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Abstract: Current and upcoming Sun‑Induced chlorophyll Fluorescence (SIF) satellite products
(e.g., GOME, TROPOMI, OCO, FLEX) have medium‑to‑coarse spatial resolutions (i.e., 0.3–80 km)
and integrate radiances fromdifferent sources into a single ground surface unit (i.e., pixel). However,
intrapixel heterogeneity, i.e., different soil and vegetation fractional cover and/or different chloro‑
phyll content or vegetation structure in a fluorescence pixel, increases the challenge in retrieving
and quantifying SIF. High spatial resolution Sentinel‑2 (S2) data (20 m) can be used to better charac‑
terize the intrapixel heterogeneity of SIF and potentially extend the application of satellite‑derived
SIF to heterogeneous areas. In the context of the COST Action Optical synergies for spatiotemporal
SENsing of Scalable ECOphysiological traits (SENSECO), in which this study was conducted, we
proposed direct (i.e., spatial heterogeneity coefficient, standard deviation, normalized entropy, en‑
semble decision trees) and patch mosaic (i.e., local Moran’s I) approaches to characterize the spatial
heterogeneity of SIF collected at 760 and 687 nm (SIF760 and SIF687, respectively) and to correlate
it with the spatial heterogeneity of selected S2 derivatives. We used HyPlant airborne imagery ac‑
quired over an agricultural area in Braccagni (Italy) to emulate S2‑like top‑of‑the‑canopy reflectance
and SIF imagery at different spatial resolutions (i.e., 300, 20, and 5 m). The ensemble decision trees
method characterized FLEX intrapixel heterogeneity best (R2 > 0.9 for all predictors with respect to
SIF760 and SIF687). Nevertheless, the standard deviation and spatial heterogeneity coefficient using k‑
means clustering scene classification also provided acceptable results. In particular, the near‑infrared
reflectance of terrestrial vegetation (NIRv) index accounted for most of the spatial heterogeneity of
SIF760 in all applied methods (R2 = 0.76 with the standard deviation method; R2 = 0.63 with the spa‑
tial heterogeneity coefficient method using a scene classification map with 15 classes). The models
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developed for SIF687 did not perform as well as those for SIF760, possibly due to the uncertainties
in fluorescence retrieval at 687 nm and the low signal‑to‑noise ratio in the red spectral region. Our
study shows the potential of the proposed methods to be implemented as part of the FLEX ground
segment processing chain to quantify the intrapixel heterogeneity of a FLEX pixel and/or as a quality
flag to determine the reliability of the retrieved fluorescence.

Keywords: spatial heterogeneity; vegetation indices; biophysical traits; SIF; hyperspectral sensor;
Sentinel‑2; FLEX; Braccagni

1. Introduction
The dynamic nature of Sun‑Induced chlorophyll Fluorescence (SIF) makes it highly

recommended to characterize its spatiotemporal heterogeneity before using it to monitor
vegetation from space [1]. SIF is the light emitted by plants within the spectral window
of 650–800 nm and is characterized by a peak in the red (685 m) and far‑red (740 nm) re‑
gions of the spectrum. During the last years, satellite missions with coarse‑to‑moderate
spatial resolution (e.g., GOME‑2 40 × 80 km, GOSAT 10 km diameter, OCO‑2 1.29 × 2.25
km, OCO‑3 1.6 × 2.2 km, TROPOMI 3.5 × 7.5 km–3.5 × 5.5 km since August 2019) have
been used to produce global maps of SIF [2–4]. Furthermore, the European Space Agency
(ESA) is planning to launch the FLuorescence EXplorer (FLEX) satellite mission in 2025,
with an improved spatial resolution of 300 × 300 m, being the first SIF‑dedicated satellite
mission [5,6].

SIF measured from satellites can provide relevant information about the actual plant
photosynthetic capacity, linking the leaf‑level molecular mechanism to Earth‑system sci‑
ence [7]. SIF has been used in different studies to improve remote estimations of Gross
Primary Production (GPP) [8–11], for early stress detection [12–18], and to study vegeta‑
tion dynamics in different climate zones (e.g., [19–21]).

However, SIF is a highly dynamic signal, and intrapixel spatiotemporal variations of
illumination conditions, vegetation fractional cover, or land use can mislead the quantifi‑
cation and consequently the interpretation of satellite SIF estimates [22,23].These include
inaccurate retrieval of SIF when intrapixel heterogeneity includes differences in chloro‑
phyll content and/or vegetation fractional cover that alter the measured reflected radiance
spectral shape, aswell as inaccurate quantification of SIF emitted by the photosynthetic sur‑
face when vegetation structure and self‑shading within the canopy are not considered [7].
For example, Cogliati et al. [24] showed a decrease in the SIF retrieval performance at low
leaf area index. Kováč et al. [25] observed that the dynamics of canopy shadow fraction
in forest, in addition to changes induced by sunlight, influence the daily variability of SIF.
Zarco‑Tejada et al. [26] developed the FluorFLIM model to simulate SIF in heterogeneous
canopies at coarse spatial resolution (50 m). They showed that SIF retrieved from mixed
pixels (containing pure canopy, shade, and soil) resulted in a weak correlation (R2 = 0.38)
with stomatal conductance compared to ground measurements, due to the effects of dif‑
ferent vegetation fractional cover. Moreover, Tagliabue et al. [27] showed that in mixed
forests, spatial heterogeneity plays a crucial role in controlling the relationship between
far‑red SIF and GPP. Moncholi‑Estornell et al. [28] showed that normalizing the SIF sig‑
nal emitted from the top of the canopy by the fractional cover of sunlit vegetation im‑
proves the estimation of the effective fluorescence flux, reducing the error from 36% to 18%
(red fluorescence) and from 24% to 6% (far‑red fluorescence), respectively. These studies
showhowan inaccurate characterization of the spatial heterogeneity of a fluorescence pixel
can lead to errors in the estimation of the fluorescence signal. Therefore, in this paper we
will focus on characterizing the spatial heterogeneity of a SIF pixel.

Spatial heterogeneity has been defined differently in multiple disciplines (e.g., ecol‑
ogy, geography, landscape, Remote Sens., etc.). In this article, we define spatial hetero‑
geneity as the complexity and variability of a system property in space. Complexity refers
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to qualitative variables (i.e., land cover), while variability refers to quantitative variables
(leaf area index (LAI), fractional cover (fCover), chlorophyll content (Chl), etc.) [29]. In
both cases, the spatial distribution of these variables within an area can be described us‑
ing frequency (spatial variability) and patterns (spatial structures) [30,31]. Following the
above definitions, spatial heterogeneity has been quantified from remotely sensed imagery
using two basic approaches: (a) the direct approach, where reflectance, reflectance indices
and/or retrieved biophysical variables were used to quantify spatial heterogeneity, and
(b) the patch mosaic approach, where the image was classified into homogeneous map‑
ping units [32–34].

With respect to fluorescence heterogeneity, not many studies have been conducted.
For example, Rossini et al. [1] evaluated an optimal sampling strategy to characterize the
spatial representativeness of SIF using the Normalized Vegetation Index (NDVI).
Buman et al. [35] analyzed radiometric, spectral, and spatial uncertainties that affect the
accuracy of SIF retrievals using HyPlant and FloX spectrometers. Although these studies
focused on guiding cal/val activities for the FLEX mission, they did not evaluate the con‑
tribution of different vegetation indices (i.e., near‑infrared reflectance of terrestrial vegeta‑
tion, chlorophyll red‑edge) and biophysical traits (i.e., leaf area index, vegetation fractional
cover) and/or compare different methods for characterizing SIF spatial variability.

Themain challenge in characterizing the spatial heterogeneity of SIF is the fact that SIF
cannot be confidently predicted from reflectance‑based information. The lack of high spec‑
tral and spatial resolution satellite data required to properly retrieve the functional‑based
(i.e., APAR and NPQ) traits driving the SIF dynamic changes is also a challenge. However,
whatwe do have available are complementary data like the high spatial resolution Sentinel‑
2 (S2, 20× 20 m) based products (i.e., reflectance data, vegetation indices, and biophysical
traits), which we hypothesize can be used to characterize the spatial heterogeneity of FLEX
Sun‑Induced chlorophyll Fluorescence on a sub‑pixel scale.Within this context, and in the
frame of the SENSECOCOSTAction, in this studywe propose to use S2 imagery information
to quantify the spatial heterogeneity of a FLEX pixel (300× 300m). Since at themoment FLEX
maps are not yet available, we have taken advantage of HyPlant airborne sensor high spatial
resolution observations to perform this study [36]. HyPlant reflectance images were resam‑
pled and convoluted to mimic S2 (20 × 20 m) spatial and spectral resolution. After that,
spatial heterogeneity metrics were computed on simulated S2 data within the FLEX pixels,
using HyPlant SIF images (4.5 × 4.5 m) as a reference. Later, several spatial heterogeneity
characterization methods like direct (spatial heterogeneity coefficient, standard deviation,
entropy, ensemble decision trees) and patch mosaic (local Moran’s I index) were imple‑
mented using both HyPlant S2‑based products and SIF images. The objective of this study
is to determine which methods and S2‑based products are suitable to characterize the spa‑
tial heterogeneity of a FLEX pixel.

2. Materials and Methods
2.1. Study Area

The study took place in a 14 km2 rural area located in Braccagni, central Italy (42.82◦N;
11.07◦E) (Figure 1). The scene wasmostly agricultural and encompassed different summer
crops (i.e., tomato, corn, sorghum), which are irrigated during June‑September (FlexSense
final report—ESA contract no. 4000125402/18/NL/NA). According to the Urban Atlas 2018
land‑use map (European Union, Copernicus Land Monitoring Service 2018, European En‑
vironment Agency (EEA)), arable lands dominate the site (~82%), followed by pastures
(~7%), isolated structures (2.50%), industrial, commercial, private units (~1%), sports and
leisure facilities (~1%), and other roads and lands associated with fast roads (~1%). Perma‑
nent crops (e.g., vineyards, orchards), water, forests, green urban areas, and discontinuous
urban fabric each represent less than 1% of the site.
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Figure 1. Study area, Braccagni, Italy. Map of the area on the left was produced using Sentinel‑2
RGB bands (B4‑B3‑B2).

2.2. Airborne Data
HyPlant airborne image data were acquired on 30 July 2018 over Braccagni, Italy, as

a part of FlexSense 2018 campaign (ESA Contract No. 4000125402/18/NL/NA). The Hy‑
Plant imaging spectrometer consists of two sensor modules, the DUAL and FLUOmodule,
covering spectral ranges from 400 to 2500 nm (spectral sampling interval, SSI = 1.71 nm
(400–1000 nm), SSI = 5.58 nm (1000–2500 nm)) and 670 to 780 nm (SSI = 0.11 nm), respectively.

The technical specifications of HyPlant FLUO allows for the retrieval of SIF in the O2A
(SIF760) and O2B (SIF687) absorption bands [36,37]. The spectral fitting method (SFM), de‑
veloped by Cogliati et al. [38] and later adapted to airborne data [39], was used to retrieve
SIF at 760 and 687 nm. The recorded HyPlant images cover an area of approximately
14 km2 and were acquired heading in the northern direction from 350 m above ground
level at 11:40 local time. The image data of both sensors were processed and georectified
according to the HyPlant processing chain presented in Siegman et al. [37].

2.3. Data Processing Description and Heterogeneity Methods Evaluation
In this section, we provide an overview of the different steps in our analysis and how

they relate to each other. These steps are described briefly here and in more detail in the
following sections. The data processing flow of this study is summarized in the following
steps (Figure 2).
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fore decreasing the resolution to 20 m would result in a loss of information needed 
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Figure 2. Workflow diagram. (a) HyPlant reflectance image (4.5 × 4.5 m) was aggregated to mimic
S2 spectral and spatial resolution (13 bands and 20 × 20 m ~ S2‑R20). At the same time, HyPlant
fluorescence products were spatially aggregated to 5× 5m resolution (SIF687,5 and SIF760,5) (see data
preparation section). * For the ensemble decision trees method, SIF was additionally aggregated to
300 × 300 m. (b) Synthetic S2‑R20 bands were used to obtain the biophysical traits (S2‑BT20) and
vegetation indices (S2‑VI20), which were later used to characterize the spatial heterogeneity of SIF
(Tables 1 and 2). (c) The Structural Similarity Index Measure (SSIM) was implemented to filter the
input data (i.e., S2 bands, VIs, BT) used in the study. (d) To determine the spatial heterogeneity of a
FLEX pixel, a 300× 300 m grid was applied to the S2 synthetic (S2‑R20, S2‑BT20 and S2‑VI20) and SIF
(SIF687,5 and SIF760,5) resampled images. Each FLEX pixel potentially contained 15 × 15 S2 pixels
and 60 × 60 SIF 5 × 5 m pixels. (e) Different heterogeneity methods (see methods to characterize
sun‑induced chlorophyll fluorescence heterogeneity section) were applied to the S2 and HyPlant
SIF products using the 300 × 300 FLEX grid defined in step (d). A FLEX heterogeneity product
was obtained for each S2 predictor (S2‑R20, S2‑BT20 and S2‑VI20) and SIF reference data (SIF687,5
and SIF760,5). (f) Finally, we compared S2 vs. SIF heterogeneity products using linear regression
(see models’ performance section).

2.4. Data Preparation
The original spatial resolution of the image data recorded by both HyPlant sensor

modules was 4.5 m. The data were then spatially resampled to match the 20 m S2 and
300 m FLEX grids (the Sentinel‑3 reference grid was used for FLEX because FLEX will be
spatially consistent with Sentinel‑3). Spatial resampling and spectral convolution were
performed as follows:
‑ From the FLUO sensor (4.5 × 4.5 m), SIF in the O2A (SIF760) and O2B (SIF687) bands

was spatially aggregated in the software SAGA ([40], version 2.3.2) using the nearest
neighbor algorithm to downscale it from 4.5 m to 5 m (SIF760,5 and SIF687,5). SIF was
not aggregated to 20 m because we used the SIF image data as a reference, and there‑
fore decreasing the resolution to 20mwould result in a loss of information needed for
the characterization analysis. We did not exclude negative SIF values inherent to SIF
retrieval uncertainty. Although they lack physicalmeaning (negative SIF is physically
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not possible), removing them would arbitrarily bias the resampled data. Therefore,
retrieval uncertainty contributes unavoidably to the spatial heterogeneity of SIF.

‑ Top‑of‑canopy reflectance data from the DUAL module of HyPlant (626 bands in to‑
tal) were first spatially aggregated from 4.5 m to 20 m to mimic S2 pixels. We, again,
used the software SAGA and information about the S2 grid to perform this task [40]
(version 2.3.2). Spatial resamplingwas performed using themean (cell areaweighted)
downscaling method. The output image was then processed in R using the hsdar
package [41] for spectral convolution. This resulted in 13 synthetic S2 spectral re‑
flectance bands at 20 m spatial resolution (S2‑R20), which later were used to retrieve
the biophysical traits (S2‑BT20) and vegetation indices (S2‑VI20) used to characterize
SIF spatial heterogeneity (Tables 1 and 2).

Table 1. Summary of the Sentinel‑2‑based vegetation indices used to determine SIF spatial hetero‑
geneity within the 300 × 300 m resolution FLEX pixels. Sentinel‑2 central wavelength: B1 (443 nm),
B2 (490 nm), B3 (560 nm), B4 (665 nm), B5 (705 nm), B6 (740 nm), B7 (783 nm), B8 (842 nm), B8a
(865 nm), B9 (940 nm), B10 (1375 nm), B11 (1610 nm) and B12 (2190 nm).

Vegetation Index (VI) General/Sentinel‑2 Formula Description

Normalized difference vegetation index (NDVI) NDVI = (NIR − RED)/(NIR + RED)
NDVI = ((B8A − B4)/(B8A + B4)) Indicator of green vegetation [42].

Near‑infrared reflectance of terrestrial vegetation
(NIRv)

NIRv = NIR×((NIR − RED)/(NIR + RED))
NIRv = B8A×((B8A − B4)/(B8A + B4))

Proportion of pixel reflectance due to vegetation in
the pixel; strongly correlated with SIF [21,43,44].

Chlorophyll red‑edge (ChlRE) ChlRE = ([760:800]/[690:720]) – 1
ChlRE = B7/B5‑1 Estimates chlorophyll content in leaves [45].

Enhanced vegetation Index (EVI)
EVI = 2.5×(NIR − RED)/((NIR + 6 × RED − 7.5 ×

BLUE) + 1)
EVI = 2.5×(B8A − B4)/(B8A + 6 × B4 − 7.5 × B2) + 1)

Indicator of green vegetation similar to NDVI, but
corrects for some atmospheric conditions and is

more sensitive to dense vegetation [46,47].

Moisture content (MSI) MSI = SWIR/NIR
MSI = B11/B08A

Indicator of leaf water content—higher values
indicate high water stress with less water content

and vice‑versa [48,49].

Table 2. Summary of the Sentinel‑2‑based biophysical traits used to determine sun‑induced fluores‑
cence spatial heterogeneity within FLEX pixels of 300 × 300 m resolution. Biophysical traits were
retrieved using the Sentinel‑2 ToolBox Biophysical processor [50].

Biophysical Trait (BT) Description

Fraction of Absorbed Photosynthetically Active Radiation (fAPAR) Fraction of the down‑welling photosynthetically active radiation that
is absorbed by the canopy [51].

Leaf Area Index (LAI) Quantifies the amount of leaf material in a canopy. It is the ratio of
one‑sided leaf area per unit ground area [52,53].

Fraction of green Vegetation Cover (fCover) Quantifies the fraction of ground covered by green vegetation [54].

Leaf Chlorophyll Content (LCC)
Leaf chlorophyll content (µg of chlorophyll per cm2 of leaf area) was
computed from the retrieved canopy chlorophyll content (CCC),
dividing it to the retrieved LAI [55].

2.5. Predictor Selection
We selected only the S2 predictors that presented spatial patterns similar to those of

SIF using the structural similarity index measure (SSIM). SSIM is widely used for digi‑
tal images and videos to quantify the similarity between two images. It was developed
by [56] and uses structural information related to the spatial arrangement of pixels. We
chose this approach to compare the spatial similarity of SIF687,20 and SIF760,20 images (ag‑
gregated to 20monly for predictor selection)with S2 predictors (spectral reflectance bands,
vegetation indices and biophysical traits, 20 m resolution). The images were normalized,
scaled between 0 and 1 in accordancewithmin‑max values, and SSIMwas computed for all
300× 300mpixels (FLEXpixels based on Sentinel‑3 gridwith assigned pixel ID‑s). Tukey’s
test was then used to compare the means of the SSIM values for the predictors (S2‑R20,
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S2‑BT20, and S2‑VI20) and SIF (SIF687,20, SIF760,20). Values around 0 mean that there is no
similarity between the SIF and the S2 predictor patterns, while values towards±1 indicate
high similarity. S2 bands B1, B2, B3, B4, B5, B10, B11 and B12 were not similar to SIF687,20
and SIF760,20 (Figure 3) and were not used for further analysis, meaning that all the visible
and SWIR bands were removed, leaving only NIR and red‑edge bands. It is worth noting
that SIF687,20 itself was not so similar to SIF687,20, nor to any S2‑BT20 or S2‑VI20 product.
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Figure 3. Tukey’s test applied to the Structural Similarity IndexMeasure (SSIM) used to measure the
similarity between two normalized images (SIF760,20, SIF687,20, and respective Sentinel‑2 predictors).
Dashed vertical lines indicate the similarity threshold of ±0.1 SSIM. Bands with SSIM values above
this threshold for both SIF760 and SIF687 were used for further analysis.

2.6. Methods to Characterize Sun‑Induced Chlorophyll Fluorescence Heterogeneity
This study evaluated the ability of one patchmosaic and four directmethods to charac‑

terize the heterogeneity of HyPlant SIF at 5 m and S2 information at 20m spatial resolution
within 300 × 300 m. The methods implemented in this study are described in Table 3. A
more detailed explanation of each method is described in Appendix A. In addition, we
tested other approaches such as cluster entropy and a fuzzy approach, but these failed
to characterize SIF heterogeneity (Appendix B) and were excluded from further analyses.
Heterogeneity measures with different methods were expressed as single values per pre‑
dictor and 300 m pixel, each labeled with a numeric ID. Sub‑pixels where fluorescence
retrieval failed (NaN values) were omitted in the calculations, meaning that the total num‑
ber of sub‑pixels varied within the FLEX pixels. Additionally, we discarded pixels on the
edge of the imagery to avoid large fractions of missing pixels.

We evaluated the potential of each method to characterize SIF heterogeneity by com‑
paring the heterogeneity metrics calculated from the HyPlant SIF and S2 predictors and
calculating the square of Pearson’s correlation coefficient (R2). Other goodness‑of‑fit met‑
rics (e.g., coefficient of determination, root‑mean‑square error, and bias)wouldnot produce
meaningful comparisons for this task due to differences in the units of SIF (Wm−2 sr−1 µm−1)
and predictors (unitless for vegetations indices, fAPAR, fCover; m2 m−2 for LAI; sr−1 for re‑
flectance bands; µmolm−2 for LCC) . Due to the squared nature of the spatial heterogeneity
coefficient (variance is a square of the standard deviation, see Table A1) it was unsquared
using natural logarithm transformation to avoid heteroscedasticity while applying the lin‑
ear regression.
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Table 3. Summary of the different methods used to characterize SIF spatial heterogeneity within
the FLEX spatial resolution (300 × 300 m). Predictors reported are single‑band reflectance at
20 m (S2‑R20); spectral vegetation indices at 20 m (S2‑VI20); biophysical traits at 20 m (S2‑BT20); or a
combination of several of these (S2‑Rmulti20/S2‑VImulti20/S2‑BTmulti20).

Method Name Heterogeneity Definition Predictors Reference

Local Moran’s I

The classification of sub‑pixels is based on the
spatial autocorrelation metric Moran’s I, whose
statistical significance is defined by permutations
(bootstrap). Heterogeneity is expressed as the
fraction of sub‑pixels belonging to the “no class” or
“single pixel cluster class” over the total number of
sub‑pixels in a 300 × 300 FLEX pixel.

S2‑VI20
S2‑BT20
S2‑R20

[57]

Spatial heterogeneity
coefficient

Interclass and intraclass differences combined with
their spatial distribution. Classes are generated
using supervised and unsupervised approaches in
the form of Scene Classification Maps (SCLs).

S2‑VI20
S2‑BT20
S2‑R20

[31]

Standard deviation Standard deviation over the total number of
sub‑pixels in a 300 × 300 FLEX pixel.

S2‑VI20
S2‑BT20
S2‑R20

/

Ensemble decision trees

Four different machine learning algorithms to
predict SIFλ,20 as a function of SIFλ,300, and S2‑VI20,
S2‑BT20, S2‑R20, S2‑Rmulti20, S2‑VImulti20,
S2‑BTmulti20: eXtreme Gradient Boosting, Random
Forests, Support Vector Machines, and Neural
Networks. The most accurate algorithm (Random
Forest) was used to upscale SIF from FLEX to S2
spatial resolution.

S2‑VI20
S2‑BT20
S2‑R20

S2‑Rmulti20
S2‑VImulti20
S2‑BTmulti20

[58]

Normalized Entropy

Heterogeneity was quantified using the concept of
entropy that measures the average information
content. The entropy was normalized by the
entropy of the uniform distribution (Emax with
N = sub‑pixels in a FLEX pixel).

S2‑VI20
S2‑BT20
S2‑R20

[59]

2.7. Outliers’ Distribution
We used the Root Mean Square Error (RMSE) metric to compare the spatial hetero‑

geneity values calculated for the reference (SIF) and model predictor pixels. The top five
pixels with the highest RMSE were defined as “outliers”, and their structure was investi‑
gated in more detail.

3. Results
To better understand the results of the different models, the results section is divided

into two blocks. First, the spatial distribution of study area land cover types as well as SIF,
VIs, and biophysical traits are described. Histograms were made to visualize the variabil‑
ity and skewness of the dataset. Second, the performance of each model was evaluated
(SIF vs. predictors), where the pixels with the highest RMSEs (outliers) were examined
in more detail. Finally, the heterogeneity maps were described for the best‑performing
models, highlighting the pixels with the highest and lowest heterogeneity.

3.1. Field Site Characterization
Spatial Analysis

The supervised classification of the S2 image of the area resulted in the scene classifi‑
cation map with five land cover classes shown in Figure 4a with the following percentages
for the scene: cropland 76%, pasture 5%, forest 5%, water 0.2% and 13% other (unclassi‑
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fied). Similarly, Figure 4b presents the results of the k‑means unsupervised classification
with 15 classes.
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Figure 4. Scene classification maps: (a) Map produced using supervised classification with 5 classes;
(b) Map produced using k‑means algorithm with 15 classes.

Fluorescence radiances ranged from −0.15 to 0.34 W m−2 um−1 sr−1 for SIF760,5 and
from −0.13 to 0.2 W m−2 um−1 sr−1 for SIF687 (Figure 5a). Higher SIF760,5 values were
observed in the northern and central parts of the image, which correspond to green pasture
and forested areas, respectively (Figure 4a).

SIF687,5 had higher values at the southern image boundary that were not observed
at the northern boundary (Figure 5a). The patterns of vegetation indices and biophysical
trait maps (Figure 5b,c) are consistent with those of SIF, with higher values of NIRv, NDVI,
EVI, fAPAR, fCover, LAI, and low values of ChlRE, MSI and LCC in the same areas of the
image. For example, the circular shape area in themiddle of the imagewas a 1 kmdiameter
irrigated corn crop and was highlighted in these maps. For MSI, a measure of vegetation
water content, higher values indicate lowerwater content. Finally, the S2 reflectance bands
B6, B7, B8, B8A and B9 all followed a mutually similar distribution (Figure 5d).

The frequency distribution of the normalized SIF, Vis, BTs and S2 reflectance bands is
shown in Figure 6. Both SIF760,20 and SIF687,20 showed a normal distribution, with SIF760,20
having a higher frequency of lower values than SIF687,20 (Figure 6a). When analyzing the
distribution of Vis, a similar normal distribution pattern was observed for ChlRE andMSI,
whereas the peaks for EVI, NDVI andNIRv (Figure 6b) distributionswere skewed towards
lower values. Distributions of biophysical traits fAPAR, fCover, and LAI (Figure 6c) also
had higher frequency of lower values, but the skew is much more pronounced compared
to the Vis. All S2 reflectance band distributions were slightly skewed to the left with a
higher frequency of higher values (Figure 6d).
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Figure 5. Dataset imagery: (a) Sun‑induced fluorescence with 5 × 5 m resolution; (b) Vegeta‑
tion indices maps from Sentinel‑2 data NIRv, NDVI, EVI, ChlRE, MSI with 20 × 20 m resolution;
(c) Biophysical traits maps for LCC, fAPAR, fCover and LAI at 20 × 20 m resolution; (d) Reflectance
bands maps from Sentinel‑2 data B6, B7, B8, B8A, B9 with 20 × 20 m resolution. Values in maps are
shown as 2nd and 98th percentiles of the raster band values. Lower values are shown in blue, higher
values in red.
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3.2. Models’ Performances
3.2.1. Evaluation

In general terms, the Vis, biophysical traits, and S2 bands related to vegetation struc‑
ture (i.e., NIRv, fAPAR, fCover, LAI, B7 (red edge)) predicted the best SIF spatial hetero‑
geneity (Figure 7). Regarding the methods, ensemble decision trees (Figure 7a) and spa‑
tial heterogeneity coefficient using SCL‑5 (Figure 7e) were the best‑performing methods
(SIF760,300 R2 > 0.8 and SIF687,300 R2 > 0.6). Interestingly, when the spatial heterogeneity
coefficient method was implemented with 15 classes (Figure 7d) instead of 5 (Figure 7e),
the R2 decreased to ~0.5 for SIF760,300 and between 0.1–0.2 for SIF687,300. The standard devi‑
ation method (Figure 7b), despite its simple implementation, casted R2 > 0.6 for SIF760,300
and R2 > 0.1–0.4 for SIF687,300 when NIRv, fCover, LAI and B7 were used as predictors,
showing similar results to the spatial heterogeneity coefficient SCL‑15 approach. Finally,
the Local Moran’s I (Figure 7c) and normalized entropy (Figure 7f) methods achieved the
worst results, with SIF760,300 R2 < 0.3 and SIF687,300 R2 < 0.1. It is worth noting that the
spatial heterogeneity was better predicted for SIF760,300 than for SIF687,300.

Despite its performance, the suitability of the spatial heterogeneity coefficient SCL‑5
must be reconsidered. In this study area, the method relied on a categorization of five
classes, i.e., water, cropland, pasture, forest and other. Since it is an agricultural area, most
of the pixels are classified as cropland (Figure 4). Based on the formulation of the spatial
heterogeneity coefficient (Table 3), this translates into zero heterogeneity, as the majority
of S2‑based sub‑pixels within a 300 × 300 m FLEX pixel belong to the same land cover
class. However, the same land cover class does not imply the same optical properties or
fluorescence emission, as assumed by the method. Therefore, considering the potential
deviation of these assumptions from the processes taking place in the scene, we decided to
exclude the spatial heterogeneity coefficient SCL‑5 from the list of suitable methods. For
the subsequent analyses, we focused on the ensemble decision trees, spatial heterogeneity
coefficient SCL‑15, and standard deviation methods. For these models, we chose the best‑
performing predictors: NIRv, fAPAR and B7 (red edge). Note that we decided to use
fAPAR instead of fCover because they are highly correlated [60], and in this study similar
results were found in both biophysical traits when describing SIF760 spatial heterogeneity.
Furthermore, fAPAR presented slightly better results than fCover for SIF687 for ensemble
decision trees and for spatial heterogeneity coefficient SCL‑15 methods.

3.2.2. Outliers’ Spatial Distribution
When comparing the spatial heterogeneity metric values computed for the reference

(SIF) and model predictor pixels using the RMSE, we found that the pixels with the high‑
est RMSEs turned out to be the same for many methods. Figure 8 shows the number of
times each pixel was classified as an outlier for all selectedmodels for SIF760,300 (Figure 8a),
SIF687,300 (Figure 8b), and the sum of both (Figure 8c). Outliers were more often located
in the scene borders. However, this was not related to the absence of the missing (‘NaN’)
high‑resolution values, which was prevented by cropping the pixels on the edge of the
image in the preprocessing steps.

Pixels with the ID 124 and 166were outliers formostmethods in both SIF bands; there‑
fore, we decided to further investigate the spatial distribution of SIF760,5, SIF687,5, NIRv20,
fAPAR20, B720 and the scene classification maps with 5 and 15 classes (Figure 9). For pixel
ID 166, its spatial distribution is shown for SIF (Figure 9a,b), as well as for NIRv (Figure 9c),
fAPAR (Figure 9d) and B7 (Figure 9e).
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Figure 7. Square of Pearson’s correlation coefficient between reference SIF760 and SIF687 hetero‑
geneity and predictors’ heterogeneity: Sentinel‑2 derived vegetation indices, biophysical traits,
reflectance bands and their stacks using the following methods: (a) Ensemble decision trees;
(b) Standard deviation; (c) Local Moran’s I; (d) Spatial heterogeneity coefficient using scene clas‑
sification with 5 classes (SCL‑5); (e) Spatial heterogeneity coefficient using scene classification with
15 classes (SCL‑15); (f) Normalized entropy. *** p‑value ≤ 0.001; ** p‑value ≤ 0.01; * p‑value ≤ 0.05,
ns—p‑value > 0.05.
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therefore, we decided to further investigate the spatial distribution of SIF760,5, SIF687,5, 
NIRv20, fAPAR20, B720 and the scene classification maps with 5 and 15 classes (Figure 9). 
For pixel ID 166, its spatial distribution is shown for SIF (Figure 9a,b), as well as for NIRv 
(Figure 9c), fAPAR (Figure 9d) and B7 (Figure 9e). 

Finally, regarding the scene classification maps, for pixel 166, the supervised classifi-
cation resulted in four different classes—crops, pasture, water and other (Figure 9f)—
while pixel ID 124 resulted in two different classes (mostly crops and a smaller area of 

Figure 8. The number of times a pixel (pixel ID shown as numbers next to pixels) was consid‑
ered an outlier (top 6 RMSE) by ensemble decision trees, spatial heterogeneity coefficient with
SCL‑15 and standard deviation methods using the most important predictors from each category
(i.e., NIRv—vegetation index category, fAPAR—biophysical trait category, B7—reflectance band cat‑
egory) for (a) SIF760,300, (b) SIF687,300 and (c) the sum of counts for both SIF760,300 and SIF687,300. The
maximum possible count for (a,b) is 9 (three models, three predictors), for (c) 18.
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Figure 9. Top two outlier pixels (ID 166 and 124) with input data for (a,h) SIF760,5; (b,i) SIF687,5; (c,j) NIRv;
(d,k) fAPAR; (e,l) B7; (f,m) SCL‑5 classes; (g,n) SCL‑15 classes. SIF units are W m−2 sr−1 µm−1,
NIRv and fAPAR are unitless; and B7 is in sr−1. Classes for SCL‑5 are water (cyan), cropland (olive),
pasture (green), and other (gray), as in Figure 4. Classes for SCL‑15 are discrete values and represent
spectral rather than land cover classes.

Finally, regarding the scene classificationmaps, for pixel 166, the supervised classifica‑
tion resulted in four different classes—crops, pasture, water and other (Figure 9f)—while
pixel ID 124 resulted in two different classes (mostly crops and a smaller area of other
(unidentified) classes) (Figure 9m). Unsupervised SCL‑15 reflected the spatial structure
of SIF in pixels better than SCL‑5, resulting in clearer boundaries of objects in the image.
A clear pattern is observed, with higher values in the center of the pixel (V‑shape) and
lower values in the surrounding areas. Regarding the scene classification maps, for pixel
166, supervised classification resulted in four different classes—crops, pasture, water and
other (Figure 9f)—while pixel ID 124 resulted in two different classes (mostly crops and
a smaller area of other (unidentified) classes) (Figure 9m). Unsupervised SCL‑15 reflected
the spatial distribution of SIF pixels better than SCL‑5, resulting in clearer boundaries of ob‑
jects in the image. For pixel ID 124, a common pattern is observed for SIF760,5 and SIF6875,5
values (Figure 9h,i), where approximately half of the pixels have SIF values greater than
0.2Wm−2 sr−1 um−1 and the other half have SIF values close to zero or negative. Notably,
SIF687,5 shows higher values than SIF760,5 for both pixels. Regarding the spatial distribution
of NIRv (Figure 9j) and fAPAR (Figure 9k) for pixel ID 124, a homogeneous distribution
across pixels was observed. Interestingly, the spatial distribution of B7 (Figure 9l) follows
the pattern of SIF.
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3.2.3. Best‑Performing Models
The methods that best described SIF heterogeneity included ensemble decision trees,

standard deviation and the spatial heterogeneity coefficient using SCL‑15. The spatial het‑
erogeneity coefficient using the five‑classes method was excluded because many pixels
were classified exclusively as cropland, making the heterogeneity values zero (see section
Models’ Performances for a more detailed explanation). For all the methods, the NIRv
index provided the best characterization of SIF spatial heterogeneity; therefore, the perfor‑
mance of eachmethod is shown based on this index (Figure 10). Models with SIF687,300 did
not perform as well and are not included in this section but are included in Appendix C
(Figures A1–A3).
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Figure 10. Heterogeneity maps (300 × 300 m) for standard deviation, ensemble decision trees and
spatial heterogeneity coefficient SCL‑15methods; (a,d,g) reference SIF760; (b,e,h) best predictorNIRv;
(c,f,i) scatter plots with lowest (green circle) and highest (red circle) heterogeneity pixels highlighted.

Figure 10 shows the distribution of spatial heterogeneity coefficient values of the study
area based on SIF760,5 reference data (Figure 10a,d,g) and predictor NIRv (Figure 10b,e,h) for
all three selected methods. Lower values indicate low heterogeneity and higher values indi‑
cate high heterogeneity. There is a significant linear relationship between the reference and
predictor SIF spatial characterization for standard deviation (R2 = 0.76, p < 0.001, Figure 10c),
ensemble decision trees (R2 = 0.93, p < 0.001, Figure 10f) and spatial heterogeneity coefficient
(R2 = 0.63, p < 0.001, Figure 10i).

From the scatterplots in Figure 10, pixels with high (highlighted in green) and low
(highlighted in red) spatial heterogeneity have been magnified in Figure 11.
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Figure 11. Highest and lowest heterogeneity pixels from best‑performing models (standard devi‑
ation, spatial heterogeneity coefficient using 15 classes, ensemble decision trees) with input data
shown for (a,d) SIF760,5; (b,e) NIRv20; (c,f) scene classification map 15 classes.

For all methods, the pixel with the highest heterogeneity (i.e., ID 82) was located in
the northwestern upper part of the image and was consistently characterized by heteroge‑
neous SIF760,5 and NIRv,20 values with eight land cover classes (Figure 11a–c). At pixel ID
82, higher values were observed grouped in the lower right part of the pixel for SIF760,5 and
NIRv,20 maps. The scene classification map had nine different classes, with the lower part
of the image fully following the SIF and NIR patterns, while the upper parts were less vi‑
sually aligned. A less heterogeneous pixel, ID 192, was also observed in the northern edge
of the image with homogeneous SIF760,5 and NIRv,20 maps (Figure 11d,e), which had low
values. The scene classification map had five different classes, one of which dominated the
image (orange color). In the left part of the pixel, a contrasting edge can be seen on the SCL
map, which is not as pronounced on the SIF760,5 and NIRv20 maps.

4. Discussion
In this study, ensemble decision trees, standard deviation and the spatial heterogene‑

ity coefficient using scene classification with 15 classes provided the best estimates of SIF
intrapixel heterogeneity (Figure 10, p. 17). Between the S2 bands, vegetation indices, and
biophysical traits, previously filtered with the SSIM (Figure 3, p. 7), SIF heterogeneity was
best characterizedwhen theNIRv index, fCover and LAIwere used as input data (Figure 7,
p. 14). The use of the NIRv index, defined as the product of NIR reflectance and normal‑
ized vegetation index (NDVI), isolates the vegetation signal, enhances structural properties
by multiplying NDVI by NIR reflectance, and eliminates the mixed pixel problem that oc‑
curs when using NDVI [43]. Several studies have shown a significant positive correlation
between NIRv and fAPAR when background effects are significant [61]. Since SIF is first‑
order driven by changes in APAR [23], and since we are analyzing a single time image in
this study, it would be expected to be linearly correlated with SIF, thus explaining the het‑
erogeneity of SIF. However, Dechant et al. [62] have shown that NIRv tends to saturate at
high SIF values when different seasonal conditions and/or ecosystem vegetation fractional
cover are integrated to linearly correlate NIRv and SIF. Therefore, further studies should
be performed to investigate the correlation between SIF and NIRv when different stress
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levels and/or illumination conditions (i.e., sunlit shaded areas due to different vegetation
fraction cover) are considered.

The ensemble decision trees method provided the best results, but also, unlike other
methods, it combined SIF760,300 and SIF687,300 with the different S2 bands, VIs and BTs
considered in this study, which significantly improved the model performance. However,
caution should be exercised when extrapolating these results to other studies, such as veg‑
etation dynamics monitoring. When downscaling SIF from 300 × 300 to 20 × 20 m, we
assume the same fluorescence response at each 20× 20 sub‑pixel englobed in a FLEX pixel,
which is rather unexpected due to the dynamic response of fluorescence and consequently
could lead to a misinterpretation of the vegetation status.

For the spatial heterogeneity coefficient method, heterogeneity is determined by both
the number of land cover types (Shannon’s entropy) and the range of values within each
type (class variance). When applied to a homogeneous pixel with one land cover type, the
heterogeneity is automatically zero, so this method is limited by the number of classes in
the scene classification. When using the supervised scene classification map, we hypothe‑
size that five classes were not enough to accurately classify all sub‑pixels (i.e., it included
many sub‑pixels in the crop class when they should have been classified as pasture or cre‑
ated as a separate class). Many pixels were classified in only one class (i.e., crop), so both
the heterogeneity of the SIF and the predictors were zero, resulting in a high correlation
model. Alternatively, unsupervised scene classification can provide many classes based
on statistical differences between the spectral properties of the surfaces, which are inde‑
pendent of subjective interpretations. However, the number of classes that can best char‑
acterize SIF intrapixel heterogeneity, bearing in mind that more classes inherently lead to
higher heterogeneity, remains unclear and might be scene dependent. For example, Zhao
and Fan [31] used only three land cover types in their study, which aimed to quantitatively
express LAI spatial heterogeneity. They observed that ratios and increases in the number
of land cover types lead to changes in the heterogeneity coefficient and suggested it should
be investigated further. These arguments lead to the recommendation to use k‑means clus‑
tering for SCL,which better distinguishes natural gradients and class boundaries, and later
to further investigate what is the optimal number of clusters to characterize a given area.

The standard deviation method is based on the arithmetic average (mean) and is
intended to identify unobserved spatial heterogeneity in pixels [63]. The standard devi‑
ation was previously used as a measure of the spatial variability of soil moisture in Li
and Rodell [64], while Riera et al. [65] used the standard deviation of NDVI as an expres‑
sion of vegetation heterogeneity.Spatial heterogeneity expressed as the standard deviation of
SIF760,5 showed a significant linear correlation with the NIRv index (R2 = 0.76, p‑value < 0.001)
(Figure 10c), suggesting that it was successful in capturing the spatial heterogeneity of the flu‑
orescence emitted at 760 nm in this study. Regarding SIF687, only the standard deviations of
S2‑B6, S2‑B7 (both red‑edge) and S2‑B8 (NIR) were able to explain the ~40% of SIF687 spatial het‑
erogeneity . A similar approach was implemented in Rossini et al. [1], in which they used
the absolute deviation from the mean between ground SIF760 observations and medium‑
resolution SIF760 pixels (300 m) to determine the optimal sampling strategy (i.e., number
of sampling points) to characterize a FLEX‑based pixel over an agricultural area. They con‑
cluded that between 3 and 13.5 sampling points are required to characterize the average
SIF value of a monoculture field at a FLEX‑based pixel resolution.

Normalized entropy and Local Moran’s I models contributed less to the characteri‑
zation of SIF spatial heterogeneity (Figure 7). The key issue with the normalized entropy
method lies in its approach. Unlike the spatial heterogeneity coefficient, which clarifies
howdifferent land cover classes contribute to pixel values, the normalized entropymethod
utilizes the actual data values of each pixel as a relative contribution to the broader distri‑
bution of sub‑pixel values. Hence, it does not detect smaller or larger differences in the
surrounding pixels [66]. We hypothesize that normalized entropy, based on Shannon’s ap‑
proach, did not work in our study because it was mostly dominated by crops with similar
SIF, VIs, and BT values. The concept of entropy introduced by Shannon [59] was compared
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to Rao’s Q entropy [67] in [66,68] to characterize the spatial heterogeneity of an image. In
these studies, Tagliabue et al. [68] found that using Rao’s Q entropy to obtain SIF andNDVI
heterogeneity was effective as a measure of functional diversity in forests. However, they
conclude that the ESA‑FLEX pixel is too coarse to assess functional diversity. They sug‑
gest using the increasingly available hyperspectral imagery to downscale the SIF signal
using machine learning or unmixing approaches. Furthermore, Doxa and Prastacos [66]
compare Shannon’s entropy with Rao’s quadratic entropy, stating that the former tends to
overestimate environmental heterogeneity, while the latter highlights pixels with signifi‑
cantly different values. Therefore, Rao’s entropy could be tested as an alternative to nor‑
malized entropy. Local Moran’s I has a potential in making distinct clusters based on pixel
values and their spatial arrangement, where statistically insignificant and single‑member
clusters (diamonds and doughnuts) potentially express heterogeneity. Like normalized
entropy, this approach in our study did not produce good results.

Regarding the strengths andweaknesses of the proposedmethods, ensemble decision
trees generally produce highly accurate predictions because they reduce overfitting by av‑
eraging multiple decision trees, making them more reliable for a wide range of datasets.
Random forests can also handle missing values without requiring imputation, making
themversatile for real‑world datawith incomplete information. They can capture complex,
nonlinear relationships between characteristics and the target variable that linear models
may struggle with. On the other hand, random forests are generally unsuitable for extrap‑
olation because they tend to make predictions based on patterns observed in the training
data. Predictions outside the range of the training datamay be less reliable. The advantage
of the standard deviation is that it is simple and easy to calculate. However, the standard
deviation method can smooth the effect of a smaller heterogeneous area surrounded by
a larger homogeneous area within a sub‑pixel. Furthermore, we expect the variability of
the vegetation index to be proportional to the variability of the SIF, whereas in reality the
SIFmay bemore heterogeneous (for physiological reasons) if the vegetation index remains
homogeneous. The spatial heterogeneity coefficient combines interclass and intraclass het‑
erogeneity and can capture variations of values within the same land class andweigh them
according to their area within a sub‑pixel. It uses scene classification maps that can be eas‑
ily generated with S2 data using k‑means clustering, although it remains to be explored
how to choose the number of clusters for different study areas.

Observing themaps of the study areas, two clear patterns could be observed in the north‑
ern (pasture as a part of the dairy farm) and central (irrigated corn crop) areas with higher
values of SIF, VI, BT (pattern 1) compared to the rest of the image (pattern 2) (Figure 5). Ac‑
cording to the FlexSense final report (ESA contract no. 4000125402/18/NL/NA), the corn field
reached full canopy cover at the time of the HyPlant overpass, which is consistent with the
observed VI and BT maps, e.g., MSI shows lower values indicating higher leaf water content,
which is expected in irrigated areas. In addition, patterns may also be explained by differ‑
ences inmanagement systems, such as available resources—i.e., nutrients from fertilizers—
pastures would have some amount of manure depending on the type of livestock, and
crops could be managed with artificial fertilizers. The report also states that from the
month of June onward, the circular crop was surrounded by dry grasslands or soils. In‑
terestingly, the patterns described above are mainly consistent between SIF760,5 and the
VI, BT and S2 reflectance band images in the study, but a higher variability is observed
when looking at the SIF687,5 map (Figure 5a). We hypothesize that this could be due to the
higher retrieval uncertainty at SIF687,5 when SIF is retrieved in pixels with high intrapixel
heterogeneity, i.e., low vegetation fractional cover [24], as well as for the lower signal‑to‑
noise ratio of the HyPlant instrument [69,70], which alters the measured spectral reflected
radiance shape and increases the fluorescence retrieval uncertainty. Interestingly, the pix‑
els identified as outliers support the hypothesis just described, for example, pixels ID166
and ID124 present low NDVI and LAI values (Figure 5), suggesting low fractional cover
and consequently making the retrieval more prone to cast bias.
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In summary, models with SIF760 consistently performed better than those with SIF687.
While canopy SIF687 is dominated by chlorophyll re‑absorption within the leaves and canopy,
the SIF760 signal is primarily affected by scattering owing to leaf and canopy structural proper‑
ties as well as solar‑and‑observation angle [71–73]. In this study, S2‑based images were used
to estimate different VI and BT, but due to the S2 configuration, only structure‑related VI and
BT could be retrieved (i.e., NIRv, fAPAR, fCover, LAI), which explains why the proposed
model better characterizes the spatial heterogeneity of SIF760, but fails to characterize the
weaker—and most dynamic—fluorescence emission at 687 nm [22,74]. Furthermore, the
characterization of SIF intrapixel heterogeneity analyzes a single scene at a single point in
time, so it is expected that the static vegetation structure traitswill drive the field variability.
In a time series analysis, however, the changes in environmental conditions (i.e., PAR, wa‑
ter and nutrient availability) would instead be captured by the dynamic vegetation traits,
such as APAR and/or NPQ [75].

5. Conclusions
SIF is a highly dynamic signal, and changes in environmental growing conditions

(i.e., resource availability, light conditions, vegetation fractional cover or land cover) can
bias the interpretation of satellite SIF estimates. In the context of the SENSECO COST
Action, the HyPlant dataset acquired over an agricultural area during the ESA FlexSense
campaign (ESA contract no. 4000125402/18/NL/NA) was used to characterize the spatial
heterogeneity of a FLEX pixel based on S2 reflectance‑based predictors and using differ‑
ent patch mosaic and direct heterogeneity methods. The application of different methods
to describe the spatial heterogeneity of sun‑induced fluorescence provided interesting in‑
sights, particularly for the use of standard deviation, the spatial heterogeneity coefficient
and ensemble decision trees using machine learning algorithms. Among all methods, the
structured relatedNIRv index explained SIF heterogeneity the best, compared to other veg‑
etation indices (i.e., NDVI, ChlRE, EVI), biophysical traits (i.e., fAPAR, fCover, LCC, LAI)
or S2 reflectance bands. The methods proposed in this study are simple to implement and
could be used to develop cal/val sampling protocols, define quality labels based on the spa‑
tial variability of a FLEX pixel (i.e., high/low heterogeneity), and improve SIF retrieval in
pixels labeled as highly heterogeneous. We are aware that the results of this study are lim‑
ited to homogeneous agricultural sites. Therefore, based on the results of the current study,
future work should include the application of the proposed methods to a larger dataset,
such as other regions with different ecosystems (i.e., forest, grassland, boreal and/or trop‑
ical forest) to then determine which combination of method and VIs or biophysical traits
should be implemented in each ecosystem type. If our results are confirmed, our study
would be a precursor for a SIF pixel heterogeneity product that could be implemented in
the FLEX ground segment processing chain.
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Appendix A

Table A1. Detailed explanations for each method used for expressing heterogeneity and the range
of heterogeneity values.

Method Name Heterogeneity Values

Local Moran’s I Range from 0 to 1, where 0 corresponds to low heterogeneity and 1 to high heterogeneity

We quantified the fluorescence heterogeneity at FLEX resolution as the fraction of pixels belonging to a single‑pixel cluster or not assigned to any cluster. For each 300 × 300 m pixel, we independently clustered S2‑R20 and SIFλ,5
using the Local Moran’s I method [57] implemented in the function Moran_Local() from the ESDA (Exploratory Spatial Data Analysis) package from the PySAL Python library [76]. The approach classifies pixels into four classes:
diamond (a single high value among low values), doughnuts (a single low value among high values), hotspot (a high value among high values), and cold spot (a low value among low values); the first two are single‑pixels classes. The
classification is conducted based on the spatial autocorrelation Moran’s I metric whose statistical significance is defined using permutations (bootstrap). In this way, the pixels that were not significantly assigned to any of the former
categories constituted a new “heterogeneous” class. FLEX pixel heterogeneity was then computed as the fraction of diamond, doughnut, and non‑significant pixels within each 300 × 300 m FLEX pixel.

Spatial heterogeneity coefficient
High values determine higher heterogeneity and lower values lower heterogeneity. The lowest possible value is 0, when all pixels belong to one class (homogeneous). The highest
value is limited by the range of the values and the number of land cover types, 0.0053 W2 m−4 um−2 sr−2 for SIF760, 0.55 m4 m−4 for LAI

Heterogeneity was quantified as a function of land‑use cover variability within each FLEX 300 m pixel, using the spatial heterogeneity coefficient described in [31].
Formula for spatial heterogeneity coefficient (Csh):

Csh =
N
∑
i=1

pi × Ei× σ2
i

= −∑N
i=1 p2

i ln(pi
) ∑

ni
m=1

(
xm−µ)2

ni
N—total number of land cover classes of each sub‑pixel included in a pixel;
xm—m‑th pixel value, which is included in the i‑th land cover class;
µ—mean value of the total sub‑pixels that are included in one pixel;
ni—total number of sub‑pixels included in the i‑th type;
pi—fraction of the i‑th land cover class in a pixel.
One FLEX pixel could contain more than one land cover class; such a class is represented by sub‑pixels (5 m for SIF and
20 m for S2 metrics). Heterogeneity combines class variance with information entropy. Class variance (σ2

i
)
is the difference in sub‑pixels reflecting intraclass (difference in growth conditions for the same vegetation type, i.e.,

different canopy densities) and interclass (i.e., land cover class patchiness) heterogeneity. Information entropy ( Ei
)
or class frequency explains how much each land cover class (pi) contributes to the pixels and is expressed as a

fraction of a specific land cover class in a pixel multiplied by its natural logarithm. Two scene classification maps with 5 (SCL‑5) and 15 classes (SCL‑15) were produced using supervised and unsupervised approaches, respectively.
Information from the Urban Atlas layer was used for creating a simpler SCL‑5 (containing five classes defined as crops, pasture, water, forest, other) using semi‑automatic classification plugin [60] on S2 bands in the QGIS environment
(“QGIS Geographic Information System,” 2021) (Figure 4A)). Another SCL‑15 map was produced using k‑means clustering on the S2 dataset in SAGA with 15 clusters (the same number of land cover types for Braccagni image as in
the Urban Atlas layer). Both maps were smoothed out with a 3 × 3 mode (majority) kernel.
The spatial heterogeneity coefficient was calculated for every 300 m pixel using land cover frequencies and land cover class variances from scene classification maps.

Standard deviation High values determine higher heterogeneity and lower values lower heterogeneity. The range depends on the range of the predictor, i.e., from 0.03 to 0.22 W m−2 um−1 sr−1 for
SIF760, 0.05 to 2.52 m

2 m−2 for LAI.

The standard deviation is a measure of how dispersed the data are in relation to their mean. Riera et al. [61] used the standard deviation of the NDVI as an expression of vegetation heterogeneity; moreover, Li and Rodell [62] used it
as a measure of spatial variability of soil moisture.

Ensemble decision trees
High values determine higher heterogeneity and lower values lower heterogeneity. This method converted predictor values to SIF values; therefore, the range was always from
0.03 to 0.22 W m−2 um−1 sr−1 for SIF760 and from 0.05 to 0.11 W m−2 um−1 sr−1 for SIF687.

We assessed the capability of four different machine learning algorithms to predict SIFλ,20 as a function of SIFλ,300, and R20: eXtreme Gradient Boosting, Random Forests, support vector machines, and neural networks. The imagery
was randomly split into training and validation subsets based on the finest resolution. For training models, 20% of the data (6800 samples) were used for computation economy. We used a k‑fold (k = 5) cross‑validation approach to
assess each algorithm’s performance. Random Forests [58] was the most accurate algorithm. Thus, we made use of this approach to upscale SIF from the FLEX to the S2 spatial resolution.

Normalized Entropy
Normalized entropy ranging from 0 to 1, where 1 corresponds to low
heterogeneity and 0 to higher heterogeneity.
Probability values pi are expressed for sub‑pixel locations i inside the FLEX pixel, and their values correspond to the sub‑pixel values in S2 or F

E =∑N
i=0

(
pi × log2

(
pi ))

pi =
xi

∑N
i=0 xi

, where xi − pixel value

Emax = Euni f orm ,where pi =
1
N

E
Emax

− heterogeneity
Heterogeneity was quantified using the concept of entropy [64] that measures the average information content. Entropy is maximized when every sub‑pixel within the 300 × 300 m FLEX pixel contains the same value (uniform
probability distribution, no heterogeneity). Thus, within a 300 m pixel, the maximum possible entropy value for 225 20 m sub‑pixels (S2 products) is 7.81 (all pi = 1/225) and for 3600 5 m sub‑pixels it is 11.81 (all pi = 1/3600). For each
pixel at FLEX resolution (SIFλ,300), we calculated the entropy using each dataset SIFλ,5 , S2‑VI20, S2‑BT20, and S2‑R20. We normalized the entropy by the entropy of the uniform distribution (Emax with N = sub‑pixels in a FLEX
pixel). This custom “normalized entropy” function was passed as an additional parameter to the python module rasterstats [77].

Appendix B
Two additional methods were attempted to describe the spatial heterogeneity of a

FLEXpixel butwere unsuccessful in retrieving heterogeneity. Thesemethods are described
below.
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Table A2. Additional methods used but failed to characterize SIF heterogeneity.

Method Name Heterogeneity Definition Predictors Heterogeneity Values

Cluster entropy
Uncovered sub‑pixel information by
aggregating patterns with a similar
distribution.

S2‑VI20
S2‑BT20
S2‑R20

Uncovered sub‑pixel information by
aggregating patterns with a similar

distribution.

A set of spatial patterns were extracted from S2‑VI20, S2‑BT20 and S2‑Rsingle,20 by means of a clustering approach, aggregating patterns with a similar distribution.
Analogously, patterns from SIF at 5 m pixel resolution are also extracted. This allows us to compare the uncovered sub‑pixel information for both co‑registered
datasets.
For this method, 300 × 300 m patches from SIF and S2 data were extracted, and considering that the SIF spatial resolution is 5 m, each patch contains 60 × 60
sub‑pixels or 3600 pixels, whereas for FLEX patches are represented by 15 × 15 or 225 pixels. All the patches containing missing values were discarded, leaving a total
of 110 patches for SIF and 114 patches for S2. Nevertheless, only 104 patches of S2 and SIF overlapped and were used for the comparison. We used the SIF760 and
SIF687 as reference data and the S2 reflectance bands and its derived indices as predictors. A Gaussian mixture model (GMM) clustering algorithm [78] grouped the
300 m patches of Fλ,5 into k = 3 clusters. S2‑VI20, S2‑BT20 and S2‑Rsingle,20 were clustered into k = 4 groups as they showed higher heterogeneity than the patches of Fλ,5.
Since cluster labeling was arbitrary, clusters were relabeled from 1 to 3, allowing for comparing Sentinel‑2 and Fλ,5 groups. The capability of the different S2 predictors
to capture Fλ,5 on FLEX scales (300 m) was evaluated using confusion matrices.

Fuzzy approach
Model fluorescence (SIF760,20 and
SIF687,20) sub‑pixels variance in a 300
× 300 FLEX pixel

S2‑VI20
S2‑BT20
S2‑R20

Fuzzy modelling allows for building flexible weighted maps from several variables [79], which can be used as a predictor of a third variable once combined. It is a
two‑step method where the original variables (VI20 or BT20) are first transformed to the range [0, 1] using different “membership” functions. These are selected
according to their expected or known relationship with the predicted variable (SIFλ in this case). Then, the transformed variables (membership values) can be
combined through various operators [80]. The combined values can then be used as predictors of the variable of interest.
In this work, we applied fuzzy modelling to VI20 and BT20 separately to eventually predict SIFλ . We selected the membership functions so that membership values
positively correlated with SIF (Table A3).
Membership values computed from VI20 or BT20 variables were combined using the fuzzy overlay operator GAMMA since it has been reported to offer a balance
between over and underestimation of fluorescence radiance [80,81].
µ_γ (x) =〖[µ_SUM (x)]〗^γ *〖[µ_PRODUCT (x)]〗^(1 − γ)
Then a linear model was fit using the integrated membership values as a predictor of SIFλ :
(F_λ) � = b_0 + b_1 µ_γ (x)
Fuzzy modelling was applied to 5 and 20 m spatial resolution data, and then these maps were gridded to 300 m pixels. Predicted and observed SIFλ and their
intrapixel variability were assessed.

Table A3. Membership functions selected for each spectral index or vegetation parameter and the
corresponding justifications according to the expected correlation with fluorescence radiance. Here,
x stands for the input variable (predictor), µ for the transformed membership value, m for the mean,
and s for the standard deviation. a and b are scaling factors of the mean and the standard deviation
and were set to 1 in all the cases.

HyPlant Derived VIs Membership Functions Equations Justifications Representing
Traits References

NDVI Fuzzy MS Large µ(x) = 1 − bs
x−am+bs i f

x > am otherwise µ(x) = 0
Positive correlation Greenness Content [82–84]

Chl‑Red edge Red‑edge position [84]

EVI Fuzzy Linear µ(x) =
{ x−min

max−min

}
Weak correlation Biomass [84,85]

MSI Fuzzy MS Small µ(x) = bs
x−am+bs i f

x > am otherwise µ(x) = 1
Negative correlation Canopy water

stress [84,86,87]
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Figure A1. Heterogeneity maps (300 × 300 m) for the standard deviation method: (a) Reference 
SIF687,5; (b) Best predictor NIRv; (c) ScaĴer plot with lowest (red circle) and highest (green circle) Figure A1. Heterogeneity maps (300 × 300 m) for the standard deviation method: (a) Reference

SIF687,5; (b) Best predictor NIRv; (c) Scatter plot with lowest (red circle) and highest (green circle)
heterogeneity pixels highlighted; (d) 5 m pixel with high heterogeneity for SIF687,5; (e) 20 m pixel
with high heterogeneity for NIRv; (f) Scene classification with 15 classes for a pixel with high hetero‑
geneity; (g) 5 m pixel with low heterogeneity for SIF687,5; (h) 20 m pixel with low heterogeneity for
NIRv; (i) Scene classification with 15 classes for a pixel with low heterogeneity.
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