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Tipping elements are nonlinear subsystems of the Earth system that can poten-4

tially abruptly and irreversibly shift if environmental change occurs. Among5

these tipping elements is the Amazon rainforest, which is threatened by an-6

thropogenic activities and increasingly frequent droughts. Here, we assess how7

extreme deviations from climatological rainfall regimes may cause local forest-8

savanna transitions that cascade through the coupled forest-climate system.9

We develop a dynamical network model to uncover the role of atmospheric10

moisture recycling in such tipping cascades. We account for the heterogeneity11

in critical thresholds of the forest caused by adaptation to local climatic con-12

ditions. Our results reveal that, despite this adaptation, increased dry-season13

intensity may trigger tipping events particularly in the southeastern Amazon.14

Moisture recycling is responsible for one-fourth of the tipping events. If the15

rate of climate change exceeds the adaptive capacity of some parts of the for-16

est, secondary effects through moisture recycling may exceed this capacity in17

other regions, increasing the overall risk of tipping across the Amazon rain-18

forest.19
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The Amazon rainforest is the most biodiverse terrestrial ecosystem and plays a fundamental role20

in regulating the global climate1,2,3. However, human-induced impacts and climatic extremes21

are increasingly threatening the forest’s integrity and the services it provides4,5,6. Furthermore,22

changes might not be gradual, but could be rather abrupt due to nonlinear interactions, as sug-23

gested by simulation studies7,8, data-based approaches9,10, conceptual models11,12 and long-24

term experiments13. Parts of the Amazon rainforest may be bistable, meaning that they could25

tip to an alternative state of low tree cover9,10. Indeed, the Amazon has been suggested to be26

a tipping element in the Earth system14 and might be at risk of approaching or exceeding its27

tipping point4,15,16. This tipping point can be crossed when the conditions become too dry. Po-28

tentially, this could occur due to declining average precipitation levels or with increasing dry29

spells and severity of extreme droughts17,18,19,20. Changes in precipitation regimes are already30

occurring over southern Amazonian regions where the length of the dry season has been in-31

creasing by 1 month since the middle of the 1970’s19,21. A lengthening and strengthening of32

the dry season in southern Amazonia has also been confirmed by other model studies from33

CMIP5 simulations as well as empirical precipitation models22,23. In regions where dry periods34

last longer than four months, this would severely impact vital functions of the Amazon rainfor-35

est4,22.36

37

The Amazon is not a uniform forest as trees can adapt to local climatic conditions, for in-38

stance through variable rooting strategies24,25. This can lead to different absolute forest mortal-39

ity thresholds with respect to precipitation and drought conditions on local to regional scales.40

Forest adaptation can therefore ensure that plants will operate close to their physiological max-41

imum, but this creates vulnerabilities when the climate changes faster than the ecosystem can42

respond to26. In case of this inadequate response, regional climatic changes can be accelerated43

by the forest itself, because trees contribute to precipitation regionally.44
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45

Trees recycle part of the precipitated moisture through continental moisture recycling27,28. They46

do so by extracting water from deeper soil levels and releasing it through their leaves (transpi-47

ration) and by directly re-evaporating precipitation from their leaves (interception evaporation).48

The total amount of moisture recycling accounts for up to half of the precipitation over the49

Amazon basin and moisture is recycled up to six times28,29,30,31. Thus, the rainforest depends on50

itself, and precipitation and evapotranspiration cycles promote cascading forest growth29. The51

positive interplay between the forest and regional precipitation implies that local perturbations52

can propagate through the system via reduced moisture recycling. In other words, the Amazon53

rainforest can be considered a network of local tipping elements that are connected via moisture54

recycling.55

56

The loss of the moisture flows among different parts of the Amazon as a result of state transi-57

tions can increase vulnerabilities remotely and exacerbate tipping events since the forest would58

then no longer be adapted to the prevailing conditions32,33. Recent severe droughts such as in59

2005 and 2010 already impacted the rainforest34,35, but without causing major state transitions60

of vegetation cover. While the rainforest might be able to withstand incidental droughts, the61

adaptations may become insufficient when such droughts become the new climate normal. In-62

deed, it has been projected that the major drought event of 2005 might occur more frequently,63

up to nine out of ten years by 206036,37. By reconstructing the dynamical moisture recycling64

networks from the recent past, we can study how climate change may exceed the adaptation65

capacity of the forest and subsequently trigger tipping points that cascade through the Amazon66

rainforest system.67

68

Here, we integrate for the first time in a dynamical network model the tipping behaviour of69
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the Amazon forest, atmospheric moisture flows from evapotranspiration to precipitation and the70

adaptation of the forest to annual precipitation and droughts (Fig. 1). Specifically, we combine71

a dynamical system model to represent empirically obtained forest tipping points with regard to72

mean annual precipitation (MAP) and drought intensity (MCWD: Maximum Cumulative Water73

Deficit). We assume that the forest is adapted to its local values of MAP and MCWD over74

30 years. To account for possible spatial variability in the adaptation levels, we construct an75

ensemble of size 100 for each investigated year. We construct this moisture recycling network76

using output from Lagrangian atmospheric moisture tracking simulations and a global hydro-77

logical model (see methods)29,30,38.78

79

We simulate a range of different future conditions, imposing average climatic conditions that80

resemble the conditions observed in each year from 2004 to 2014, during which the Amazon81

experienced two “droughts of a century” (2005 & 2010)39. We analyse Amazon rainforest cells82

as local-scale tipping elements of the moisture recycling network on a resolution of 1˝x1˝ to83

assess their impact on the Amazon-wide system stability. Using this approach, we provide a84

bottom-up quantification of Amazon system stability, aiming to reveal where cascading effects85

of moisture recycling have the potential to induce domino effects in forest cover loss.86

87

Results88

Tipping due to drier conditions. To investigate a range of drought intensities and precipitation89

anomalies, we study the extent of the tipped area with respect to Z-scores, which represent how90

many standard deviations the conditions are away from the mean across 1974-2003. We find91

a close correlation between ZMCWD and the tipped area, where a higher index reflects a larger92

tipped area (see Fig. 2a). The years 2005, 2007 and 2010, which are the years with the largest93

ENSO ONI indices40, show the largest tipped area. Overall, we find that the number of tipped94
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Figure 1 | Nonlinear effects and moisture recycling network in the Amazon rainforest. a,

Dynamical property of each 1˝x1˝ cell of the rainforest depicted as state of rainforest cell (forest

cover) versus MAP value. The state of the rainforest is limited by full forest cover (1.0) and

no forest cover (-1.0). Between these two stable states, there is a tipping process as soon as

the MAP value has fallen below its adaptation specific MAPcrit value. Since we are focussing

on drought triggered tipping events from forest to non-forest states in this study, each cell can

only exist on the occupied states (brown), but not on the unoccupied states (grey). The blue

arrow depicts a potential reduction in precipitation that is sufficient to trigger a tipping event

in this specific cell. b, Same as in a for MCWD. c, Exemplary moisture recycling network:

the rainforest cells are interconnected via a moisture recycling network due to precipitation and

evapotranspiration. Through this mechanism effects of reduced tree cover can be promoted and

tipping cascades are possible. d, Moisture recycling network for the hydrological year 2014

thresholded for links above 10 mm/yr to remain visibility. In the simulation results, links above

1 mm/yr are used. The dominant flow direction comes from the Atlantic ocean through easterly

winds, reaches the Andes, and is then bend southward along the Andes. Moisture recycling

links based on separate months can be found in Supplementary Figs. 1 and 2 comparing the

year 2014 with the extreme drought year 2010.
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cells is significantly higher for the years 2005 and 2010 than for the other years (see Fig. 2a).95

Both droughts have been termed a “once in a century drought”41. 2010 shows the highest vul-96

nerability pattern, despite a lower ZMCWD index than for 2005. The reason might be that the97

2010 drought was spatially more extensive than the one in 2005. In 2010, 3.0ˆ106 km2 ver-98

sus 1.9ˆ106 km2 in 2005 showed rainfall anomalies of one standard deviation less than during99

the decadal climatological mean35. From a tipping point of view, 2010 causes the highest vul-100

nerabilities, whereas 2005 is the most extreme year from a rainfall (from oceanic background)101

perspective within our study period29. This suggests that the drought anomaly pattern is more102

important for the stability of the rainforest than the extremity of moisture inflow itself.103

104

We separate tipping events into primarily induced tipping events from MAP or MCWD and105

secondary events from network effects (tipping cascades). Our model shows that between 10%106

and 60% of the tipping is due to the cascading effects from the moisture recycling network107

depending on the drought strength (see network effects in Fig. 2b). The cascading effect is108

especially strong for the years that show the strongest drought signatures (2005, 2007 & 2010).109

This is probably due to the fact that many cells are shifted towards their tipping point and some110

of them over it. Then, in succession of this tipping and the subsequent further reduction of the111

moisture transport, many more cells in these years transgress their calculated threshold. In turn,112

if droughts intensify in the future, cascading tipping may increase disproportionally.113

114

We also compared these results with the results of an only MAP-based normalised drought in-115

dex ZMAP analogous to Eq. 2, but find no correlation between the tipped area and the MAP116

based index (see Supplementary Fig. 3).117

118

Vulnerability maps. Over the course of the evaluated time span from 2004´2014, one region119
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Figure 2 | Vulnerability of the rainforest against MCWD-based drought intensity. a, The

total tipped area is shown over the course of the normalised drought index based on the MCWD

Z-score. The tipped area represents the number of tipped cells in the model where each 1˝x1˝

cell has an area of approximately
`

111 km2
˘

. b, The additional tipped area due to network

effects for each year is shown in percentage of the tipped area in panel a. This shows the effects

of cascading transitions which are on the order of 10% to 60% depending on the evaluated

hydrological year. The same analysis has been performed for a MAP based index, but no

correlation was found (see Supplementary Fig. 3).
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shows increased patterns of vulnerability (see likelihood of vulnerability in Fig. 3a). This region120

is located in the southeastern Amazon, and caused by the combination of MCWD anomalies121

and network effects. As expected from Fig 2, the likelihood of the vulnerability patterns varies122

strongly from year to year (see Supplementary Fig. 4), but the vulnerable region in the southeast123

is a recurrent phenomenon across all years.124

We investigate the vulnerable regions in detail since, in our model, small changes in the state125

already have an impact on the moisture recycling network, even though the respective cell126

does not tip. This can be realised if the environmental conditions shift a rainforest cell in our127

model close, but not over, its tipping point. Therefore, we define a shift towards the tipping128

point without an actual tipping event as the closeness to tipping. We find that this closeness to129

tipping is high in the southeast of the Amazon basin and in the subsequent dominant downwind130

direction towards the Andes. The largest average shifts towards the tipping point are located131

around and close to the most endangered region in the southeast (see Fig. 3). The reason is that132

these cells are already tipped in most cases and do not contribute to the average closeness to133

tipping (see Fig. 4a), but that is expressed by the high variability among the ensemble members134

(see southeastern region in Fig. 4b).135

Although tipping points are thresholds by definition, the effects on the Amazon forest-rainfall136

system already occur before MCWD or MAP reaches that point. Droughts, even if these do137

not cause tipping of the forest, can have significant impacts on photosynthesis and evapotran-138

spiration that may last for years42,43. A threshold-only model cannot account for these effects.139

In our model, however, evapotranspiration scales with distance to the tipping point. In other140

words, when a forest becomes drier it generates less evapotranspiration, an effect that may cas-141

cade through the system. Thus, even though our approach is conceptual, it allows us to identify142

which areas are most vulnerable to the invisible effect of the moisture recycling network. The143

magnitude of this effect is on the order of 20% for many regions apart from the central Amazon144
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Figure 3 | Vulnerable regions and tipping reason. a, The likelihood of tipping as an average

over all ensemble members and all evaluated years from the hydrological years 2004 to 2014.

The southeastern region is more vulnerable than other regions. In Supplementary Fig. 4, the

yearly resolution results? can be found. b, Overall tipping reason averaged over the entire

Amazon basin with error bars as the standard deviation over all years and all 100 ensemble

members. A version separated into the future drought conditions from 2004 to 2014 can be

found in Supplementary Fig. 5 for all these potential future drought scenarios. MAP does not

contribute to tipping events (probability is less than 0.1%) and is thus omitted from this figure.

c, Tipping reason map: MCWD, d, Tipping reason map: Network (Cascading effects of the

moisture recycling network). Note that panel a is the sum of the panels c and d.
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and a small region in the very south of the Amazon. This represents an average evapotranspira-145

tion decrease of approximately 10% due to a shift towards the tipping point in the southeastern146

Amazon region (see Fig. 4a).147

148

a

0

10

20

30

40

50

60

70

80

90

100

C
lo

s
e
n
e
s
s
 t

o
 t

ip
p
in

g
 (

%
)

0

5

10

15

20

25

30

35

40

R
e
d
u
c
ti

o
n
 o

f 
e
v
a
p
o
tr

a
n
s
p
ir

a
ti

o
n
 (

%
) b

0

5

10

15

20

25

30

35

40

45

50

(C
lo

s
e
n
e
s
s
 t

o
 t

ip
p
in

g
) 

(%
)

0

5

10

15

20

(R
e
d
. 
o
f 

e
v
a
p
o
tr

a
n
s
p
ir

a
ti

o
n
) 

(%
)

Figure 4 | Average shift towards the tipping point (Closeness to tipping). a, Mean shift to

the tipping point as an average over all ensemble members. It can be seen that the shift is larger

southern part of the Amazon rainforest such that these regions are the most vulnerable ones. b,

Standard deviation of a over all ensemble members. Note that cells are only accounted for if

and only if the cell is not in the tipped regime in the respective simulation run. A second colour

bar indicates the reduction of evapotranspiration due to changes in the state on average (panel

a) together with its standard deviation (panel b). A version separated into the future conditions

from 2004-2014 can be found in Supplementary Fig. 6.

The tipping reason and cascading effects. We reveal that, over the whole set of drought condi-149

tions, the direct effect of MCWD-induced tipping is prevalent (76.3˘8.5%) over the 23.6˘8.5%150

that are due to cascading failure (see Fig. 3b). Moreover, transitions of the forest due to MAP as151

a primary reason are nearly completely negligible, they are responsible for less than 0.1% of all152

tipping events. On the other hand, the effect of cascading failure is considerably affecting the153

Amazon of up to a one-fourth of cells that tip additionally, on average, with large spread from154

year to year over the study period (see Supplementary Fig. 5).155

The network effects are especially strong close to the region of direct MCWD-induced tipping156
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and downwind from that (Fig. 3c, d). MCWD is the most important reason for tipping events157

in the southeast, whereas MAP is not responsible for many tipping events (see Fig. 3a, b).158

Overall, the region in the southeast is vulnerable with respect to MCWD since this region has159

a relatively low interannual variability (standard deviation) of MCWD, while the intra-annual160

variability (mean) MCWD value is high (see Supplementary Fig. 7c, d).161

162

Discussion163

We estimate that tipping cascades may be responsible for around a one-fourth (23.6˘8.5%) of164

the tipping events in the Amazon rainforest following droughts. These cascades occur even165

when the forest is adapted to local climatic conditions. The reason is that drying is amplified166

by the moisture losses that result from such tipping. Loss of forest cover causes a reduction167

in evapotranspiration, which affects precipitation levels regionally. By constructing a dynami-168

cal network of forest cells connected by forest-induced moisture flows estimated from detailed169

atmospheric moisture flow simulations, we reveal how and where the Amazon is vulnerable170

to tipping cascade effects. Tipping due to fluctuating dry-season intensity (as measured by171

MCWD) is the dominant primary tipping reason (76.3˘8.5%) compared to fluctuations in an-172

nual rainfall. With a potential increase of future extreme drought events36,37,44, the average173

regional climate will be drier and some parts of the rainforest might thus be set under imminent174

risk of instability and could transgress into a less or non forest-covered state. We uncover that175

tipping events occur most frequently in southeastern Amazon (Fig. 3). This is also the region176

that is affected by three other factors. First, extended tipping cascades can be expected due to177

local interaction structures and reduced downwind moisture transport (Figs. 3 and 4). Second, it178

is also one of the regions located along the “arc of deforestation” and therefore already suffers179

from the pressure of human-induced activities, such as deforestation, ranching and extensive180

agriculture45,46. And third, this region as well as the whole Amazon rainforest is threatened by181

12



road infrastructure projects47,48,49 and lack of environmental policies50,51.182

183

In our study, we also find that potential future extreme drought conditions with a higher MCWD184

anomalies show a considerably larger tipped area. Cascading tipping events are more pro-185

nounced under these circumstances (Fig. 2). These are the drought conditions that can be186

expected from mid-century onwards if climate change progresses in a business-as-usual sce-187

nario37. The highest tipping signal in our model coincides with the strongest El-Niño ONI188

indices during the period 2004-201441. It is known from the literature that El-Niño related189

droughts and other variability patterns affect the stability of the rainforest and tropical vegeta-190

tion18,52,53. If the anomalies associated El-Niño events intensify as projected by CMIP (Coupled191

Model Intercomparison Project) simulations and perturbed physics models54,55,56, this would192

endanger substantial portions of the Amazon basin57. However, uncertainties remain whether193

strong El-Niño events might become more frequent in the future climate58.194

195

Further human-induced changes such as deforestation also affect the evapotranspiration nega-196

tively which might then increase the frequency and severity of droughts together with ongo-197

ing climate change30,33,59,60. Overall, our results emphasise the relevance of the atmospheric198

moisture recycling network as an ecosystem service whose (partial) breakdown, combined with199

an increased number of climate-change induced extreme droughts, could trigger substantial200

changes across the Amazon basin.201

Furthermore, moisture export supplies systems that are thousands of kilometres away, implying202

that forest-induced moisture export is an ecological service for regions beyond the Amazon203

rainforest itself. Altogether, preserving the Amazon and its ecological services are of utmost204

importance for local, regional and global climate stability.205
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Methods206

Data. The network was constructed using atmospheric moisture tracking simulations by Staal et207

al. (2018)29. In that study, tree transpiration across South America during 2003-2014 was esti-208

mated and its atmospheric trajectories subsequently simulated using a Lagrangian atmospheric209

moisture tracking model with simulation time steps of 0.25 hours. The model output is on a210

monthly basis on 0.25˝ resolution. Here, we reconstructed those simulation results by taking211

the moisture recycling ratios between 0.25˝ grid cells, building monthly networks of moisture212

flows between each pair of cells of a certain resolution for the Amazon region and aggregat-213

ing them to 1˝ ˆ 1˝ grid cells. In addition to tree transpiration, we also included interception214

evaporation from tree canopies, taken from Staal et al. (2020)30. We thus obtained temporally215

varying monthly networks of forest-induced moisture flows across the Amazon. For details on216

the Lagrangian moisture tracking scheme, we refer to Staal et al. (2018)29.217

Monthly precipitation and evapotranspiration data for 2003-2014 on 0.25˝ resolution were taken218

from the Global Land Data Assimilation System (GLDAS) version 2.161. For 1974-2003 we219

used GLDAS2.0 since GLDAS2.1 data does not go back until 1974.220

Note that all our simulations are based on hydrological years instead of calendar years due to221

the hydrological cycle over the Amazon basin.222

223

Computation of MAP and MCWD. The mean annual precipitation (MAP) is derived from the224

monthly precipitation values for each cell. The MCWD index is here defined as the absolute225

value of the most negative value of cumulative water deficit (CWD) reached over a hydrological226

year227

14



CWDk “ CWDk´1 ` Precipitationk ´ Evaporationk

max pCWDkq “ 0

MCWD “ abs pmin tCWDk,CWDk`1, ...,CWDk`12uq ,

(1)

where k is the number of the month in the hydrological year. We make use of the actual mea-228

sured regional evaporation values, whereas other studies have chosen a fixed evaporation value229

of 100 mm in each month to compute MCWD5,35. We also resimulated all results with a fixed230

evaporation of 100 mm/month and find that this leads to a decreased tipping due to MCWD.231

Thus, the southeastern region is less vulnerable to tipping, but the qualitative results are in232

agreement (see Supplementary Figs. 10d and 12.).233

234

Computation of the Z-score The Z-score is used to find the ranges of future conditions that we235

are simulating in this work. We simulate ranges from current conditions up to extreme droughts236

that are 3.5 standard deviations away from the mean (see Fig. 2). The MCWD based Z-score is237

computed by238

ZMCWD “
MCWDpyearq ´ µMCWD

σMCWD

. (2)

Here, µMCWD and σMCWD are the average and standard deviation of the calibration period from239

1974-2003. MCWDpyearq is the average MCWD of the specific investigated year (see methods:240

Computation of MAP and MCWD). For comparison, the Z-score based on MAP is computed241

(see Eq. 3) and plotted for comparison, but there is no relationship between tipped area and a242

higher MAP based score visible (see Supplementary Fig. 3):243

ZMAP “
MAPpyearq ´ µMAP

σMAP

. (3)

244

245
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Adaptation and computation of critical thresholds. For the purpose of computing local adap-246

tation values, we use a calibration dataset from GLDAS from the hydrological years 1974 to247

2003. From there, we compute the 30-year long term mean of MAP and MCWD values to-248

gether with their standard deviations (see Supplementary Fig. 7). The critical value for MAP249

and MCWD where a state transition occurs is then computed for each grid cell i as250

MAPcrit,i “ µMAP,i ´ αi ¨ σMAP,i

MCWDcrit,i “ µMCWD,i ` αi ¨ σMCWD,i.
(4)

µi is the mean, σi the standard deviation of cell i and αi an adaptation factor that determines the251

exact value of the tipping point.252

This procedure leads to the effect that regions with a high MAP as for instance in the central253

Amazon region can only be sustained at higher MAP values compared to other, typically drier254

regions as for instance in the south of the Amazon basin or close to the Andes region. The same255

arguments are valid for MCWD, with regional differences to MAP. Furthermore, higher vari-256

ability, i.e., a higher standard deviation, in a region leads to higher adaptation percentage wise257

(training effect). In contrast to potential landscape methods as used in earlier studies17,32, this258

procedure has the advantage that it is able to specifically assess sustained periods of changing259

MAP and MCWD conditions on a local scale.260

261

Dependence on adaption values. With our setting, we can now compute what would happen262

under sustained conditions that resembles the yearly conditions observed in a particular hy-263

drological year of our study period from 2004 to 2014. In our experiments, we assume that264

each cell starts with full forest cover (state = 1.0) at t “ 0. If we are taking, for instance the265

precipitation, evaporation and moisture recycling network of a certain year, then we will find266

some cells that are unstable since their MAP or, mostly, their MCWD value is below the critical267

value which is defined with the timeseries from 1974-2003 (see Supplementary Fig. 8). If this268
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is the case, this cell transgresses its threshold and becomes forest cover free which then leads269

to reduced moisture recycling since the moisture transport value is multiplied by the fraction270

of forest cover. This means that the moisture transport value is set to zero when a forested cell271

tipped. This can then drive further cells towards or across their tipping point such that cas-272

cading events can be expected. In case a cell is only driven towards, but not over its tipping273

point, the effects on moisture recycling and tree cover are still accounted for assuming that the274

response of the vegetation is linearly represented by the state, instead of this effect being zero275

as in threshold-only models32.276

The critical values depend on the level of local adaptation αi (see Eq. 4). Thus, it can be ex-277

pected that a higher adaptation factor leads to a lower number of tipped rainforest cells. In278

a calibration experiment for adaptation factors between 1.0 and 3.0 standard deviations and a279

constant adaptation factor for all cells i (αi “ α @i), we find that the tipped area indeed goes280

down with increased adaptation factors (see Supplementary Fig. 9). The difference between281

experiments where we allow cascading effect (blue) and do not (red) is shown in green. In282

reality, the true value of adaptation of a certain cell is unknown and might vary from location283

to location. That is why a new ensemble of simulations with increased robustness is required284

and the constant adaptation factor hypothesis (α “ αi @i) is dropped in favour of an ensemble285

approach where αi is varied locally. Thus, we create an ensemble of 100 members for each year286

in the study period.287

288

Construction of ensemble. Eq. 4 determines the critical values for MAP and MCWD for each289

1˝x1˝ cell separately. The critical value is dependent on the local average value as well as the290

variability of the 30 years before the study period (GLDAS data from 1974-2003). The exact291

critical value is determined by the adaptation factor α and must in turn be chosen appropriately.292

Therefore, we assume that a cell is on average able to remain in the same state under MAP293
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and MCWD conditions that are two standard deviations away from their mean, i.e., from their294

“experiences” during the last 30 years. However, the exact value of adaptation is uncertain and295

might be different in different regions, also due to several factors that we do not model explicitly296

in this work. But we take this into account by drawing the individual adaptation values αi for297

each cell i from a β-distribution that is centred at 2 standard deviations and ranges from 1 to 3298

standard deviations299

β px, a, bq “ pσupper ´ σlowerq ¨
xa´1p1 ´ xqb´1

ż

1

0

ta´1pt ´ 1qb´1dt

` σlower. (5)

Here, we use σupper “ 3.0 and σlower “ 1.0 for the upper and lower bounds. We choose300

a “ b “ 2.5 which ensures that, on average, 75% of all values lie between 1.5 to 2.5 stan-301

dard deviations and 12.5% lie between 1.0 to 1.5 or between 2.5 to 3.0 standard deviations,302

respectively. This means that 75% lie in the central interval and 25% outside (75-25-rule). We303

have chosen a β-distribution since it is the analogy of a normal distribution for a fixed interval.304

With that procedure we construct an ensemble of 100 members of which three examples can be305

found in Supplementary Fig. 10. If not stated otherwise, all results shown are from the average306

over the 100 ensemble members.307

308

Network of coupled nonlinear differential equations. We use a combination of nonlinear309

differential equations together with a complex network to describe the state of the rainforest310

cells and their interactions. We use this approach instead of a threshold approach since we311

want to be able to account for partial changes in the state and their effects on the network.312

For instance such changes can be critical for the tipping of cells that are not coupled directly,313

but via an intermediary cell, where partial changes are decisive for the emergence of a tipping314

cascade. Indirect effects have been found to account for 10% and more, already in very simple315

interaction structures in so called motifs62.316

18



In the differential equation approach in this work, we model the main hydrological parameters317

and the stability of the rainforest, but no further parameters such as biotic variables. The main318

hydrological properties are the precipitation (MAP), the MCWD and the moisture recycling.319

Following the reasoning above, we describe the mathematical details in the remainder of this320

section.321

322

Each 1˝x1˝ cell is represented by a differential equation of the form323

dxi

dt
“ x3

i ´ xi ` Fcrit pMAPi,MCWDiq , (6)

where xi stands for the state of the rainforest cell and can be interpreted as the fraction of the tree324

cover. The shape of this function can be see in Supplementary Fig. 11. Furthermore, Eq. 6 has325

the normal form of a saddle-node bifurcation and is a simple form of a differential equation with326

two stable states. Such equations have been suggested to model dynamics in various contexts327

such as economics, ecology or the Earth system63,64,65. The two states are stable depending on328

the value of the critical function Fcrit where +1.0 stands for full tree cover and ´1.0 for the329

alternative state without full tree cover. Such an alternative state could be a savanna like state330

or completely treeless. It is not possible for a cell to have lower tree cover values than 0% or331

values higher than full forest cover such that the state xi is limited to the interval r´1.0, 1.0s.332

The advantage of choosing state limits of ´1.0 and `1.0 is that the critical value then remains333

analytically representable and has the specific value Ccrit “
a

4{27 (see Supplementary Fig. 11).334

This value is derived from the discriminant of the polynomial of Eq. 6 and more details can be335

found in literature64,66. For other state limits such as between 0.0 and 1.0, this would have336

to be dropped since the parameters in front of the cubic and linear terms of Eq. 6 would be337

different. Therefore, we decided for prefactors of 1.0 in front of the cubic and the linear term338

such that the state limits are ´1.0 and `1.0. As soon as the critical value of Ccrit is reached339

19



by Fcrit a state transition will occur since the upper stable state becomes unstable and only the340

lower stable state remains stable. For more details on this equation and the critical value, see341

e.g. Wunderling et al. (2020) or Klose et el. (2020)62,64.342

In our case, the rainforest cells are not independent, but interact via moisture recycling such that343

Eq. 6 becomes344

dxi

dt
“ x3

i ´ xi ` Fcrit pMAPi,MCWDiq `
N
ÿ

j“1

j‰i

Mji p∆MAPji,∆MCWDjiq
xj

2
. (7)

Here, the entries of the critical matrix Mji p∆MAPji,∆MCWDjiq represent the strength of the345

moisture recycling link between two grid cells from j to i. The state xj must be divided by346

2 since the distance from minimum to maximum state is 2. Similar forms of the network and347

the differential equation have already been used in earlier studies in the literature, but in a way348

more simplified form compared to this work62,38.349

350

Computation of the critical function. While the shape of each cell is represented by Eq. 6, the351

determination of the critical function with respect to MAP and MCWD remains. The critical352

function Fcrit pMAPi,MCWDiq is computed in two steps. Firstly, for MAP353

Fcrit pMAPiq “ Ccrit ¨
MAPi ´ µMAP,i

MAPcrit,i ´ µMAP,i

, (8)

where µMAP,i is the average value of that specific cell over the course of 30 years from the354

GLDAS calibration dataset (see Supplemenentary Figs. 6 and 7). The critical value MAPcrit,i is355

also computed from this dataset using Eq. 4. MAPi is the actual precipitation value in the cell356

within the evaluation period, for instance the value of the year 2010 in this cell for the case that357

the (drought) conditions of the year 2010 are investigated. Secondly, for MCWD358

Fcrit pMCWDiq “ Ccrit ¨
MCWDi ´ µMCWD,i

MCWDcrit,i ´ µMCWD,i

. (9)
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Although both equations (Eqs. 8 and 9) are in principle not limited, we restrict them to the359

interval r0, Ccrits since the critical value for tipping of Eq. 6 is reached at Ccrit such that higher360

values are not necessary to tip a certain cell.361

Then, the critical function Fcrit pMAPi,MCWDiq is computed as362

Fcrit pMAPi,MCWDiq “ max tFcrit pMAPiq ,Fcrit pMCWDiqu `

`

ˆ

1 ´
max tFcrit pMAPiq ,Fcrit pMCWDiqu

Ccrit

˙

¨ min tFcrit pMAPiq ,Fcrit pMCWDiqu .
(10)

Again, the values of Eq. 10 are restricted to the interval r0, Ccrits since a state change occurs as363

soon as the upper value of the interval, i.e. Ccrit, is reached. The first term of Eq. 10 is sufficient364

to determine the critical function Fcrit pMAPi,MCWDiq if Fcrit pMAPiq or Fcrit pMCWDiq are365

smaller than zero or larger than Ccrit. In case Fcrit pMAPiq and Fcrit pMCWDiq are larger than366

zero, but smaller than Ccrit, both terms of Eq. 10 are required. The second term takes the addi-367

tional effect of the smaller of the two factors (from Eqs. 8 and 9) into account such that this is368

represented in the dynamics of Eq. 10. Then, partial state changes (even without tipping) affect369

the state of the rainforest cell and with that also the moisture recycling values (see curvature370

before tipping point in the sketch in Fig. 1a, b). This is an advantage of a fully dynamic model371

such as this, while threshold-only models would not be capable of doing this.372

An example could be that Fcrit pMAP1q “ Fcrit pMAP2q “ 1

2
¨Ccrit due to respective MAP values373

for two cells at the same time. Then it makes sense that the state of these two cells that have374

exactly this critical value with respect to MAP is not the same in case they have a different value375

with respect to their MCWD values. Let us assume that cell 1 has Fcrit pMCWD1q “ 1

4
¨Ccrit and376

cell 2 has Fcrit pMCWD2q “ 1

16
¨ Ccrit. Then, the second term of Eq. 10 takes these differences377

between the cells 1 and 2 into account shifting cell 1 a bit closer to its tipping point than cell 2378

such that the reduction effect on the respective outgoing moisture recycling links is stronger for379

cell 1 than for cell 2.380

381
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Computation of the critical matrix. In analogy to Eqs. 8 and 9, we define the critical matrix382

for MAP as383

Mji p∆MAPjiq “ Ccrit ¨
∆MAPji

MAPcrit,i ´ µMAP,i

:“ Mji, MAP, (11)

where ∆MAPji represents the difference of the mean annual precipitation arising from the384

moisture recycling link δji from cell j to cell i. Thus: ∆MAPji “ ∆MAP pδjiq “ δji, MAP.385

386

For MCWD we have387

Mji p∆MCWDjiq “ Ccrit ¨
∆MCWDji

MCWDcrit,i ´ µMCWD,i

:“ Mji, MCWD, (12)

where ∆MCWDji “ ∆MCWD pδji, MAPq is the potential increase of MCWD in response to388

the moisture recycling link δji, MAP from cell j to cell i. Note that the moisture recycling link389

δji, MAP can reduce the precipitation, while the evaporation (which also goes into the computa-390

tion of the MCWD value, see Eq. 1) remains constant.391

392

Then, analogously to Eq. 10, the complete critical matrix is computed as393

Mji p∆MAPji,∆MCWDjiq “ Mji, MAP `

ˆ

1 ´
Mji, MAP

Ccrit

˙

¨ Mji, MCWD (13)

if Fcrit pMAPiq ą Fcrit pMCWDiq or394

Mji p∆MAPji,∆MCWDjiq “ Mji, MCWD `

ˆ

1 ´
Mji, MCWD

Ccrit

˙

¨ Mji, MAP (14)

if Fcrit pMAPiq ă Fcrit pMCWDiq.395

396

Resolution independence. To check for robustness of our results, we recomputed our simu-397

lations with respect to the finer and coarser resolutions of 0.5˝x0.5˝, 1.5˝x1.5˝ and 2˝x2˝ (see398

Supplementary Figs. 10 and 12). For that purpose, we scale the minimal moisture recycling399
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value connecting to rainforest cells with the area of a cell. In case of a resolution of 0.5˝x0.5˝
400

we take all moisture recycling values of more than 0.25 mm/yr into account, for 1˝x1˝ we take401

all values above 1.0 mm/yr into account, for 1.5˝x1.5˝ all values above 2.25 mm/yr and for402

2˝x2˝ all values above 4.0 mm/yr. Overall, we find that the vulnerability patterns are at the403

same location in the southeast (compare Fig. 3a with Supplementary Fig. 12a, b, c). Thus, the404

qualitative pattern is the same. The absolute values also show a close quantitative match within405

their standard deviations for resolutions of 1˝x1˝ or coarser (see Supplementary Fig. 13a, b).406

The finer the resolution is, the higher the tipped area tendentially is. This is due to the fact that407

a higher resolution resolves cells to a finer level. These cells are then able to tip individually,408

whereas on a coarser resolution these cells are subsumed under one cell which is then still sta-409

ble. Also, the scaling of the moisture recycling connections that we take into account might410

play a role for the increased tipping when the resolution becomes finer. Further note that we411

decreased the ensemble size for the resolution of 0.5˝x0.5˝ from 100 to 10 ensemble members412

due to computational constraints.413

414

Notes on colour maps. This paper makes use of perceptually uniform colour maps developed415

by F. Crameri67.416

417

Data and Code availability. The data and code that support the findings of this study are avail-418

able from the corresponding authors upon reasonable request.419

420
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Figures

Figure 1

Nonlinear effects and moisture recycling network in the Amazon rainforest. a, Dynamical property of each
1°฀x1°฀ cell of the rainforest depicted as state of rainforest cell (forest cover) versus MAP value. The state
of the rainforest is limited by full forest cover (1.0) and no forest cover (-1.0). Between these two stable
states, there is a tipping process as soon as the MAP value has fallen below its adaptation speci�c
MAPcrit value. Since we are focussing on drought triggered tipping events from forest to non-forest
states in this study, each cell can only exist on the occupied states (brown), but not on the unoccupied
states (grey). The blue arrow depicts a potential reduction in precipitation that is su�cient to trigger a
tipping event in this speci�c cell. b, Same as in a for MCWD. c, Exemplary moisture recycling network: the
rainforest cells are interconnected via a moisture recycling network due to precipitation and
evapotranspiration. Through this mechanism effects of reduced tree cover can be promoted and tipping
cascades are possible. d, Moisture recycling network for the hydrological year 2014 thresholded for links



above 10 mm/yr to remain visibility. In the simulation results, links above 1 mm/yr are used. The
dominant �ow direction comes from the Atlantic ocean through easterly winds, reaches the Andes, and is
then bend southward along the Andes. Moisture recycling links based on separate months can be found
in Supplementary Figs. 1 and 2 comparing the year 2014 with the extreme drought year 2010.

Figure 2

Vulnerability of the rainforest against MCWD-based drought intensity. a, The total tipped area is shown
over the course of the normalised drought index based on the MCWD Z-score. The tipped area represents
the number of tipped cells in the model where each 1°฀x1° cell has an area of approximately (111 km2฀).
b, The additional tipped area due to network effects for each year is shown in percentage of the tipped
area in panel a. This shows the effects of cascading transitions which are on the order of 10% to 60%
depending on the evaluated hydrological year. The same analysis has been performed for a MAP based
index, but no correlation was found (see Supplementary Fig. 3).



Figure 3

Vulnerable regions and tipping reason. a, The likelihood of tipping as an average over all ensemble
members and all evaluated years from the hydrological years 2004 to 2014. The southeastern region is
more vulnerable than other regions. In Supplementary Fig. 4, the yearly resolution results? can be found.
b, Overall tipping reason averaged over the entire Amazon basin with error bars as the standard deviation
over all years and all 100 ensemble members. A version separated into the future drought conditions
from 2004 to 2014 can be found in Supplementary Fig. 5 for all these potential future drought scenarios.
MAP does not contribute to tipping events (probability is less than 0.1%) and is thus omitted from this
�gure. c, Tipping reason map: MCWD, d, Tipping reason map: Network (Cascading effects of the moisture
recycling network). Note that panel a is the sum of the panels c and d.



Figure 4

Average shift towards the tipping point (Closeness to tipping). a, Mean shift to the tipping point as an
average over all ensemble members. It can be seen that the shift is larger southern part of the Amazon
rainforest such that these regions are the most vulnerable ones. b, Standard deviation of a over all
ensemble members. Note that cells are only accounted for if and only if the cell is not in the tipped regime
in the respective simulation run. A second colour bar indicates the reduction of evapotranspiration due to
changes in the state on average (panel a) together with its standard deviation (panel b). A version
separated into the future conditions from 2004-2014 can be found in Supplementary Fig. 6.
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