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ABSTRACT
We propose a new probabilistic temporal logic for Markov decision

processes allowing us to reason about finite histories and policies.

We comment on how the logic can express statements important

for a theory of intention revision, show that it possesses the finite

model property, and show that the model checking and satisfiability

problems for the logic are both decidable.

1 INTRODUCTION
Understanding the revision of agents’ intentions is an important

part of the study of rational agents that has received much in-

terest in recent decades [11, 13, 15–17]. Intention revision under

uncertainty has not received the same interest, contrasted with

work done on uncertainty within the closely-related field of belief

revision [7, 8, 12, 18].

Intention revision is studied by [17] within the AGM framework

of belief revision [1], enabling a representation theorem for revision

operators like that of [9]. In order to study intention revision using

similar methods in a setting where actions have uncertain outcomes,

we require an appropriate temporal logic capable of dealing with

the probabilistic setting as a basic framework. Though logics like

Probabilistic Strategy Logic [2] and other probabilistic variations of

CTL [6] are natural contenders, an appropriate logic would ideally

have decidable model checking and satisfiability, which said logics

are not known to both possess.

We propose a new logic called Finite MDP-PCTL* which pos-

sesses these properties, and comment on how it can express state-

ments required for intention revision in the style of [17] under

uncertainty.

2 FINITE MDP-PCTL*
We fix a finite set A of actions and a countable set Prop of proposi-
tional variables. To each action a ∈ A we associate a precondition
prea ∈ Prop and a finite nonempty set Posta ⊆ Prop of possible
postconditions. While we consider pre- and postconditions of ac-

tions to be propositional variables for simplicity, for practical usage

it will make more sense to consider them to be conjunctions of

literals.

We will write f : X ⇀ Y to denote that f is a partial function
from X to Y , and write f (x)↓ to denote that f is defined on input

x ∈ X . Given a set X , some x ∈ X and n ⩾ 1, we write Xn
x for the

set of all sequences in X of length n starting with x , and we write

X⩽nx =
⋃n
k=1 X

k
x .

Definition 2.1 (MDP). A Markov decision process (MDP) is a tuple

M = ⟨S, P ,V ⟩, where S is the set of states, P : S × A ⇀ [0, 1]S is

the partial probabilistic transition function, and V : S → 2
Prop

is the

valuation. We often abbreviate P(s,a) by Ps,a . These are required
to satisfy the following conditions.

(i) For all s ∈ S , there is some a ∈ A such that prea ∈ V (s) (or
by the following condition, equivalently Ps,a↓).

(ii) Ps,a↓ iff prea ∈ V (s).
(iii) Given Ps,a↓, (iii.i) for all t ∈ S such that Ps,a (t) > 0, there is

a unique p ∈ Posta such that p ∈ V (t), and (iii.ii) for all p ∈

Posta there is a unique t such that Ps,a (t) > 0 and p ∈ V (t).

Condition (i) states that MDPs have no deadlocks, and conditions

(ii) and (iii) ensure that pre- and postconditions are meaningful: an

action is executable precisely when the precondition holds, and the

possible outcomes of an action are precisely the postconditions.

Our logic will be built around the notion of a finite policy, telling
the agent how to act for a certain amount of time steps. These allow

us to reason about the probabilities of sequences of states. We limit

ourselves to deterministic policies as they are simple and sufficient

for our goals, though we leave the door open for work considering

nondeterministic or probabilistic policies.

Definition 2.2 (Finite policies). Given an MDP M and n ⩾ 0,

an n-step M-policy is a pair ⟨s,π ⟩ where s ∈ S is referred to as

its initial state (and we say the policy is from s), and π : S⩽ns →

A is a function such that preπ (s1 · · ·sk ) ∈ V (sk ) (or equivalently

P(sk ,π (s1 · · · sk ))↓) for all finite histories s1 · · · sk ∈ S⩽ns (where

s1 = s). A finiteM-policy is an n-stepM-policy for some n ⩾ 0.

We drop theM when the MDP is clear from context. By slight

abuse of notation we usually write π s instead of the pair ⟨s,π ⟩ or
the function π in order to make the initial state explicit. We denote

the unique trivial 0-step policy by ε .
Given an n-step policy π s , its path distribution is the probabil-

ity distribution µsπ over Sn+1s defined by putting µsπ (s1 · · · sn+1) =∏n
i=1 P(si ,π (s1 · · · si ))(si+1).

Our policies are defined with respect to finite state histories. For

practical purposes it can be useful to consider policies that consider

state-action histories as well. Although we do not expand upon this

for simplicity of presentation, we note that all of our work extends

to such policies as well.

In order to define the temporal part of our logic, we need to be

able to shift policies a time step forward, similar to what is usually

done in Strategy Logic [3]. (Note that unlike e.g. [4] our logic is not
stategic and the setting is not adversarial.)



Definition 2.3 (Shifts). Given an n-step policy π s for n ⩾ 1, and

a state t ∈ S , the t-shift of π s is the (n − 1)-step policy (π s )t from t ,
defined as (π s )t (ts1 · · · sk ) = π

s (sts1 · · · sk ). We will write π st for
brevity.

Intuitively, the t-shift of a policy is the result of shifting forward

one step in time to a state t .

Definition 2.4 (Syntax). The language of Finite MDP-PCTL* is

inductively defined by the grammar

φ F ⊥ | x | doa | φ ∧ φ | ¬φ | ^n▷◁rΦ
n+1,

Φ1 F φ, Φn+1 F φ | Φn+1 ∧ Φn+1 | ¬Φn+1 | XΦn ,

where x ∈ Prop, a ∈ A ,n ⩾ 1, r ∈ Q∩[0, 1], and ▷◁ ∈ {<, ⩽,=, ⩾, >
}. Formulas φ are referred to as state formulas, and formulas Φn are

referred to as n-path formulas (or more generally, path formulas).

The doa -proposition should be read as “the agent will now exe-

cute a” and ^n▷◁rΦ as “the agent can act in the next n steps in such

a way that Φ will hold with probability ▷◁ r”.

Definition 2.5 (Semantics). Given an MDP M, the semantics of
Finite MDP-PCTL* is defined via simultaneous induction over state

and path formulas as follows. For state formulas, it is defined w.r.t

finite policies π s as

π s |= ⊥ never, π s |= x iff x ∈ V (s),

π s |= doa iff π , ε and π (s) = a,

π s |= ^n▷◁rΦ iff µsρ ({s ∈ Sn+1s | s, ρs |= Φ}) ▷◁ r

for some n-step policy ρs ,

with the semantics of Booleans defined as is standard. For path

formulas, the semantics is defined w.r.t. nonempty finite sequences

s = s1 · · · sn of states and (n − 1)-step policies π from s1 as

s,π s1 |= φ iff π s1 |= φ, s,π s1 |= XΦ iff sX,π s1s2 |= Φ,

where sX = s2 · · · sn . The semantics of Booleans is defined as is

standard.

Note that we could also define the semantics of ^ by quantifying

over policies that either restrict or extend the current policy. This

intuitively corresponds to the agent being strongly committed to

his intentions; see [10] for a discussion of commitment strategies.

We now comment on basic applications of the logic to intention

revision. Following discussions by [13, 17] who argue for inten-

tions as pairs ⟨a,n⟩ of an action a and a time step n at which the

agent intends to execute the action, we can define, given a set I
of intentions and a ‘confidence value’ 0 < θ ⩽ 1, the formula

execI,θ = ^
nmax

⩾θ
∧

⟨a,n ⟩∈I X
ndoa (where nmax = max⟨a,n ⟩∈I n),

denoting the agent’s belief (with confidence θ ) that he can execute

I . The logic’s time being finite in the future also facilitates AGM

revision without compactness [17].

Using execI,θ , we can relax the approach of [17] in regard to

‘coherence’ w.r.t. an agent’s beliefs, which is a condition that is

required for rational agents to adopt intentions. We can define the

coherence of I with respect to a set Σ of formulas (representing the

agent’s beliefs) as the satisfiability of Σ ∪ {execI,θ }. This satisfies a
variant of ‘opportunistic planning’, with agents needing to consider

it to be sufficiently likely that actions’ preconditions will hold in

order to adopt intentions. It also avoids the so-called ‘Little Nell

Problem’ [14], since execI,θ only entails that the agent can act in a

way that makes the preconditions of intentions likely.

Now we show the decidability of the logic, which is important to

be able to e.g. determine coherence of intentions as just described.

Decidable model checking is trivial, even with our (bounded) mem-

oryful policies (unlike the logic of [2]).

Proposition 2.6. Determining for a given MDP, finite policy π s ,
and state formula φ whether π s |= φ, is decidable.

To prove that satisfiability is decidable, we require that we can

bound MDP and policy size based on the formula.

Definition 2.7 (Policy depth). The policy depth of a state formula

is inductively defined by putting pd(φ) = 1 if φ is atomic, pd(φ ∧

ψ ) = max{pd(φ), pd(ψ )}, pd(¬φ) = pd(φ), and pd(^n▷◁rΦ) = n +
max{pd(φ) | φ appears in Φ}.

Observing that by definition all distributions in MDPs are finitely

supported, the following is easily verified using standard unraveling

techniques from modal logic.

Proposition 2.8. If a state formula φ is satisfiable, then it is also
satisfiable in an MDP with at most as many states as a tree with
depth pd(φ) and branching factor

∑
a∈A |Posta |, at a policy of at

most pd(φ) steps.

Theorem 2.9 (Satisfiability). Determining given a state formula
φ whether there exists an MDP and finite policy π s such that π s |= φ,
is decidable.

Proof sketch. We describe a decision procedure. Using the

bound on the state count from Proposition 2.8 (which we refer

to as y), we iterate over all sets S of size at most y (and write

S = {s1, . . . , sy }), and over valuations V on S considering only the

variables appearing in φ (plus all preconditions). We require that

for all si there is some a such that prea ∈ V (si ). Given S and V , we

now show that we can define some P such that π s |= φ for some

policy π s of at most pd(φ) steps in ⟨S, P ,V ⟩, iff some first-order

logic (FOL) sentence αφ holds in the theory of real closed fields

(RCF). We refer to [5] for those unfamiliar with RCF. Using the

well-known decidability of RCF, we then get a decision procedure.

We encode P through variables pi, j,a for 1 ⩽ i, j ⩽ y and a ∈

A , denoting Psi ,a (sj ) if that is defined, with pi, j,a = 0 otherwise.

Writing p for the sequence of all these variables, we consider a FOL

formula β(p) that holds in RCF iff the P encoded by p is well-defined
(following the conditions of Definition 2.1).

Next, we consider for every 1 ⩽ n ⩽ pd(φ), si , X ⊆ Sn+1si , n-step
π si , ▷◁ and r ∈ Q∩[0, 1], a FOL formulaγi,X ,π , ▷◁,r (p) such that β(p)
and γi,X ,π , ▷◁,r (p) hold in RCF iff µsiπ (X ) ▷◁ r in the MDP encoded

by p. Note that µsiπ (X ) ▷◁ r is an inequality with a sum of products,

expressible in RCF.

We then define FOL formulas δψ ,i,π , κΦ,w,π , and λΦ,i,n,π ,X ,

respectively expressing “π si |= ψ ”, “πw1 ,w |= Φ”, and “X is the set

of all w ∈ Sn+1si such that π si ,w |= Φ”. The definitions of these are
simple, and almost directly follow the semantics of our logic, with

e.g. (i) δ^n▷◁rΦ,i,π =
∨
n-step ρsi

∧
X ⊆Sn+1si

λΦ,i,n,ρ,X → γi,X ,ρ, ▷◁,r ,

(ii) κXΦ,w,π = κΦ,wX,πw1
w
2 , and (iii) λΦ,i,n,π ,X =

∧
w∈X κΦ,w,π ∧

¬
∨

w∈Sn+1si \X κΦ,w,π .

Finally, we put αφ =
∨
n⩽pd(φ)

∨
n-step π si ∃p

(
β(p) ∧ δφ,i,π (p)

)
,

completing the proof. □
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