2017; Labib et al., 2020a; 
Markevych et al., 2017). Studies routinely select a single buffer size 
ranging from 30 m to 5 km as the primary exposure domain while 
performing robustness checks on several others (Labib et al., 2020a). 
Because such ad hoc buffer size selections rarely align with the causally 
relevant geographic context (Bauwelinck et al., 2021; Thacher et al., 
2020; Wang et al., 2023), concerns about the validity of the reported 
effect sizes have been raised. To counter this, some scholars have relied 
on model fit criteria to identify the most appropriate buffer size. For 
example, Ribeiro et al. (2016) used the model with the lowest Akaike 
information criterion to base their choice of a proper buffer size. How
ever, a simulation study questioned this type of practice earlier by 
showing that the best-fitting model probably risks spurious associations 
(Spielman and Yoo, 2009). 

To respond to this critique, lacunarity analysis, a scale-dependent 
measure for assessing the textural properties of exposure surfaces, has 
been proposed (Labib et al., 2020b; Mandelbrot, 1994; Plotnick et al., 
1996). However, the state-of-the-art lacunarity-based exposure assess
ment is conceptually problematic and has three methodological limita
tions. First, while lacunarity analysis guides the largest meaningful 
buffer size, the problem of which buffer size should be chosen within the 
upper range still needs to be addressed. Second, lacunarity-based anal
ysis has only been applied cross-sectionally to green space metrics 
(Labib et al., 2020b). Nonetheless, there is recognition that other 
external exposome factors co-occur spatially (Rugel and Brauer, 2020). 
For example, PM2.5 and traffic noise co-vary due to shared emission 
sources (Klompmaker et al., 2021), while green space absorbs pollutants 
(Lindén et al., 2023). Third, the gold standard in multi-exposure models 
is to use similar buffer sizes across exposures (Chakraborty et al., 2011), 
but the buffer size may depend on the exposure type. For instance, 
residences are possibly more affected by nearby sources of air pollution 
(e.g., roads) because pollution levels typically decrease significantly 
with increasing distance from the source. In this case, a smaller buffer 
size may be more appropriate for capturing the exposure levels. In 
contrast, the health benefits of green space may extend over a larger 
buffer size, as people are usually willing to walk larger distances to ac
cess green spaces (Cutts et al., 2009; Kaczynski et al., 2014; Kim et al., 
2016; Labib et al., 2020a). Despite renewed awareness of this problem 
among scholars, delineating the geographic context in exposome studies 
remains an ongoing methodological issue with limited progress. 

Given these gaps in the scholarly knowledge of residence-based 
exposure assessments, there is a critical need to develop a statistical 
approach for determining optimal buffer sizes for each specific envi
ronmental exposure under examination. Our goals in this paper are 1) to 
develop a multi-scale approach integrating lacunarity analysis with 
Bayesian model averaging to mitigate buffer-related scale effects when 
assessing environmental-health associations and 2) to empirically 
compare to what extent associations generated by our multi-scale 
approach differ from the associations generated from various ad hoc 
selected buffer sizes. We tested our approach using a large Dutch cohort 
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by examining the joint associations between green space, air pollution, 
and noise on all-cause mortality. 

2. Materials and methods 

2.1. Study population 

We did a retrospective population-wide cohort study in the 
Netherlands employing administrative registers from Statistics 
Netherlands. As every person officially residing in the country has a 
unique personal identification code, this allowed us to link data from 
these registers to each individual in our cohort. The data linkage and 
analyses were performed in a secure environment at Statistics 
Netherlands. In line with Dutch privacy legislation, anonymized records 
were used. Due to no interaction with the subjects, informed consent 
was not required. 

Our initial study population included approximately 20 million 
people between January 1, 2013, and December 31, 2021 (Fig. 1). We 
retrieved register-based information on individuals' residential address 
locations. To avoid exposure changes due to address changes (Brokamp 
et al., 2016), we restricted our cohort to those who did not change 
residence within the eight-year study period (N = 9,705,811). Based on 
people's address-based geolocations, we linked them to their environ
mental exposures at baseline. All residents aged at least 18 years on 
January 1, 2013, were eligible for study inclusion (N = 7,808,237). As 
summarized in Fig. 1, we excluded persons with missing demographics 
and exposures. In total, our cohort included 7,666,540 people. 

2.2. All-cause mortality 

We selected all-cause mortality as our outcome variable. Mortality 
data were ascertained from the cause of death register. Based on practice 
elsewhere (Klompmaker et al., 2021), we defined all-cause mortality 
following the 10th edition of the International Classification of Diseases 
as done elsewhere. The following causes of death were pooled: certain 
infections and parasitic diseases (A00-B99), neoplasms (C00-D48), 
blood diseases and immune system disorders (D50-D89), endocrine 
diseases, nutritional and metabolic disorders (E00-E90), mental and 
behavioral disorders (F00-F99), nervous system diseases (G00-G99), eye 
and adnexa diseases (H00-H59), ear and mastoid process diseases (H60- 

H95), heart and vascular system diseases (I00–199), respiratory system 
diseases (J00-J99), digestive system diseases (K00-K93), skin and sub
cutis diseases (L00-L99), bone, musculature, and connective tissue dis
eases (M00-M99), genitourinary system diseases (N00-N99), pregnancy 
(O00-O99), disorders originating in the perinatal period (P00-P96), 
congenital abnormalities (Q00-Q99), and unclassified disorders (R00- 
R99). 

2.3. External exposome data 

2.3.1. Air pollution 
We included ambient fine particulate matter ≤2.5 μm (PM2.5) to 

assess people's exposure to long-term air pollutants (Shen et al., 2022). 
Daily PM2.5 concentrations for 2010 were obtained from monitoring 
station data from the Airbase database V8 (European Environmental 
Agency, 2020). The daily concentrations were aggregated to annual 
averages, and predictions of PM2.5 concentrations at unsampled loca
tions were made using land-use regression models, which involved 
predictors including roads, satellite retrievals, land-use, and chemical 
transportation model estimates (Shen et al., 2022). The gridded air 
pollution map had a spatial resolution of 25 m. 

2.3.2. Noise 
Long-term noise estimates were obtained from the Dutch National 

Institute for Public Health and the Environment (RIVM). Traffic-related 
noise (i.e., road and rail), industrial, aviation, and wind turbine noise 
served as noise sources and were inputted into the Standard Model 
Instrumentation for noise assessments (Schreurs et al., 2010). The input 
noise data pertain approximately to the years 2016–20. The gridded 
noise data were downscaled to a 10 × 10 m spatial resolution repre
senting average day/night/evening noise levels (Lden, in dB). 

2.3.3. Green space 
We used satellite-derived Normalized Difference Vegetation Indices 

(NDVI) as green space measures (Tucker, 1979). NDVI values range from 
− 1 to 1. Higher positive values refer to greener environments (Drusch 
et al., 2012). To align the NDVI with the cohort baseline, we used 
atmospherically corrected Landsat scenes from May to September 2010, 
with a 30 m resolution. We excluded scenes with cloud coverage >40 % 
and pixels with a cloudiness score > 25. Pixels with negative values (i.e., 

Fig. 1. Selection of the study population.  
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water bodies) were masked to reduce distortions before the green space 
assessment. 

2.4. Analytical approach 

2.4.1. Lacunarity analysis 
Lacunarity analysis (Mandelbrot, 1994) allows measurement of the 

spatial heterogeneity of an exposure surface at different spatial resolu
tions (Dong, 2000a). Specifically, lacunarity enables the identification of 
the threshold value at which an exposure surface transfers from a het
erogeneous to a homogeneous pattern. Using buffer sizes exceeding the 
threshold value would introduce contextual uncertainties in the statis
tical analysis because the individual variation in the exposure is masked 
when the surface becomes homogeneous (Labib et al., 2020b). 

We applied the gliding box algorithm to our data for our lacunarity 
assessment (Allain and Cloitre, 1991). The algorithm starts from a 
square box of size r × r placed at one corner of the exposure surface. The 
box length r represents the scale of lacunarity. The box mass S(r) is 
computed using the pixel values within the box. As our exposures were 
continuous raster surfaces, we employed the range of the pixel values to 
determine the box mass (Dong, 2000b; Labib et al., 2020b; Plotnick 
et al., 1996). 

From its starting point, the box was incrementally moved to the right 
one pixel at a time, creating an overlapping series of box masses 
recomputed at each new raster location. This step was repeated until the 
box glided across the entire exposure surface. Given the study area's 
irregular shape, the total number of the square box N[r] of length r was 
calculated as: 

N[r] = (W − r+ 1)× (L − r+ 1)

where W is the width and L is the length of the study area. Lacunarity 
Λ(r) of scale r is computed as (Plotnick et al., 1993): 

Λ(r) = 1+
Var [S(r) ]
E2[S(r) ]

where E[S(r) ] is the mean box mass and Var [S(r) ] is the variance of the 
box mass for all boxes of length r. Following this initial step, the box 
length was increased in one-pixel increments. Taking the 30 m NDVI 
surface as an example, the start box length was 60 m (i.e., two pixels). 
Each increment of one pixel in box length increased the value of r by 30 
m, with each newly incremented value, in turn, becoming the box length 
(e.g., 90 m, 120 m, 150 m) until either the width or the length of the 
study area was reached. 

Exposures typically vary across urban and rural areas (e.g., cities 
have lower green space values), particularly in nationwide studies 
exemplified by the present study. Expanding on previous lacunarity 
analyses (Dong, 2000b; Labib et al., 2020b; Myint and Lam, 2005), we 
assigned each municipality to one of five urbanization levels ranging 
from rural to highly urbanized (Statistics Netherlands, 2013). Lacu
narity was computed separately for each urbanization level before the 
results were averaged. 

Plotting the lacunarity curve (i.e., lacunarity values against the box 
length) permitted us to assess how the exposure's spatial heterogeneity 
varied across the applied scales. The tipping point at which heteroge
neity became homogeneity can be seen as a reasonable upper limit for 
residence-based buffers (Plotnick et al., 1996). To determine the exact 
location of this tipping point analytically (i.e., where the curve flattens 
out), we fitted a power function to the lacunarity curve and computed its 
maximum curvature. Lacunarity analyses were performed separately for 
each exposure surface. 

2.4.2. Bayesian model averaging of cox regressions 
Lacunarity assessment only yields the upper-scale limit of the buffer. 

Nonetheless, fluctuations in the estimated effect sizes for health- 
environment associations are likely even when using buffer sizes 

within this range. To address this issue, we propose Bayesian model 
averaging (BMA) (Hoeting et al., 1999). BMA tackles model-related 
uncertainties in terms of the variations in effect sizes arising from 
different model settings, such as buffer sizes. Our approach averaged 
multiple confounder-adjusted Cox Proportional Hazard models, each 
using different buffer sizes for each exposure. Such model averaging 
yields more robust and reliable effect estimates, as demonstrated else
where (Fragoso et al., 2018; Rizopoulos et al., 2014; Volinsky et al., 
1997; Wasserman, 2000). 

We estimated the person-specific survival time from baseline to the 
year of death, censoring, or the end of follow-up, whichever occurred 
first. The models were adjusted at baseline for age (in years), gender 
(male, female), origin (Dutch, non-Dutch), yearly household income (in 
Euros), and the urbanicity level of the residential place (“rural areas,” 
“little urbanization,” “moderate urbanization,” “high urbanization,” and 
“very high urbanization”). Given that each exposure may operate on its 
specific geographical scale, Cox model averaging involves three steps 
outlined in Fig. 2. 

First, we generated circular buffers centered upon a person's home 
address with a fixed increment (100 m) up to the upper buffer limit for 
each exposure. Using 100 m increments in the buffer sizes was driven 
primarily by computational considerations. Buffers with smaller incre
ment sizes (e.g., 25 m or 50 m) would greatly increase the computational 
demand, given that our study was a large national cohort. We assigned 
the average exposure concentrations within each buffer to each person. 
Second, we averaged Cox regressions across all possible combinations of 
exposure-specific buffer sizes (M1,…,Mk). Third, to receive averaged 
effect estimates for each exposure, model-specific estimates (i.e., hazard 
ratios [HRs]) weighted by the posterior probability Pr(Mk|D) were 
computed as follows: 

∑k

k=1
exp(βk)Pr(Mk|D)

βk refers to the coefficient of the model Mk, Pr(Mk|D) of Mk is given as: 

Pr(Mk|D) =
Pr(D|Mk)Pr(Mk)

∑k

l=1
Pr(D|Ml)Pr(Ml)

where Mk is one of the potential underlying models for our data D with a 
prior probability Pr(Mk), In our study, the prior probability was assumed 
by the uniform distribution prior, that is, Pr(Mk) = 1/k, and 

Pr(D|Mk) =

∫

Pr(D|βk,Mk)Pr(βk|Mk)dβk  

refers to the integrated likelihood of model Mk, Pr(D|βk,Mk) is the 
likelihood, and Pr(βk|Mk) is the prior probability distribution of βk in the 
model Mk. The analyses were conducted in R, version 4.21 (R Core 
Team, 2022). The workflow, including the lacunarity analyses and the 
averaged Cox model, is available as an R package (https://github. 
com/TTgeoheath/BMA.geocontext). 

2.4.3. Comparisons with traditionally selected buffer sizes 
Informed by previous studies (James et al., 2016; Klompmaker et al., 

2020; Plans et al., 2019; Roscoe et al., 2022), we compared the averaged 
effect estimates with those of a traditional Cox model using ad hoc buffer 
sizes of 100 m, 300 m, 1200 m, and 1500 m. The same buffer sizes were 
used for each exposure. We applied z-tests to assess whether the esti
mated coefficients for each exposure from the averaged and traditional 
Cox mode differed statistically (Paternoster et al., 1998). 
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3. Results 

3.1. Descriptive statistics of the study population 

Our study population included 7,666,540 people. Of the 845,229 
people who died from all causes, 52 % were male, 97 % were Dutch, and 
35 % earned <40,000 Euros annually. Most deaths (77 %) occurred in 
older adults. Further information is provided in Supplementary 
Table S1. 

3.2. Exposure distribution and correlations 

The environmental exposures (Supplementary Fig. S1) based on 100 
m buffers were stratified for each covariate (Supplementary Table S1). 
The mean environmental exposures showed slight variance across 
gender and age. Dutch people living in areas with significantly lower 
PM2.5 and noise concentrations also lived in areas with higher NDVI 
scores. With decreased urbanization levels and increased income, we 
observed an NDVI increase. Contrarily, PM2.5 and noise increased with 
urbanization and reduced income. 

Supplementary Table S2 shows Pearson correlations across the ex
posures. NDVI was moderately negatively associated with PM2.5 (− 0.34, 
p < 0.05) and noise (− 0.33, p < 0.05). Noise and PM2.5 were positively 
correlated (0.29, p < 0.05). 

3.3. Determining the upper buffer size using lacunarity analyses 

Fig. 3a illustrates the results of the lacunarity analyses for each 
exposure. The lacunarity curves indicated that, as box sizes increased, 
the spatial patterns of the exposures changed from heterogeneity to 
homogeneity. The maximum curvatures of the lacunarity curves (i.e., 
the upper-scale limits for exposure-specific buffer sizes) were 960 m for 
NDVI, 450 m for PM2.5, and 910 m for noise. That pattern is also re
flected in Fig. 3b, illustrating the corresponding changes in selected box 
sizes per exposure. There is pronounced variation with smaller box sizes, 
whereas variation sharply declines with larger ones (e.g., 60 m vs. 3000 
m). 

3.4. Environment-mortality associations 

Based on the results of the lacunarity analyses, we fitted 324 Cox 
models using different buffer settings. Supplementary Fig. S2 summa
rizes the distribution of the HRs. For PM2.5 and noise, the range of HRs 
was narrower and exhibited less fluctuation than for NDVI. These results 
suggest that buffer sizes within our upper scale limits produce more 

consistent estimates for PM2.5 and noise than for NDVI. 
Fig. 4 depicts the averaged HR and the HR for each ad hoc buffer size 

model. Averaged effect sizes tended to fall between the effect sizes ob
tained from the small and large buffers and were more circumscribed in 
their magnitudes than effect sizes for individual models. Notably, the 
effect estimates of models based on ad hoc buffers differed and were 
partially contradictory in the directions of the associations (e.g., the 
NDVI-mortality association was significant at larger buffer sizes but 
insignificant at smaller buffer sizes). See Supplementary Table S3 for the 
numeric results. 

The averaged effect estimates showed that NDVI values were 
significantly negatively associated with all-cause mortality (HR: 0.917, 
95 % CI: 0.886–0.948). However, the NDVI-mortality association was 
insignificant using 100 m and 300 m buffers. In contrast, when using 
1200 m (HR: 0.858, 95 % CI: 0.829–0.889) and 1500 m buffers (HR: 
0.844, 95 % CI: 0.815–0.873), we observed a negative NDVI-mortality 
association. As shown in Fig. 5, the averaged effect estimates differed 
statistically from the others (p < 0.05). The estimates from the 100 m 
and 300 m buffers differed significantly from the 1200 m and 1500 m 
buffers (p < 0.05). 

The pooled effect estimates PM2.5 were insignificantly associated 
with mortality (HR: 0.998, 95 % CI: 0.997–1.000). However, when 
fitting the model with the individual 100–1500 m buffers, we observed 
broadly comparable effect sizes, but the directions of the associations 
were counterintuitive. With increasing buffer sizes, the effect estimates 
attenuated slightly and more closely approached null. The PM2.5 effect 
sizes across the models did not show significant differences at the 5 % 
level (Fig. 5). 

Noise was significantly positively associated with mortality (HR: 
1.003, 95 % CI: 1.002–1.003) in the averaged model, and the effect size 
was comparable with the models using 100 m and 300 m buffers. The 
corresponding z-tests were insignificant (p > 0.05). However, we 
observed considerable differences with larger buffers (p < 0.05). While 
the association with the 1200 m buffer was insignificant, the direction of 
association of the noise-mortality reversed the trend found with the 100 
m and 300 m buffers. 

4. Discussion 

We assessed how geographic uncertainties in the exposure assess
ment at individuals' residential addresses translated into differing model 
estimates of the environment-mortality associations. Although 
numerous studies concluded that environment-health associations were 
not consistently found and scale effects were repeatedly recognized 
(Labib et al., 2020b; Zhang and Tan, 2019), little methodological 

Fig. 2. Overview of the workflow to average across the Cox regression models.  
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progress has been made in assessing individualized exposures at their 
home addresses (Lee et al., 2020; Parenteau and Sawada, 2011; Tuson 
et al., 2020). Our study responded to this need by proposing a statistical 
approach to handle contextual uncertainties in multi-exposure models. 

4.1. Major findings 

A central finding was that estimations of environment-mortality as
sociations were sensitive to the selected buffer sizes. We found sub
stantial variation in the magnitude of the estimated effect sizes and, for 
some exposures (i.e., green space, noise), even the direction varied be
tween small (i.e., 100 m and 300 m buffers) and large buffers (i.e., 1200 
m and 1500 m buffers). To mitigate such geographic uncertainties in 
exposure assessments, we integrated lacunarity analyses and Bayesian 
model averaging. Our results advanced on previous studies showing that 
each exposure had an upper scale limit. Green space exhibited the 
highest upper-scale value, followed by noise and PM2.5. 

The averaged multi-scale exposure effect sizes were more reliable, as 
the estimates fluctuated less across exposures. While greater exposure to 

green space was protectively associated with mortality, noise exposure 
increased mortality risk in the averaged model. These estimated effect 
sizes differed statistically significantly from models using typical ad hoc 
buffer specifications (i.e., 100–1500 m). The latter suggested a coun
terintuitive air pollution-mortality association, while the averaged 
model suggested no association. These findings raise awareness for 
future studies that reported associations could be scale sensitive. Our 
multi-scale approach could address such model-specific uncertainties. 

4.2. Interpretation of the exposure-mortality associations 

The observed averaged effect sizes were broadly consistent with 
prior studies. Similar to our findings, a meta-analysis reported an inverse 
association between green space and all-cause mortality (Rojas-Rueda 
et al., 2019). Compared to our effect size, the pooled HR was slightly 
lower with 0.96 (95 % CI: 0.94–0.97) for each increment of 0.1 NDVI in 
500 m (or smaller) home-based buffers. Mechanisms underlying the 
health-supportive effects of green space may include support of 
increased physical activity and social interaction (Hartig et al., 2014), as 

Fig. 3. Lacunarity-based assessments of the upper widths of the buffer analyses. (a) Exposure-specific lacunarity curves. The numbers in red refer to the upper limit 
of the buffer size. The x-axes were truncated for visualization purposes. (b) Comparisons of the box mass (i.e., range) values for NDVI, PM2.5, and noise across 
different box sizes for a subset of the study area. 
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well as reduced noise and air pollution levels (Lindén et al., 2023). 
Contrary to our results, a meta-analysis of 53 studies found that 

PM2.5 was associated with all-cause mortality due to systemic oxidative 
stress and inflammatory vascular dysfunction (Vodonos et al., 2018). 
Our null association, however, aligned with another Dutch cohort study 
(Klompmaker et al., 2020). A possible explanation for the lack of an 
association could be methodological issues, such as our study population 
characteristics, the adjustment of confounders (Klompmaker et al., 
2020; Vodonos et al., 2018), or the PM2.5 maps predicted with different 
data sources and land-used regression models in other studies. 

A meta-analysis of long-term exposure to traffic noise and how it 
affects all-cause mortality found an insignificant relationship; however, 
the supporting evidence was weak and of very low to low quality (Cai 
et al., 2021). Studies in the Netherlands also found no associations 
(Klompmaker et al., 2020, 2021); by contrast, we found a significant 
positive relationship. This finding could be because we analyzed noise 
data from multiple sources with heterogenous noise sources causing 
more substantial health effects than single-source noise data (e.g., traffic 
only). While the exact biological mechanisms are still being debated, 
proposed pathways include sleep disruption, bodily stress response, and 
effects on the cardiovascular system (Cai et al., 2021). 

4.3. Methodological implications 

Identifying upper-scale limits is critical to circumventing misclassi
fication by over-aggregation of exposures (Jimenez et al., 2022). We 
measured lacunarity for each exposure surface separately to get a bias- 
variance trade-off (i.e., smaller buffers tend to have a smaller bias but 
face a larger variance). Although not a result that was reported consis
tently in previous research (Browning and Lee, 2017), smaller buffer 
sizes might result in weaker associations as they capture people's 
exposure more precisely (Annerstedt et al., 2012). Conversely, larger 
buffers may overestimate associations, as they increase the likelihood of 
including environmental settings where people are only marginally 
exposed (Reid et al., 2018). Buffer sizes obtained were larger for green 
space (960 m) and noise (910 m) than for air pollution (450 m). The only 
other lacunarity-based study we are aware of only assessed green space 
and reported an upper limit of just half of the value we obtained (Labib 
et al., 2020b). However, these differences may partly be attributed to 
differences in the study areas. While our area comprised the full urban- 
rural spectrum, the earlier lacunarity-based study was restricted to 
Greater Manchester (UK). 

Our results suggested that estimated effect sizes are sensitive to the 
scale delineating the geographic context. Thus, we averaged the models 

Fig. 4. Hazard ratios (HRs) and 95 % confidence intervals (CIs) for residential exposures on all-cause mortality using Cox model averaging and four ad hoc selected 
buffer sizes of 100 m, 300 m, 1200 m, and 1500 m. The models were covariate-adjusted for age, gender, origin, yearly household income, and urbanicity. 

Fig. 5. Statistical assessment of the effect size differences based on z-tests. Insignificant z-values (z < 1.96, p > 0.05) are not colored. ‘*’ indicates p < 0.05.  
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within the upper limits using Bayesian model averaging, which weights 
models according to their posterior probabilities (Volinsky et al., 1997). 
The modeling results suggested that our averaged effect estimates were 
more robust and stable than individual models using a single buffer size 
(Fang et al., 2016). Furthermore, model averaging assigns higher 
weights to better-fitting models, which is desirable when numerous 
plausible models exist (Hoeting et al., 1999). Our longitudinal results 
regarding the impact of geographic uncertainties on statistical estimates 
were partially consistent with cross-sectional evidence. For example, Su 
et al. (2019) found that measuring green space using larger buffers 
showed stronger associations with health outcomes. Some other studies 
also reported that aggregating exposures within various geographical 
contexts yielded differing results. Some differences were slight, while 
others might change the statistical inferences (Gonzales-Inca et al., 
2022; Ho et al., 2022; Jimenez et al., 2022; Reid et al., 2018). 

4.4. Limitations 

Although rigorous in its design, our study was restricted to circular 
buffers (Zhang and Tan, 2019). We acknowledge that typically used 
street network buffers could also be employed for accessibility-related 
exposures (e.g., food outlets) (Athens et al., 2016). Some comparative 
studies reported moderately high exposure correlations across buffer 
shapes (Helbich et al., 2021b), while others did not (Frank et al., 2017; 
James et al., 2014). Therefore, expanding our multi-scale approach to 
multi-shape buffers is an area fruitful of future study that remains to be 
explored. 

Our approach was computationally intensive. The use of very high- 
resolution exposure surfaces (e.g., orthophotos (Helbich et al., 2021b), 
WorldView2 imagery (Su et al., 2019)) is increasing. However, analysis 
of such imagery using raster algebra for lacunarity analysis quickly be
comes computationally demanding, particularly for nationwide studies 
(Kazemiparkouhi et al., 2020). Consequently, when applied to large 
cohorts, vector-based buffer analyses may become computationally 
infeasible. However, this issue might be mitigated going forward due to 
continued increases in computing capacity, ongoing improvements in 
model parallelization, and increased access to cloud computing, allow
ing computational loads to be distributed across many nodes (Zhu et al., 
2021). Moreover, the computational burden is also dependent on the 
number of exposures. Our R package is based on multi-core processing to 
reduce computational time. 

Another limitation is that our data-driven method was developed for 
residence-based exposome studies. However, we believe a similar 
approach could be adopted for mobility-based exposure assessments 
where people's activity locations and travel paths are tracked (e.g., via 
the smartphone). Elsewhere, it has been shown that exposures outside 
the residential location shape human health (Lan et al., 2022). Thus, 
neglecting out-of-home exposures possibly leads to exposure mis
specification (Helbich, 2018; Park and Kwan, 2017; Wei et al., 2023). 

Our cohort was limited regarding the exposures it could access 
(Turner et al., 2017) and data for some confounders were unavailable in 
the administrative registers (Klompmaker et al., 2021). Thus, we cannot 
rule out residual confounding. For example, people's lifestyles (e.g., 
smoking, physical activity) remained unrecognized (Strak et al., 2017). 
We measured people's survival time in years rather than days which may 
have misclassified mortality events and underestimated the HRs (Paez 
and Diggle, 2009). Furthermore, our analyses assessed only time- 
invariant exposures which were not consistently available for a single 
year. This assumption may have affected our effect estimates, but a sig
nificant bias was unlikely since, for example, annual average air pollutant 
values are spatiotemporally relatively stable (de Hoogh et al., 2018). To 
safeguard against exposure changes due to changes of residence (Kaze
miparkouhi et al., 2020), cohort participants were limited only to those 
who did not change residence. Finally, due to the study's observational 

nature, we caution against inferring causalities from our results. 

4.5. Strengths 

We extended earlier lacunarity-based studies by acknowledging that 
each exposure may operate on its respective spatial scale and that urban- 
rural exposure variations occur. The approach is based on evidence that 
exposures spatially co-vary and should be jointly incorporated to 
circumvent mutually confounding (Rugel and Brauer, 2020). Although 
our lacunarity analysis dealt with continuous exposure surfaces, it can 
also handle binary exposure surfaces by adjusting the box mass calcu
lation (e.g., replacing the range with the sum for the box mass calcula
tion for binary data) (Malhi and Román-Cuesta, 2008). Our results 
suggest that using box mass calculations in the context of binary data 
warrants further development. 

This study was among the first to demonstrate that the selected 
buffer size could affect estimated associations (Browning and Lee, 2017) 
and proposed a data-driven method to mitigate scale effects when esti
mating environment-health associations. With a follow-up period of 
eight years and a 7.7-million-person cohort, another strength of the 
present study was its national longitudinal design. This large scale 
ensured our analytical results were robust and guaranteed we could 
detect weak environmental associations with mortality. Finally, to 
facilitate future studies, we made our multi-scale approach available to 
all researchers as an R package (the link is given above). 

5. Conclusions 

Due to a lack of consensus about suitable buffer sizes in external 
exposome studies, geographic uncertainty likely results in residence- 
based exposure assessments biasing environment-health associations. 
Our study found no universal optimal buffer size and that the geographic 
context definition may affect the estimated associations. While it ap
pears challenging to remedy scale effects fully, we proposed a two-step 
statistical approach combining lacunarity analysis to identify the upper- 
scale buffer limits separately for different exposures and Bayesian model 
averaging to pool estimated effect sizes within the upper buffer range. 
Our results suggested that green space was inversely associated with 
mortality in a Dutch cohort, while noise exposure was a mortality risk 
factor. We found null associations for airborne fine particulate matter. 
Finally, our results demonstrated substantial fluctuations in 
environment-mortality associations based on typically used buffer sizes. 

Despite our promising results, we do not know precisely how closely 
our approach mimics the ‘true’ causally relevant geographic context. 
Nevertheless, by incorporating model-based averages, our multi-scale 
approach appears to be more robust, and effect sizes fluctuated less 
than with buffer sizes that are selected on an ad-hoc basis. We caution 
against an uncritical application of geographic context definitions and 
advise carefully evaluating uncertainties because spurious environment- 
health associations are possible. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.scitotenv.2023.167637. 
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